七年级上线段计算问题

合集下载

七年级上线段的综合计算(教师版)

七年级上线段的综合计算(教师版)

1、如图,点C 、D 为线段AB 上两点,AC +BD =a ,且AD +BC =57AB ,则CD 等于 。

(用含a 的式子表示)。

(a 32)2、已知,如图,B 、C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长。

知识点一 基础线段问题 【知识梳理】1、常考题型:线段基本概念、线段计数、线段中点问题、方程思想求线段长度、分类讨论线段上点的位置关系、线段与数轴、绝对值结合的动点压轴问题等;2、常用方法:设元法、方程思想、分类讨论等;3、线段的中点、等分点对应的线段关系(1)概念:把线段分为两条相等的线段的点,叫做这条线段的中点。

(2)画图并思考①若点C 为线段AB 上任意一点(点C 不与A 、B 重合),点M 为线段AC 的中点,点N 为线段BC 的中点,则线段MN 与AB 有什么数量关系?②若点C 为线段AB 上任意一点(点C 不与A 、B 重合),且2AC=5BC ,问AC 与AB 、BC 与AB 的数量关系?【例题精讲一】线段的基础计算1、已知线段AB ,在AB 的延长线上取一点C ,使AC =2BC ,在AB 的反向延长线上取一点D ,使DA =2AB ,则线段AC 是线段DB 的 倍。

(32)2、已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,求线段MN的长度。

3、(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的的长度;(2)对于(1)题,如果将“点C在线段AB上”改写成“点C在线段AB延长线上”,其他条件不变,画出图形并求线段MN的长度。

【课堂练习】1、已知点A、B、C在直线l上,若BC=53AC,则BCAB=。

(2585或)2、如图,点E是线段AB的中点,C是EB上一点,AC=12cm。

(1)若EC:CB=1:4,求线段AB的长;(20cm)(2)若F为CB的中点,求线段EF的长。

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

七年级数学人教版(上册)小专题(十四)线段的计算

七年级数学人教版(上册)小专题(十四)线段的计算

(3)若点 C 为线段 AB 上任意一点,且 AB=n cm,其他条件不变, 你能猜想 MN 的长度吗?并用一句简洁的话描述你发现的结论.
1n 解:猜想:MN=2AB=2 cm. 结论:若点 C 为线段 AB 上一点,且点 M,N 分别是 AC,BC
1 的中点,则 MN=2AB.
【变式 1】 若 MN=k cm,求线段 AB 的长.
(1)若 AB=10 cm,2 cm<AM<4 cm,当点 C,D 运动了 2 s 时, 求 AC+MD 的值.
解:(1)当点 C,D 运动了 2 s 时,CM=2 cm,BD=6 cm, 因为 AB=10 cm, 所以 AC+MD=AB-CM-BD=10-2-6=2(cm).
1 (2)若点 C,D 运动时,总有 MD=3AC,则 AM= 4 AB.
n 解:MN=2 cm 成立.理由如下: 当点 C 在线段 AB 的延长线上时,如图.
因为点 M,N 分别是 AC,BC 的中点,
1
1
所以 MC=2AC,CN=2BC.
又因为 MN=MC-CN,
1
1n
所以 MN=2(AC-BC)=2AB=2 cm.
如图,如果点 C 在线段 AB 所在的直线上,点 M,N 分别是 AC, 1
(1)当 0<t<5 时,用含 t 的式子填空: BP= 5-t ,AQ= 10-2t .
(2)当 t=2 时,求 PQ 的值. 解:(2)当 t=2 时,AP=1×2=2<5,点 P 在线段 AB 上;OQ=2×2 =4<10,点 Q 在线段 OA 上,如图所示:
此时 PQ=OP-OQ=(OA+AP)-OQ=(10+2)-4=8.
第四章 几何图形初步
小专题(十四) 线段的计算

七年级数学线段的计算专题训练题78题

七年级数学线段的计算专题训练题78题

七年级数学线段的计算专题训练题78题1.已知:线段AB=6厘米,点C是AB的中点,点D在AC的中点,求线段BD的长.2.如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB 的中点,且AB=18cm,求线段MN的长.3.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.4.C、D是线段AB上的两点,点C是AD的中点,AB=10cm,AC=4cm,求DB的长度.5.如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求:(1)AC的长;(2)BD的长.6.如图,线段AC=6 cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.7.如图:线段AB=14cm,C是AB上一点,且AC=9cm,O是AB的中点,求线段OC的长度.8.如图,,D为AC的中点,DC=2cm,求AB的长.9.线段MN上有P、Q两点,MN=32cm,MP=17cm,PQ=6cm.求NQ的长.10.如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.11.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.12.如图,AB=2,AC=5,延长BC到D,使BD=3BC,求AD的长.13.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.14.(1)已知:如图,点C在线段AB上,线段AC=15,BC=5,点M、N分别是AC、BC 的中点,求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件不变,结论又如何?请说明你的理由.15.已知点O为线段AB的中点,点C为OA的中点,并且AB=40cm,求AC的长.16.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.17.如图,AB=6cm,延长AB到C,使BC=3AB,D是BC的中点,求AD的长度.18.如图所示,点E,F分别是线段AC,BC的中点,若EF=2.5厘米,求线段AB的长.19.如图,线段AB=8cm,C是线段AB上一点,AC=3.2cm,M是AB的中点,N是AC 的中点,求线段MN的长.20.已知线段AB=60cm,在直线AB上画线段BC,使BC=20cm,点D是AC的中点,求CD的长度.21.如图所示,线段AB上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB长度.22.如图所示,点C在线段AB上,线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据(1)的计算过程和结果,设AC+BC=a,其他条件不变,你能猜测出MN的长度吗?请用一句简洁的话表述你发现的规律.23.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.24.延长线段AB至C,使BC=3AB,已知BC等于15cm,求AC的长.25.已知AB=10cm,直线AB上有一点C,BC=4cm,M是线段的中点,求AM的长.26.已知A、B、C三点在同一条直线上,AB=8cm,BC=5cm,D是AB的中点,求CD的长.27.如图,AD=BD,E是BC的中点,BE=2cm,AC=10cm,求线段DE的长.28.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.29.如图,已知点C是线段AB上一点,AC<CB,D,E分别是AB,CB的中点,AC=8,EB=5,求线段DE的长.30.如图,同一直线上有A、B、C、D四点,已知,CD=4cm,求AB的长.31.如图,C、D将线段AB分成2:3:4三部分,E、F、G分别是AC、CD、DB的中点,且EG=12cm,求AF的长.32.如图,线段AB=2BC,DA=AB,M是AD中点,N是AC中点,试比较MN和AB +NB的大小.33.点A、B、C在一条直线上,AB=14cm,且AC=9cm,O为AB的中点,求线段OC的长度.34.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.35.已知线段AB.延长线段AB至C.使BC=,反向延长线AB至D,使AD=AB,P为线段CD的中点,已知AP=17cm,求线段CD,AB的长.36.点A、B、C在一条直线上,AB=14cm,且AC=9cm,O为AB的中点,求线段OC的长度.37.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.38.已知线段AB.延长线段AB至C.使BC=,反向延长线AB至D,使AD=AB,P为线段CD的中点,已知AP=17cm,求线段CD,AB的长.39.A、B是线段EF上两点,已知EA:AB:BF=1:2:3,M、N分别为EA、BF的中点,且MN=8cm,求EF的长.40.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.41.如图所示,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB的中点,且NB=14厘米,求PA的长.42.如图所示,已知C点分线段AB为3:2,D点分线段AC为1:2,DC的长为12cm,求AB的长.43.如图,点C、D在线段AB上,AC=DB=2,D是BC的中点,求线段AB的长.44.已知:AB:BC:CD=2:3:4,E,F分别是AB和CD的中点,且EF=12厘米(cm),求AD的长(如图).45.在直线m上取A、B两点,使AB=10cm,再在m上取一点P,使PA=2cm,M、N分别为PA、PB的中点.求线段MN的长.46.如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.47.已知A、B、C三点在同一直线上,若线段AB=60,其中点为M;线段BC=20,其中点为N,求MN的长.48.根据下列语句画图并计算:作线段AB,在AB的延长线上取一点C,使BC=2AB,M 是AC的中点,若AB=30cm,求BM的长.49.如图,已知线段AB=16cm,直线AB上有一点C,且BC=6cm,E是BC的中点,M是AC的中点,求:(1)AC的长度;(2)MC的长度;(3)EM的长度.50.在直线L上有A、B两点,线段AB=3厘米,点C也在直线L上,且线段AC:BC=1:2.求线段AC、BC的长.(要求解题时画出图形)51.画线段AB=5厘米,延长AB至C,使AC=2AB,反向延长AB至E,使AE=CE,再计算:(1)线段CE的长;(2)线段AC是线段CE的几分之几;(3)线段CE是线段BC的几倍.52.如图,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中线段AC、AN的长度的和为5cm.53.如图所示.B,C是线段AD上两点,M是AB的中点,N是CD的中点.若MN=a,BC=b,求AD.54.如图,点C分线段AB为5:7,点D分线段AB为5:11,已知CD=2cm,求AB的长.55.如图,C为线段AB的中点,D为AB上一点,E为AD中点,且AD=6,EC=7.求DC、AB的长.56.如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB 的中点,若AB=16,求MN的长.57.如图,C为线段AB的中点,点D分线段AB的长度为3:2.已知CD=7cm,求AB的长.58.如图,C为线段AB的中点,D为AB上一点,E为AD中点,且AD=6,EC=7.求DC、AB的长.59.已知线段AB=a,延长AB至点C,使BC=AB,点D为线段AC的中点.(1)求CD的长;(2)若BD=2cm,求AB的长.60.线段AB被C点分成3:5两部分,又被D点分成7:5两部分,已知CD=2.5厘米,求AB的长.61.如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB 的中点,若AB=16,求MN的长.62.已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.63.如图,M是AB的中点,AB=BC,N是BD的中点,且BC=2CD,如果AB=2cm,求AD、AN的长.64.已知线段AB=40cm,点P在直线AB上,AP=24cm,点Q是线段PB的中点,求AQ 的长.65.已知:线段AB=10厘米,点C是直线AB上的一点,且BC=4厘米,点D是线段AC 的中点,求线段AD的长.66.如图,已知点C和D是线段AB上的两个点,且AB=a,CD=b(a>b),M和N分别是AC和BD的中点,求MN的长.67.延长线段AB到C,使BC=AB,延长BA到D,使AD=AC,若CD=16cm,求AB 的长.68.如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.69.如下图,已知线段a、b(a>b),画一线段,使它等于2a﹣2b.70.如图,线段AB=10cm,延长AB到点C,使BC=6cm,点M、N分别为AC、BC的中点,求线段BM、MN的长.71.已知线段AB=AC,AB+AC=16cm,求AC和AB的长.72.已知A、B、C三点在同一直线上,线段AB=8cm,线段BC=6cm,点M、点N分别是线段AB、线段BC的中点,求线段MN的长度.73.如图,线段AC:CD:DB=3:4:5,M、N分别是CD、AB的中点,且MN=2cm,求AB的长.74.如图,M是线段AB的中点,点C在线段AB上,且AC=6cm,N是AC的中点,MN=4cm,求线段CM和AB的长.75.已知:如图,点C是线段AB上一点,且3AC=2AB.D是AB的中点,E是CB的中点,DE=6,求:(1)AB的长;(2)求AD:CB.76.如图,点C在线段AB上,点M、N分别是AC、BC的中点.若AC=9cm,CB=6cm,求线段MN的长.77.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC的长.78.点C、D顺次将线段AB分成三部分,且AC=2CD,CD:BD=1:3,线段AC的中点为M,MD与MB之和为7厘米.(1)根据题意画出图形;(2)求线段AB的长.线段的计算答案1.已知:线段AB=6厘米,点C是AB的中点,点D在AC的中点,求线段BD的长.解:∵AB=6厘米,C是AB的中点,∴AC=3厘米,∵点D在AC的中点,∴DC=1.5厘米,∴BD=BC+CD=4.5厘米.2.如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB 的中点,且AB=18cm,求线段MN的长.解:设AC、CD、DB的长分别为xcm、2xcm、3xcm,则∵AC+CD+DB=AB,∴x+2x+3x=18,解得:x=3cm,∴AC=3cm,CD=6cm,DB=9cm,∵M、N分别为AC、DB的中点,∴(3分)∴MN=MC+CD+DN= (5分)答:MN的长为12cm.3.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC= AC= BC=5cm,∴DB=DC+CB=10+5=15cm.4.C、D是线段AB上的两点,点C是AD的中点,AB=10cm,AC=4cm,求DB的长度.解:∵C是AD的中点,AC=4cm,∴AD=8,∵AB=10cm,∴BD=AB﹣AD=2cm.5.如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求:(1)AC的长;(2)BD的长.解:(1)∵BC=2AB,AB=6,∴BC=12,∴AC=18;(2)D是AC的中点,AC=18,∴AD=9,∴BD=BC﹣DC=12﹣9=3.故答案为18、3.6.如图,线段AC=6 cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.解:∵M是AC的中点,∴MC=AM= AC= ×6=3cm,又∵CN:NB=1:2∴CN= BC= ×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.7.如图:线段AB=14cm,C是AB上一点,且AC=9cm,O是AB的中点,求线段OC的长度.解:∵点O是线段AB的中点,AB=14cm∴AO= AB=7cm∴OC=AC﹣AO=9cm﹣7cm=2cm.答:线段OC的长度为2cm.8.如图,,D为AC的中点,DC=2cm,求AB的长.解:设AB长为x,BC= AB= ,D为AC的中点,DC=2cm,解得:AC=4cm,有4= x,解得:x= ,故AB的长为cm.9.线段MN上有P、Q两点,MN=32cm,MP=17cm,PQ=6cm.求NQ的长.解:①若点Q在点P左边,由题意得:PN=MN﹣MP=15,∴NQ=QP+PN=6+15=21;②若点Q在点P右边,由题意得:PN=MN﹣MP=15,∴NQ=PN﹣PQ=9.综上可得NQ的长度为:9cm或21cm.10.如图,AD= DB,E是BC的中点,BE= AC=2cm,求线段DE的长.解:由于BE= AC=2cm,则AC=10cm,∵E是BC的中点,∴BE=EC=2cm,BC=2BE=2×2=4cm,则AB=AC﹣BC=10﹣4=6cm,又∵AD= DB,则AB=AD+DB=AD+2AD=3AD=6cm,AD=2cm,DB=4cm,所以,DE=AC﹣AD﹣EC=10﹣2﹣2=6cm,或DE=DB+BE=4+2=6cm.故答案为6cm.11.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.解:设AB=2x,BC=3x,CD=4x,∴AD=9x,MD= x,则CD=4x=8,x=2,MC= ﹣4x= = ×2=1.故答案为:﹣1.12.如图,AB=2,AC=5,延长BC到D,使BD=3BC,求AD的长.解:由AB=2,AC=5,得BC=AC﹣AB=3,∵BD=3BC=9,∴CD=6,∴AD=AB+BC+CD=11.故答案为:11.13.如图已知点C为AB上一点,AC=12cm,CB= AC,D、E分别为AC、AB的中点,求DE的长.解:根据题意,AC=12cm,CB= AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD= (AB﹣AC)=4cm.即DE=4cm.故答案为4cm.14.(1)已知:如图,点C在线段AB上,线段AC=15,BC=5,点M、N分别是AC、BC 的中点,求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件不变,结论又如何?请说明你的理由.解:(1)∵点M、N分别是AC、BC的中点,∴MC= AC= ×15= ,NC= BC= ,∴MN=MC+NC=10.(2)MN的长度是.已知线段分成两部分,它们的中点之间的距离等于原来线段长度的一半.(3)分情况讨论:当点C在线段AB上时,由(1)得MN= AB=10;当点C在线段AB延长线上时,MN=MC﹣NC= AC﹣BC= AB=5.15.已知点O为线段AB的中点,点C为OA的中点,并且AB=40cm,求AC的长.解:∵点O为线段AB的中点,∴OA= AB=20,∵点C为OA的中点,∴AC= OA=10.故答案为10.16.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+(AB+CD)=2+×4=4cm.17.如图,AB=6cm,延长AB到C,使BC=3AB,D是BC的中点,求AD的长度.解:∵AB=6cm,∴BC=3AB=3×6=18cm.∵D是BC的中点,∴BD= BC= ×18=9cm.∴AD=AB+BD=6+9=15cm.18.如图所示,点E,F分别是线段AC,BC的中点,若EF=2.5厘米,求线段AB的长.解:∵E,F分别是AC,BC的中点,∴EC= AC,FC= BC,∴EF=EC﹣FC= AC﹣BC= (AC﹣BC)= AB=2.5厘米,∴AB=5厘米.19.如图,线段AB=8cm,C是线段AB上一点,AC=3.2cm,M是AB的中点,N是AC 的中点,求线段MN的长.解:∵AB=8cm,M是AB的中点,∴AM=BM=4cm(2分)∵AC=3.2cm,N是AC的中点,∴AN=CN=1.6cm(3分)∴MN=AM﹣AN=4﹣1.6=2.4cm.(5分)20.已知线段AB=60cm,在直线AB上画线段BC,使BC=20cm,点D是AC的中点,求CD的长度.解答:解:如图,(1)当点C在线段AB上时,∴(cm);(2)当点C在线段AB的延长线上时,∴(cm);∴CD的长为20cm或40cm.21.如图所示,线段AB上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB长度.解:设AM=5x,则MB=11x,∵AN:NB=5:7,∴AN= AB= x,∴x﹣5x=1.5,解得x=0.9,∴AB=16x=16×0.9=14.4.∴AB长度为14.4.22.如图所示,点C在线段AB上,线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据(1)的计算过程和结果,设AC+BC=a,其他条件不变,你能猜测出MN的长度吗?请用一句简洁的话表述你发现的规律.解:(1)∵AC=6厘米,BC=4厘米,∴AB=AC+BC=10厘米,又∵点M是AC的中点,点N是BC的中点,∴MC=AM= AC,CN=BN= BC,∴MN=MC+CN= AC+BC= (AC+BC)= AB=5厘米;(2)由(1)中已知AB=10厘米,求出MN=5厘米,分析(1)的推算过程可知MN= AB,故当AB=a时,MN= a,从而得到发现的规律:线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半.23.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.解:∵P是MB中点∴MB=2MP=6cm又AM=MB=6cm∴AP=AM+MP=6+3=9cm.24.延长线段AB至C,使BC=3AB,已知BC等于15cm,求AC的长.解:∵BC=3AB,BC=15cm,∴AB=5cm,∴AC=AB+BC=20cm.25.已知AB=10cm,直线AB上有一点C,BC=4cm,M是线段的中点,求AM的长.解:(1)如图1,点C在线段AB上,∵AB=10cm,BC=4cm,∴AC=AB﹣BC=10﹣4=6(cm),∵M是AC的中点,∴AM= AC=3(cm).(2)如图2,点C在线段AB的延长线上.∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14(cm),∵M是AC的中点,∴AM= AC=7(cm).∴AM的长为3cm或7cm.26.已知A、B、C三点在同一条直线上,AB=8cm,BC=5cm,D是AB的中点,求CD的长.解:(1)如图1,点B在A、C之间时,BD= AB=4,所以CD=DB+BC=4+5=9cm;(2)如图2,点C在A、B之间时,BD= AB=4,所以CD=BC﹣DB=5﹣4=1cm.所以CD的长是9cm或1cm.27.如图,AD= BD,E是BC的中点,BE=2cm,AC=10cm,求线段DE的长.解:∵BE=2cm,且E是BC的中点,∴BC=4cm,又∵AC=10cm,∵AD= BD,∴DB=4cm.∴DE=DB+BE=6cm.28.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.解:(1)∵点M、N分别是AC、BC的中点,∴CM= AC=4cm,CN= BC=3cm,∴MN=CM+CN=4+3=7cm;(2)同(1)可得CM= AC,CN= BC,∴MN=CM+CN= AC+BC= (AC+BC)= a.29.如图,已知点C是线段AB上一点,AC<CB,D,E分别是AB,CB的中点,AC=8,EB=5,求线段DE的长.解:∵E是CB的中点∴CB=2EB=10又∵AC=8∴AB=1C+CB=18∵D是AB的中点∴DB= AB=9∴DE=DB﹣EB=4.30.如图,同一直线上有A、B、C、D四点,已知,CD=4cm,求AB的长.解:∵AB=AD﹣BD,BD= AD∴AD=3AB;∵AB=AC﹣BC,AC= BC∴BC= AB;∵AD=AB+BC+CD,CD=4cm∴AB=431.如图,C、D将线段AB分成2:3:4三部分,E、F、G分别是AC、CD、DB的中点,且EG=12cm,求AF的长.解:设AC=2x,则CD=3x,DB=4x,又有E、G分别平分AC、DB,故,由EG=EC+CD+DG=x+3x+2x=12,得x=2,∴.32.如图,线段AB=2BC,DA= AB,M是AD中点,N是AC中点,试比较MN和AB+NB的大小.解:∵AB=2BC,DA= AB,M是AD中点,N是AC中点,∴假设BC=x,则AB=2x,AD=3x,AN=x,AM=1.5x,AN=1.5x,∴MN=AM+AN=3x,∴AB+NB=2x+0.5x=2.5x,∴MN>AB+NB.33.点A、B、C在一条直线上,AB=14cm,且AC=9cm,O为AB的中点,求线段OC的长度.解:如图所示,∵AB=14cm,O是AB的中点,∴AO=7cm.当点C在线段AB上时,OC=AC﹣AO=9﹣7=2(cm);当点C在线段AB的延长线上时,OC=OA+AC=7+2=9(cm).34.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.解:(1)∵M、N分别是AC、BC的中点,∴MC= AC,CN= BC,∴MN=MC+CN= AC+BC= ×4+×6=5cm,所以MN的长为5cm.(2)同(1),MN= AC+CB= (AC+CB)= (a+b).(3)图如右,MN= (a﹣b).理由:由图知MN=MC﹣NC= AC﹣AB= a﹣b= (a﹣b).35.已知线段AB.延长线段AB至C.使BC= ,反向延长线AB至D,使AD= AB,P为线段CD的中点,已知AP=17cm,求线段CD,AB的长.解:设AB长度为:x cm,则BC= x cm,AD= x cm,DC=x+x+x= x cm,因为点P是CD中点,则DP= x cm,AP=DP﹣DA= x﹣x= x=17cm,所以x=AB=24cm,DC=50cm.36.点A、B、C在一条直线上,AB=14cm,且AC=9cm,O为AB的中点,求线段OC的长度.解:如图所示,∵AB=14cm,O是AB的中点,∴AO=7cm.当点C在线段AB上时,OC=AC﹣AO=9﹣7=2(cm);当点C在线段AB的延长线上时,OC=OA+AC=7+2=9(cm).37.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.解:(1)∵M、N分别是AC、BC的中点,∴MC= AC,CN= BC,∴MN=MC+CN= AC+BC= ×4+×6=5cm,所以MN的长为5cm.(2)同(1),MN= AC+CB= (AC+CB)= (a+b).(3)图如右,MN= (a﹣b).理由:由图知MN=MC﹣NC= AC﹣AB= a﹣b= (a﹣b).38.已知线段AB.延长线段AB至C.使BC= ,反向延长线AB至D,使AD= AB,P为线段CD的中点,已知AP=17cm,求线段CD,AB的长.解:设AB长度为:x cm,则BC= x cm,AD= x cm,DC=x+x+x= x cm,因为点P是CD中点,则DP= x cm,AP=DP﹣DA= x﹣x= x=17cm,所以x=AB=24cm,DC=50cm.39.A、B是线段EF上两点,已知EA:AB:BF=1:2:3,M、N分别为EA、BF的中点,且MN=8cm,求EF的长.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA= EA,NB= BF,∴MN=MA+AB+BN= x+2x+x=4x,而MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm.40.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC= AB=6∴CD=AD﹣AC=7﹣6=1.41.如图所示,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB的中点,且NB=14厘米,求PA的长.解:∵N是BP中点,M是AB中点∴PB=2NB=2×14=28cm∴AP=AB﹣BP=80﹣28=52cm.42.如图所示,已知C点分线段AB为3:2,D点分线段AC为1:2,DC的长为12cm,求AB的长.解:∵D点分线段AC为1:2,DC的长为12cm,∴AC=12 =18cm,又∵C点分线段AB为3:2,∴AB=18÷=30cm.故答案为30cm.43.如图,点C、D在线段AB上,AC= DB=2,D是BC的中点,求线段AB的长.解:∵AC= DB=2∴BD=4∵点D是线段BC的中点∴BC=2BD=8,AB=AC+CB=2+8=10.44.已知:AB:BC:CD=2:3:4,E,F分别是AB和CD的中点,且EF=12厘米(cm),求AD的长(如图).解:因为AB:BC:CD=2:3:4,E是AB中点,F是CD中点,将线段AD9等分(9=2+3+4)且设每一份为一个单位,则AB=2,BC=3,CD=4,EB=1,CF=2.从而EF=EB+BC+CF=1+3+2=6,即EF占AD全长的.所以线段AD的长=12 =18(厘米).45.在直线m上取A、B两点,使AB=10cm,再在m上取一点P,使PA=2cm,M、N分别为PA、PB的中点.求线段MN的长.解答:解:如图,(1)当点P在线段AB上时,PB=AB﹣PA=8cm,M、N分别为PA、PB的中点,∴MN=PM+PN= AP+BP=1+4=5(cm);(2)当点P在线段BA的延长线上时,PB=AB+PA=12cm,M、N分别为PA、PB的中点,∴MN=PM﹣PN= BP﹣AP=6﹣1=5(cm).∴线段MN的长是5cm.46.如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.解:(1)∵N是BC的中点,M是AC的中点,AM=1,BC=4∴CN=2,AM=CM=1∴MN=MC+CN=3;(2)∵M是AC的中点,N是BC的中点,AB=6∴NM=MC+CN= AB=3.47.已知A、B、C三点在同一直线上,若线段AB=60,其中点为M;线段BC=20,其中点为N,求MN的长.解:本题有两种情形:(1)当点C在线段AB上时,如图,∵AC=AB﹣BCAB=60cm,BC=20cm,∴AC=60﹣20=40cm.又∵M、N分别是AB、BC的中点,∴AM= AB=30cm,BN= BC=10cm,∴MN=AB﹣AM﹣BN=60﹣30﹣10=20cm;(2)当点C在线段AB的延长线上时,如图,∵AC=AB+BC,AB=60cm,BC=20cm,∴AC=60+20=80cm.又∵M、N分别是AB、BC的中点,∴BM= AB=30cm,BN= BC=10cm,∴MN=BM+BN=30+10=40cm.故MN的长度是20cm或40cm.48.根据下列语句画图并计算:作线段AB,在AB的延长线上取一点C,使BC=2AB,M 是AC的中点,若AB=30cm,求BM的长.解:画图得:由分析得:BC=2AB=60cm,AC=30+60=90cm,AM=45cm,BM=AM﹣AB=45﹣30=15cm.即BM的长为15cm.49.如图,已知线段AB=16cm,直线AB上有一点C,且BC=6cm,E是BC的中点,M是AC的中点,求:(1)AC的长度;(2)MC的长度;(3)EM的长度.解:(1)∵AB=16cm,BC=6cm,∴AC=AB﹣BC=16﹣6=10cm;(2)∵M是AC的中点,∴MC= AC=5cm;(3)∵BC=6cm,E是BC的中点,∴CE= BC=3cm,∴EM=MC+CE=5+3=8cm.50.在直线L上有A、B两点,线段AB=3厘米,点C也在直线L上,且线段AC:BC=1:2.求线段AC、BC的长.(要求解题时画出图形)解:①点C在AB之间,如图:因为AC:BC=1:2,所以AC= AB=1cm,CB= AB=2cm.②点C在A的左侧,如图:因为AC:BC=1:2,所以AC=AB,点A是BC的中点,AB=AC=3cm,BC=2AB=6cm.51.画线段AB=5厘米,延长AB至C,使AC=2AB,反向延长AB至E,使AE= CE,再计算:(1)线段CE的长;(2)线段AC是线段CE的几分之几;(3)线段CE是线段BC的几倍.解:如图所示:(1)∵CE=3AE∴AC=2AE∵AB=5,AC=2AB∴AC=10(厘米)∴AE=5(厘米)∴CE=15(厘米);(2) ;(3)CE=3AB=3BC.答:线段CE的长15厘米;线段AC是线段CE的;线段CE是线段BC的3倍.52.如图,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中线段AC、AN的长度的和为5cm.解:∵N为线段CB的中点,CN=1cm,∴BC=CN+NB=2cm,又∵C为线段AB的中点,∴AC=BC=2cm,∴AN=AC+CN=3cm,AC+AN=2cm+3cm=5cm.故答案填5cm.53.如图所示.B,C是线段AD上两点,M是AB的中点,N是CD的中点.若MN=a,BC=b,求AD.解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.54.如图,点C分线段AB为5:7,点D分线段AB为5:11,已知CD=2cm,求AB的长.解:设AB的长为xcm,根据题意得:,解得x=19.5.∴AB的长为19.5cm.55.如图,C为线段AB的中点,D为AB上一点,E为AD中点,且AD=6,EC=7.求DC、AB的长.解:∵E为AD中点,AD=6∴AE=ED=∵EC=7∴DC=EC﹣ED=7﹣3=4∴AC=AE+EC=3+7=10∵C为AB中点∴AB=2AC=2×10=20故DC、AB的长分别为4、20.56.如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB 的中点,若AB=16,求MN的长.解:∵点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB的中点,AB=16 ∴AD+BD=AB=16∴MN=MD+DN= (AD+BD)=8.57.如图,C为线段AB的中点,点D分线段AB的长度为3:2.已知CD=7cm,求AB的长.解:∵C为线段AB的中点∴AC=BC= AB∵点D分线段AB的长度为3:2∴AD= AB∴DC= AB﹣AB= AB∵CD=7cm∴AB=7cm∴AB=70cm.58.如图,C为线段AB的中点,D为AB上一点,E为AD中点,且AD=6,EC=7.求DC、AB的长.解:∵E为AD中点,AD=6∴AE=ED=∵EC=7∴DC=EC﹣ED=7﹣3=4∴AC=AE+EC=3+7=10∵C为AB中点∴AB=2AC=2×10=20故DC、AB的长分别为4、20.59.已知线段AB=a,延长AB至点C,使BC= AB,点D为线段AC的中点.(1)求CD的长;(2)若BD=2cm,求AB的长.解:(1)∵BC= AB= a,∴AC=AB+BC=a+a= a,∵D为线段AC的中点,∴CD= AC= a;(2)∵AD=CD= a,∴BD=AB﹣AD=a﹣a= a,∵BD=2,∴AB=3BD=6(cm).60.线段AB被C点分成3:5两部分,又被D点分成7:5两部分,已知CD=2.5厘米,求AB的长.解:如图所示,由3+5=8,可知AC= AB,同理AD= AB,∵CD=AD﹣AC,∴CD是AB的( ﹣)= ,∵CD=2.5厘米,∴AB的长是2.5÷=12厘米,即AB的长是12厘米.61.如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB 的中点,若AB=16,求MN的长.解:∵点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB的中点,AB=16∴AD+BD=AB=16∴MN=MD+DN= (AD+BD)=8.62.已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.解:(1)∵AC=6cm,BC=14cm,点M、N分别是AC、BC的中点,∴MC=3cm,NC=7cm,∴MN=MC+NC=10cm;(2)MN= (a+b)cm.理由是:∵AC=acm,BC=bcm,点M、N分别是AC、BC的中点,∴MC= cm,NC= cm,∴MN=MC+NC= (a+b)cm.63.如图,M是AB的中点,AB= BC,N是BD的中点,且BC=2CD,如果AB=2cm,求AD、AN的长.解:∵M是AB的中点,AB= BC,N是BD的中点,且BC=2CD,AB=2cm∴BC=3cm,CD=1.5cm∴BD=4.5cm,AD=AB+BC+CD=2+3+1.5=6.5cm∴BN=2.25cm∴AN=AB+BN=2+2.25=4.25cm.64.已知线段AB=40cm,点P在直线AB上,AP=24cm,点Q是线段PB的中点,求AQ 的长.解:本题有两种情形:(1)当点P在线段AB上时,如图,∵PB=AB﹣AP,又∵AB=40cm,AP=24cm,∴PB=40﹣24=16cm∵点Q是线段PB的中点,∴PQ= PB=8cm,∴AQ=AP+PQ=24+8=32cm;(2)当点P在线段AB的反向延长线上时,如图,∵PB=AB+AP,又∵AB=40cm,AP=24cm,∴PB=40+24=64cm∵点Q是线段PB的中点,∴PQ= PB=32cm,∴AQ=PQ﹣AP=32﹣24=8cm.故AQ的长为32cm或8cm.65.已知:线段AB=10厘米,点C是直线AB上的一点,且BC=4厘米,点D是线段AC 的中点,求线段AD的长.解:①当点C在线段AB上时,AC=AB﹣BC=10﹣4=6,根据点D是线段AC的中点,得:AD= AC=3;②当点C在线段AB的延长线上时,AC=AB+BC=14,根据点D是线段AC的中点,得:AD= AC=7.综上所述,得AD的长是3cm或7cm.66.如图,已知点C和D是线段AB上的两个点,且AB=a,CD=b(a>b),M和N分别是AC和BD的中点,求MN的长.解:∵M和N分别是AC和BD的中点,AB=a,CD=b∴MC+DN= (AB﹣CD)= (a﹣b)∴MN=MC+DN+CD= (a﹣b)+b= a+b.67.延长线段AB到C,使BC= AB,延长BA到D,使AD= AC,若CD=16cm,求AB的长.解:如图,∵DC=16cm,AD= AC∴DC=AD+AC= AC+AC= AC=16cm∴AC=12cm又∵BC= AB∴AC=AB+BC=AB+AB= AB=12cm∴AB=8cm.68.如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,∴AB= AD,BC= BC,CD= AD,又∵CD=6,∴AD=18,∵M是AD的中点,∴MD= AD=9,∴MC=MD﹣CD=9﹣6=3.69.如下图,已知线段a、b(a>b),画一线段,使它等于2a﹣2b.解:画法(如图):①画射线AF;②在射线AF上顺次截取AB=BC=a;③在线段AC上顺次截取AD=DE=b,则线段EC即为所要画的线段.70.如图,线段AB=10cm,延长AB到点C,使BC=6cm,点M、N分别为AC、BC的中点,求线段BM、MN的长.解:∵AB=10,BC=6∴AC=16又∵M为AC的中点∴MC=AM=8∵N为BC的中点∴BN=NC=3BM=AB﹣AM=10﹣8=2MN=BM+BN=2+3=5.71.已知线段AB= AC,AB+AC=16cm,求AC和AB的长.解:∵AB= AC,AB+AC=16cm∴AC+AC=16,AC=16∴AC=12cm,AB=4cm.72.已知A、B、C三点在同一直线上,线段AB=8cm,线段BC=6cm,点M、点N分别是线段AB、线段BC的中点,求线段MN的长度.解:第一种情况:B在AC内,则MN= AB+BC=7;第二种情况:B在AC外,则MN= AB﹣BC=1.73.如图,线段AC:CD:DB=3:4:5,M、N分别是CD、AB的中点,且MN=2cm,求AB的长.解:假设AC,CD,DB=3a,4a,5a∴CM=2a,AB=12a,AN=6a∴MN=AN﹣AM=6a﹣(3a+2a)=a=2∴AB=12a=24cm.74.如图,M是线段AB的中点,点C在线段AB上,且AC=6cm,N是AC的中点,MN=4cm,求线段CM和AB的长.解:∵AC=6cm,N是AC的中点∴AN=NC=3∵MN=4cm∴AM=AN+MN=7∵M是线段AB的中点∴AB=14,CM= ﹣AC=1cm.75.已知:如图,点C是线段AB上一点,且3AC=2AB.D是AB的中点,E是CB的中点,DE=6,求:(1)AB的长;(2)求AD:CB.解:(1)设AB=x,则由3AC=2AB得:AC= AB= x,BC= x,E是CB的中点,则BE= x,D是AB的中点,DB= ,故DE= ﹣=6,解可得:x=18,故AB的长为18;(2)由(1)得:AD= AB=9,CB= AB=6,故AD:CB= .76.如图,点C在线段AB上,点M、N分别是AC、BC的中点.若AC=9cm,CB=6cm,求线段MN的长.解:∵M是AC的中点,∴MC= AC= ×9= ,∵N是BC的中点,∴CN= BC=3,∵MN=CN+CM,∴MN= +3= cm.77.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC的长.解:∵M为AB的中点,∴AM=BM= AB=3cm,∵N为MC的中点,∴MN=NC=8cm.∴BN=MN﹣BM=5cm,∴BC=BN+NC=5+8=13(cm).答:BC长为13cm.78.点C、D顺次将线段AB分成三部分,且AC=2CD,CD:BD=1:3,线段AC的中点为M,MD与MB之和为7厘米.(1)根据题意画出图形;(2)求线段AB的长.解:(1)(2)设线段CD=x厘米,则AC=2CD=2x厘米,BD=3CD=3x厘米.∵点M是线段AC的中点,∴MC= AC= 2x=x,∴MD=MC+CD=x+x=2x,MB=MD+BD=2x+3x=5x,∴MD+MB=2x+5x=7x=7,解得x=1.所以AB=AC+CD+DB=2x+x+3x=6x=6×1=6(厘米).。

人教版七年级上册同步强化训练:线段长短的计算(含答案)

人教版七年级上册同步强化训练:线段长短的计算(含答案)

4.2线段长短的计算一.选择题1.如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=BC C.CD=AB﹣BD D.CD=AD﹣BC 2.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=AB D.AM+BM=AB 3.如图,AB=CD,那么AC与BD的大小关系是()A.AC=BD B.AC<BD C.AC>BD D.不能确定4.如图,下列关系式中与图不符合的式子是()A.AD﹣CD=AB+BC B.AC﹣BC=AD﹣BDC.AC﹣BC=AC+BD D.AD﹣AC=BD﹣BC5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.66.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm7.已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上8.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为()A.7B.3C.3或7D.以上都不对9.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 二.填空题10.如图,点C在线段AB上,E是AC中点,D是BC中点,若ED=6,则线段AB的长为.11.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.12.如图,点C、D在线段AB上,点C为AB中点,若AC=5cm,BD=2cm,则CD=cm.13.已知线段AB,延长AB至点C,使BC=AB,反向延长AB至点D,使AD=AB,若AB=12cm,则CD=cm.14.线段AB上有P、Q两点,AB=26,AP=14,PQ=11,那么BQ=.三.解答题15.如图,A、B、C三点在一条直线上,根据右边的图形填空:(1)AC=++;(2)AB=AC﹣;(3)DB+BC=﹣AD(4)若AC=8cm,D是线段AC中点,B是线段DC中点,求线段AB的长.16.如图,点M为AB中点,BN=AN,MB=3cm,求AB和MN的长.17.如图,已知线段AB上有一点C,点D、点E分别为AC、AB的中点,如果AB=10,BC=3,求线段DE的长.18.如图已知点C为AB上一点,AC=18cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.20.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.参考答案一.选择题1.解:∵C是线段AB的中点,∴AC=BC=AB,A、CD=BC﹣BD=AC﹣BD,故本选项正确;B、D不一定是BC的中点,故CD=BC不一定成立;C、CD=AD﹣AC=AD﹣BC,故本选项正确;D、CD=BC﹣BD=AB﹣BD,故本选项正确.故选:B.2.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确;C、由BM=AB可以判定点M是线段AB中点,所以此结论正确;D、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确;因为本题选择不能判定点M是线段AB中点的说法,故选:D.3.解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:A.4.解:A、AD﹣CD=AB+BC,正确,B、AC﹣BC=AD﹣BD,正确;C、AC﹣BC=AB,而AC+BD≠AB,故本选项错误;D、AD﹣AC=BD﹣BC,正确.故选:C.5.解:∵AB=20,AD=14,∴BD=AB﹣AD=20﹣14=6,∵D为线段BC的中点,∴BC=2BD=12,∴AC=AB﹣BC=20﹣12=8.故选:B.6.解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.7.解:如图:∵P A+PB=AB,∴点P在线段AB上.故选:B.8.解:当点C在线段AB上时:AC=5﹣2=3;当C在AB的延长线上时:AC=5+2=7.故选:C.9.解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选:C.二.填空题10.解:∵E是AC中点,D是BC中点,AC+BC=AB∴ED=AB∴AB=12.∴线段AB的长为12.11.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.12.解:∵点C为AB中点,∴BC=AC=5cm,∴CD=BC﹣BD=3cm.13.解:如图∵AB=12cm,∴BC=AB=8cm,AD=AB=3cm,∴CD=DA+AB+BC=3+12+8=23cm.14.解:本题有两种情形:(1)当点Q在线段AP上时,如图,BQ=BP+PQ=AB﹣AP+PQ=26﹣14+11=23;(2)当点Q在线段BP上时,如图,BQ=BP﹣PQ=AB﹣AP+PQ=26﹣14﹣11=1.故答案为:23或1.三.解答题15.解:(1)AC=AD+DB+BC;(2)AB=AC﹣BC;(3)DB+BC=AC﹣AD(4)∵D是AC的中点,AC=8,∴AD=DC=4,∵B是DC的中点,∴DB==2,∴AB=AD+DB,=4+2,=6(cm).∴线段AB的长为6cm.故答案为:AD,DB,BC;BC;AC.16.解:∵点M为AB中点,∴AB=2MB=6cm,∴AN+NB=6cm,∵BN=AN,∴2BN+NB=6cm∴NB=2cm∴MN=MB﹣NB=1cm.17.解:因为D是AC的中点,所以,因为点E是AB的中点,所以AE=AB,所以.因为AB=10,BC=3,所以AC=AB﹣BC=7.所以=.答:线段DE的长为.18.解:∵AC=18cm,CB=AC,∴BC=×18=12cm,则AB=AC+BC=30cm,∵D、E分别为AC、AB的中点,∴AD=AC=9cm,AE=AB=15cm,∴DE=AE﹣AD=15﹣9=6cm,答:DE的长是6cm.19.解:(1)∵N是BC的中点,M是AC的中点,AM=1,BC=4∴CN=2,AM=CM=1∴MN=MC+CN=3;(2)∵M是AC的中点,N是BC的中点,AB=6∴NM=MC+CN=AB=3.20.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.。

北师大版七年级 数学上第4章基本平面图形 -- 线段计算题(含答案)

 北师大版七年级 数学上第4章基本平面图形 -- 线段计算题(含答案)

北师大版七年级数学上第4章基本平面图形 -- 线段计算题(含答案)AB=6C AB D AC BD1. 已知:线段厘米,点是的中点,点在的中点,求线段的长.AB=6AB C BC=2AB D AC2. 如图,已知线段,延长线段到,使,点是的中点.求:AC(1)的长;BD(2)的长.B C AD2:3:4M AD CD=8MC3. 如图、两点把线段分成三部分,是的中点,,求的长.C ABD BC AD=7BD=5CD4. 已知:为线段的中点,在线段上,且,,求:线段的长度.AB=20cm C AB D AC E BC DE 5. 如图,,是上任意一点,是的中点,是的中点,求线段的长.AC=6cm BC=15cm M AC CB N6. 如图,线段,线段,点是的中点,在上取一点,使得CN:NB=1:2MN,求的长.7. 如图,,两点把线段分成三部分,其比为,是的中点,B C MN MB:BC:CN =2:3:4P MN ,求的长.PC =2cm MN8. 已知,如图,点在线段上,且,,点、分别是、的中C AB AC =6cm BC =14cm M N AC BC 点.(1)求线段的长度;MN(2)在(1)中,如果,,其它条件不变,你能猜测出的长度吗?AC =acm BC =bcm MN 请说出你发现的结论,并说明理由.9. 已知、两点在数轴上表示的数为和,、均为数轴上的点,且. A B a b M N OA <OB (1)若、的位置如图所示,试化简:.A B |a|−|b|+|a +b|+|a−b|(2)如图,若,,求图中以、、、、这个点为端点的所|a|+|b|=8.9MN =3A N O M B 5有线段长度的和;(3)如图,为中点,为中点,且,,若点为数轴上一点,M AB N OA MN =2AB−15a =−3P 且,试求点所对应的数为多少?PA =23ABP10. 阅读材料:我们知道:点、在数轴上分别表示有理数、,、两点之间的距A B a b A B 离表示为,在数轴上、两点之间的距离.所以式子的几何意义是AB A B AB =|a−b||x−3|数轴上表示有理数的点与表示有理数的点之间的距离.3x 根据上述材料,解答下列问题:(1)若,则________;|x−3|=|x +1|x =(2)式子的最小值为________;|x−3|+|x +1|(3)若,求的值.|x−3|+|x +1|=7x11. 如图,是定长线段上一点,、两点分别从、出发以、的速度沿P AB C D P B 1cm/s 2cm/s 直线向左运动(在线段上,在线段上)AB C AP D BP (1)若、运动到任一时刻时,总有,请说明点在线段上的位置:C D PD =2AC P AB(2)在(1)的条件下,是直线上一点,且,求的值.Q AB AQ−BQ =PQ PQAB(3)在(1)的条件下,若、运动秒后,恰好有,此时点停止运动,点C D 5CD =12ABC D 继续运动(点在线段上),、分别是、的中点,下列结论:①的值D PB M N CD PD PM−PN 不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求MNAB 值.12. 如图,、是线段上两点,已知,、分别为、的中点,C D AB AC:CD:DB =1:2:3M N AC DB且,求线段的长.AB =18cm MN13. (应用题)如图所示,,,是一条公路上的三个村庄,,间路程为,A B C A B 100km ,间路程为,现在,之间建一个车站,设,之间的路程为. A C 40km A B P P C xkm (1)用含的代数式表示车站到三个村庄的路程之和;x(2)若路程之和为,则车站应设在何处?102km(3)若要使车站到三个村庄的路程总和最小,问车站应设在何处?最小值是多少?14. 已知线段,,线段在直线上运动(在左侧,在左侧). AB =12CD =6CD AB A B C D (1)、分别是线段、的中点,若,求;M N AC BD BC =4MN(2)当运动到点与点重合时,是线段延长线上一点,下列两个结论:①CD D B P AB 是定值;②是定值,请作出正确的选择,并求出其定值.PA +PB PCPA−PBPC15. 如图甲,点是线段上一点,、两点分别从、同时出发,以、的O AB C D O B 2cm/s 4cm/s 速度在直线上运动,点在线段之间,点在线段之间.AB C OA D OB(1)设、两点同时沿直线向左运动秒时,,求的值;C D AB t AC:OD =1:2OAOB(2)在(1)的条件下,若、运动秒后都停止运动,此时恰有,求C D 52OD−AC =12BD的长;CD (3)在(2)的条件下,将线段在线段上左右滑动如图乙(点在之间,点在CD AB C OA D 之间),若、分别为、的中点,试说明线段的长度总不发生变化.OB M N AC BD MN16. 线段,点是线段中点,点是线段上一点,且,是线段AB =12cm O AB C AB AC =12BCP 的中点.AC(1)求线段的长.(如图所示)OP(2)若将题目中:点是线段上一点,改为点是直线上一点,线段还可以是C AB C AB OP 多长?(画出示意图)17. 已知:如图,是定长线段上一定点,、两点分别从、出发以、1M AB C D M B 1cm/s 的速度沿直线向左运动,运动方向如箭头所示(在线段上,在线段上)3cm/s BA C AM D BM(1)若,当点、运动了,求的值.AB =10cm C D 2s AC +MD(2)若点、运动时,总有,直接填空:________.C D MD =3AC AM =AB(3)在(2)的条件下,是直线上一点,且,求的值.N AB AN−BN =MN MNAB参考答案与试题解析北师大版七上线段计算题一、 解答题 (本题共计 17 小题 ,每题 10 分 ,共计170分 ) 1.【答案】解:∵ 厘米,是的中点,AB =6C AB ∴ 厘米,AC =3∵ 点在的中点,D AC ∴ 厘米,DC =1.5∴ 厘米.BD =BC +CD =4.52.【答案】、.1833.【答案】解:设,,,AB =2x BC =3x CD =4x ∴ ,,AD =9x MD =92x则,,CD =4x =8x =2.MC =MD−CD =92x−4x =12x =12×2=14.【答案】解:∵ ,AD =7BD =5∴ AB =AD +BD =12∵ 是的中点C AB ∴AC =12AB =6∴ .CD =AD−AC =7−6=15.【答案】.10cm6.【答案】解:∵ 是的中点,M AC ∴,MC =AM =12AC =12×6=3cm又∵ CN:NB =1:2∴,CN =13BC =13×15=5cm∴ .MN =MC +NC =3cm +5cm =8cm 7.【答案】.MN =36cm 8.【答案】解:(1)∵ ,,AC =6cm BC =14cm 点、分别是、的中点,M N AC BC ∴ ,,MC =3cm NC =7cm ∴ ;MN =MC +NC =10cm(2).理由是:MN =12(a +b)cm∵ ,,AC =acm BC =bcm 点、分别是、的中点,M N AC BC ∴ ,,MC =12acmNC =12bcm ∴ .MN =MC +NC =12(a +b)cm9.【答案】所有线段长度的和为41.6(3)∵ a =−3∴ OA =3∵ 为的中点,为的中点M AB N OA ∴ ,AM =12ABAN =12OA∴ MN =AM−AN =12AB−12OA =12AB−32又MN =2AB−15∴2AB−15=12AB−32解得:AB =9∴PA =23AB =6若点在点的左边时,点在原点的左边(图略)P A P OP =9故点所对应的数为P −9若点在点的右边时,点在原点的右边(图略)P A P OP =3故点所对应的数为P 3答:所对应的数为或.P −9310.【答案】,,或.14x =92x =−5211.【答案】解:(1)根据、的运动速度知:C D BD =2PC ∵ ,PD =2AC ∴ ,即,BD +PD =2(PC +AC)PB =2AP ∴ 点在线段上的处;P AB 13(2)如图:∵ ,AQ−BQ =PQ ∴ ;AQ =PQ +BQ 又,AQ =AP +PQ ∴ ,AP =BQ ∴ ,PQ =13AB∴ .PQAB =13当点在的延长线上时Q ′AB AQ ′−AP =PQ′所以AQ ′−B Q ′=PQ =AB所以;PQAB=1(3)②.MNAB 的值不变理由:当时,点停止运动,此时,CD =12ABC CP =5AB =30①如图,当,在点的同侧时M N PMN =PN−PM =12PD−(PD−MD)=MD−12PD =12CD−12PD =12(CD−PD)=12CP =52②如图,当,在点的异侧时M N PMN =PM +PN =MD−PD +12PD =MD−12PD =12CD−12PD =12(CD−PD)=12CP =52∴ MNAB=5230=112当点停止运动,点继续运动时,的值不变,所以,.C D MN MNAB =11212.【答案】的长为.MN 12cm13.【答案】解:(1)路程之和为;PA +PC +PB =40+x +100−(40+x)+x =(100+x)km (2),,车站在两侧处;100+x =102x =2C 2km (3)当时,,车站建在处路程和最小,路程和为.x =0x +100=100C 100km 14.【答案】解:(1)如图,∵ 、分别为线段、的中点,1M N AC BD ∴,AM =12AC =12(AB +BC)=8,DN =12BD =12(CD +BC)=5∴ ;MN =AD−AM−DN =9如图,∵ 、分别为线段、的中点,2M N AC BD ∴,AM =12AC =12(AB−BC)=4,DN =12BD =12(CD−BC)=1∴ ;MN =AD−AM−DN =12+6−4−4−1=9(2)①正确.证明:.PA +PBPC=2∵,PA +PBPC=(PC +AC)+(PC−CB)PC=2PC PC=2∴ ①是定值.PA +PBPC215.【答案】解:(1)设,则,AC =x OD =2x 又∵ ,OC =2t DB =4t ∴ ,,OA =x +2t OB =2x +4t∴ ;OA OB =12(2)设,,又,,由,得AC =x OD =2x OC =52×2=5(cm)BD =52×4=10(cm)OD−AC =12BD ,,2x−x =12×10x =5,OD =2x =2×5=10(cm);CD =OD +OC =10+5=15(cm)(3)在(2)中有,,,,AC =5(cm)BD =10(cm)CD =15AB =AC +BD +CD =30(cm)设,,AM =CM =x BN =DN =y ∵ ,,2x +15+2y =30x +y =7.5∴ .MN =CM +CD +DN =x +15+y =22.516.【答案】解:(1)OP =AO−AP =12AB−AP=12AB−12AC =12AB−12×13AB.=13AB =4(2)如下图所示:此时,.OP =AO +AP =12AB +AP =12AB +12AC =12AB +12AB =AB =1217.【答案】解:(1)当点、运动了时,,C D 2s CM =2cm BD =6cm∵ ,,AB =10cm CM =2cm BD =6cm∴ AC +MD =AB−CM−BD =10−2−6=2cm(2)14(3)当点在线段上时,如图N AB∵ ,又∵ AN−BN =MN AN−AM =MN ∴ ,∴ ,即.BN =AM =14AB MN =12AB MN AB =12当点在线段的延长线上时,如图N AB∵ ,又∵ AN−BN =MN AN−BN =AB ∴ ,即.综上所述MN =AB MN AB =1MN AB =12或1。

人教版七年级上册专题练习第四章线段的相关计算

人教版七年级上册专题练习第四章线段的相关计算

人教版七年级上册专题线段的相关计算1.如图,点C在线段AB上,且AC︰BC=5︰2,点D是线段BC的中点,点E是线段AD 的中点,AB=14,求线段CE的长.2.如图,线段AB=24cm,O为线段AB上一点,且AO:BO=1:2,C、E顺次为射线AB 上的动点,点C从A点出发向点B方向运动,E点随之运动,且始终保持CE=8cm(C 点到达B点时停止运动),F为OE中点.(1)当C点运动到AO中点时,求BF长度;(2)在C点运动的过程中,猜想线段CF 和BE是否存在特定的数量关系,并说明理由;(3)① 当E点运动到B点之后,是否存在常数n,使得OE-n·CF的值不随时间改变而变化.若存在,请求出n和这个不变化的值;若不存在,请说明理由.② 若点C的运动速度为2cm/秒,求点C在线段FB上的时间为秒(直接写出答案);3.如图,C、D是线段AB上两点,AC∶CD∶DB=1∶2∶3,M、N分别为AC、AB,求线段MN的长.DB的中点,且184.如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.DE cm,求线段AB的长.(1)若线段9CE cm,求线段DB的长.(2)若线段55.如图,AB=2,AC=5,延长BC到D,使BD=3BC,求AD的长.6.如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使BC=2AB,取AC中点D;(2)在(1)的条件下,如果AB=4,求线段BD的长度.7.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:;点P表示的数用含t的代数式表示为.(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.8.如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若 AB=6,求 MN 的长度.9.如图,AD=12,AC=BD=8,E、F分别是AB、CD的中点,求EF的长.10.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s 的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.11.画图并计算:已知线段AB=2 cm,延长线段AB至点C,使得2BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)线段DC的中点是哪个?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.12.如图,已知点C在线段AB上,线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?请用一句话表述你发现的规律.13.已知线段AB,延长线段AB到点C,使32BC AB,且BC比AB大1,D是线段AB的中点,如图所示.(1)求线段CD的长;(2)线段AC的长是线段DB的几倍?(3)线段AD的长是线段BC的几分之几?14.已知线段AB=10 cm,点C是线段AB上任意一点,若M、N分别是线段AC、BC 的中点,求出线段MN的长.15.已知点C是线段AB上一点,AC=6 cm,BC=4 cm,若M.N分别是线段AC、BC 的中点,求线段MN的长.16.如图,已知A 、B 、C 三点在同一直线上,AB=24cm ,BC=38AB ,E 是AC 的中点,D 是AB 的中点,求DE 的长.17.如图,P 是线段AB 上任一点,AB =12 cm ,C 、D 两点分别从P 、B 同时向A 点运动,且C 点的运动速度为 2 cm/s ,D 点的运动速度为 3 cm/s ,运动的时间为t s.(1)若AP =8 cm.①运动 1 s 后,求CD 的长;②当D 在线段PB 运动上时,试说明AC =2CD ;(2)如果t =2 s 时,CD =1 cm ,试探索AP 的值.18.如图,线段AB 上有两点P ,Q ,点P 将AB 分成两部分,AP =23PB ,点Q 将AB 也分成两部分,AQ =4QB ,PQ =3 cm ,求AP ,QB 的长.19.如图,B ,C 两点把线段AD 分成2∶4∶8三部分,点E 是AD 的中点,CD =16,求EC 的长.20.(8分)如图,已知9.6AC cm ,15AB BC ,2CD AB ,求CD 的长.21.如图,C 为线段AB 的中点,点D 在线段CB 上.(1)图中共有条线段.。

人教版七年级数学上册作业课件 第四章 几何图形初步 专题训练(七) 线段的计算

人教版七年级数学上册作业课件 第四章 几何图形初步 专题训练(七) 线段的计算

6.A,B两点在数轴上的位置如图所示,现A,B两点分别以1个单位/秒、4个 单位/秒的速度同时向左运动.
(1)几秒钟后,原点O恰好在两点正中间? (2)几秒钟后,恰好有OA∶OB=1∶2?
解:(1)由图可知 OA=3,OB=12,设 x 秒钟后,原点 O 恰好在两点正中间, 则有 3+x=12-4x,解得 x=95 (2)设 y 秒钟后,恰好有 OA∶OB=1∶2, 则 OB=2OA,分两种情况:①当点 B 在点 O 的右边时,有 12-4y=2(3+y), 解得 y=1;②当点 B 运动到点 O 的左边时,有 4y-12=2(3+y),解得 y=9
5.如图,线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点 Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm,求AP,QB,AB的长.
解:设AP=2x cm,则PB=3x cm,所以AB=AP+PB=5x cm,因为AQ∶QB =4∶1,所以AQ=4x cm,QB=x cm,因为AQ-AP=PQ,所以4x-2x=3,解 得x=1.5,所以AP=3 cm,QB=1.5 cm,AB=7.5 cm
9.已知点A,B在数轴上的位置如图:
(1)若点P在数轴上,且PA+PB=6,求P点对应的数; (2)若点M在数轴上,MA∶MB=1∶3,求点M对应的数. 解:(1)①当点P在A,B之间时,不符合题意舍去;②当点P在点A右边时,点P 对应的数为2;③当点P在点B左边时,点P对应的数为-4 (2)①点M在线段AB上时,点M对应的数为0;②M在BA的延长线上时,点M对 应的数为3;③点M在AB的延长线上时,不合题意舍去
二、利用方程思想求线段的长 3.如图,已知线段 AB 上有两点 C,D,AD=35,BC=44,AC=23 BD, 求线段 AB 的长.

初一难点突破“线段的计算”50道(含详细解析)

初一难点突破“线段的计算”50道(含详细解析)

试卷第1页,总10页初一难点突破“线段的计算”50道(含详细解析)一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM . (1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点.4.已知:点C 在直线AB 上.(1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs .(1)AC= cm ;(2)当x= s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.7.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.8.已知m,n满足算式(m﹣6)2+|n﹣2|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB 的中点,求线段AQ的长.9.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N 分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.试卷第3页,总10页11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?并说明理由;12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点 这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm ,点C 是线段AB 的巧点,则AC= cm ;【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q 三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD的中点,BM=9cm ,求CM 和AD 的长15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长.16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 条;(2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来.18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB . (1)用含x 的代数式表示线段BC 的长和AC 的长;(2)取线段AC 的中点D ,若DB=3,求x 的值.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值.(2)在(1)的条件下,求线段CD 的长.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB的试卷第5页,总10页中点.(1)若AB=12cm ,则MN 的长度是 ;(2)若AC=3cm ,CP=1cm ,求线段PN 的长度.23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒.(1)当t=2时,①AB= cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.30.如图,已知点C 为AB 上一点,AC=15cm ,CB=35AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.31.已知如图:线段AB=16cm ,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长.32.已知C 为线段AB 的中点,E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长;(3)如图2,若AB=15,AD=2BE ,求线段CE 的长.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8.(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.试卷第7页,总10页34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ,点B 表示的数为(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.37.如图,C 是线段AB 的中点.(1)若点D 在CB 上,且DB=2cm ,AD=8cm ,求线段CD 的长度;(2)若将(1)中的“点D 在CB 上”改为“点D 在CB 的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD 的长度.38.如图,已知AB=24cm ,CD=10cm ,E ,F 分别为AC ,BD 的中点,求EF的长.39.如图,已知线段AB 上有两点C 、D ,且AC=BD ,M ,N 分别是线段AC ,AD 的中点,若AB=acm ,AC=BD=bcm ,且a 、b满足(a ﹣10)2+|b 2﹣4|=0.(1)求a 、b 的值;(2)求线段MN 的长度.40.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度).慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b ,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以4个单位长度/秒的速度向左匀速继续行驶,且|a +6|与(b ﹣18)2互为相反数. (1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒两列火车行驶到车头A 、C 相距8个单位长度?(3)此时在快车AB 上有一位爱到脑筋的七年级学生乘客P ,他发现行驶中有一段时间,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA +PC +PB +PD 为定值),你认为学生P 发现的这一结论是否正确?若正确,求出定值及所持续的时间;若不正确,请说明理由.41.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变,选择一个正确的结论,并求出其值.42.如图,已知直线l 有两条可以左右移动的线段:AB=m ,CD=n ,且m ,n满足|m ﹣4|+(n ﹣8)2=0.(1)求线段AB ,CD 的长;(2)线段AB 的中点为M ,线段CD 中点为N ,线段AB 以每秒4个单位长度试卷第9页,总10页向右运动,线段CD 以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC 的长;(3)将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,M 、N分别为AB 、CD 中点,BC=24,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值.求出这个定值,并直接写出t 在那一个时间段内.43.如图,点C 在线段AB 上,线段AC=8,BC=6,点M 、N 分别是AC 、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC +BC=a ,其它条件不变,你能猜想出MN 的长度吗?(3)若把(1)中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上,且满足AC ﹣BC=b ,你能猜想出MN 的长度吗?写出你的结论,并说明理由.44.如图,已知线段AB=6cm ,延长线段AB 到C ,使BC=2AB ,若点D 是AC上一点,且AD 比DC 短4cm ,点E 是BC 的中点,求线段DE 的长.45.如图,M 是线段AB 的中点,点C 在线段AB 上,且AC=8cm ,N 是AC的中点,MN=6cm ,求线段AB 的长. 46.已知B 是线段AC 上不同于A 或C 的任意一点,M 、N 、P 分别是AB 、BC 、AC 的中点,问:(1)MP=12BC 是否成立?为什么? (2)是否还有与(1)类似的结论?47.如图,已知线段AB 的长为12,点C 在线段AB 上,AC=12BC ,D 是AC 的中点,求线段BD 的长.48.如图,C 是AB 中点,D 是BC 上一点,E 是BD 的中点,AB=20,CD=2,求EB ,CE 的长.49.已知A 、B 两点在数轴上表示的数为a 和b ,M 、N均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a |﹣|b |+|a +b |+|a ﹣b |.(2)如图,若|a |+|b |=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB ﹣15,a=﹣3,若点P为数轴上一点,且PA=23AB ,试求点P 所对应的数为多少?50.如图,点P 是定长线段AB 上一定点,C 点从P 点、D 点从B 点同时出发分别以每秒a 、b 厘米的速度沿直线AB 向左运动,并满足下列条件: ①关于m 、n 的单项式2m 2n a 与﹣3m b n 的和仍为单项式.②当C 在线段AP 上,D 在线段BP 上时,C 、D 运动到任一时刻时,总有PD=2AC .(1)直接写出:a= ,b= .(2)判断ABAP = ,并说明理由.(3)在C 、D 运动过程中,M 、N 分别是CD 、PB 的中点,运动t 秒时,恰好t 秒时,恰好3AC=2MN ,求此时AB CD的值.1初一难点突破“线段的计算”50道(含详细解析)答案一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.【解答】解:∵点D 是线段BC 的中点,CD=3, ∴BC=2CD=6,∵AC=12AB ,AC +AB=CB ,∴AC=2,AB=4, ∴AD=CD ﹣AC=3﹣2=1, 即线段AD 的长是1.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:如图1所示,∵AP=2PB ,AB=6,∴PB=13AB=13×6=2,AP=23AB=23×6=4;∵点Q 为PB 的中点,∴PQ=QB=12PB=12×2=1;∴AQ=AP +PQ=4+1=5.如图2所示,∵AP=2PB ,AB=6, ∴AB=BP=6,∵点Q 为PB 的中点, ∴BQ=3,∴AQ=AB +BQ=6+3=9. 故AQ 的长度为5或9.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM .(1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点. 【解答】解:(1)如图所示:(2)∵MN=3cm ,AN=12MN ,∴AN=1.5cm , ∵BN=3BM ,∴BM=12MN=1.5cm ,∴AB=BM +MN +AN=6cm ;(3)∵点P 在线段MN 上,PM=PN , ∴点P 是线段MN 的中点, ∵BM=AN=1.5cm ,PM=PN=1.5cm , ∴BP=AP=3cm ,∴点P 是线段AB 的中点. 4.已知:点C 在直线AB 上. (1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)【解答】解:(1)若C 在A 的左边,则 BC=AB +AC=5; 若C 在A 的右边,则 BC=AC ﹣AB=1. 故BC 的长为5或1; (2)如图所示:∵点C 在射线AB 上,且BC=2AB ,D 是AC 的中点,∴AD=32AB ,∴BD=12AB ,3∵线段BD 的长为1.5, ∴线段AB 的长为3.5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.【解答】解:∵AC=16cm ,AB=13BC ,∴AB=14AC=4cm ,BC=16cm ﹣4cm=12cm ,∵点C 是BD 的中点, ∴CD=BC=12cm ,∴AD=AB +BC +CD=4cm +12cm +12cm=28cm .6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs . (1)AC= 12 cm ;(2)当x= 203s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.【解答】解:(1)AC=AB ﹣BC=20﹣8=12(cm ),(2)20÷(2+1)=203(s ).故当x=203s 时,P 、Q 重合;(3)存在,①C 是线段PQ 的中点,得 2x +20﹣x=2×12,解得x=4; ②P 为线段CQ 的中点,得12+20﹣x=2×2x ,解得x=325;③Q 为线段PC 的中点,得 2x +10=2×(20﹣x ),解得x=7;综上所述:x=4或x=325或x=7. 故答案为:12;203.7.如图,线段AC=20cm ,BC=3AB ,N 线段BC 的中点,M 是线段BN 上的一点,且BM :MN=2:3.求线段MN 的长度.【解答】解:∵AC=20cm ,BC=3AB ,∴BC=34×20=15cm ,∴AB=5cm , ∵N 为BC 的中点, ∴BN=CN=7.5cm , ∵BM :MN=2:3,∴MN=35×7.5=4.5cm .8.已知m ,n 满足算式(m ﹣6)2+|n ﹣2|=0. (1)求m ,n 的值;(2)已知线段AB=m ,在直线AB 上取一点P ,恰好使AP=nPB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:(1)由条件可得(m ﹣6)2=0,|n ﹣2|=0, 所以m=6,n=2.(2)当点P 在线段AB 之间时,AP=2PB , 所以AP=4,PB=2,而Q 为PB 的中点, 所以PQ=1,故AQ=AP +PQ=5. 当点P 在线段AB 的延长线上时, AP ﹣PB=AB , 即2PB ﹣PB=6, 所以PB=6, 而Q 为PB 的中点,所以BQ=3,AQ=AB +BQ=6+3=9. 故线段AQ 的长为5或9.9.如图1,已知点C 在线段AB 上,线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点.5(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC +BC=a ,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2cm/s 的速度沿AB 向右运动,终点为B ,点Q 以1cm/s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点,∴CM=12AC=5厘米,CN=12BC=3厘米,∴MN=CM +CN=8厘米;(2)∵点M ,N 分别是AC ,BC 的中点,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12a ;(3)①当0<t ≤5时,C 是线段PQ 的中点,得 10﹣2t=6﹣t ,解得t=4;②当5<t ≤163时,P 为线段CQ 的中点,2t ﹣10=16﹣3t ,解得t=265;③当163<t ≤6时,Q 为线段PC 的中点,6﹣t=3t ﹣16,解得t=112;④当6<t ≤8时,C 为线段PQ 的中点,2t ﹣10=t ﹣6,解得t=4(舍),综上所述:t=4或265或112.10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB=2:1,则点C 是线段AB 的一个三等分点,显然,一条线段的三等分点有两个. (1)已知:如图2,DE=15cm ,点P 是DE 的三等分点,求DP 的长. (2)已知,线段AB=15cm ,如图3,点P 从点A 出发以每秒1cm 的速度在射线AB 上向点B 方向运动;点Q 从点B 出发,先向点A 方向运动,当与点P 重合后立马改变方向与点P 同向而行且速度始终为每秒2cm ,设运动时间为t 秒.①若点P 点Q 同时出发,且当点P 与点Q 重合时,求t 的值.②若点P 点Q 同时出发,且当点P 是线段AQ 的三等分点时,求t 的值.【解答】解:(1)当DP=2PE 时,DP=23DE=10cm ;当2DP=PE 时,DP=13DE=5cm .综上所述:DP 的长为5cm 或10cm . (2)①根据题意得:(1+2)t=15, 解得:t=5.答:当t=5秒时,点P 与点Q 重合. ②(I )点P 、Q 重合前: 当2AP=PQ 时,有t +2t +2t=15, 解得:t=3;当AP=2PQ 时,有t +12t +2t=15,解得:t=307;(II )点P 、Q 重合后,当AP=2PQ 时,有t=2(t ﹣5), 解得:t=10;当2AP=PQ 时,有2t=(t ﹣5), 解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、307秒或10秒时,点P 是线段AQ 的三等分点.11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、7BC 的中点,你能猜想MN 的长度吗?并说明理由;【解答】解:(1)∵点M 、N 分别是AC 、BC 的中点,AC=8cm ,CB=6cm ,∴CM=12AC=4cm ,CN=12BC=3cm ,∴MN=CM +CN=4+3=7cm , 即线段MN 的长是7cm ;(2)∵点M 、N 分别是AC 、BC 的中点,AC +CB=acm ,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12(AC +BC )=12acm ,即线段MN 的长是12acm ;(3)如图:MN=12b ,理由是:∵点M 、N 分别是AC 、BC 的中点,AC ﹣CB=bcm ,∴CM=12AC ,CN=12BC ,∴MN=CM ﹣CN=12AC ﹣12BC=12(AC ﹣BC )=12bcm ,即线段MN 的长是12bcm .12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”. (1)线段的中点 是 这条线段的“巧点”;(填“是”或“不是”). (2)若AB=12cm ,点C 是线段AB 的巧点,则AC= 4或6或8 cm ; 【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解答】解:(1)∵线段的长是线段中线长度的2倍, ∴线段的中点是这条线段的“巧点”. 故答案为:是;(2)∵AB=12cm ,点C 是线段AB 的巧点,∴AC=12×13=4cm 或AC=12×12=6cm 或AC=12×23=8cm ;故答案为:4或6或8;(3)t 秒后,AP=2t ,AQ=12﹣t (0≤t ≤6)①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除. ②当P 为A 、Q 的巧点时,Ⅰ.AP=13AQ ,即2t =13(12−t),解得t =127s ;Ⅱ.AP=12AQ ,即2t =12(12−t),解得t =125s ;Ⅲ.AP=23AQ ,即2t =23(12−t),解得t=3s ;③当Q 为A 、P 的巧点时,Ⅰ.AQ=13AP ,即(12−t)=2t ×13,解得t =365s (舍去);Ⅱ.AQ=12AP ,即(12−t)=2t ×12,解得t=6s ;Ⅲ.AQ=23AP ,即(12−t)=2t ×23,解得t =367s .13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.【解答】解:∵点C 是线段AB 的中点,AC=6, ∴AB=2AC=12,①如图,若点D 在线段AC 上,∵AD=12BD ,∴AD=13AB=4,9∴CD=AC ﹣AD=6﹣4=2.②如图,若点D 在线段AC 的反向延长线上,∵AD=12BD ,∴AD=AB=12,∴CD=AC +AD=6+12=18.综上所述,CD 的长为2或18.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD 的中点,BM=9cm ,求CM 和AD 的长【解答】解:设AB=3xcm ,BC=5xcm ,CD=4xcm , ∴AD=AB +BC +CD=12xcm , ∵M 是AD 的中点,∴AM=MD=12AD=6xcm ,∴BM=AM ﹣AB=6x ﹣3x=3xcm , ∵BM=9 cm , ∴3x=9, 解得,x=3,∴CM=MD ﹣CD=6x ﹣4x=2x=2×3=6(cm ), AD=12x=12×3=36(cm ).15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长. 【解答】解:分两种情况:①如图1,当点C 在线段 AB 上时,AC=AB ﹣BC=10﹣4=6cm . ∵点D 是AC 的中点,∴AD=12AC=3cm .②如图2,当点C 在线段 AB 的延长线上时,AC=AB +BC=10+4=14cm . ∵点D 是AC 的中点,∴AD=12AC=7cm .16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.【解答】解:设BC=x ,则AB=4x , ∵D 为AC 中点, ∴AD=CD=2.5x , ∵BD=CD ﹣BC=6cm , ∴2.5x ﹣x=6, 解得x=4, ∴AB=16cm .17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 10 条; (2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来. 【解答】解:(1)图中共有线段1+2+3+4=10条; 故答案为:10;(2)∵AB=6,点M 是线段AB 的中点,∴BM=12AB=3,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣3=4,∴BN=BC ﹣NC=4﹣3.5=0.5;(3)∵AB=a ,点M 是线段AB 的中点,11∴BM=12AB=12a ,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣12a ,∴BN=BC ﹣NC=7﹣12a ﹣3.5=3.5﹣12a .18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB .(1)用含x 的代数式表示线段BC 的长和AC 的长; (2)取线段AC 的中点D ,若DB=3,求x 的值.【解答】解:(1)∵AB=x ,BC=12AB ,∴BC=12x ,∵AC=AB +BC ,∴AC=x +12x=32x .(2)∵AD=DC=12AC ,AC=32x ,∴DC=34x ,∵DB=3,BC=12x ,∵DB=DC ﹣BC ,∴3=34x ﹣12x ,∴x=12.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.【解答】解:设EA=xcm ,则AB=2xcm ,BF=3xcm ,EF=6xcm . ∵点M ,N 分别是线段EA ,BF 的中点,∴EM=MA=12xcm ,BN=NF=32xcm .∵AB=2xcm ,∴MN=MA +AB +BN=4xcm . ∵EF=18cm ,∴6x=18, 解得:x=3, ∴MN=4x=12cm .20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.【解答】解:设BD=x ,则AB=3x ,CD=4x . ∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5x ,CF=12CD=2x ,AC=AB +CD ﹣BD=3x +4x ﹣x=6x .∴EF=AC ﹣AE ﹣CF=6x ﹣1.5x ﹣2x=2.5x . ∵EF=20, ∴2.5x=20, 解得:x=8.∴AB=3x=24,CD=4x=32.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值. (2)在(1)的条件下,求线段CD 的长.【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,13∴CD=DE ﹣CE=6﹣4.5=1.5.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.(1)若AB=12cm ,则MN 的长度是 6cm ; (2)若AC=3cm ,CP=1cm ,求线段PN 的长度.【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∴MN=MC +CN=12AC +12BC=12(AC +BC )=12AB=6cm .故答案为6cm ;(2)∵AC=3cm ,CP=1cm , ∴AP=AC +CP=4cm , ∵P 是线段AB 的中点, ∴AB=2AP=8cm . ∴CB=AB ﹣AC=5cm ,∵N 是线段CB 的中点,CN=12CB=2.5cm ,∴PN=CN ﹣CP=1.5cm .23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒. (1)当t=2时,①AB= 4 cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动, ∴当t=2时,AB=2×2=4cm . 故答案为:4;②∵AD=10cm ,AB=4cm , ∴BD=10﹣4=6cm , ∵C 是线段BD 的中点,∴CD=12BD=12×6=3cm ;(2)不变;∵AB 中点为E ,C 是线段BD 的中点,∴EB=12AB ,BC=12BD ,∴EC=EB +BC=12(AB +BD )=12AD=12×10=5cm . 24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∵MN=MC +CN ,AB=AC +BC ,∴MN=12AB=7cm ;(2)MN=a2,∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,又∵MN=MC +CN ,AB=AC +BC ,∴MN=12(AC +BC )=a2;15(3)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,NC=12BC ,又∵AB=AC ﹣BC ,NM=MC ﹣NC ,∴MN=12(AC ﹣BC )=b2;(4)如图,只要满足点C 在线段AB 所在直线上,点M 、N 分别是AC 、BC 的中点.那么MN 就等于AB 的一半.25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.【解答】解:(1)∵AC=6cm ,M 是AC 的中点,∴AM=MC=12AC=3cm ,∵MB=10cm , ∴BC=MB ﹣MC=7cm , ∵N 为BC 的中点,∴CN=12BC=3.5cm ,∴MN=MC +CN=6.5cm ;(2)如图,∵M 是AC 中点,N 是BC 中点,∴MC=12AC ,NC=12BC ,∵AC ﹣BC=bcm , ∴MN=MC ﹣NC=12AC ﹣12BC =12(AC ﹣BC )=12×6 =3(cm ).26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.【解答】解:(1)①当点C 在线段AB 上时,∵AB=8cm ,BC=4cm , ∴AC=AB ﹣BC=8﹣4=4cm , ∵M 是AC 中点,∴AM=12AC=2cm .②当点C 在线段AB 的延长线上时,∵AB=8cm ,BC=4cm , ∴AC=AB +BC=8+4=12cm , ∵M 是AC 中点,∴AM=12AC=6cm .(2)∵BE=15AC=2cm ,∴AC=10cm , ∵E 是BC 中点, ∴BC=2BE=4cm ,∴AB=AC ﹣BC=10﹣4=6cm ,∵AD=12BD ,AD +BD=AB ,∴12BD +BD=AB=6cm ,17∴BD=4cm ,∴DE=BD +BE=4+2=6cm .27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.【解答】解:∵D 为AC 的中点,DC=3cm , ∴AC=2DC=6cm ,∵BC=12AB ,∴BC=13AC=2cm ,∴BD=CD ﹣BC=1cm .28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC 的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.【解答】解:(1)∵AB=5cm ,BC=3cm , ∴AC=AB +BC=8cm ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=4cm ,NC=12BC=1.5cm ,∴MN=MC ﹣NC=4cm ﹣1.5cm=2.5cm ;(2)∵AB=a ,BC=b , ∴AC=AB +BC=a +b ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=12(a +b ),NC=12BC=12b ,∴MN=MC ﹣NC=12(a +b )﹣12b=12a ;规律是:MN=12AB .29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).30.如图,已知点C为AB上一点,AC=15cm,CB=35AC,D,E分别为AC,AB的中点,求DE的长.【解答】解:∵AC=15cm,CB=35 AC,∴CB=35×15=9cm,∴AB=15+9=24cm.∵D,E分别为AC,AB的中点,∴AE=BE=12AB=12cm,DC=AD=12AC=7.5cm,∴DE=AE﹣AD=12﹣7.5=4.5cm.31.已知如图:线段AB=16cm,点C是AB的中点,点D在AC的中点,求线段BD的长.【解答】解:∵AB=16cm,点C是AB的中点,∴AC=BC=16÷2=8(cm);∵点D在AC的中点,∴CD=8÷2=4(cm),∴BD=BC+CD=8+4=12(cm).32.已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.19(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长; (3)如图2,若AB=15,AD=2BE ,求线段CE 的长. 【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,(3)设EB=x ,则AD=2BE=2x , ∵点D 为线段AE 的中点, ∴AD=DE=2x , ∵AB=15, ∴AD +DE +BE=15, ∴x +2x +2x=15,解方程得:x=3,即BE=3, ∵AB=15,C 为AB 中点,∴BC=12AB=7.5,∴CE=BC ﹣BE=7.5﹣3=4.5.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8. (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.【解答】解:(1)∵A ,B 两点所表示的数分别为﹣2和8, ∴OA=2,OB=8, ∴AB=OA +OB=10.(2)如图,线段MN 的长度不发生变化,其值为5.理由如下: ∵M 为PA 的中点,N 为PB 的中点,∴NP=12BP ,MP=12AP ,∴MN =NP −MP =12BP −12AP =12AB=5.34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ﹣8 ,点B 表示的数为 4(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q 从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.【解答】解:(1)∵在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,a 、b 满足|a +8|+|b ﹣4|=0, ∴a +8=0,b ﹣4=0, 解得:a=﹣8,b=4,则点A 表示的数为:﹣8,点B 表示的数为:4;(2)设x 秒时两点相遇, 则3x +x=4﹣(﹣8),21解得:x=3,即3秒时,两点相遇,此时点C 所表示的数为:﹣8+3×3=1;(3)当两点相遇前的距离为2个单位长度时, 3x +x=10,解得:x=52,此时此时点Q 所表示的数为:4﹣1×52=1.5;当两点相遇后的距离为2个单位长度时, 3x +x=14,解得:x=72,此时此时点Q 所表示的数为:4﹣1×72=0.5;综上所述:点Q 表示的数为:1.5或0.5.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.【解答】解:∵AB=16cm ,AM :BM=1:3, ∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm ,∴PQ=AQ ﹣AP=6cm .36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.【解答】解:因为BC=2AB ,且AB=60cm , 所以BC=120cm .所以AC=AB +BC=120+60=180cm . 因为D 为AC 中点,所以 AD=12AC=90cm .。

七年级数学上册(第四章 几何图形初步)有关线段的计算问题练习题 试题

七年级数学上册(第四章 几何图形初步)有关线段的计算问题练习题 试题

乏公仓州月氏勿市运河学校<第四章 几何图形初步>有关线段
的计算问题练习题〔新〕教
1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.
2. 如图,C 、D 是线段AB 上的两点,
36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长 3. 如下列图,线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.
4. 〔1〕如下列图,点C 在线段AB 上,线段6AC
cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的
长度. 〔2〕根据〔1〕的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和BC 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.
5. P 为线段AB 上的一点,且25
AP AB =
,M 是AB 的中点,假设2PM cm =,求AB 的长. 6. 如图,C 、D 是线段AB 上的两点,14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长. 7. 在一条直线上顺次取A 、B 、C 三点,
5AB cm =,点O 是线段AC 的中点,且 1.5OB cm =,求线段BC 的长.〔两种
情况〕 8. A 、B 、C 三点共线,且10AB cm =,4BC
cm =,M 是AC 的中点,求AM 的长. \。

七年级数学上册专题训练 线段或角的计算

七年级数学上册专题训练  线段或角的计算

专题训练 线段或角的计算一、线段的和或差的计算1.如图,C 是线段AB 上的一点,M 是线段AC 的中点,若AB =8 cm ,BC =2 cm ,则MC 的长度为( )A.2 cmB.3 cmC.4 cmD.6 cm 2.平坦的草地上有A ,B ,C 三个球,A 球距B 球3 m ,A 球距C 球1 m ,则B 球与C 球相距( )A.4 mB.3 mC.2 mD.无法确定3.如图已知线段AD =16 cm ,线段AC =BD =10 cm ,E ,F 分别是AB ,CD 的中点,则EF 长为 cm .4.如图,C ,D 是线段AB 上的两点,已知BC =14AB ,AD =13AB ,AB =12 cm ,则DC = cm.5.过点P 作直线l 的垂线PO ,垂足为O ,连接PA ,PB ;比较线段PO ,PA ,PB 的长短,并按从小到大的顺序排列 .6.如图,已知线段AB =6 cm ,延长AB 至点C ,使BC =13AB ,若点D 为线段AC 的中点,求线段BD 的长.7.已知线段AB =6 cm ,在直线AB 上画点C ,使BC =4 cm ,若M ,N 分别是AB ,BC 的中点.(1)求点M ,N 之间的距离;(2)若AB =a cm ,BC =b cm ,其他条件不变,此时M ,N 间的距离是多少? (3)分析(1)(2)的解答过程,从中你发现了什么规律?二、角的和或差的计算8.已知∠α=75°,则∠α的补角的度数是( )A.15°B.25°C.105°D.125° 9.上午10:00时,钟表上分针与时针所夹角的度数为( )A.45°B.60°C.75°D.90° 10.一个角的余角比它的补角的12少20°,则这个角为( )A.30°B.40°C.60°D.75°11.如图,已知∠AOC =90°,∠COB =50°,OD 平分∠AOB ,则∠COD 的度数为______.第11题图 第12题图12.如图,∠AOB =160°,OC 平分∠AOB ,OD 为∠BOC 内任一射线,OE 平分∠BOD ,且∠BOE =30°,则∠COD = .13.如图,已知∠AOB =m 度,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,…,OA n 平分∠AOA n -1,则∠AOA n 的度数为 度.14.如图,OC 为∠AOB 的内部任一条射线,OD ,OE 分别是∠AOC ,∠BOC 的平分线.若∠AOB =80°,求∠DOE 的度数.15.如图,选择适当的方向击打白球,可以使白球反弹后将红球撞入袋中,此时∠1=∠2.如果红球与洞口连线和台球桌面边缘夹角∠3=30°,那么∠1应等于多少度,才能保证红球能直接入袋?16.如图,已知小明家(A )在商场(O )的南偏东60°方向,小华家(B )在商场的东北方向.(1)若王亮家(C)在商场的北偏西19°20′的方向,试问:∠AOB和∠AOC的度数分别是多少?(2)若∠BOC=67°20′,试说明王亮家(C)在商场的什么方向上?17.把一副三角板的直角顶点O重叠在一起.(1)如图1,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?18.将一张长方形纸片按如图所示方式折叠,若∠AEM′=120°,则∠BCN′的度数为多少?。

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

2019年七年级数学上册线段的计算专题练习一、解答题:1、如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.2、如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.3、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.4、点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.5、如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.6、如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB的中点,求线段EF的长.7、如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.8、如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.9、如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.10、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.11、如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.12、A、B、C、D四个车站的位置如图所示,B、C两站之间的距离BC=2a+b,B、D两站之间的距离BD=4a +3b.求:⑴ C、D两站之间的距离CD;⑵若C站到A、D两站的距离相等,则A、B两站之间的距离AB是多少?13、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.14、如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.15、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;(2)当t=2时,求PQ的值;(3)当AB=2PQ时,求t的值.16、如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=6 ,CB=4 ,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,你能猜想线段MN与AB的数量关系吗?并说明你的理由;(3)若点C在线段AB的延长线上,其它条件不变,你上述猜想的结论是否仍然成立?请画出图形,写出你的结论,并说明你的理由;17、如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.18、已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A.①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.19、如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.20、探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a= ,b= ,c= ;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1、解:(1)∵M是AB的中点∴MB=40(2)∵N为PB的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=122、解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.3、解:(1)∵DE=9cm,∴DC+CE=9cm.∵点D是线段AC的中点,点E是线段BC的中点,∴AC=2CD,BC=2CE.∵AB=AC+BC=2(CD+CE)=2DE=18cm;(2)点C是线段AB的中点,∴AB=ACB.∵点E是线段BC的中点,∴BC=2CE=10cm.∵点D是线段AC的中点,∴DC=AC=BC=5cm.∴DB=DC+CB=5+10=15cm.4、解:由于AC:BC=3:1,设BC=x,则AC=3x第一种情况:当点C在线段AB上时,AC+BC=AB.因为 AB=8,所以3x+x=8解得 x=2所以 BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为 AB=8,所以3x﹣x=8解得 x=4所以 BC=4综上,BC的长为2或4.5、解:∵线段AB=8cm,E为线段AB的中点,∴BE4cm,∴BC=BE﹣EC=4﹣3=1cm,∴AC=AB﹣BC=8﹣1=7cm,∵点D为线段AC的中点,∴CD=3.5cm,∴DE=CD﹣EC=3.5﹣3=0.5cm.6、解:∵F为线段AB的中点,∴BF=AB=16,∵AC=BC,∴BC=AB=24,∵E为线段BC的中点,∴BE=12,∴EF=BF﹣BE=16﹣12=4.7、解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.8、解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm9、解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.10、解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.11、解:12、解:⑴ CD=(4a+3b)-(2a+b)=2a+2b 答:C、D两站之间的距离CD为(2a+2b)⑵ AB=AC-BC=CD-BC=(2a+2b)-(2a+b)=b 答:A、B两站之间的距离AB是b.13、解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.14、解:∵M是AC的中点,AC=6,∴MC=3,又因为CN∶NB=1∶2,BC=15,∴CN=5,∴MN=MC+CN=3+5=8,∴MN的长为8 cm15、解:16、解:17、解:18、解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.19、解:20、解:。

部编数学七年级上册专题28和线段有关的计算(解析版)含答案

部编数学七年级上册专题28和线段有关的计算(解析版)含答案

专题28 和线段有关的计算1.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1/cm s 、3/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若11AB cm =,当点C 、D 运动了1s ,求AC MD +的值.(2)若点C 、D 运动时,总有3MD AC =,直接填空:AM =.(3)在(2)的条件下,N 是直线AB 上一点,且AN BN MN -=,求23MN AB的值.【解答】解:(1)当点C 、D 运动了1s 时,1CM cm =,3BD cm=11AB cm =Q ,1CM cm =,3BD cm=11137AC MD AB CM BD cm \+=--=--=;(2)设运动时间为t ,则CM t =,3BD t =,AC AM t =-Q ,3MD BM t =-,又3MD AC =,333BM t AM t \-=-,即3BM AM =,BM AB AM=-Q 3AB AM AM \-=,14AM AB \=,13AM BM \=,故答案为:13;(3)当点N 在线段AB 上时,如图14BN AM AB \==,12MN AB \=,即2133MN AB =.当点N 在线段AB 的延长线上时,如图AN BN MN -=Q ,AN BN AB-=MN AB \=,\1MN AB=,即2233MN AB =.综上所述2133MN AB =或23.2.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧,(1)若18AB =,8DE =,线段DE 在线段AB 上移动,①如图1,当E 为BC 中点时,求AD 的长;②当点C 是线段DE 的三等分点时,求AD 的长;(2)若2AB DE =,线段DE 在直线上移动,且满足关系式32AD EC BE +=,则CD AB【解答】解:(1)2AC BC =Q ,18AB =,6BC \=,12AC =,①E Q 为BC 中点,3CE \=,8DE =Q ,5CD \=,1257AD AC CD \=-=-=;②Q 点C 是线段DE 的三等分点,8DE =,18163CD \=,16201233AD AC CD \=-=-=;当点C 靠近点D 时,1833DC DE ==,8281233AD AC CD \=-=-=;(2)当点E 在线段BC 之间时,如图,设BC x =,则22AC BC x ==,3AB x \=,2AB DE =Q ,1.5DE x \=,设CE y =,2AE x y \=+,BE x y =-,2 1.50.5AD AE DE x y x x y \=-=+-=+,Q32AD EC BE +=,\0.532x y y x y ++=-,27y x \=,2171.5714CD x x x \=-=,\171714342x CD AB x ==;当点E 在点A 的左侧,如图,设BC x =,则 1.5DE x =,设CE y =,1.5DC EC DE y x \=+=+,1.520.5AD DC AC y x x y x \=-=+-=-,Q32AD EC BE +=,BE EC BC x y =+=+,\0.532y x y x y -+=+,4y x \=,1.54 1.5 5.5CD y x x x x \=+=+=, 1.5 6.5BD DC BC y x x x =+=++=,6.50.5 6.540.53AB BD AD x y x x x x x \=-=-+=-+=,\ 5.51136CD x AB x ==,当点E 在线段AC 上及点E 在点B 右侧时,无解,综上所述CD AB 的值为1742或116.另一解法:可设6AB =,则4AC =,2CB =,3DE =,以A 为原点,以AB 的方向为正方向建立数轴,则A 表示0,C 表示4,B 表示6,如图,设D 表示的数为x ,则E 表示3x +,可得||AD x =,|34||1|EC x x =+-=-,|36||3|BE x x =+-=-,|4|CD x =-,|||1|3|3|2AD EC x x BE x ++-==-,①当0x <或3x …时,上式可化为:1332x x x +-=-,解得7x =-,则|74|1166CD AB --==;②13x <…时,上式化为:1332x x x +-=-,解得:117x =,则11|4|177642CD AB -==;③01x <…时,上式化为:1332x x x +-=-,解得:73x =(舍去).综上所述CD AB 的值为1742或116.故答案为:1742或116.3.已知点C 在线段AB 上,2AC BC =,点D ,E 在直线AB 上,点D 在点E 的左侧.(1)若15AB =,6DE =,线段DE 在线段AB 上移动.①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CF =,求AD 的长;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,求CD BD的值.【解答】解:(1)2AC BC =Q ,15AB =,5BC \=,10AC =,①E Q 为BC 中点,2.5CE \=,6DE =Q ,3.5CD \=,10 3.5 6.5AD AC CD \=-=-=;②如图1,当点F 在点C 的右侧时,3CF =Q ,5BC =,13AF AC CF \=+=,11333AD AF \==;当点F 在点C 的左侧时,10AC =Q ,3CF =,7AF AC CF \=-=,37AF AD \==,73AD \=;综上所述,AD 的长为133或73;(2)当点E 在线段BC 之间时,如图3,设BC x =,则22AC BC x ==,2AB DE =Q ,1.5DE x \=,设CE y =,2AE x y \=+,BE x y =-,2 1.50.5AD AE DE x y x x y \=-=+-=+,Q32AD EC BE +=,\0.532x y y x y ++=-,27y x \=,2171.5714CD x x x \=-=,313(0.5)14BD x x y x =-+=,\171714313114x CD BD x ==;当点E 在点A 的左侧,如图4,设BC x =,则 1.5DE x =,设CE y =,1.5DC EC DE y x \=+=+,1.520.5AD DC AC y x x y x \=-=+-=-,Q32AD EC BE +=,BE EC BC x y =+=+,\0.532y x y x y -+=+,4y x \=,1.54 1.5 5.5CD y x x x x \=+=+=, 1.5 6.5BD DC BC y x x x =+=++=,\ 5.5116.513CD x BD x ==,点D 在C 点右侧,及点D 在B 点右侧,无解,不符合题意;当是D 在A 右侧,E 在C 左侧时,如图5,则22AC BC x ==,3AB x \=,2AB DE =Q ,1.5DE x \=,设CE y =,12AD x y \=-,Q 32AD EC BE +=,\1322x y y x y -+=+,33x x y \=+(不合题意),当点E 在线段AC 上及点E 在点B 右侧时,无解,当D 在B 的右侧,其他情况不存在,舍去.综上所述CD BD 的值为1731或1113.4.已知:如图1,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 同时出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若4AM cm =,当点C 、D 运动了2s ,此时AC = 2cm ,DM = ;(直接填空)(2)当点C 、D 运动了2s ,求AC MD +的值;(3)若点C 、D 运动时,总有2MD AC =,则AM = (填空);(4)在(3)的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【解答】解:(1)根据题意知,2CM cm =,4BD cm =,12AB cm =Q ,4AM cm =,8BM cm \=,2AC AM CM cm \=-=,4DM BM BD cm =-=,故答案为:2cm ,4cm ;(2)当点C 、D 运动了2s 时,2CM cm =,4BD cm =,12246()AC MD AM CM BM BD AB CM BD cm \+=-+-=--=--=;(3)根据C 、D 的运动速度知:2BD MC =,2MD AC =Q ,2()BD MD MC AC \+=+,即2MB AM =,AM BM AB +=Q ,2AM AM AB \+=,143AM AB cm \==,故答案为:4cm ;(4)①当点N 在线段AB 上时,如图1,AN BN MN -=Q ,又AN AM MN -=Q ,4BN AM \==,12444MN AB AM BN \=--=--=,\41123MN AB ==;②当点N 在线段AB 的延长线上时,如图2,AN BN MN -=Q ,又AN BN AB -=Q ,12MN AB \==,\12112MN AB ==;综上所述13MN AB =或1.5.如图,已知P 是线段AB 上一点,23AP AB =,C ,D 两点从A ,P 同时出发,分别以每秒2厘米,每秒1厘米的速度沿AB 方向运动,当点D 到达终点B 时,点C 也停止运动,设AB a =(厘(1)用含a 和t 的代数式表示线段CP 的长度;(2)当5t =时,12CD AB =,求线段AB 的长;(3)当CB AC PC -=时,求PD AB 的值.【解答】解:(1)AB a =Q ,23AP AB =,23AP a \=,2AC t =Q ,223CP AP AC a t \=-=-;(2)12CD AB =Q ,1()2PC PD AP PB \+=+,223AP PC AB \==,\222(2)33a a t =-,当5t =时,解得30a =,30AB cm \=;(3)CB AC PC -=Q ,AC PB \=,23AP AB =Q ,13PB AB \=,2AC PC PB t \===,6AB t \=,PD t =Q ,\16PD AB =.6.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1/cm s 、3/cm s(1)若10AB cm =,当点C 、D 运动了2s ,求AC MD +的值.(2)若点C 、D 运动时,总有3MD AC =,直接填空:AM =AB .(3)在(2)的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB 的值.【解答】解:(1)当点C 、D 运动了2s 时,2CM cm =,6BD cm =10AB cm =Q ,2CM cm =,6BD cm=10262AC MD AB CM BD cm \+=--=--=.(2)设运动时间为t ,则CM t =,3BD t =,AC AM t =-Q ,3MD BM t =-,又3MD AC =,333BM t AM t \-=-,即3BM AM =,BM AB AM=-Q 3AB AM AM \-=,14AM AB \=,故答案为:14.(3)当点N 在线段AB 上时,如图AN BN MN -=Q ,又AN AM MN -=Q 14BN AM AB \==,12MN AB \=,即12MN AB =.当点N 在线段AB 的延长线上时,如图AN BN MN -=Q ,又AN BN AB -=QMN AB \=,即1MN AB =.综上所述112MN AB =或7.如果一点在由两条公共端点的线段组成的一条折线上且把这条折线分成长度相等的两部分,这点叫做这条折线的“折中点”.如果点D 是折线A C B --的“折中点”,请解答以下问题:(1)已知AC m =,BC n =.当m n >时,点D 在线段 AC 上;当m n =时,点D 与 重合;当m n <时,点D 在线段 上;(2)若E 为线段AC 中点,4EC =,3CD =,求CB 的长度.【解答】解:(1)已知AC m =,BC n =.当m n >时,点D 在线段AC 上;当m n =时,点D 与C 重合;当m n <时,点D 在线段BC 上.故答案为:AC ,C ,BC ;(2)点D 在线段AC 上,E Q 为线段AC 中点,4EC =,28AC CE \==,3CD =Q ,5AD AC CD \=-=,5BD AD ==Q ,532BC \=-=;点D 在线段BC 上,E Q 为线段AC 中点,4EC =,28AC CE \==,3CD =Q ,11AD AC CD \=+=,11BD AD ==Q ,11314BC \=+=.8.如图,B 是线段AD 上一动点,沿A D A ®®以2/cm s 的速度往返运动1次,C 是线段BD 的中点,10AD cm =,设点B 运动时间为t 秒(010)t …….(1)当2t =时,①AB = 4 cm .②求线段CD 的长度.(2)①点B 沿点A D ®运动时,AB = cm ;②点B 沿点D A ®运动时,AB = cm .(用含t 的代数式表示AB 的长)(3)在运动过程中,若AB 中点为E ,则EC 的长是否变化,若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)当2t =时,①224AB cm =´=;②1046BD AD AB cm =-=-=,由C 是线段BD 的中点,得116322CD BD cm ==´=;(2))①点B 沿点A D ®运动时,2AB tcm =;②点B 沿点D A ®运动时,202AB tcm =-;(3)在运动过程中,若AB 中点为E ,则EC 的长不变,由AB 中点为E ,C 是线段BD 的中点,得12BE AB =,12BC BD =.11()10522EC BE BC AB BD cm =+=+=´=.9.如图,点B 、C 在线段AD 上,23CD AB =+.(1)若点C 是线段AD 的中点,求BC AB -的值;(2)若14BC AD =,求BC AB -的值;(3)若线段AC 上有一点P (不与点B 重合),AP AC DP +=,求BP 的长.【解答】解:设AB x =,BC y =,则23CD x =+.(1)C Q 是AD 中点,AC CD \=,23x y x \+=+3y x \-=,即3BC AB -=.(2)14BC AD =Q ,即3AB CD BC +=,233x x y \++=,1y x \-=,即1BC AB -=.(3)设AP m =,AP AC DP +=Q ,23m x y x x y m \++=+++-,32m x \-=,即32BP m x =-=.10.如图,点B 、C 是线段AD 上的两点,点M 和点N 分别在线段AB 和线段CD 上.(1)当8AD =,6MN =,AM BM =,CN DN =时,BC = 4 ;(2)若AD a =,MN b=①当2AM BM =,2DN CN =时,求BC 的长度(用含a 和b 的代数式表示)②当AM nBM =,(DN nCN n =是正整数)时,直接写出BC = .(用含a 、b 、n 的代数式表示)【解答】解:(1)8AD =Q ,6MN =,862AM DN AD MN \+=-=-=,AM BM =Q ,CN DN =,224AB CD AM DN \+=+=,()844BC AD AB CD \=-+=-=,故答案为4.(2)①AD a =Q ,MN b =,AM DN AD MN a b \+=-=-,2AM BM =Q ,2DN CN =,33()()22AB CD AM DN a b \+=+=-,331()()222BC AD AB CD a a b b a \=-+=--=-.②AD a =Q ,MN b =,AM DN AD MN a b \+=-=-,AM nBM =Q ,DN nCN =,11()()n n AB CD AM DN a b n n++\+=+=-,111()()n n BC AD AB CD a a b b a n n n ++\=-+=--=-.故答案为11n b a n n+-.11.如图,C 为线段AB 延长线上一点,D 为线段BC 上一点,2CD BD =,E 为线段AC 上一点,2CE AE=(1)若18AB =,21BC =,求DE 的长;(2)若AB a =,求DE 的长;(用含a 的代数式表示)(3)若图中所有线段的长度之和是线段AD 长度的7倍,则AD AC 【解答】解:(1)2CD BD =Q ,21BC =,173BD BC \==,2CE AE =Q ,18AB =,111()(1821)13333AE AC AB BC \==+=´+=,18135BE AB AE \=-=-=,5712DE BE BD \=+=+=;(2)2CD BD =Q ,13BD BC \=,2CE AE =Q ,AB a =,13AE AC \=,13BE AB AE AB AC \=-=-,11112()33333DE BE BD AB AC BC AB AC BC AB AB AB \=+=-+=--=-=,AB a =Q ,23DE a \=;(3)设22CD BD x ==,22CE AE y ==,则BD x =,AE y =,所有线段和43(23)223(23)222227(23)AE AB AD AC EB ED EC BD BC DC y y x x x y x x x x x x y y x x +++++++++=+-+++-+++++=+-+,2y x =,则23324AD y y x x y x x =+-+=-=,36AC y x ==,\23AD AC =,故答案为:23.12.如图,C 是线段AB 上一点,16AB cm =,6BC cm =.(1)AC = 10 cm ;(2)动点P 、Q 分别从A 、B 同时出发,点P 以2/cm s 的速度沿AB 向右运动,终点为B ;点Q 以1/cm s 的速度沿BA 向左运动,终点为A .当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C 、P 、Q 三点,有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)16610AC AB BC cm =-=-=,故答案为:10;(2)①当05t <…时,C 是线段PQ 的中点,得1026t t -=-,解得4t =;②当1653t <…时,P 为线段CQ 的中点,210163t t -=-,解得265t =;③当1663t <…时,Q 为线段PC 的中点,6316t t -=-,解得112t =;④当68t <…时,C 为线段PQ 的中点,2106t t -=-,解得4t =(舍),综上所述:4t =或265或112.13.如图1,点A ,B 都在线段EF 上(点A 在点E 和点B 之间),点M ,N 分别是线段EA ,BF 的中点.(1)若::1:2:3EA AB BF =,且12EF cm =,求线段MN 的长;(2)若MN a =,AB b =,求线段EF 的长(用含a ,b 的代数式表示);(3)如图2,延长线段EF 至点1A ,使1FA EA =,请探究线段1BA 与EM NF +应满足的数量关系(直接写出结论)【解答】解:(1)设EA xcm =,则2AB xcm =,3BF cm =,6EF xcm =.Q 点M ,N 分别是线段EA ,BF 的中点,12EM MA xcm \==,32BN NF xcm ==.2AB xcm =Q ,4MN MA AB BN xcm \=++=.12EF cm =Q ,612x \=,解得:2x =,48MN x cm \==.(2)Q 点M ,N 分别是线段EA ,BF 的中点,EM MA \=,BN NF =.MN a =Q ,AB b =,MA BN MN AB a b \+=-=-,EM NF a b \+=-,2EF EM MN NF a b a a b \=++=-+=-.(3)Q 点M ,N 分别是线段EA ,BF 的中点,2EA EM \=,2BF NF =.1FA EA =Q ,112()BA BF FA BF EA EM NF \=+=+=+.14.在射线OM 上有三点A ,B ,C ,满足15OA cm =,30AB cm =,10BC cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动;点Q 从点C 出发,沿线段CO 匀速向点O 运动(点Q 运动到点O 时停止运动).如果两点同时出发,请你回答下列问题:(1)已知点P 和点Q 重合时23PA AB =,求OP 的长度;(2)在(1)题的条件下,求点Q 的运动速度.【解答】解:(1)23PA AB =Q ,30AB cm =,230203PA cm \=´=,15OA cm =Q ,35OP OA AP cm \=+=,(2)OC OA AB BC =++Q ,15OA cm =,30AB cm =,10BC cm =,15301055OC cm \=++=,553520CP OC OP cm =-=-=Q ,P Q 以1/cm s 的速度匀速运动,\点P 运动的时间为35s ,点Q 运动的时间为35s ,\点Q 的速度204/357cm s ==.15.如图,有两段线段2AB =(单位长度),1CD =(单位长度)在数轴上运动.点A 在数轴上表示的数是12-,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是 10- ,点C 在数轴上表示的数是 ,线段BC = (2)若线段AB 以1个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.设运动时间为t 秒,若6BC =(单位长度),求t 的值(3)若线段AB 以1个单位长度/秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左运动.设运动时间为t 秒,当024t <<时,设M 为AC 中点,N 为BD 中点,则线段MN 的长为 .【解答】解:(1)2AB =Q ,点A 在数轴上表示的数是12-,\点B 在数轴上表示的数是10-;1CD =Q ,点D 在数轴上表示的数是15,\点C 在数轴上表示的数是14.14(10)24BC \=--=.故答案为:10-;14;24.(2)当运动时间为t 秒时,点B 在数轴上表示的数为10t -,点C 在数轴上表示的数为142t -,|10(142)||324|BC t t t \=---=-.6BC =Q ,|324|6t \-=,解得:16t =,210t =.答:当6BC =(单位长度)时,t 的值为6或10.(3)当运动时间为t 秒时,点A 在数轴上表示的数为12t --,点B 在数轴上表示的数为10t --,点C 在数轴上表示的数为142t -,点D 在数轴上表示的数为152t -,024t <<Q ,\点C 一直在点B 的右侧.M Q 为AC 中点,N 为BD 中点,\点M 在数轴上表示的数为232t -,点N 在数轴上表示的数为532t -,53233222t t MN --\=-=.故答案为:32.16.(1)如图,点C 在线段AB 上,线段6AC cm =,10BC cm =,点D 、E 分别是AC 和BC 的中点.求线段DE 的长;(2)若线段AB acm =,其他条件不变,则线段DE (直接写出答案).(3)对于(1),如果叙述为:“点C 在直线AB 上,线段6AC cm =,10BC cm =,点D 、E 分别是AC 和BC 的中点,求线段DE 的长?”结果会有变化吗?如果有,直接写出结果.【解答】解:(1)6AC cm =Q ,10BC cm =,点D 、E 分别是AC 和BC 的中点,132DC AC cm \==,152CE CB cm ==,8DE DC EC cm \=+=;(2)Q 点D 、E 分别是AC 和BC 的中点,12DC AC \=,12CE CB =,11()22DE DC EC AC CB acm \=+=+=;故答案为:12acm ;(3)结果会有变化,如图,点D 、E 分别是AC 和BC 的中点,132DC AC cm \==,152CE CB cm ==,2DE EC CD cm \=-=,\线段DE 的长为8cm 或2cm .17.(1)如图,点C 在线段AB 上,线段6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?(2)根据(1)的计算过程和结果,设AC BC a +=,其他条件不变,你能猜出MN 的长度吗?用一句话表述你发现的规律?(3)对于(1),如果叙述为:“已知线段6AC cm =,4BC cm =,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?”结果会有变化吗?如果有,求出结果.【解答】解:(1)点M 、N 分别是AC 、BC 的中点,6AC cm =,4BC cm =,2623MC AC cm =¸=¸=,2422NC CB cm =¸=¸=,由线段的和差,得325()MN MC NC cm =+=+=.答:线段MN 的长是5cm .(2)12MN a =,MN 的长度等于1()2AC BC +;(3)会有变化.当C 点在线段AB 上时,5MN cm =;当C 点在线段AB 的延长线上时,1MN cm =.18.如图,点B 在线段AC 上,点M 、N 分别是AC 、BC 的中点.(1)若线段15AC =,25BC AC =,则线段MN (2)若B 为线段AC 上任一点,满足AC BC m -=,其它条件不变,求MN 的长;(3)若原题中改为点B 在直线AC 上,满足AC a =,BC b =,()a b ¹,其它条件不变,求MN 的长.【解答】解:(1)15AC =Q ,25BC AC =,6BC \=,又Q 点M 、N 分别是AC 、BC 的中点,11522CM AC \==,132CN BC ==,159322MN CM CN \=-=-=;故答案为:92;(2)Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()2222MN CM CN AC BC AC BC m \=-=-=-=;(3)当点B 在线段AC 上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CM CN AC BC AC BC a b \=-=-=-=-;当点B 在AC 的延长线上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CM CN AC BC AC BC a b \=+=+=+=+;当点B 在CA 的延长线上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CN CM BC AC BC AC b a \=-=-=-=-.19.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.(1)若18AB =,8DE =,线段DE 在线段AB 上移动.①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,则CD AB【解答】解:(1)2AC BC =,18AB =,8DE =,6BC \=,12AC =,①如图,E Q 为BC 中点,3CE \=,5CD \=,18117AD AB DB \=-=-=;②如图,Ⅰ、当点E 在点F 的左侧,3CE EF +=Q ,6BC =,\点F 是BC 的中点,3CF BF \==,18315AF AB BF \=-=-=,153AD AF \==;Ⅱ、当点E 在点F 的右侧,12AC =Q ,3CE EF CF +==,9AF AC CF \=-=,39AF AD \==,3AD \=.其他情况不存在,舍去.综上所述:AD 的长为3或5;(2)2AC BC =Q ,2AB DE =,满足关系式32AD EC BE +=,Ⅰ、当点E 在点C 右侧时,如图,设CE x =,DC y =,则DE x y =+,2()AB x y \=+24()33AC AB x y ==+4133AD AC DC x y \=-=+12()33BC AB x y ==+2133BE BC CE y x \=-=-7133AD EC x y \+=+2()3AD EC BE+=Q 71212()3()3333x y y x \+=-解得,174x y =,\1742()422()17CD y y AB x y y y ===++.Ⅱ、当点E 在点A 左侧时,如图,设CE x =,DC y =,则DE y x =-,2()AB y x \=-24()33AC AB y x ==-4133AD DC AC x y \=-=-12()33BC AB y x ==-2133BE BC CE y x \=+=+7133AD EC x y \+=-2()3AD EC BE+=Q 71212()3()3333x y y x \-=+解得,118x y =,\112()6CD y AB y x ==-.点D 在C 点右侧,及点D 在B 点右侧,无解,不符合题意;当DE 在线段AC 内部时,如图,设CE x =,DC y =,则DE y x =-,2()AB y x \=-,24()33AC AB y x ==-,1433AD AC DC y x \=-=-,12()33BC AB y x ==-,2133BE BC CE y x \=+=+,1133AD EC x y \+=-+,2()3AD EC BE+=Q 11212()3()3333x y y x \-+=+,解得,54x y -=(不符合题意,舍去),\512()182CD y AB y x ==<-,不符合题意,舍去.其他情况不存在,舍去.故答案为1742或116.20.如图,C 是线段AB 上一点,20AB cm =,8BC cm =,点P 从A 出发,以2/cm s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1/cm s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运动.设点P 运动时间为xs .(1)AC= 12 cm;(2)当x= s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.【解答】解:(1)20812()AC AB BC cm=-=-=.故答案为:12;(2)2020(21)()3s¸+=.故当203x s=时,P、Q重合.故答案为:203;(3)存在,①C是线段PQ的中点,得220212x x+-=´,解得4x=;②P为线段CQ的中点,得122022x x+-=´,解得325x=;③Q为线段PC的中点,得2122(20)x x+=´-,解得7x=;综上所述:4x=或325x=或7x=.。

北师大版七年级数学上册线段的有关计算专题训练题及答案[001]

北师大版七年级数学上册线段的有关计算专题训练题及答案[001]

北师大版七年级数学上册线段的有关计算专题训练题及答案专题训练(五) 线段的有关计算类型1直接计算线段的长度1.如图,线段AB=2,线段AC=5,延长BC到D,使BD=3BC,求AD的长.2.如图,线段AB=22 cm,C是AB上一点,且AC=14 cm,O是AB的中点,求线段OC的长度.类型2运用方程思想求线段的长度3.如图,线段AB被点C、D分成了3∶4∶5三部分,且AC的中点M和DB的中点N之间的距离是40 cm,求AB的长.类型3运用整体思想求线段的长度4.如图,点C是线段AB上的一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=10 cm,AM=3 cm,求CN的长;(2)如果MN=6 cm,求AB的长.5.如图,C为线段AB上一点,D是线段AC的中点,E为线段CB的中点.(1)如果AC=6 cm,BC=4 cm,试求DE的长;(2)如果AB=a,试求DE的长度;(3)若C在线段AB的延长线上,且满足AC-BC=b,D、E分别为AC、BC的中点,你能猜想DE的长度吗?写出你的结论,不要说明理由.类型4运用分类讨论思想求线段的长度6.已知线段AB=60 cm,在直线AB上画线段BC,使BC=20 cm,点D是AC的中点,求CD的长度.7.已知,线段AB、BC均在直线l上,若AB=12 cm,AC=4 cm,M、N分别是AB、AC的中点,求MN的长.参考答案1.因为AB=2,AC=5,所以BC=AC-AB=3.所以BD=3BC=9.所以AD=AB+BD=11.2.因为点O 是线段AB 的中点,AB =22cm,所以AO =12AB =11cm.所以OC =AC -AO =14-11=3(cm).3.设AB 的长为x cm.因为线段AB 被点C 、D 分成了3∶4∶5三部分, 所以AC =312x cm ,CD =412x cm ,DB =512x cm.又因为AC 的中点M 和DB 的中点N 之间的距离是40 cm , 所以MC =324x cm ,DN =524x cm.所以324x +412x +524x =40.解得x =60.所以AB 的长为60 cm.4.(1)因为M 是AC 的中点,所以AC =2AM.因为AM =3 cm ,所以AC =2×3=6(cm).因为AB =10 cm ,所以BC =AB -AC =10-6=4(cm). 又因为N 是BC 的中点,所以CN =12BC =12×4=2(cm).(2)因为M 是AC 的中点,所以MC =12AC.因为N 是BC 的中点,所以NC =12CB.所以MC +CN =12AC +12CB =12(AC +CB)=12AB ,即MN =12AB.又因为MN =6 cm ,所以AB =2×6=12(cm).5.(1)由题意,得CD =12AC =3 cm ,CE =12BC =2 cm ,所以DE =CD +CE =3+2=5(cm).(2)由题意得,CD =12AC ,CE =12BC ,所以DE =CD +CE =12AC +12BC =12(AC +BC)=12AB =12a. (3)DE =12b.6.当点C 在线段AB 上时,如图1:CD =12(AB -BC)=12(60-20)=12×40=20(cm);当点C 在线段AB 的延长线上时,如图2:CD =12(AB +BC)=12(60+20)=12×80=40(cm).所以CD 的长度为20 cm 或40 cm.7.当点C 在线段AB 上时,如图1:因为点M 是线段AB 的中点,点N 是线段AC 的中点,所以AM =12AB =6 cm ,AN =12AC =2cm.所以MN =AM -AN =6-2=4(cm ).当点C 在线段BA 的延长线上时,如图2:因为点M 是线段AB 的中点,点N是线段AC的中点,所以AM=12AB=6 cm,AN=12AC=2cm.所以MN=AM+AN=6+2=8(cm).即MN=4 cm或8 cm.。

七年级线段的计算(基础)

七年级线段的计算(基础)

1、如图,线段AB=8cm,点C就是AB得中点,点D在CB上且DC=1、5cm,求线段BD得长度.2、已知线段AB,延长AB到C,使BC=AB,D为AC得中点,若BD=6cm,求AB得长.3、已知,如图,B,C两点把线段AD分成2∶5∶3三部分,M为AD得中点,BM=6cm,求CM与AD得长.4、如图,已知AB=7, BC=3,点D为线段AC得中点,求线段DB得长度、5、.如图,M就是线段AB得中点,点C在线段AB上,N就是AC得中点,且AN=2cm,CM=1cm,求线段AB得长.6、如图,D就是AB得中点,E就是BC得中点,BE=AC=2 cm,求线段DE得长、7、如图,AB=16cm,C就是AB上得一点,且AC=10cm,D就是AC得中点,E就是BC得中点, 求线段DE得长、8、如图,点C、D就是线段AB上两点,D就是AC得中点,若BC=6厘米,BD=10厘米,求线段AB得长度。

9、如图所示,点C、D为线段AB得三等分点,点E为线段AC得中点,若ED=9,求线段AB得长度.10、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD得中点,BM=6cm,求CM与AD得长.11、如图1,线段AC=6cm,线段BC=15cm,点M就是AC得中点,在CB上取一点N,使得CN:NB=1:2,求MN得长.12、如图,已知线段AB与CD得公共部分BD=AB=CD,线段AB、CD得中点E、F之间距离就是10cm,求AB,CD 得长.13、已知:如图,A,B,C在同一条线段上,M就是线段AC得中点,N就是线段BC得中点,且AM=5cm,CN=3cm.求线段AB得长.14、如图,已知点C在线段AB得延长线上,AC=16cm,AB=6cm,点D就是线段AB得中点,点E就是线段BC得中点,求线段DE得长度.15、如图,已知A、B、C三点在同一条线段上,M就是线段AC得中点,N就是线段BC得中点,且AM=5 cm,CN=3 cm、求线段AB得长.16、如图,AB=16cm,延长AB到C,使BC=3AB,D就是BC得中点,求AD得长度.17、如图,已知点C就是线段AB得中点,点D就是线段AC得中点,点E就是线段BC得中点.(1)若线段DE=9cm,求线段AB得长.(2)若线段CE=5cm,求线段DB得长.18、如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别就是线段AB、CD得中点,求EF.19、已知:如图,B、C就是线段AD上两点,且AB:BC:CD=2:4:3,M就是AD得中点,CD=6cm,求线段MC得长.20、如图所示,线段AB=8cm,E为线段AB得中点,点C为线段EB上一点,且EC=3cm,点D为线段AC得中点,求线段DE得长度.21、如图,已知线段AB=32,C为线段AB上一点,且AC=BC,E为线段BC得中点,F为线段AB得中点,求线段EF得长.22、如图,线段AC=8 cm,线段BC=18 cm,点M就是AC得中点,在CB上取一点N,使得CN∶NB=1∶2、求MN得长.23、如图,M就是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC与线段BM得长.24、如图,AB=16cm,延长AB到C,使BC=3AB,D就是BC得中点,求AD得长度.25、如图,线段AB=8,M就是线段AB得中点,N就是线段AC得中点,C为线段AB上一点,且AC=3、2,求M,N两点间得距离、26、如图,已知M就是线段AB得中点,N在AB上,MN=AM,若MN=2m,求AB得长.27、如图,线段AC=6cm,线段BC=15cm,点M就是AC得中点,在BC上取一点N,使得CN=BC,求MN得长.28、如图已知点 C 为 AB 上一点,AC=12cm,CB=AC,D、E 分别为 AC、AB 得中点,求 DE 得长.29、如图,已知M就是线段AB得中点,P就是线段MB得中点,如果MP=3cm,求AP得长.30、点A,B,C在同一直线上,AB=8,AC: BC=3 : 1,求线段BC得长度、31、如图4,线段AB=20cm。

06 专题六:线段计算(1)——计算推理(方法专题);人教版七年级上学期培优专题讲练(含答案)

06 专题六:线段计算(1)——计算推理(方法专题);人教版七年级上学期培优专题讲练(含答案)

专题六:线段计算(1)——计算推理方法点睛根据题目所给条件,运用线段的和、差、倍、分关系进行推理计算。

拓展条件,转化结论,两边凑;逐步求出有关线段长。

本类型线段计算题型一般难度不大,不需要列方程。

典例精讲1.如图,将两根木棒AB和CD捆接成一根较长的木棒AD,捆绑处AB有三分之一部分与CD重合,M,N分别是AB和CD的中点,且AB=12cm,MN=10cm,求木棒AD的长.举一反三2.如图:已知AB=8cm,BD=3cm,C为AB的中点,求线段DC的长.3.如图,M是AB的中点,AB=23BC,N是BD的中点,且BC=2CD,如果AB=2cm,求AD、AN的长.专题过关4.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm5.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为cm.6.问题:如图,线段AC上依次有D,B,E三点,其中点B为线段AC的中点,AD=BE,若DE=4,求线段AC的长.请补全以下解答过程.解:∵D,B,E三点依次在线段AC上,∴DE=+BE.∵AD=BE,∴DE=DB+=AB.∵DE=4,∴AB=4.∵,∴AC=2AB=.7.如图,线段AC=20cm,BC=3AB,N是线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.8.如图,已知AC=16cm,AB=13BC,点C是BD的中点,求AD的长.9.画线段AB=5厘米,延长AB至C,使AC=2AB,反向延长AB至E,使AE=13CE,再计算:(1)线段CE的长;(2)线段AC是线段CE的几分之几;(3)线段CE是线段BC的几倍.10.如图,C是线段AB的中点.(1)若点D在CB上,且DB=1.5cm,AD=6.5cm,求线段CD的长度.(2)若将(1)中的“点D在CB上”改为“点D在CB的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD的长度.【参考答案】1.解:∵AB=12cm,M是AB的中点,∴MB=12AB=6cm,依题意得:CB=13AB=4cm,∴MC=MB﹣CB=2cm,∵MN=10cm,∴CN=MN﹣MC=8cm,∵N是CD的中点,∴CD=2CN=16cm,∴AD=AC+CD=AB﹣CB+CD=12﹣4+16=24(cm),∴木棒AD的长为24cm.2.解:∵AB=8cm,BD=3cm,∴AD=AB﹣BD=8﹣3=5(cm),∵C为AB的中点,∴AC=12AB=4cm,∴DC=AD﹣AC=5﹣4=1(cm),即线段DC的长是1cm.3.解:∵M是AB的中点,AB=23BC,N是BD的中点,且BC=2CD,AB=2cm∴BC=3cm,CD=1.5cm∴BD=4.5cm,AD=AB+BC+CD=2+3+1.5=6.5cm ∴BN=2.25cm∴AN=AB+BN=2+2.25=4.25cm.4.C.5.3.6.DB;AD;点B为线段AC的中点;8.7.解:∵AC=20cm,BC=3AB,∴BC=34×20=15cm,∴AB =5cm ,∵N 为BC 的中点,∴BN =CN =7.5cm ,∵BM :MN =2:3,∴MN =35×7.5=4.5cm . 8.解:∵AC =16cm ,AB =13BC ,∴AB =14AC =4cm ,BC =16cm ﹣4cm =12cm ,∵点C 是BD 的中点,∴CD =BC =12cm ,∴AD =AB +BC +CD =4cm +12cm +12cm =28cm .9.解:如图所示:(1)∵CE =3AE∴AC =2AE∵AB =5,AC =2AB∴AC =10(厘米)∴AE =5(厘米)∴CE =15(厘米);(2)AC CE =2AB 3AB =23; (3)CE =3AB =3BC .答:线段CE 的长15厘米;线段AC 是线段CE 的23;线段CE 是线段BC 的3倍. 10.解:(1)AB =AD +BD =6.5cm +1.5cm =8cm ,∵C 是线段AB 的中点,∴CB =12AB =4cm ,∴CD =CB ﹣BD =4cm ﹣1.5cm =2.5cm ;(2) ∵AB =AD ﹣BD =6.5cm ﹣1.5cm =5cm ,∴CB=12AB=2.5cm,∴CD=CB+BD=4cm.。

七年级数学线段的练习题

七年级数学线段的练习题

七年级数学线段的练习题七年级数学线段的练习题数学是一门既有趣又实用的学科,它贯穿于我们生活的方方面面。

在七年级数学中,线段是一个重要的概念。

线段是数学中的一种基本几何图形,它由两个端点和连接它们的线段组成。

在本文中,我将为大家介绍一些七年级数学线段的练习题,希望能够帮助大家更好地理解和掌握线段的概念。

1. 给定线段AB,如果线段AB的长度是5cm,那么线段BA的长度是多少?解析:线段AB和线段BA是同一条线段,只是方向相反而已。

所以线段BA的长度也是5cm。

2. 在一个长方形中,两个相邻的边的长度分别是7cm和5cm,求长方形的周长。

解析:长方形的周长等于所有边的长度之和。

根据题意,长方形的周长等于2× (7cm + 5cm) = 24cm。

3. 如果一个线段的长度是8cm,将它分成3等分,每一段的长度是多少?解析:将线段分成3等分,意味着将线段分成3个相等的部分。

所以每一段的长度等于8cm ÷ 3 ≈ 2.67cm。

4. 在一个正方形中,对角线的长度是10cm,求正方形的边长。

解析:正方形的对角线将正方形分成两个等边直角三角形。

根据勾股定理,对角线的长度等于边长的平方根乘以√2。

所以边长等于10cm ÷ √2 ≈ 7.07cm。

5. 在一个等边三角形中,每条边的长度是6cm,求三角形的周长。

解析:等边三角形的三条边的长度相等,所以三角形的周长等于3 × 6cm =18cm。

通过以上几个练习题,我们可以看到线段在几何图形中的应用。

线段的长度可以通过计算两个端点的距离来确定,而在其他图形中,线段的长度也可以通过其他已知条件来计算。

通过练习这些题目,我们可以更好地理解线段的概念,提高我们的数学解题能力。

除了以上的练习题,还有许多其他与线段相关的问题可以练习。

比如,给定两个点的坐标,求它们之间的距离;给定一个线段和一个点,判断这个点是否在线段上等等。

这些问题都可以通过线段的性质和几何知识来解决,对我们的数学学习和思维能力的培养都有很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上线段计算问题
A. 1个
B.2 个
C.3 个
D.4 个
2:已知M是AB七年级上线段计算问题据“ M是AB的中点”推出来的()1
A.AM』七年级上线段计算问题
2
C.AB=2BM
D.AM=BM
3. 如图,A、B、C、D是直线l上顺次四点,且线段AC=5,BD=4,则线段AB-CD= ___________ .
A BCD
4.如图,AC=8cm,CB=6cm,如果O是线段AB的中点,则线段OC= ______ c m。

■ ■ ■
A O C B
5 (自己画图,练习写步骤)直线上顺次取
A、B、C三点,使AB=5cm,BC=2cm,并且取线段AC的中点O,求线段OB的长。

6.点A、B、C、D 是直线上顺次四个点,且AB:BC:CD=2:3:4,如果AC=10cm,那么BC= ________
7. 知线段AB=12cm直线AB上有一点C,且BC=6cm,M!线段AC的中点,求线段AM 的长.
A.8cm
B.4cm
C.8cm 或4cm
D. 不确定
8. 已知线段AB=6cm在直线(线段)AB上画线段AC=2cmj® BC的长是()
9. 知线段AB=10cm,BC=2cm 则线段AC 等于(
A.12cm
B.8cm
C.12cm 或 8cm 9.点C 是AB 延长线上的一点,点D 是AB 中点,如果点B 恰好是DC 的中点,设AB=2cm, 则 AC= ____________ c m.
10.知AB=16cm,C 是直线 AB 上一点,且AC=10cm,D 为AC 的中点,E 是BC 的中点,则线段 DE= ________ cm.
11.线I 上有A B 、C 三点,且AB=8cm,BC=5cn 求线段AC 的长。

能力提升
1.如图,B 、C 是线段AD 上两点,且AB BC CD=4:5:6,E 、F 分别是AB CD 的中 点,且EF=20,求线段BC 的长。

• -- ・ - a --------- ----- ------ •
A E
B
C F D
2.C 、D 为线段 AB 上的两点,且 AC CB=1:3,AD: DB=7:5,若 CD=14求 AB 的长
i i
3如图所示,A 、D 、B 、C 依次在同一直线上,DB= AB=・CD,E 为线段AB 的中点,F 是线段
) D. 不能确定
A.8cm
B.4cm
C.8cm 或4cm
D. 不确定
CD的中点,EF=10,求CD的长。

* ------------ 9----- «--------- •------------- ►
A ED
B F
1 4
4.图所示,已知线段AB上有C、D两点,AC= BC,AD^ BD,CD=7cm,求线段AB的长。

5如图所示,已知线段AB,点C分线段AB的比为5:7,点D分线段的比为5:11,若CD=5cm求线段AB的长。

A DC B
6如图,线段AB=20点P从点A沿射线AB的方向以1单位长度/秒的速度匀速出发,
(1)若PA: PB=1: 2,求P点运动的时间。

(2)若PA: PB=2 1,求P点运动的时间。

(3)如图2,已知线段BC=6,设点P运动的时间为t秒,点D为PB的中点,点E
2
为PC的中点,若CD=DE试求P点运动时间t的值。

A P E D C B
(4)如图3,已知线段BC=8,若在点P从A点出发的同时,点Q从B点沿射线AB 的方向以4个单位长度/秒的速度匀速出发,当点P运动t秒后,PC: CQ=1:2,试求P点运动时间t的值。

A P C
B Q。

相关文档
最新文档