九年级数学上学期期末考试试题

合集下载

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。

九年级上学期 期末考试数学试题附答案

九年级上学期 期末考试数学试题附答案

姓名 得分 一、选择题(本大题有7小题,每小题3分,共21分.) 1.下列计算正确的是( )A .2-2=0B .3+2= 5C .(-2)2=-2 D .4÷2=2 2.方程(x -3)2=0的根是( )A .x =-3B .x =3C .x =±3D .x = 33.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AE=4, EC=2,则AD ︰DB 的值为 ( ) A .21 B .23 C .32D .2 4.若矩形ABCD 和四边形A 1B 1C 1D 1相似,则四边形A 1B 1C 1D 1一定是( ) A .正方形 B .矩形 C .菱形 D .梯形 5.若二次根式2x -4有意义,则x 的取值范围是 ( ) A .x <2 B .x ≤2 C . x >2 D .x ≥2 6.下列说法正确的是 ( )A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨B .“抛一枚硬币正面朝上的概率为21”表示每抛2次就有一次正面朝上 C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖 D .“抛一枚正方体骰子,朝上的点数为2的概率为61”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在61附近. 7.在平面直角坐标系中,已知点O (0,0),A (2,4).将线段OA 沿x 轴向左平移2个单 位,记点O 、A 的对应点分别为点O 1、A 1,则点O 1,A 1的坐标分别是 ( )A .(0,0),(2,4)B .(0,0),(0,4)C .(2,0),(4,4)D .(-2,0),(0,4)二、填空题(本大题有10小题,每小题3分,共30分) 8. 计算:2×3= . 9. 在一幅洗好的52张扑克牌中(没有大小王),随机地抽取一张牌,则这张牌是红桃K 的概率是 . 10.计算:2cos60°-tan45°= .E DCB A(第3题)B CDA第13题图11.若关于x 的方程x 2=c 有解,则c 的取值范围是 . 12.已知线段a 、b 、c 满足b 是a,c 的比例中项,且b =3,则ac = .13.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长26米,且斜坡AB 的坡度为125,则河堤的高BE 为 米.14.x 2-8x +( )=(x - )2.15.如图2,飞机A 在目标B 的正上方3000米处,飞行员测得地面目标C 的俯角∠DAC =30°,则地面目标BC 的长是 米.16.已知梯形ABCD 的面积是20平方厘米,高是5厘米, 则此梯形中位线的长是 厘米. 17. 若a =23+1,则a 2+2a +2的值是 .三、解答题(本大题有7小题,共69分) 18.(本题满分15分)(1)计算:62-52-5+3 5 . (2)计算:)1(932x xx x +-.(3)解方程:x 2+4x -2=0.19.(满分7分)小李拿到四张大小、质地均相同的卡片,上面分别标有数字1,2,3,4,他将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张. (1)用画树状图的方法,列出小李这两次抽得的卡片上所标数字的所有可能情况;(2)计算小李抽得的两张卡片上的数字之积为奇数的概率是多少?20.(本题满分7分)高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定 价为50元,可售出400个;定价每增加1元,销售量将减少10个。

江西省九江市2023-2024学年九年级上学期期末数学试题[答案]

江西省九江市2023-2024学年九年级上学期期末数学试题[答案]

九江市2023-2024学年度上学期期末考试九年级数学试题卷本试卷满分120分,考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.方程2520x x +-=的二次项系数、一次项系数和常数项分别是( )A .0,5,2B .0,5,2-C .1,5,2-D .1,5,22.如图是一根空心方管,它的俯视图是( )A .B .C .D .3.在一个不透明的盒子中装有n 个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n 的值大约为( )A .16B .18C .20D .244.如图,已知直线////a b c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF =( )A .13B .12C .23D .15.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相垂直D .两组对角分别相等6.如图,在平面直角坐标系中,Rt ABC D 的顶点A ,B 分别在y 轴、x 轴上,2OA =,1OB =,斜边//AC x 轴.若反比例函数(0,0)k y k x x=>>的图象经过AC 的中点D ,则k 的值为( )A .4B .5C .6D .8二、填空题(本大题共有6小题,每小题3分,共18分)7.关于x 的一元二次方程22=0x x m -+的一个根为-1,则m 的值为 .8.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .9.如图,在菱形ABCD 中,5AB =,60ABC Ð=o ,则BD 的长为 .10.如图,在矩形ABCD 中,点E ,F 分别是AD ,BC 边的中点,连接EF ,若矩形ABFE 与矩形ABCD 相似,4AB =,则矩形ABCD 的面积为 .11.如图,是反比例函数y=1x 和y=3x在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,则S △ABC = .12.如图,ABC V 为边长为7cm 的等边三角形,6cm BD =,2cm CE =,P 为BC 上动点,以0.25cm/s 的速度从B 向C 运动,假设P 点运动时间为t 秒,当t = 秒时,BDP△与CPE △相似.三、(本大题共5小题,每小题6分,共30分)13.解一元二次方程:(1)2420x x +-=(2)()2362x x-=-14.小明和小丽在操场上玩耍,小丽突然高兴地对小明说:“我踩到你的‘脑袋’了.”如图即表示此时小明和小丽的位置.(1)请画出此时小丽在阳光下的影子;(2)若已知小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,求小丽的身高.15.宋代数学家杨辉所著《杨辉算法》中有一题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”译文为:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?16.如图,四边形ABCD 为矩形,且有AE DE =.请用无刻度直尺完成下列作图,保留必要的画图痕迹.(1)在图1中求作BC 边的中点F ;(2)在图2中的边BC 上求作点H ,使BG CH =.17.如图,在△ABC 中,AD 平分∠BAC ,E 是AD 上一点,且BE =BD ;求证:△ABE ∽△ACD .四、(本大题共3小题,每小题8分,共24分)18.如图,在平行四边形ABCD 中,点E ,F 分别在BC ,AD 上,BE DF =,AC EF =.(1)求证:四边形AECF 是矩形;(2)若2CE BE =且AE BE =,已知2AB =,求AC 的长.19.已知A ,B ,C ,D ,E 五个红色研学基地,某地为了解中学生的意愿,随机抽取部分学生进行调查,并将统计数据整理后,绘制了不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该地区有1000名中学生参加研学活动,则愿意去A 基地的大约有___________人;(3)甲、乙两所学校计划从A ,B ,C 三个基地中任选一个基地开展研学活动,请利用树状图或表格求两校恰好选取同一个基地的概率.20.如图,在平面直角坐标系xOy 中,O 为坐标原点,直线2y x =+交y 轴于点A ,交x 轴于点B ,与双曲线()0k y k x=¹在一,三象限分别交于C ,D 两点,且AB AC BD ==,连接CO ,DO .(1)求k 的值;(2)求CDO V 的面积.五、(本大题共2小题,每小题9分,共18分)21.已知关于x 的一元二次方程()()220a c x bx a c +++-=,其中a 、b 、c 分别为ABC V 三边的长.(1)如果=1x -是方程的根,试判断ABC V 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC V 的形状,并说明理由;(3)如果3a =,4b =,2c =,求这个一元二次方程的根.22.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点M 从点C 出发,以2cm/s 的速度沿CA 向点A 匀速运动,点N 从点B 出发,以1cm/s 的速度沿BC 向点C 匀速运动,当一个点到达终点时,另一点也随即停止运动.(1)经过几秒后,△MCN 的面积等于△ABC 面积的25?(2)经过几秒,△MCN 与△ABC 相似?六、(本题共1小题,共12分)23.[模型探究]Ð=,对角线AC、BD相交于点O.在线段AO上任取一点如图1,菱形ABCD中,ABC a=,则P(端点除外),连接PD、PB.Q为BA延长线上一点,且有PQ PBÐ=__________(用a表(1)PD_________PQ(用>、<、=填写两者的数量关系),DPQ示).[模型应用](2)如图2,当60Ð=o,其他条件不变.ABCV为等边三角形;①连接DQ,运用(1)中的结论证明PDQ②试探究AQ与CP的数量关系,并说明理由.[迁移应用]当90Ð=o,其他条件不变.探究AQ与OP的数量关系,并说明理由.ABC【分析】本题考查了一元二次方程的一般形式,注意找各项的系数时,要带着前面的符号.根据一元二次方程的一般形式得出答案即可.【详解】解:方程2520x x +-=的二次项系数、一次项系数和常数项分别是1,5,2-,故选:C .2.C【分析】根据从上面往下看得到的图形是俯视图,可得答案.【详解】解:如图所示,俯视图为:故选C .【点睛】本题考查了三视图,解题的关键是注意看到的线用实线表示,看不到的线用虚线表示.3.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,100%=20%4n´,解得:20n =,经检验20n =是原方程的根,故C 正确.故选:C .【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4.B【分析】直接根据平行线分线段成比例定理求解.【详解】解:∵a ∥b ∥c ,∴12DE AB EF BC ==.故选:B .【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成5.B【分析】矩形的对角线互相平分且相等,菱形的对角线互相平分,互相垂直,并且每一条对角线平分一组对角,据此解答.【详解】A 、是菱形的性质,是矩形的性质,故本选项不符合题意;B 、是矩形的性质,不是菱形的性质,故本选项符合题意;C 、是菱形的性质,不是矩形的性质,故本选项不符合题意;D 、矩形、菱形的对角都相等,故本选项不符合题意;故选:B .【点睛】此题考查矩形的性质,菱形的性质,熟记各自的性质特征是解题的关键.6.B【分析】作CE x ^轴于E ,根据作图即可得出2OA CE ==.又易证OAB CBE Ð=Ð,即证明AOB BEC D D ∽,得出BE CE OA OB=,从而求出BE 的长,即得到C 点坐标,进而得出D 点坐标.将D 点坐标代入反比例函数解析式,求出k 即可.【详解】解:作CE x ^轴于E ,//AC x Q 轴,2OA =,1OB =,2OA CE \==,90ABO CBE OAB ABO Ð+Ð=°=Ð+ÐQ ,OAB CBE \Ð=Ð,AOB BEC Ð=ÐQ ,AOB BEC \D D ∽,\BE CE OA OB=,即221BE =,4BE \=,5OE \=,Q 点D 是AC 的中点,5(2D \,2).Q 反比例函数(0,0)k y k x x=>>的图象经过点D ,5252k \=´=.故选:B .【点睛】本题考查相似三角形的判定和性质,反比例函数图象上的点的坐标特征.作出常用的辅助线是解答本题的关键.7.-3【分析】把x =-1代入原方程,解关于m 的一元一次方程即可.【详解】∵关于x 的一元二次方程22=0x x m -+的一个根为-1,∴2(1)2(1)=0m --´-+,解得m =-3,故答案为:-3.【点睛】本题考查了一元二次方程根的定义即使得一元二次方程左右两边相等的未知数的值,正确理解定义,灵活代入计算是解题的关键.8.59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.9.【分析】本题主要考查了菱形的性质以及含特殊角的三角函数的计算.由四边形ABCD 为菱形,60ABC Ð=o ,可得出1302ABO ABC =Ð=а,AC BD ^,BO DO =,进一步可求出cos BO ABO ABÐ=,则根据特殊三角函数可求出BO 以及BD .【详解】解:设AC 与BD 交于点O ,如下图:∵四边形ABCD 为菱形,60ABC Ð=o ∴1302ABO ABC =Ð=а,AC BD ^,BO DO =,在Rt AOB V 中,cos Ð∴cos 5BO AB ABO =×Ð=,∴22BD BO ===故答案为:.10.【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:设AE =x ,则AD =2AE =2x ,∵矩形ABFE 与矩形ABCD 相似,∴AE AB AB AD=,即442x x =,解得,x 1=2x =-舍),∴AD =2x =,∴矩形ABCD 的面积为AB •AD ==,故答案为:.【点睛】考查了相似多边形的性质,解题的关键是根据相似多边形的性质列出比例式,难度不大.11.1【分析】设A 点的纵坐标是m ,则B 的纵坐标是m ,代入解析式即可求得A 、B 的横坐标,则AB 的长度即可求得,然后根据三角形的面积公式即可求解.【详解】设A 点的纵坐标是m ,则B 的纵坐标是m ,把y m =代入1y x =得:1x m =,把y m =代入3y x =得:3x m=,则312AB m m m =-=,则1212ABC S m mV =´×=.故答案为:1.【点睛】本题考查了反比例函数的比列系数的意义,正确设出A 的纵坐标,表示出AB 的长是关键.12.12或16或21【分析】本题主要考查了相似三角形的性质和判定,等边三角形的性质,先根据等边三角形的性质得60B C Ð=Ð=°,再分BD BP CP CE =和B D B P C E C P=两种情况求出答案即可.【详解】∵ABC V 是等边三角形,∴60B C Ð=Ð=°,7cm BC =,∴=0.25cm B P t ,()=-70.25cm C P t .当BD BP CP CE =时,BDP CPE ∽△△,即60.2570.252t t =-,解得12t =或16t =;当B D B PC E C P =时,P BDP CE △△∽,即60.25270.25t t=-,解得21t =.∴12t =或16或21.故答案为:12或16或21.13.(1)12x =,22x =(2)13x =,21x =【分析】(1)由配方法解方程即可得出答案;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:2420x x +-=,242x x +=,24424x x ++=+,()226x +=,2x +=.∴12x =,22x =;(2)()2362x x -=-,()()2323x x -=-,()()23230x x -+-=,()()310x x --=,∴30x -=或 10x -=,∴13x =,21x =.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.14.(1)图形见解析;(2)1.4 m .【详解】试题分析:(1)利用阳光是平行投影进而得出小丽在阳光下的影子进而得出答案;(2)利用相同时刻身高与影子成正比进而得出即可.试题解析:(1)如图,线段CA 即为此时小丽在阳光下的影子.(2)∵小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,设小丽的身高为x m ,∴1.6=2 1.75x ,解得x =1.4.答:小丽的身高为1.4 m .15.长比宽多12步.【分析】选择合适的未知数,利用矩形这个桥梁构造一元二次方程求解即可.【详解】解:设矩形的长为x 步,则宽为60x -()步,根据题意,得(60)864x x -=.解得 136x =,224x =(舍去)\当36x =时,6024x -=,362412-=.答:长比宽多12步.【点睛】本题考查了一元二次方程与几何图形的关系,熟练运用一元二次方程解决几何图形的面积是解题的关键.16.(1)见解析(2)见解析【分析】本题主要考查了矩形的性质,线段垂直平分线的性质和判定:(1)连接,AC BD ,过,AC BD 的交点与点E 作直线,交BC 于点F ,即可;(2)方法一:连接AG ,并延长AG 交EF 于点P ,连接DP 交BC 于点H ,即可;方法二:连接AH ,交EF 于点Q ,连接DQ ,并延长DQ 交BC 于点H ,即可;【详解】(1)解:如图,点P 即为所求;(2)解:如图,点H即为所求.17.见解析【分析】根据角平分线的定义可得∠BAD=∠CAD,根据BE=BD,由等边对等角可得∠BED =∠BDE,根据邻补角可得∠AEB=∠ADC,即可证明△ABE∽△ACD.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵BE=BD,∴∠BED=∠BDE,∴∠AEB=∠ADC,∴△ABE∽△ACD.【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.18.(1)见解析=即可证明出四边形【分析】(1)首先证明四边形AECF是平行四边形,然后结合AC EFAECF 是矩形;(2)首先根据勾股定理得到AE =2CE BE ==,然后利用勾股定理求解即可.【详解】(1)证明:在ABCD Y 中AD BC \=,AD BC ∥,BE DF =Q ,AD DF BC BE \-=-,即AF EC =,\四边形AECF 是平行四边形,AC EF =Q ,\四边形AECF 是矩形;(2)∵四边形AECF 是矩形∴90AEC Ð=°∴90AEB Ð=°∵AE BE =,2AB =∴222AE BE AB +=,即2222AE =解得AE =∴BE AE ==∴2CE BE ==∵90AEC Ð=°∴AC ==【点睛】本题考查了矩形的判定与性质,平行四边形的判定、勾股定理,熟练掌握矩形的判定与性质是解题关键.19.(1)见详解(2)14.4°(3)13【分析】本题主要考查了条形统计图和扇形统计图的相关知识以及用树状图或列表法求概率.(1)先根据扇形统计图以及条形图中选择C 基地的人数以及占比求出抽取学生的总人数,然后再求出选择B 基地的人数即可补全条形统计图.(2)直接用360°乘以选择D 基地人数得占比即可求出D 所在的扇形的圆心角的度数,用总体乘以选项A 基地的占比即可推知整体.(3)列出树状图或表格然后用概率公式即可求出两校恰好选取同一个基地的概率.【详解】(1)本次抽取的学生有:1428%50¸=(人),其中选择B 的学生有:5010142816----=(人),补全的条形统计图如右图所示;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为:236014.450°´=°,该市有1000名中学生参加研学活动,愿意去A 基地的大约有:10100020050´=(人),(3)树状图如下所示:由上可得,一共有9种等可能性,其中两校恰好选取同一个基地的可能性有3种,\两校恰好选取同一个基地的概率为3193=.20.(1)8k =(2)6【分析】本题考查了反比例函数与一次函数的交点问题,(1)过点C 作CH x ^轴于点H ,则OA CH ∥,先求出点A ,B 的坐标,再根据题意表示出点C 的坐标,再根据待定系数法求解即可;(2)联立两个解析式,求出点D 的坐标,再由三角形面积公式求解即可;熟练掌握知识点并添加适当的辅助线是解题的关键.【详解】(1)过点C 作CH x ^轴于点H ,则OA CH ∥,2y x =+Q 与坐标轴交于A ,B 两点,()0,2A \,()2,0B -,则2OA =,2OB =,12AB BC =Q,又OA CH ∥,12BA AO BO BC CH BH \===4BH \=,4CH =,∴2OH =,()2,4C \,Q 点C 在双曲线()0k y k x=¹上,42k \=,∴8k =;(2)令82x x =+,解得24x y =ìí=î或42x y =-ìí=-î,∴()4,2D --,()1112246222CDO AOC AOD C D S S S OA y OA y \=+=×+×=´´+=V V V .21.(1)ABC V 是等腰三角形;理由见解析(2)(3)1x =2x =【分析】(1)把=1x -代入原方程,可得到a b 、的数量关系,即可判断ABC V 的形状;(2)根据方程有两个相等的实数根得到()()()2Δ240b a c a c =-+-=,从而得到222a b c =+,由勾股定理的逆定理即可得到答案;(3)把3a =,4b =,2c =代入原方程,利用公式法解方程即可.【详解】(1)解:ABC V 是等腰三角形,理由如下:Q =1x -是方程的根,()()()()21210a c b a c \+´-+´-+-=,20a c b a c \+-+-=,0a b \-=,即a b =,ABC \V 是等腰三角形;(2)解:ABC V 是直角三角形,理由如下:Q 方程有两个相等的实数根,()()()2Δ240b a c a c \=-+-=,2224440b a c +-\=,222a b c \=+,ABC \V 是直角三角形;(3)解:将3a =,4b =,2c =代入方程得:25810x x ++=,,∴1x ==【点睛】本题考查了一元二次方程的解、勾股定理的逆定理、一元二次方程的根的判别式、等腰三角形的判定、解一元二次方程,熟练掌握以上知识点是解此题的关键.22.(1)4秒;(2)167或4013秒【分析】(1)分别表示出线段MC 和线段CN 的长后利用S △MCN =25S △ABC 列出方程求解;(2)设运动时间为t s ,△MCN 与△ABC 相似,当△MCN 与△ABC 相似时,则有MC NC BC AC =或MC NC AC BC=,分别代入可得到关于t 的方程,可求得t 的值.【详解】解:(1)设经过x 秒,△MCN 的面积等于△ABC 面积的25,则有MC =2x ,NC =8-x ,∴12×2x (8-x )=12×8×10×25,解得x 1=x 2=4,答:经过4秒后,△MCN 的面积等于△ABC 面积的25;(2)设经过t 秒,△MCN 与△ABC 相似,∵∠C =∠C ,∴可分为两种情况:①MC NC BC AC =,即28810t t -=,解得t =167;②MC NC AC BC =,即28108t t -=,解得t =4013.答:经过167或4013秒,△MCN 与△ABC 相似.【点睛】本题考查一元二次方程的应用,相似三角形的判定与性质,三角形的面积,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(1)=;a ;(2)①证明见解析;②AQ CP =,证明见解析;(3)AQ =,证明见解析;【分析】(1)利用菱形性质,线段垂直平分线的性质、等腰三角形的性质可知PD PB =,继而得到本题答案;(2)①利用含60°的等腰三角形即为等边三角形判定即可;②利用全等三角形判定及性质可证;(3)利用相似三角形判定及性质即可求出.【详解】解:(1)∵四边形ABCD 是菱形,ABC a Ð=,∴AC BD ^,DO BO =,12ABO CBO a Ð=Ð=,∴AC 垂直平分BD ,∴PD PB =,∵PQ PB =,∴PD PQ =,∴PDB PBD PQB PBQ Ð=Ð=Ð=Ð,∴()11801802QPB PQB PBQ DPB a Ð=°-Ð+Ð=°-=Ð,∴13603602(180)2DPQ QPB DPB a a Ð=°-Ð-Ð=°-°-=,综上所述:PD PQ =,DPQ a Ð=;(2)①证明:由(1)得,PQ PD =,60DPQ Ð=°,DPQ \△为等边三角形;②AQ CP =,,证明:设1ADP Ð=Ð,60ABC Ð=°Q ,60ADC \Ð=°,601ADQ CDP \Ð=°-Ð=Ð,又DQ DP =Q ,DA DC =,()QDA PDC SAS \V V ≌,AQ CP \=;(3)AQ =,理由如下:连接DQ ,即DPQ V 、ADO △为等腰直角三角形,,证明:设2QDA Ð=Ð,3PDO Ð=Ð,由题意,四边形ABCD 是正方形,则45ADO Ð=°,由(1)知,90DPQ ABC Ð=Ð=°,PD PQ =,则45QDP Ð=°,24513\Ð=°-Ð=Ð,答案第15页,共15页又::DQ DP DA DO ==Q ,QDA PDO \△∽△,:AQ OP \=,即:AQ =.【点睛】本题考查菱形性质,正方形的判定与性质,三角形内角和定理,等腰三角形的判定与性质,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形判定及性质,熟练掌握相关知识的联系与运用是解答的关键.。

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。

浙江省温州市2023-2024学年九年级上学期期末数学试题

浙江省温州市2023-2024学年九年级上学期期末数学试题

温州市2023学年第一学期九年级(上)学业水平期末检测数学试卷本试卷分为选择题和非选择题两个部分,共4页,考试时间90分钟,全卷满分100分.答题时请在答题纸答题区域作答,不得超出答题区域边框线.选择题部分一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.抛物线()2345y x =−−+的顶点坐标是( ) A .()4,5B .()4,5−C .()4,5−D .()4,5−−2.已知点P 到圆心O 的距离为5,若点P 在圆内,则O 的半径可能为( ) A .3B .4C .5D .63.如图是海上风力发电装置,相同的三个转子叶片呈均匀分布.若图案绕中心旋转n °后能与原图案重合,则n 可以取( )(第3题) A .90B .120C .150D .1804.图1是《墨经》中记载的“小孔成像”实验图,图2是其示意图,其中物距2m BF =,像距1m CE =.若像的高度CD 是0.9m ,则物体的高度AB 为( )图1 图2 (第4题) A .1.2mB .1.5mC .1.8mD .2.4m阅读背景素材,完成5~6题.一个不透明的盒子内装有1个红球,1个黄球,1个蓝球,它们除颜色外其余均相同.现从中随机摸出一球,记下颜色后放回搅匀,如此继续.5.右表是小温前两次摸球的情况,当小温第三次摸球时,下列说法正确的是( )次数 第1次 第2次 第3次 颜色红球红球(第5题) A .一定摸到红球B .一定摸不到红球C .摸到黄球比摸到蓝球的可能性大D .摸到红球、黄球和蓝球的可能性一样大6.小州摸球两次,则出现相同颜色的概率为( ) A .19B .16C .13D .127.已知二次函数()20y ax bx c a ++≠的图象如图所示,则点(),A a b c +所在的象限是( )(第7题) A .第一象限 B .第二象限C .第三象限D .第四象限8.如图,ABC △内接于O ,AC 为直径,半径OD BC ∥,连结OB ,AD .若AOB α∠=,则BAD∠的度数为( )(第8题)A .2αB .902α°−C .904α°−D .1802α°−9.如图,在ABC △中,AB AC =,在AC 上取点D ,使CBD BAC ∠=∠,延长BC 至点E ,使得DE DB =.若BE k BC =,则ADAB等于( )(第9题) A .1k −B .11k − C .kD .1k10.已知抛物线()20y ax bx b a a =++−>,当03x ≤≤时,50y −≤≤.若将抛物线向左平移4个单位后经过点()1,0−,则b 的值为( )A .1−B .32−C .2−D .52−二、填空题(本题有6个小题,11-15每小题3分,16题4分,共19分)11.若一个正多边形的一个外角为36°,则这个正多边形的边数是______. 12.若扇形的圆心角为120°,半径为4,则它的弧长为______.(结果保留π) 13.某次踢球,足球的飞行高度h (米)与水平距离x (米)之间满足2560h x x =−+,则足球从离地到落地的水平距离为______米.14.如图,四边形ABCD 内接于圆,点E 在 CD 上,若 AB AD =,BC CE ED ==,105BCD ∠=°,则CDE ∠为______度.(第14题)15.如图,在ABC △中,90C ∠=°,点D 在AB 上,作DE BC ⊥于点E ,将BDE △绕点D 逆时针旋转至FDG △,点G ,F 分别落在AB ,AC 上.若2DG =,3FG =,则CE =______.(第15题)16.【情境】图1是某庭院所砌的一堵带有月洞门的墙,其设计图(图2)是轴对称图形,对称轴GH 交圆弧于点G ,墙面ABCD 为正方形,门洞上方匾额的中点M ,N ,P ,Q 分别是上方两个矩形对角线的交点.已知154AB =米,32EF =米,218GH =米,38EK =米.【问题】月洞门所在圆的半径为______米,匾额的长与宽之比为______.图1 图2 (第16题)三、解答题(本题有6小题,共51分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题5分)已知线段..a ,b ,满足23a b=. (1)求3a bb−的值. (2)当线段..x 是线段a ,b 的比例中项,且4a =时,求x 的值.18.(本题6分)某校七年级社会实践,安排三辆车,编号分别为A ,B ,C .小温与小州都可以从这三辆车中任意选择一辆搭乘.(1)求小温没有搭乘C 车的概率.(2)若小温没有搭乘C 车,请用画树状图或列表的方法,求出小温与小州不同车的概率. 19.(本题6分)如图,A ,B ,O 三点都在方格纸的格点上,请按要求在方格纸内作图.(图1) (图2) (第19题)(1)在图1中以点O 为位似中心,作线段AB 的位似图形CD ,使其长度为AB 的2倍.(2)已知OPQ △的三边比为1:2,在图2中画格点ABD △,使ABD △与OPQ △相似.20.(本题10分)如图,抛物线2y x bx c =−++经过点()1,0A −,()3,0B ,与y 轴交于点C .(第20题)(1)求抛物线的表达式及C 点坐标.(2)点(),3D m 是抛物线上一点,且当x m ≥时,y 的最大值为3,求BCD △的面积.21.(本题12分)如图,在ABC △中,90ACB ∠=°,点D 在BC 边上,ACD △的外接圆O 交AB 于点E ,AC CE =,过点C 作CG AD ⊥于点G ,延长CG 交AB 于点F .(第21题)(1)求证:FAC ACG ∠=∠.(2)求证:GC AGCA BC=.(3)若3CF FG =,AC =BD 的长.22.(本题12分)综合与实践:设计公交车停靠站的扩建方案.【素材1】图1为某公交车停靠站,顶棚截面由若干段形状相同的抛物线拼接而成.图2为某段结构示意图,1C ,2C 皆为轴对称图形,且关于点M 成中心对称,该段结构水平宽度为8米.图1 图2 图3【素材2】图3为停靠站部分截面示意图,两根长为2.5米的立柱11M N ,22M N 竖直立于地面并支撑在对称中心1M ,2M 处.小温将长为2.8米的竹竿AB 竖直立于地面,当点A 触碰到顶棚时,测得2N B 为1米. 【素材3】将顶棚扩建,要求截面为轴对称图形,且水平宽度为27米.计划在顶棚两个末端到地面之间加装垂直于地面的挡风板.【任务】(1)确定中心:求图2中点M到该结构最低点的水平距离l.C的函数表达式.(2)确定形状:在图3中建立合适的直角坐标系,求1(3)确定高度:求挡风板的高度.2023-2024学年浙江省温州市九年级(上)期末数学试卷(参考答案及评分标准)一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ADBCDCBCAD二、填空题(11-15每小题3分,16题4分)11.十 12.8π313.1214.2515 16.54;7:3三、解答题(共51分,5分+6分+6分+10分+12分+12分)17.解:(1)23a b = ,3323113a b a b b b b −∴=−=×−=(2)334622b a ==×= ,24624x ab ==×=,x ∴18.解:(1)计算:P (小温未搭乘C )23=(2)列表如下:由表可知,共有6种等可能结果,其中小温和小州搭不同车的结果有4种,∴小温和小州搭不同车的概率为4263=.19.解:(1)(2)注:答案不唯一.20.解:(1)把1x =−,0y =;3x =,0y =代入,得()()2011b c =−−+×−+,()2033b c =−+×+解得2b =,3c =223y x x ∴=−++;点C 为()0,3.(其他解法,相应给分) (2)由题意得,二次函数经过点(),3D m 由(1)得,()2221b a −=−=×−012m +∴=,2m =; 2CD ∴=,3OC = 12332BCD S ∴=××=△(第20题) 21.(本题12分)(第21题) (1)证明:AC CE= FAC ADC ∴∠=∠ 90ACB =°∠ ,CG AD ⊥90ACG DCG ADC DCG ∴∠+∠=∠+∠=° ACG ADC ∴∠=∠FAC ACG ∴∠=∠(2)证明:CG AD ⊥ ,90AGC BCA ∴∠=∠=°FAC ADC ∠=∠ AGC BCA ∴∽△△GC AGAC BC∴= (3)解:3CF FG = 设FG a =,3FA FC a ==在AFG Rt △中,AG ==ABC ACG ∽△△,AC =BC ACAG CG ∴==∴90AGC ACD ∠°∠== ,CAG DAC ∠=∠ ACG ADC ∴∽△△,CG CD AG AC ∴==CD ∴BD BC CD ∴=−=.(利用重心的性质得出D 为中点相应得分) 22.(本题12分)解:(1)由中心对称性得:824÷=米,由轴对称性得:422÷=米. (2)以2M 点为原点,按如图形式建立直角坐标系,由条件得,1C 过()0,0、()1,0.3,对称轴为2x =,设顶点式为()22y a x h =−+,将()0,0、()1,0.3代入得()()220020.312a ha h=−+ =−+ ,解得:0.4h =,0.1a =−.()210.120.4C y x =−−+(3)27833m −×=,332m 2÷=(图3) 情况①:当37222x =+=时,()120.120.40.175m C y x =−−+=, 2.5 2.675m h y =+=情况②:将31222x =−=−时,()220.120.40.175m C y x =+−=−, 2.5 2.325m h y =+=法二:由图形为轴对称图形可知,图形必由若干个图2结构和一个1C 或者2C 构成;48328+×=,28271−=,120.5÷=米,只需将0.5x =;0.5x =−相应代入1C ,2C 即可()120.10.520.40.175C y =−−+=米, 2.5 2.675m h y =+= 或()220.10.520.40.175m C y =−+−=−, 2.5 2.325m h y =+=. 建系二:按如图形式建立直角坐标系,(2)由条件得,1C 过()0,0.3、()1,0−,210.10.20.3C y x x =−++(3)27833m −×=,332m 2÷=. 情况①:当352122x =+−=时,120.10.20.30.175m c y x x =−++=, 2.5 2.675m h y =+=.情况②:将332122x=−+−=− 时,220.10.60.50.175m C y x x =++=−, 2.5 2.325m h y =+=.建系三:以A 为原点,按如图形式建立直角坐标系,(2) 由条件得,1C 过()0,0、()1,0.3−−,120.10.2C y x x =−+(3)27833m −×=,332m 2÷= 情况①:当352122x =+−=时,120.10.20.125m C y x x =−+=−, 2.8 2.675m h y =+=.情况②:将332122x=−+−=−时,220.10.60.20.475mCy x x=++=−, 2.8 2.325mh y=+=.。

2023—-2024学年上学期九年级期末考试数学试卷

2023—-2024学年上学期九年级期末考试数学试卷

准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。

九年级上学期期末考试数学试题附答案

九年级上学期期末考试数学试题附答案

1. 下列计算正确的是( )A .7)7(2-=- ; B .5)5(2= ;C .1266=+ ;D . 725=+ . 2. 方程240x -=的解是( )A .1222x x ==-, ;B .2x =- ;C .2,221-==x x ; D .2x =.3. 如图,在△ABC 中,∠C=90o,AC=3,BC=4, 则si nB 的值是( )A .43 ;B .34;C .53; D .54.4. 一个袋子中装有4只白球和3只红球,这些球除颜色外其余均相同,搅匀后, 从袋子中随机摸出一个球是红球的概率是 ( ) A .31; B .41; C .73; D .74 5.用配方法解方程0342=--x x ,下列配方结果正确的是( )A.19)4(2=-x ;B.19)4(2=+x ; C.7)2(2=+x ; D.7)2(2=-x .6. 若两个相似三角形的面积之比为1:4,则它们的相似比为 ( ) A. 1:16 ; B. 1:4 ; C. 1:5 ; D. 1:2.7. 二次函数223y x x =--的图象如图所示. 当y <0时,自变量x 的取值范围是( ). A .-1<x <3 ; B .x <-1 ; C .x >3 ; D .x <-1或x >3. 二、填空题(每小题4分,共40分) 8. 当x 时,二次根式1-x 有意义. 9. 计算:=⨯28 . 10. 如果23=b a ,那么=+bba .第3题CEABCD αA (第17题)1l 3l2l 4l11. 已知2=x 是方程02=-+n x x 的根,则=n ___________.12. 已知梯形上底长为 4,下底长为8,则该梯形的中位线长为 . 13. 某种商品原价是200元,经两次降价后的价格是121元,设平均每次降价的百分率 为x ,可列方程为 .14. 有4条线段,长度分别为2cm ,3cm ,4cm ,6cm ,从中任取3条,能构成三角形的概率是 . 15. 如图,D 、E 分别在△ABC 的边AB 、AC 上,要使△AED ∽△ABC ,应添加条件是 ;(只写出一种即可).16. 如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠FCD 的度数为 。

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。

沪科版九年级上册数学期末考试试卷及答案详解

沪科版九年级上册数学期末考试试卷及答案详解

沪科版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.对于抛物线2-1y x =+,下列判断正确的是()A .顶点坐标为(-1,1)B .开口向下C .与x 轴无交点D .有最小值12.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是()A .2cos55o 海里B .2sin 55︒海里C .2sin55∘海里D .2cos55︒海里3.如图,二次函数2-3y ax bx =+图象的对称轴为直线x=1,与x 轴交于A 、B 两点,且点B 坐标为(3,0),则方程2-3ax bx =的根是()A .123x x ==B .1213x x ==,C .121-3x x ==,D .12-13x x ==,4.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水面AB 的宽度是()cm.A .6B .C .D .5.如图,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 与CE 相交于O ,则图中线段的比不能表示sinA 的式子为()A .BD ABB .CD OCC .AE ADD .BE OB6.如图,在 ABCD 中,AB=3,AD=5,AE 平分∠BAD ,交BC 于F ,交DC 延长线于E ,则AEEF的值为()A .53B .52C .32D .27.已知二次函数y =ax 2+bx+c 中,自变量x 与函数y 之间的部分对应值如表:x …0123…y…﹣1232…在该函数的图象上有A (x 1,y 1)和B (x 2,y 2)两点,且﹣1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是()A .y 1≥y 2B .y 1>y 2C .y 1≤y 2D .y 1<y 28.在平面直角坐标系中,A (-30),,B (30),,C (34),,点P 为任意一点,已知PA ⊥PB ,则线段PC 的最大值为()A .3B .5C .8D .109.在△ABC 中,∠C=90°,若∠A=30°,则sinA+cosB 的值等于()A .1B .132C .132D .1410.如图,在Rt ACB 中,900.5C sinB ∠=︒=,,若6AC =,则BC 的长为()A .8B .12C .D .二、填空题11.锐角α满足cosα=0.5,则α=__________;12.双曲线(0)k y k x=≠经过点(m ,2)、(5,n ),则m n =__________;13.在Rt ABC ∆中,∠C=90°,tan A =3,tanB=________14.已知:在Rt △ABC 中,∠C=90°,∠A=30°,则tanA=__.15.如图,在△ABC 中,AB=AC ,AH ⊥BC ,垂足为点H ,如果AH=BC ,那么tan ∠BAH 的值是_____.三、解答题16.已知抛物线2-2y ax x c =+与x 轴的一个交点为30A (,),与y 轴的交点为0-3B(,).(1)求抛物线的解析式;(2)求顶点C 的坐标.17.如图,在方格网中已知格点△ABC 和点O .(1)以点O 为位似中心,在△ABC 同侧画出放大的位似△A 1B 1C 1,△ABC 与△A 1B 1C 1的相似比为1∶2;(2)以O 为旋转中心,将△ABC 逆时针旋转90°得到△A 2B 2C 2.18.已知关于x 的二次函数2-(-2)y x k x k =++.(1)试判断该函数的图象与x 轴的交点的个数;(2)当3k =时,求该函数图象与x 轴的两个交点之间的距离.19.从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)20.如图,在△ABC 中,D 为BC 上一点,已知AD 平分∠BAC ,AD=DC .(1)求证:△ABC ∽△DBA ;(2)S △ABD =6,S △ADC =10,求CDAC.21.如图,在平面直角坐标系xOy 中,函数-5y x =+的图象与函数(0)ky k x=<的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC=2:3.(1)求k 的值;(2)求点D 的坐标;(3)根据图象,直接写出当0x <时不等式5kx x+>的x 的解集.22.如图,已知AB 为⊙O 的直径,CD 切⊙O 于C 点,弦CF ⊥AB 于E 点,连结AC.(1)求证:∠ACD=∠ACF ;(2)当AD ⊥CD ,BE=2cm ,CF=8cm ,求AD 的长.23.小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10元/千克,在第x 天的销售量与销售单价如下(每天内单价和销售量保持一致):销售量m (千克)40-m x=销售单价n (元/千克)当115x ≤≤时,1202n x =+当1630x ≤≤时,30010n x=+设第x 天的利润w 元.(1)请计算第几天该品种草莓的销售单价为25元/千克?(2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价-成本)×销售量24.如图,设D 为锐角△ABC 内一点,∠ADB=∠ACB+90°,过点B 作BE ⊥BD ,BE=BD ,连接EC .(1)求∠CAD+∠CBD 的度数;(2)若••AC BD AD BC ,①求证:△ACD ∽△BCE ;②求••AB CDAC BD的值.参考答案1.B 【详解】根据二次函数图像的特点进行解答即可.解:A.顶点坐标为(0,1),故不正确;B.∵-1<0,∴开口向下,故正确;C.∵∆=4>0,∴与x 轴有两个交点,故不正确;D.有最大值1,故不正确;故答案为B.【点睛】本题考查了二次函数图像的特点,即对于二次函数y=ax 2+bx+c (a≠0),a 的正负决定了开口方向;b 2-4ac 决定了是否与x 轴有交点;函数的顶点决定了函数的最值.2.A 【分析】由题意得∠NPA=55°,AP=2海里,∠ABP=90°,再由AB//NP ,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt △ABP ,得出AB=APcos ∠A=2cos55°海里.【详解】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB ∥NP ,∴∠A=∠NPA=55°.在Rt △ABP 中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=APcos ∠A=2cos55°海里.故选A .【点睛】本题考查了解直角三角形的应用一方向角问题,掌握平行线的性质、三角函数的定义、方向角的定义是解答本题的关键.3.D 【分析】由二次函数2-3y ax bx =+图像的对称轴为直线x=1且函数图像与x 轴的一个交点为B(3,0),可求另一交点坐标为(-1,0),则可求方程23ax bx =-的解.【详解】解:二次函数2-3y ax bx =+图象的对称轴为直线x=1,与轴交于A 、B 两点,且点B 坐标为(3,0),则点A 的坐标为(-1,0),∴方程23ax bx =-的根是x 1=-1,x 2=3.故答案为D.【点睛】本题考查了二次函数图像与一元二次方程的联系,即理解二次函数图像与x 轴的交点的横坐标为对应一元二次方程的解.4.C 【分析】作OD ⊥AB 于C ,交小圆于D ,可得CD=2,AC=BC ,由AO 、BO 为半径,则OA=OD=4;然后运用勾股定理即可求得AC 的长,即可求得AB 的长.【详解】解:作OD ⊥AB 于C ,交小圆于D ,则CD=2,AC=BC ,∵OA=OD=4,CD=2,∴OC=2,∴=∴AB=2AC=故答案为C.【点睛】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是解答本题的关键.5.C 【分析】先根据正弦的概念进行判断,然后根据余角的定义找与∠A 相等的角再结合正弦定义解答即可.【详解】解:∵BD ⊥AC 于D ,CE ⊥AB 于E ,∴sinA=BD ECAB AC=,故A正确;∵∠A+∠ACE=90°,∠ACE+∠COD=90°,∴∠A=∠COD,∴sinA=sin∠COD=CDOC,故B正确;∵∠BOE=∠COD,∴∠A=∠BOE,∴sinA=sin∠BOE=BEBO.故D正确故答案为C.【点睛】本题考查了正弦的定义以及根据直角三角形的性质寻找相等的角,其中根据直角三角形的性质寻找与∠A相等的角是解答本题的关键.6.B【分析】由平行四边形的性质可得AB//DE,AD//BC,进而得到∠BAE=∠E,再结合∠EAD=∠BAE 得到∠E=∠EAD,即AD=DE=5;再由线段的和差可得CE=2;然后根据BC//AD得到△AED∽△FEC,最后运用相似三角形的性质解答即可.【详解】解:∵四边形ABCD是平行四边形,∴AB//DE,AD//BC,∴∠BAE=∠E,∵AE平分∠BAD,∴∠EAD=∠BAE,∴∠E=∠EAD,∴AD=DE=5,∴CE=DE-CD=5-3=2,∵BC//AD,∴△AED∽△FEC∴25 EF EC AE DE==∴52AEEF .故答案为B.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及相似三角形的判定和性质,其中掌握相似三角形的判定和性质是解答本题的关键.7.D【解析】试题分析:抛物线的对称轴为直线x=2,∵﹣1<x1<0,3<x2<4,∴点A(x1,y1)到直线x=2的距离比点B(x2,y2)到直线x=2的距离要大,而抛物线的开口向下,∴y1<y2.故选D.考点:二次函数图象上点的坐标特征.8.C【分析】连接OC、OP、PC由PA⊥PB可得点P在以O为圆心,AB长为直径的圆上;再根据三角形的三边关系可得CP≤OP+OC,则当当点P,O,C在同一直线上,CP的最大值为OP+OC 的长,然后进行计算即可.【详解】解:如图所示,连接OC、OP、PC∵PA⊥PB,∴点P在以O为圆心,AB长为直径的圆上,∵△COP∴CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,又∵A(-3,0),B(3,0),C(3,4),∴AB=6,OC=5,OP=12AB=3,∴线段PC的最大值为OP+OC=3+5=8,故答案为C.【点睛】本题考查了90°所对的弦为圆的直径、三角形的三边关系以及最短路径问题,其中确定最短路径是解答本题的关键.9.A【分析】根据特殊角三角函数值,可得答案.【详解】在△ABC中,∠C=90°,若∠A=30°,得∠B=90°﹣30°=60°.sinA+cosB=sin30°+cos60°=12+12=1,故选:A.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.10.C【分析】利用正弦的定义得出AB的长,再用勾股定理求出BC.【详解】解:∵sinB=ACAB=0.5,∴AB=2AC,∵AC=6,∴AB=12,∴=故选C.本题考查了正弦的定义,以及勾股定理,解题的关键是先求出AB 的长.11.60【分析】根据特殊角的三角函数值即可完成解答.【详解】解:∵cosA=0.5=12,∠A 为锐角,∴∠A=60°,故答案为60;【点睛】本题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解答本题的关键.12.52【分析】将(m ,2)、(5,n )代入k y x =得到一个方程组,然后解方程组即可.【详解】解:∵曲线(0)k y k x=≠经过点(m,2)、(5,n),∴25k m n m ⎧=⎪⎪⎨⎪=⎪⎩解得m=2k ,n=5k ,∴5225k m k n ==;故答案为52;【点睛】本题考查了反比例函数图像上的点的性质,即理解函数图像上的点满足函数解析式是解答本题的关键.13.13根据解直角三角形,由tan 3a A b==,即可得到tanB.【详解】解:在Rt ABC ∆中,∠C=90°,∴tan 3a A b ==,∴1tan 3b B a ==.故答案为13.【点睛】本题考查了解直角三角形,解题的关键是掌握正切值等于对边比邻边.14【分析】直接利用特殊角的三角函数值计算得出答案.【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,∴.【点评】此题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.15.12【分析】设AH=BC=2x ,根据等腰三角形三线合一的性质可得BH=CH=12BC=x ,然后得出tan ∠BAH 的值.【详解】解:设AH=BC=2x ,∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=x ,∴tan ∠BAH=BH x 1AH 2x 2==,故答案为:12【点睛】本题考查了解直角三角形、等腰三角形的性质、锐角三角函数,根据等腰三角形三线合一的性质可得BH=CH=12BC=x 是解题的关键.16.(1)223y x x =--;(2)(1,-4)【分析】(1)根据与坐标轴的两个交点,使用待定系数法进行解答即可;(2)将(1)求得的解析式,化成顶点式即可完成解答。

人教版九年级数学上学期期末考试数学试卷 附答案

人教版九年级数学上学期期末考试数学试卷 附答案

人教版九年级数学上学期期末考试数学试卷附答案九年级上学期期末考试数学试卷一、选择题(每小题3分,共30分)1.已知反比例函数 $y=\frac{1}{kx}$ 的图象经过点$A(2,3)$,则当 $x=\frac{1}{2}$ 时,$y=$。

A。

6 B。

3 C。

2 D。

1.52.已知 $x_1$、$x_2$ 是一元二次方程 $x^2-3x+2=0$ 的两个实根,则 $x_1+x_2$ 等于A。

$-3$ B。

3 C。

$-2$ D。

24.下列图形中,既是轴对称图形又是中心对称图形的有A。

4个 B。

3个 C。

2个 D。

1个6.如图,$BD$ 是 $\odot O$ 的直径,$\angleCBD=20^\circ$,则 $\angle A$ 的度数为A。

$30^\circ$ B。

$45^\circ$ C。

$60^\circ$ D。

$70^\circ$7.在圆心角为 $120^\circ$ 的扇形 $AOB$ 中,半径$OA=6\text{cm}$,则扇形 $AOB$ 的面积是A。

$6\pi\text{cm}^2$ B。

$8\pi\text{cm}^2$ C。

$12\pi\text{cm}^2$ D。

$24\pi\text{cm}^2$8.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为A。

24个 B。

32个 C。

48个 D。

72个10.如图,将 $\triangle ABC$ 绕点 $C(0,1)$ 旋转180°得到$\triangle A'B'C'$,设点 $A$ 的坐标为 $(a,b)$,则点 $A'$ 的坐标为A。

$(-a,-b)$ B。

$(-a,-b-1)$ C。

$(-a,-b+1)$ D。

$(-a,-b+2)$二、填空题(每小题3分,共24分)1.如果关于 $x$ 的方程 $x^2-2x+k=0$ 有两个不相等的实数根,则 $k$ 的取值范围是 $(-\infty,1)$。

黑龙江哈尔滨市香坊区2023-2024学年九年级上学期期末数学试题(含答案)

黑龙江哈尔滨市香坊区2023-2024学年九年级上学期期末数学试题(含答案)

香坊区2023—2024学年度上学期教育质量综合评价学业发展水平监测九年级数学学科试卷考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的“姓名”、“考场”、“座位号”在答题卡上填写清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸上、试题纸上答题无效。

4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工吴波、字迹清楚。

5.保证卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。

第Ⅰ卷选择题(共30分)(涂卡)一、选择题(每题3分,共计30分)1.若点是反比例函数图象上一点,则常数的值为()A.3B.C. D.2.下列图形中,只是中心对称图形的是()A.B. C. D.3.将抛物线向右平移3个单位,再向上平移4个单位,得到的抛物线是()A. B.C. D.4.如图是用5个相同的立方体搭成的几何体,其俯视图是()A. B. C. D.5.在中,,,,则的值是()A.5C.46.在一个不透明的袋子中有2个红球,3个绿球和4个蓝球,它们只有颜色上的区别,若从袋子里随机取出一()1,3A ()0ky k x=≠k 3-3232-2y x =()234y x =-+()234y x =++()234y x =+-()234y x =--Rt ABC △90C ∠=︒2BC =3sin 4A =AC球,则取出这个球是绿球的概率为()A.B.C.D.7.如图,为钝角三角形,将绕点按逆时针方向旋转得到,连接,若,则的度数为()A. B. C. D.8.如图,四边形内接于,、为对角线,经过圆心,若,则的度数为()A. B. C. D.9.如图,已知,,则下列比例中错误的是()A.B.C.D.10.如图,抛物线与轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③;④其中正确的结论有()25151349ABC △ABC △A 120︒AB C ''△BB 'AC BB ''P CAB '∠45︒60︒70︒90︒ABCD O e AC BD BD O 40BAC ∠=︒DBC ∠40︒50︒60︒70︒DEBC P EF AB P EF CEAB CA=CE CFCA CB=DE AEBC EC=AD BFAB BC=()20y ax bx c a =++≠x ()4,01x =0abc <240b ac ->20a b +=420a b c -+=A.1个B.2个C.3个D.4个第Ⅱ卷非选择题(共90分)二、填空题(每题3分,共计30分)11.在平面直角坐标系中,点关于原点对称的点的坐标为________.12.已知二次函数的顶点坐标为________.13.若点,在反比例函数的图象上,则,的大小关系用“<”连接的结果为________.14.如图,设在小孔口前处有一支长的蜡烛,经小孔形成的像,恰好照在距小孔后面处的屏幕上,则像的长________.15.如图,是的切线,切点为,的延长线交于点,若,则的度数为________.16.如图,是操场上直立的一个旗杆,旗杆上有一点,用测角仪(测角仪的高度忽略不计)测得地面上的点到点的仰角,到点的仰角,若米,则旗杆的高度________米.17.某学习小组由1名男生和3名女生组成,在一次合作学习中,若随机抽取2保同学汇报展示,则抽到1名()2,3A -B ()224y x =-+()1,A a -()2,B b ()0ky k x=<a b O 24cm 21cm AB AB O A B ''O 16cm A B ''cm PA O e A PO O e B 40P ∠=︒B ∠AC AC B D B 45BDC ∠=︒A 60ADC ∠=︒3BC =AC =男生和1名女生的概率为________.18.一个扇形的圆心角为,弧长为,则此扇形的面积是________.19.在矩形中,点在直线上,,若,,则的正切值为________.20.如图1,在中,,是上一点,过点作交于,将绕点顺时针旋转到图2的位置,若,,则线段的长为________.图1图2三、解答题(共计60分)21.(本题7分)先化简,再求代数式的值,其中.22.(本题7分)如图所示,在平面直角坐标系中,为坐标原点,的各顶点坐标分别为,,.(1)画出关于原点中心对称的图形;(2)将绕点顺时针旋转得到,请画出;120︒4cm πABCD E BC 2BE CE =2AB =3AD =DAE ∠Rt ABC △90ABC ∠=︒D AB D DEBC P AC E ADE△A 54BD CE =8AB =BC 2242x x x x x ⎛⎫++÷- ⎪⎝⎭tan 602tan 45x =︒+︒O ABC △()1,1A -()2,3B -()3,2C -ABC △111A B C △ABC △C 90︒22A B C △22A B C △(3)连接并直接写出线段的长.23.(本题8分)如图,某座山的主峰观景平台高450米,登山者需由山底处先步行300米到达处,再由处乘坐登山缆车到达观景平台处.已知点,,,,,在同一平面内,,于,山坡的坡角为,缆车行驶路线与水平面的夹角为(换乘登山缆车的时间忽略不计).(1)求登山缆车上升的高度;(2)若小明步行速度为,登山缆车的速度为,求小明从山底处到达山顶处大约需要多少分钟(结果精确到).(参考数据:,,)24.(本题8分)如图,、、都是的半径,.(1)求证:;(2)若,,求的半径.25.(本题10分)把边长为的正方形硬纸板(如图1),在四个顶点处分别剪掉一个小正方形,折成一个长方体形的无盖盒子(如图2),折纸厚度忽略不计.21B A 21B A A B B D A B C D E F 90DFA ∠=︒BE DF ⊥E AB 30︒BD 53︒DE 30m /min 60m /min A D 0.1min sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈OA OB OC O e 2ACB BAC ∠=∠2AOB BOC ∠=∠8AB=BC =O e 44cm图1图2(1)要使折成的盒子的底面积为,剪掉的正方形边长应是多少厘米?(2)折成的长方体盒子侧面积(四个侧面的面积之和)有没有最大值?如果没有,说明理由:如果有,求出这个最大值,并求出此时剪掉的正方形边长.26.(本题10分)菱形中,对角线、相交于点,,点为上一点,点为上一点,连接,将线段绕点顺时针旋转得到对应线段,连接.图1图2图3图4(1)当点与点重合时:①如图1,点落在对角线上,则线段、之间的数量关系为________;②如图2,点不落在对角线上,则①问中结论是否成立,为什么?(2)当点与点不重合时:①如图3,点不落在对角线上,则(1)问中结论,________;(填“成立”或“不成立”)②如图4,在①的条件下,延长交于点,交于点,若,,,求线段的长.27.(本题10分)如图,在平面直角坐标系中,点为坐标原点,抛物线交轴负半轴于点,交轴正半轴于点,交轴于点,直线经过点,并抛物线于点.2576cm ABCD AC BD O 60ABC ∠=︒F BO E AD EF FE F 60︒FG DG A E G BD GF GD G BD A E G BD FG CD M OC N 2DF BF =1ON =:5:8CM DE =MN O 23y ax bx =+-x A x ()3,0B y C 112y x =+A D图1图2图3(1)如图1,求抛物线解析式;(2)如图2,为抛物线第四象限上一点,连接、,设点的横坐标为,的面积为,求与之间的函数关系式,并直接写出自变量的取值范围;(3)如图3,在(2)的条件下,过点作交轴于点,垂足为点,为抛物线第二象限上一点,连接,,过点作轴交于点,若,求的值及点坐标.P PA PB P PAB △S S P PH AD ⊥y F H G FG 135PAB GFO ∠+∠=︒P PE x ⊥AD E :4:5HE DE =S G香坊区2023-2024学年度九年级数学参考答案一、选择题:序号12345678910答案ADABDCDBCC二、填空题:三、解答题:21.解:原式………………………………………………1分…………………………………………1分……………………………………………………………………1分∵……………………2分∴原式………………………………2分22.(1)画图3分(2)画图3分(3)分2222422x x x x x x ⎛⎫++=÷- ⎪⎝⎭2242x x x x +-=÷22(2)(2)x x x x x +=⋅+-22x =-tan 602tan 45212x =+=+⨯=︒︒22x ====-21B A =23.(1)解:如图,过点作于,∴∵,∴,∵,∴四边形是矩形,…………………………1分在中,,,,∴,……………………………………1分∵∴………………………………1分答:登山缆车上升的高度;………………………………1分(2)解:在中,,,,………………………………1分∴从山底处到达山顶处大约需要:………………………………2分答:从山底处到达山顶处大约需要.…………………………1分24.(1)证明:∵,B BC AF ⊥C 90BCF ∠=︒BE DF ⊥90BEF ∠=︒90DFA ∠=︒BEFC Rt ABC △90ACB ∠=︒30A ∠=︒300m AB =1150m 2EF BC AB ===450mDF =450150300m DE DF EF =-=-=300m DE =Rt BDE △90DEB ∠=︒53DBE ∠=︒300DE =300375m sin 530.8DE BD ===︒A D 30037516.2516.3min 3060+=≈A D 16.3min »»AB AB =∴……………………1分∵,∴,………………………………1分∵∴……………………………………1分∴………………………………1分(2)解:∵,作半径于,交圆于点,连接,∴弧弧,,∴,∴,∵,∴,∵,………………………………1分∴中,……………………1分设圆的半径,∴,∴中,,∴,…………………………1分解得,∴的半径为5………………………………………………1分2AOB ACB ∠=∠»»BCBC =2BOC BAC ∠=∠2ACB BAC∠=∠BOC ACB ∠=∠AOB BOC ∠=∠8AB =OM AB ⊥D O M BM AM =BM 4AD BD ==AOM BOM ∠=∠2AOB BOM ∠=∠2AOB BOC ∠=∠BOM BOC ∠=∠BC =BM BC ==Rt BDM △2DM ===O OM OB r ==2OD OM DM r =-=-Rt BOD △222OB OD BD =+()22224r r =-+5r =O e25.解:(1)设剪掉的正方形的边长为.则,……………………………………2分即,解得(不合题意,舍去),…………………………1分.…………………………………………1分∴剪掉的正方形的边长为;………………………………1分(2)侧面积有最大值.设剪掉的小正方形的边长为,盒子的侧面积为,则与的函数关系为:,即,……………………1分即,………………………………1分∵二次项系数为,自变量的取值范围为:…………………………1分∴当时,有最大值,.………………………………1分即当剪掉的正方形的边长为时,长方形盒子的侧面积最大为.……………………1分26.答案:(1)①………………………………2分②仍成立,理由如下:如图连接、,∵为菱形,∴,,∴为等边三角形,∴,∴,,∵,,∴为等边三角形,…………………………1分∴,,∴,∴,…………1分∴,∵为菱形,∴,平分,∴,∴,∴,又∵,,∴,∴,又∵,∴……1分(2)①成立………………1分②连接,,过点作于点,过做于点,∴,,∵,,∴为等边三角形,∵菱形,∴,,,,,∴,设,,,,,在中,,∴,在中,,∴,∴,∴,,cm x ()2442576x -=2212x -=±134x =210x =10cm cmt 2cm y y ()4442y t t =-28176y t t =-+()2811968y t =--+80-<022t <<11t =y 968y =最大11cm 2968cm GF GD =GF GD =CG AG ABCD AB BC AD CD ===60ABC ∠=︒ABC △AB AC =AC CD =60BAC ∠=︒AF FG =60AFG ∠=︒AFG △60FAG ∠=︒AF AG FG ==BAF CAG ∠=∠ABF ACG ≅△△30ABO ACG ∠=∠=︒ABCD AB CD P AC BCD ∠60ACD BAC ∠=∠=︒603030GCD ACD ACG ∠=∠-∠=︒-︒=︒ACG DCG ∠=∠AC CD =CG CG =ACG DCG ≅△△GD GA =AG GF =GF GD =AF EG G GT OD ⊥T M MH OC ⊥H 90FTG ∠=︒90MHC OHM ∠=∠=︒AF FG =60AFG ∠=︒AFG △ABCD OB OD =OA OC =30ABO CBO ∠=∠=︒30ADO CDO ∠=∠=︒AC BD ⊥90BOC BOA ∠=∠=︒2BF a =24DF BF a ==6BD a =3OB OD a ==OF a =ABO △tan 30AO OB︒=tan 30AO OB =⨯︒=AOF △tan AO AFO OF ∠===60AFO ∠=︒EFG AFO ∠=∠AFE DFG ∠=∠18090FAD AFD ADF ∠=︒-∠-∠=︒∴,,∴,……………………1分∴,,,∴,∴,∴,,∴,∴,∴,∴,∴,………………………………1分设,则,,,∴,,,,,在中,,,在中,.…………1分在中,,∴分27.(1)∵直线经过点,当时,,∴∵抛物线经过点、两点∴……………………1分解得:∴抛物线解析式为………………………………1分(2)过点作轴,垂足为点90FAD FTG ∠=∠=︒FE FG =FAE FTG ≅△△FA FT =AE TG =9030FAO AFO ∠=︒-∠=︒22AF FO a ==2FT a =OF OT a ==90BOC BTG ∠=∠=︒OC GT P FON FTG :△△12FO ON FT TG ==2TG =2AE TG ==5CM k =8DE k =82AD k =+41AO k CO =+=4CN k =)41FO k =+1522CH CM k ==32HN k =MH =NMH △tan 32HNM ∠==HNM FNO ∠=∠FNO △tan OF FNO ON∠==1k =NMH △MN ==MN =112y x =+A 0y =2x =-()2,0A -23y ax bx =+-()2,0A -()3,0B 04230933a b a b =--⎧⎨=+-⎩1212a b ⎧=⎪⎪⎨⎪=-⎪⎩211322y x x =--P PK x ⊥K∵,∴∵,∴,∴…………………………1分∵点在为抛物线第四象限上,∴设,∴∴即:………………………………1分………………………………1分(3)∵在抛物线上,设∵在直线上,∴解得:,(舍),∴…………………………1分()2,0A -2AO =()3,0B 3BO =235AB =+=P P 211,322P t t t ⎛⎫-- ⎪⎝⎭211322PK t t =-++21111532222S AB PK t t ⎛⎫=⋅=⨯⨯-++ ⎪⎝⎭25515442S t t =-++()03t <<D 211322y x x =--211,322D m m m ⎛⎫-- ⎪⎝⎭D 112y x =+211131222m m m --=+14m =22m =-()4,3D∵直线交轴于点,当时,,∴,∴过点作,过点作,垂足分别为、∴∵,∴设,∴,∴∴设,∴,,∴,∵轴,在直线上,∴∴∴∵,,∴∴,∴解得:,(舍)………………………………1分∴……………………………………1分112y x =+y L 0x =1y =1LO =1tan 2LAO ∠=H HM PE ⊥D DN PE ⊥M N 90HME N ∠=∠=︒PH AD ⊥90PHE ∠=︒EHM α∠=90MHP α∠=︒-HPM LAO α∠=∠=1tan tan tan 2LAO EHM HPM ∠=∠=∠=EM k =2HM k =4PM k =25HM PE =PE y P E AD 1,12E t t ⎛⎫+ ⎪⎝⎭2211111342222PE t t t t t ⎛⎫=+---=-++ ⎪⎝⎭221285555HM PE t t ==-++4DN t=-HEM NED ∠=∠HME N ∠=∠HEM DEN:△△HE HM DE DN=2128455554t t t -++=-12t =24t =255155442S t t =-++=∴∴,,∴∴,∵,∴∵∴,∴延长交轴于点,过点作∴∵∴∴,∴过点作轴,∴,,∴在中,在中,设,∴,∴,∴∴,∴,∴…………………………1分∵,∴解析式为:∵在抛物线上,设∵在上,∴解得:,(舍)∴…………………………………………1分(不同解法请按相应标准给分)()2,2P -2PK =()224AK =--=1tan tan 2PK PAB LAO AK ∠===∠PAB LAO ∠=∠LAO LFH ∠=∠PAB LFH ∠=∠135PAB GFO ∠+∠=︒135LFH GFO ∠+∠=︒135GFP ∠=︒GF x T T TQ FP⊥45TFQ ∠=︒90LOA FHL ∠=∠=︒LAO LFH∠=∠1tan tan 2LAO LFH ∠=∠=tan 2tan FRO TRQ ∠==∠P PJ y ⊥2PJ =2OJ =4JF =422FO =-=Rt FOR △FR =Rt RQT △RQ a =2TQ FQ a ==RT =2RF a a a =-=a =5RT ==156OT =+=()6,0T ()0,2F FT 123y x =-+G 211,322G n n n ⎛⎫-- ⎪⎝⎭G FT 211132223n n n --=-+13n =-2103n =()3,3G -。

人教版九年级上册数学期末考试试卷带答案

人教版九年级上册数学期末考试试卷带答案

人教版九年级上册数学期末考试试题一、单选题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.在下列二次函数中,图象的开口向下,顶点坐标为(-2,-1)的是( ) A .22()1y x =-+ B .2(2)1=---y x C .2(2)1y x =++D .2(2)1y x =-+-3.下列事件中,是必然事件的是( )A .篮球队员在罚球线上投篮一次,未投中B .13个人中至少有两个人生肖相同C .车辆经过有交通信号灯的路口,遇到红灯D .明天一定会下雨 4.反比例函数1y x=-的图象不经过( )A .第一、二象限B .第二、四象限C .第一、四象限D .第一、三象限 5.如图,AB 是⊙O 的直径,点C 在⊙O 上,36ACO ∠=︒,则B 的度数等于( )A .36°B .44°C .54°D .60°6.一元二次方程22560x x p -+-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定 7.把函数()212y x =-+的图象先向右平移2个单位长度,再向下平移1个单位长度,平移后图象的函数解析式为( )A .()211y x =++B .()231y x =-+C .()213y x =++ D .()233y x =-+8.如图,四边形ABCD 内接于⊙O ,115BCD ∠=︒,则BOD ∠的度数是( )A .130°B .120°C .1l5°D .105°9.如图,P 是等边ABC 外一点,把BP 绕点B 顺时针旋转60°到1BP ,已知1150APB ∠=︒,11:1:2P A PC =,则1:PB P A =( )A B .2:1 C .3:1 D10.如图,抛物线2y ax bx c =++的顶点坐标是()1,n ,以下结论:⊙0abc >;⊙30a c +<;⊙520a b c -+>;⊙()24b a c n =-.正确的有( )A .1个B .2个C .3个D .4个二、填空题11.已知二次函数21y x =+,当0x <时,y 随x 的增大而________.(填“增大”或“减小”) 12.为了估计鱼塘中鱼数,养鱼者首先从鱼塘中打捞200条鱼,在每条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,发现其中50条鱼有标记,则鱼塘中鱼的条数大约有________条.13.如图,以点O 为圆心的两个同心圆的半径分别等于3和6,大圆的弦AB 是小圆的切线,则AB =________.14.如果m 是方程210x x -+=的一个根,那么代数式()1m m -的值等于________. 15.点()1,2A a +和点()3,1B a -均在反比例函数ky x=(k 为常数,0k ≠)的图象上,则=a ________.16.已知一个圆锥的母线长为3cm ,它的侧面展开图是一个圆心角为120°的扇形,则这个圆锥的底面圆的半径等于________cm .17.如图,ABC 的内切圆⊙O 分别与AB ,AC ,BC 相切于点D ,E ,F .若90C ∠=︒,6AC =,8BC =,则⊙O 的半径等于________.三、解答题18.解方程:(25)410x x x -=-19.一个不透明的口袋中有4个完全相同的小球,把它们分别标号为A ,B ,C ,D .随机抽出一个小球然后放回,再随机抽出一个小球.(1)请用列表法或画树状图法列举出两次抽出的球的所有可能结果; (2)求两次抽出的小球的标号不相同的概率.20.如图,在ABC 中,90BAC ∠=︒,通过尺规作图(作图痕迹如图所示)得到的射线与AC 相交于点P .以点P 为圆心,AP 为半径的圆与尺规作图得到的射线的一个交点为F ,连接AF .(1)求证:BC 是⊙P 的切线;(2)若56ABC ∠=︒,求AFP ∠的大小. 21.已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点()2,6A . (1)求这个函数的解析式;(2)判断点()3,4B -,142,425C ⎛⎫-- ⎪⎝⎭是否在这个函数的图象上,并说明理由;(3)当42x -<<-时,求y 的取值范围. 22.已知抛物线22y x x c =++.(1)若抛物线与x 轴有两个公共点,求c 的取值范围;(2)当3c =-时,在平面直角坐标系中画出这条抛物线,并根据图象,直接写出函数值y 为正数时,自变量x 的取值范围.23.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,通过调查发现,这种水产品的销售单价每涨价1元,月销售量就减少10千克.现商店把这种水产品的售价定为x (单位:元/千克).(1)填空:每月的销售量是 千克(用含x 的代数式表示);(2)求月销售利润y (单位:元)与售价x (单位:元/千克)之间的函数解析式; (3)商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?24.如图,AB 是O 的直径,点C ,D ,E 分别是⊙O 上异于A ,B 的三点,弦CD 与直径AB 相交于点H ,E ADC ∠=∠,过点D 作⊙O 的切线交AB 的延长线于点F .(1)求证:AB CD ⊥;(2)若点B 是OF 的中点,求证:DAF △是等腰三角形.25.如图,一次函数y =k 1x+b 的图象与反比例函数y =2k x的图象相交于A ,B 两点,点A 的坐标为(﹣1,3),点B 的坐标为(3,n ). (1)求这两个函数的表达式;(2)点P 在线段AB 上,且S⊙APO :S⊙BOP =1:3,求点P 的坐标.26.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1). (1)求反比例函数和一次函数的解析式; (2)求⊙AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.27.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当⊙PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使⊙MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案1.A2.D3.B4.D5.C 6.C 7.B 8.A 9.D 10.A 11.减小 12.80013.14.-1 15.5 16.1 17.2 18.152x =,22x =【详解】解:(25)2(25)0x x x ---=,(25)(2)0x x --=,250x -=或20x -=,152x =,22x =.19.(1)(A ,A),(B ,A),(C ,A),(D ,A),(A ,B),(B ,B),(C ,B),(D ,B),(A ,C),(B ,C),(C ,C),(D ,C),(A ,D),(B ,D),(C ,D),(D ,D),见解析;(2)34【分析】(1)根据题意利用列表法求出所有的结果即可得到答案;(2)根据(1)中的结果,求出标号不同的所有结果数,然后根据概率公式求解即可得到答案.【详解】解:(1)列表如下:(2)由(1)知,共有16种结果,每种结果出现的可能性相同,其中两次抽出的小球的标号不相同的结果有12种.⊙两次抽出的小球的标号不相同的概率为123164P ==. 20.(1)见解析;(2)31°【分析】(1)过点P 作PD⊙BC ,根据尺规作图可知,BP 是⊙ABC 的平分线,由⊙BAC=90°得,PA⊙AB ,再根据角平分线的性质和切线的判定可得;(2)由(1)可知,以及角平分线的性质得,⊙ ABP=12⊙ABC ,求出⊙APB 的度数,再根据等腰三角形以及三角形的外角的性质即可求出; 【详解】(1)证明:过点P 作PD BC ⊥,垂足为D 由尺规作图知,BP 是ABC ∠的平分线;由90BAC ∠=︒得,PA AB ⊥ ⊙PD PA = ⊙BC 是P 的切线(2)解:由(1)得,11562822ABP ABC ∠=∠==︒⨯︒⊙9062APB ABP ∠=-∠=︒︒ ⊙1312AFP APB ∠=∠=︒21.(1)12y x =;(2)点()3,4B -不在函数12y x =的图象上,点142,425C ⎛⎫-- ⎪⎝⎭在函数12y x =的图象上,见解析;(3)63y -<<-【分析】(1)把点A 的坐标代入已知函数解析式,通过方程即可求得k 的值.(2)只要把点B 、C 的坐标分别代入函数解析式,横纵坐标坐标之积等于12时,即该点在函数图象上;(3)根据反比例函数图象的增减性解答问题. 【详解】解:(1)⊙反比例函数ky x=的图象经过点()2,6A . ⊙62k=解得12k =⊙反比例函数的解析式为12y x=(2)⊙()3412⨯-≠,14241225⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭⊙点()3,4B -不在函数12y x =的图象上,点142,425C ⎛⎫-- ⎪⎝⎭在函数12y x =的图象上(3)当4x =-时,1234y ==--;当2x =-时,1262y ==-- ⊙函数12y x=的图象位于第一、第三象限,在每一个象限内,y 随x 的增大而减小 ⊙当42x -<<-时,求y 的取值范围为63y -<<-. 22.(1)1c <;(2)见解析,3x <-,或1x >【分析】(1)根据抛物线与x 轴有两个公共点,得出方程220x x c ++=有两个不相等的实数根,再根据0∆>列出关于c 的不等式求解即可;(2)将3c =-代入二次函数,再列表、描点、连线即可得出图象,再根据图象即可得出范围.【详解】解:(1)⊙抛物线与x 轴有两个公共点 ⊙方程220x x c ++=有两个不相等的实数根 ⊙224240b ac c ∆=-=-> 解得1c <⊙c 的取值范围1c <(2)当3c =-时,223y x x =+-列表:描点,连线,得图象当y 为正数时,自变量x 的取值范围是3x <-,或1x >.23.(1)100010x -;(2)210140040000y x x =-+-(50100x ≤≤);(3)在月销售成本不超过13000元的情况下,使月销售利润达到8000元,销售单价应定为80元/千克 【分析】(1)根据销售单价每涨价1元,月销售量就减少10千克劣势即可; (2)根据销售利润和售价的关系列式即可;(3)当月销售利润达到8000元,求出x 的值,判断即可; 【详解】解:(1)()5005010100010x x --⨯=-; 故答案是100010x -;(2)()()24010001010140040000y x x x x =--=-+-,其中50100x ≤≤;(3)当月销售利润达到8000元时,有2101400400008000x x -+-=, 化简,得214048000x x -+=, 解得60x =,或80x =,当60x =时,月销售成本为()40100010601600010000⨯-⨯=>, 当80x =时,月销售成本为40(10001080)800010000⨯-⨯=<, ⊙月销售成本不超过10000元, ⊙80x =;答:在月销售成本不超过13000元的情况下,使月销售利润达到8000元,销售单价应定为80元/千克.24.(1)见解析;(2)见解析【分析】(1)连接OC,OD,证明BOD BOC∠=∠,运用等腰三角形三线合一的性质即可证明出结论;(2)连接BD,由切线的性质可证明OB=BD=BF以及BOD是等边三角形,进一步可得出结论.【详解】解:(1)证明:连接OC,OD⊙E ADC∠=∠⊙AOD AOC∠=∠⊙AD AC=⊙AB是O的直径⊙ADB ACB=⊙ADB AD ACB AC-=-即DB CB=⊙BOD BOC∠=∠,⊙OC OD=⊙OH CD⊥即AB CD⊥(2)连接BD⊙DF是O的切线⊙OD DF⊥,即90ODF∠=︒⊙点B是OF的中点⊙12BD OF OB ==⊙OD OB =⊙OD OB BD ==⊙BOD 是等边三角形⊙60BOD ∠=︒⊙30BAD ∠=︒,30F ∠=︒⊙BAD F ∠=∠⊙DA DF =⊙DAF △是等腰三角形25.(1)反比例函数解析式为y =﹣3x;一次函数解析式为y =﹣x+2;(2)P 点坐标为(0,2).【分析】(1))先把点A 点坐标代入y=2k x中求出k 2得到反比例函数解析式为y=-3x ;再把B (3,n )代入y=-3x中求出n 得到得B (3,-1),然后利用待定系数法求一次函数解析式;(2)设P (x ,-x+2),利用三角形面积公式得到AP :PB=1:3,即PB=3PA ,根据两点间的距离公式得到(x -3)2+(-x+2+1)2=9[(x+1)2+(-x+2-3)2],然后解方程求出x 即可得到P 点坐标.【详解】(1)把点A (﹣1,3)代入y =2k x得k 2=﹣1×3=﹣3,则反比例函数解析式为y =﹣3x; 把B (3,n )代入y =﹣3x 得3n =﹣3,解得n =﹣1,则B (3,﹣1), 把A (﹣1,3),B (3,﹣1)代入y =k 1x+b 得11331k b k b -+=⎧⎨+=-⎩,解得1k 1b 2=-⎧⎨=⎩, ⊙一次函数解析式为y =﹣x+2;(2)设P (x ,﹣x+2),⊙S⊙APO :S⊙BOP =1:3,⊙AP :PB =1:3,即PB =3PA ,⊙(x ﹣3)2+(﹣x+2+1)2=9[(x+1)2+(﹣x+2﹣3)2],解得x 1=0,x 2=﹣3(舍去),⊙P 点坐标为(0,2).26.(1)反比例函数的解析式为:y=4x;一次函数的解析式为:y=x﹣3;(2)S⊙AOB=152;(3)一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.【分析】(1)把A的坐标代入y=kx,求出反比例函数的解析式,把A的坐标代入y=x+b求出一次函数的解析式;(2)求出D、B的坐标,利用S⊙AOB=S⊙AOD+S⊙BOD计算,即可求出答案;(3)根据函数的图象和A、B的坐标即可得出答案.【详解】(1)⊙反比例函数y=kx的图象过点A(4,1),⊙1=k4,即k=4,⊙反比例函数的解析式为:y=4x.⊙一次函数y=x+b(k≠0)的图象过点A(4,1),⊙1=4+b,解得b=﹣3,⊙一次函数的解析式为:y=x﹣3;(2)⊙令x=0,则y=﹣3,⊙D(0,﹣3),即DO=3.解方程4x=x﹣3,得x=﹣1,⊙B(﹣1,﹣4),⊙S⊙AOB=S⊙AOD+S⊙BOD=12×3×4+12×3×1=152;(3)⊙A(4,1),B(﹣1,﹣4),⊙一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.27.(1)y=-x2+2x+3.(2)P的坐标(1,2).(3)存在.点M的坐标为(1),(1,),(1,1),(1,0).【分析】(1)可设交点式,用待定系数法求出待定系数即可.(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.(3)由于⊙MAC的腰和底没有明确,因此要分三种情况来讨论:⊙MA=AC、⊙MA=MC、⊙AC=MC;可先设出M点的坐标,然后用M点纵坐标表示⊙MAC的三边长,再按上面的三种情况列式求解【详解】(1)⊙A(-1,0)、B(3,0)经过抛物线y =ax 2+bx +c ,⊙可设抛物线为y =a (x +1)(x -3).又⊙C(0,3) 经过抛物线,⊙代入,得3=a (0+1)(0-3),即a=-1.⊙抛物线的解析式为y =-(x+1)(x -3),即y =-x 2+2x+3.(2)连接BC ,直线BC 与直线l 的交点为P . 则此时的点P ,使⊙PAC 的周长最小. 设直线BC 的解析式为y =kx +b ,将B(3,0),C(0,3)代入,得:303k b b +=⎧⎨=⎩,解得:13kb =-⎧⎨=⎩.⊙直线BC 的函数关系式y =-x +3.当x -1时,y =2,即P 的坐标(1,2).(3)存在.点M 的坐标为(1),(1),(1,1),(1,0).⊙抛物线的对称轴为: x=1,⊙设M(1,m).⊙A(-1,0)、C(0,3),⊙MA 2=m 2+4,MC 2=m 2-6m +10,AC 2=10.若MA =MC ,则MA 2=MC 2,得:m 2+4=m 2-6m +10,得:m =1.⊙若MA =AC ,则MA 2=AC 2,得:m 2+4=10,得:m =.⊙若MC =AC ,则MC 2=AC 2,得:m 2-6m +10=10,得:m =0,m =6, 当m =6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去.综上可知,符合条件的M点,且坐标为(1),(1),(1,1),(1,0).。

河北省廊坊市大城县2022-2023学年九年级上学期期末考试数学试题(含答案)

河北省廊坊市大城县2022-2023学年九年级上学期期末考试数学试题(含答案)

河北省廊坊市大城县2022-2023学年九年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列方程是关于x 的一元二次方程的是( )A .260ax x m -+=B .()3122x x x -=-C .21031x x -=+-D .2470x y -+=2.下列图案中,是中心对称图形的是( )A .B .C .D .【答案】D 【分析】根据中心对称图形的定义逐一判断即可得到答案.【详解】解:A 、不是中心对称图形,是轴对称图形,不符合题意,选项错误;B 、不是中心对称图形,是轴对称图形,不符合题意,选项错误;C 、不是中心对称图形,是轴对称图形,不符合题意,选项错误;D 、是中心对称图形,也是轴对称图形,符合题意,选项正确,故选D .【点睛】本题考查了中心对称图形,解题关键是熟练掌握其定义:把一个图形绕着某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.3.在抛物线244y x x =--上的一个点是( )A .(4,4)B .(3,1)-C .(2,8)--D .17,24⎛⎫-- ⎪⎝⎭4.如图,该图形在绕点O 按下列角度旋转后,不能与其自身重合的是( )A .72︒B .118︒C .144︒D .216︒【答案】B【分析】将该图形平分成五部分,每部分被分成的圆心角是72︒,因为圆具有旋转不变性,因而旋转72︒的整数倍,就可以与自身重合,据此即可得到答案.【详解】解:将该图形平分成五部分,每部分被分成的圆心角是72︒,旋转72︒的整数倍,就可以与自身重合,因而A 、C 、D 选项都符合题意,旋转角为118︒时,旋转后不能与自身重合,B选项不符合题意,故选B.【点睛】本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.5.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积为()A.210cm B.212.5cm D.220cm C.225cm【答案】A【分析】根据主视图与左视图可得此长方体的俯视图是长宽分别为4cm和2.5cm的长方形,即可求出其面积.【详解】解:根据主视图与左视图可得,此长方体的俯视图是长宽分别为4cm和2.5cm 的长方形,∴俯视图的面积2=⨯=,4 2.510cm故选A.【点睛】本题考查了几何体的三视图,根据题意得出俯视图的长与宽是解题关键.6.下列事件中,是随机事件的是()A.通常加热到100℃,水沸腾B.任意画一个三角形,其内角和是360︒C.掷一次骰子,向上一面的点数大于6D.射击运动员射击一次,命中靶心【答案】D【分析】根据事件的分类,逐一进行判断即可.【详解】解:A、通常加热到100℃,水沸腾,是必然事件,不符合题意;B、任意画一个三角形,其内角和是360︒,是不可能事件,不符合题意;C、掷一次骰子,向上一面的点数大于6,是不可能事件,不符合题意;D、射击运动员射击一次,命中靶心,是随机事件,符合题意;故选D .【点睛】本题考查事件的分类.熟练掌握事件分为确定事件和随机事件,确定事件分为必然事件和不可能事件,是解题的关键.7.如图,PA ,PB 分别与O 相切于A ,B 两点,60P ∠=︒,则C ∠等于( )A .55°B .60°C .45°D .70°PA 分别与O 相切于90=︒,∠9090︒-︒-︒-AB AB =12C ∴∠=∠故选B .【点睛】本题考查了圆的切线的性质,圆周角定理,求得8.参加一次聚会的每两人都握了一次手,所有人共握手10 次,若共有 x 人参加聚会,则根据题意,可列方程( )A .(1)10x x -=B .(1)10x x +=C .1(1)102x x -=D .1(1)102x x += 【答案】C【分析】如果x 人参加了这次聚会,则每个人需握手1x -次,x 人共需握手()1x x -次;9.反比例函数m y x=的图象如图所示,现有以下结论:℃常数2m <-;℃在每个象限内,y 随x 的增大而增大;℃若()1A h -,,()2B k -,在图象上,则h k <;℃若()P x y ,在图象上,则()P x y '--,也在图象上.其中正确的是( )A .℃℃B .℃℃C .℃℃D .℃℃10.ABC 的三边长分别为5,12,13,与它相似的DEF 的最小边长为15,则DEF的边DE 的长为( )A .15B .36C .39D .以上都有可能 【答案】D【分析】根据相似三角形的性质得到相似比,求出DEF 的三边长,即可得到答案.【详解】解:ABC 的三边长分别为5,12,13,与它相似的DEF 的最小边长为15, ABC ∴与DEF 的相似比为1:3,DEF ∴的三边长分别为15,36,39,DEF ∴的边DE 的长为15或36或39,故选D .【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形对应边成比例是解题关键. 11.二次函数21212y x x =--的对称轴是( ) A .4x =B .4x =-C .2x =D .2x=- 12.观察下表,一元二次方程2 1.10x x --=的解的范围是( )A .1.4 1.5x <<B .1.5 1.6x <<C .1.6 1.7x <<D .1.7 1.8x <<【答案】C【分析】根据图表数据找出一元二次方程等于0时,未知数的值的范围,即可得到答案.【详解】解: 1.6x =时,2 1.10.14x x --=-, 1.7x =时,2 1.10.09x x --=,∴一元二次方程2 1.10x x --=的解的范围是1.6 1.7x <<,故选C .【点睛】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.13.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,颜色搭配正确的概率为()A.23B.12C.13D.1414.如图,AB是℃O的直径,点D为℃O上一点,且℃ABD=30°,BO=4,则BD的长为()A.23πB.43πC.2πD.83π15.一个用电器的电阻是可调节的,其范围为110220Ω~.已知电压为220V ,这个用电器的电路图如图所示,则这个用电器功率的范围是( )A .110220W ~B .220360W ~C .220440W ~D .220W16.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中,x 与y 的部分对应值如下表:结论I :0ac <;结论II :当1x >时,y 的值随x 值的增大而减小;结论III :2-是方程()230ax b x c +-+=的一个根.其中说法正确的是( )A .结论I 、II 正确,结论III 错误 B .结论II 、III 正确,结论I 错误C .结论都错误D .结论都正确 又0x =时,20c =>,所以2)二次函数当1x ≥时,3)2x =时,22b c ++=,2c =,4222a b ∴++=,420a b ∴+=,1x =时,3y =a b c ∴++解得:a =∴当x =-(III )正确;故选:D .点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.二、填空题17.将方程()()32183x x x -+=-化成一元二次方程的一般形式后,二次项系数为a ,一次项系数为b ,常数项为c ,则a b c ++=______. 【答案】3-【分析】先化为一般形式,根据一元二次方程的一般形式,得出,,a b c 的值,进而即可求解.【详解】解:()()32183x x x -+=-整理得23710x x -+=,℃3,7,1a b c ==-=,℃3713a b c ++=-+=-,故答案为:3-.【点睛】本题考查了一元二次方程的一般形式,掌握一元二次方程的一般形式是解题的关键.一元二次方程的一般形式是:20ax bx c ++=(a ,,c 是常数且0a ≠).三、解答题18.如图,已知AB 是O 的直径,点C 、D 在O 上,60D ∠=︒,6AB =,过点O 作OE AC ⊥,垂足为E ,延长OE 交O 于点F .(1)AOF 是等边三角形吗?______(选填“是”或“不是”)(2)弦AC 和AC 所围成的图形(阴影部分)的面积S =______而得到AOF 是等边三角形;℃AOF是等边三角形,故答案为:是;(2)℃AB3AO=,AOF∠=60∠=EAO30S=ACOS=扇形阴影部分的面积为:四、填空题19.如图,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A .(1)点()1,P a 在抛物线1C 上,则=a ______;(2)将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ,则抛物线2C 的解析式为()()36y x x =--;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ,则抛物线3C 的解析式为______;……(3)如此进行下去,直至得13C ,若()37,P m 在第13段抛物线13C 上,则m =______ 【答案】 2 ()()()6969y x x x =---≤≤ 2【分析】(1)将点()1,P a 代入抛物线:()()303y x x x =--≤≤中,即可求出a 的值; (2)根据抛物线1C ,求出()13,0A ,再利用旋转的性质得到()26,0A 、()39,0A ,结合二次函数交点式即可求出抛物线3C 的解析式;(3)由(2)规律推出抛物线13C 与x 轴的交点为()1236,0A 、()1339,0A ,图象在开口向下,得到抛物线13C 的解析式为()()()36393639y x x x =---≤≤,将()37,P m 代入抛物线13C 解析式即可求出m 的值.【详解】解:(1)将点()1,P a 代入抛物线:()()303y x x x =--≤≤中,()()113122a ∴=-⨯-=-⨯-=,故答案为:2;(2)抛物线1C :()()303y x x x =--≤≤, ∴抛物线1C 与x 轴的交点为:()0,0O 、()13,0A ,13OA ∴=,将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ,123A A ∴=,21126OA OA A A ∴=+=,()26,0A ∴,∴抛物线2C 的解析式为()()()3636y x x x =--≤≤,将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ,()39,0A ∴,∴抛物线3C 的解析式为()()()6969y x x x =---≤≤,故答案为:()()()6969y x x x =---≤≤;(3)由(2)可知,抛物线1C 与x 轴的交点为:()0,0O 、()13,0A ,图象开口向下; 抛物线2C 与x 轴的交点为:()13,0A 、()26,0A ,图象开口向上; 抛物线3C 与x 轴的交点为:()26,0A 、()39,0A ,图象开口向下; ……如此进行下去,直至得13C ,则抛物线13C 与x 轴的交点为()1236,0A 、()1339,0A ,图象开口向下;则抛物线13C 的解析式为()()()36393639y x x x =---≤≤, 若()37,P m 在第13段抛物线13C 上, 则()()()37363739122m =--⨯-=-⨯-=, 故答案为:2.【点睛】本题考查了抛物线上点的坐标特征,旋转的性质,二次函数交点式等知识,熟练掌握二次函数的图象和性质是解题关键.五、解答题20.(1)解下列方程:℃2470x x --=;℃()()3121x x x -=-(2)已知关于x 的一元二次方程2420x x ++=的两实数根为1x ,2x ,求()()1222x x ++的值.211 x1211=+,()( 312 x x-=21.密闭容器内有一定质量的气体,当容器的体积V(单位:3m)变化时,气体的密度ρ(单位:3kg/m)随之变化.已知密度ρ与体积V是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V的函数解析式;(2)当3m10V=时,求该气体的密度ρ.22.已知抛物线的解析式为2221y x mx m =-+-. (1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线33y x m =-+的一个交点在y 轴上,求m 的值. 【答案】(1)证明见解析 (2)14m =-,21m =【分析】(1)根据二次函数的交点与图象的关系,证明其方程有两个不同的根即0∆>即可;(2)根据题意,令0x =,整理方程可得关于m 的方程,解可得m 的值. 【详解】(1)证明:℃1a =,2b m =-,21c m =-,℃()2224(2)41140b ac m m -=--⨯⨯-=>,℃方程22210x mx m -+-=有两个不相等的实数根, ℃抛物线2221y x mx m =-+-与x 轴必有两个不同的交点. (2)解:把0x =代入2221y x mx m =-+-中,得21y m =- 把0x =代入33y x m =-+中,得33y m =-+,℃抛物线与直线的交点在y 轴, ℃2133m m -=-+, 解得14m =-,21m =【点睛】本题考查了抛物线与x 轴的交点,掌握二次函数与一元二次方程的关系、灵活运用一元二次方程根的判别式是解题的关键.23.如图,已知ABC 的边AB =AC =BC 边上的高2AD =.(1)求BC 的长;(2)如果有一个正方形的边在BC 上,另外两个顶点分别在AB ,AC 上,求这个正方形的面积. 解:四边形又AD BC ⊥90ADB ∴∠=四边形EDMH MD HE =24.一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,这个球是白球的概率为______;(2)搅匀后从中任意摸出1个球,记录颜色后放回..,搅匀,再从中任意摸出1个球,求2(请用画树状图或列表等方法说明理由)次摸到的球恰好是1个白球和1个红球的概率.25.如图所示的平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,2),B(﹣1,3),C(﹣1,1),请按如下要求画图:(1)以坐标原点O为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1,请画出△A1B1C1:并写出点B的对应点B1的坐标;(2)以坐标原点O为位似中心,在x轴下方,画出△ABC的位似图形△A2B2C2,使它与△ABC的位似比为2:1.并写出点B的对应点B2的坐标.(3)△ABC内部一点M的坐标为(a,b),写出M在△A2B2C2中的对应点M2的坐标.【答案】(1)见解析,点B的对应点B1的坐标为(3,1);(2)见解析,点B的对应点B2的坐标为(2,﹣6);(3)M在℃A2B2C2中的对应点M2的坐标(﹣2a,﹣2b).【分析】(1)将三个顶点分别顺时针旋转90°得到其对应的点,然后首尾顺次连接即可,继而根据直角坐标系写出点B1的坐标;(2)分别作出三个顶点位似变换的对应点,再首尾顺次连接即可,继而根据直角坐标系写出点B2的坐标;(3)根据位似变换的定义即可得到答案.【详解】(1)如图,℃A1B1C1即为所求,其中点B的对应点B1的坐标为(3,1).(2)如图所示,℃A2B2C2即为所求,点B的对应点B2的坐标为(2,﹣6);(3)M在℃A2B2C2中的对应点M2的坐标(﹣2a,﹣2b).【点睛】本题考查作图—位似变换,旋转变换,解题的关键是熟练掌握位似变换和旋转变换的步骤及性质作出正确的图形.26.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?。

九年级数学上学期期末检测试题(含答案)

九年级数学上学期期末检测试题(含答案)

九年级数学上学期期末检测试题(含答案)注意事项:本试题共8页,满分为150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试题规定的位置.考试结束后,仅交回答题卡....... 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.) 1.sin30︒的值为( ) A.1223 D.12.如图中几何体的左视图为( )A. B.C. D.3.如果25a b =,那么下列比例式中正确的是( ) A.25a b = B.25a b= C.52a b = D.25a b = 4.下列的各点中,在反比例函数1y x=图象上的点是( ) A.()2,4B.()1,5C.1,22⎛⎫⎪⎝⎭D.11,23⎛⎫⎪⎝⎭5.关于x 的一元二次方程2210kx x ++=有两个相等的实数根,则k 的值为( )A.2-B.1-C.0D.16.若点()11,y -,()21,y ,()32,y 在反比例函数ky x=(0k <)的图象上,则下列结论中正确的是( ) A.123y y y >> B.132y y y >>C.312y y y >>D.321y y y >>7.如图,在64⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则sin ABC ∠的值是( )510 25D.458.一次函数y cx a =-(0c ≠)和二次函数2y ax x c =++(0a ≠)在同一平面直角坐标系中的图象可能是( )A. B.C. D.9.如图,在矩形ABCD 中,连接BD ,分别以B 、D 为圆心,大于12BD 的长为半径画弧,两弧交于P 、Q 两点,作直线PQ ,分别与AD 、BC 交于点M 、N ,连接BM 、DN .若3AB =,6BC =,则四边形MBND 的周长为( )A.15B.9C.154D.9410.如图,已知开口向上的抛物线2y ax bx c =++与x 轴交于点()1,0-,对称轴为直线1x =.下列结论:①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分.)11.如图,四边形ABCD ∽四边形A B C D '''',若55B ∠=︒,80C ∠=︒,110A ∠'=︒,则D ∠=______°.12.在一个不透明的袋子里装有若干个红球和6个黄球,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则估计袋子中红球的个数是______个. 13.如图,若点A 在反比例函数ky x=(0k ≠)的图象上,AM x ⊥轴于点M ,AMO △的面积为8,k =______.14.将抛物线()2213y x =-+向右移3单位,上移2单位所得到的新抛物线解析式为______. 15.定义一种运算:()sin sin cos cos sin αβαβαβ+=+,()sin sin cos cos sin αβαβαβ-=-. 例如:当60α=︒,45β=︒时,()321262sin 604522224-︒=⨯-⨯︒=, 则sin75︒的值为______.16.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒, 下列四个结论:①当2MN MC =时,则22.5BAM ︒∠=;②90AMN MNC ︒∠+∠=;③MNC △的周长不变;④若2DN =,3BM =,则ABM △的面积为15.其中正确结论的序号是______.三、解答题(本大题共10小题,共86分) 17.(6分)计算:()0π12sin60123︒---. 18(6分)2670x x +-=.19.(6分)如图,在菱形ABCD 中,CE AB ⊥于点E ,CF AD ⊥于点F ,求证:AE AF =.20.(8分)如图,12∠=∠,B D ∠=∠,9AE =,12AD =,20AB =.求AC 的长度.21.(8分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A .音乐;B .体育;C .美术;D .阅读;E .人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了______名学生; ②补全条形统计图(要求在条形图上方注明人数); ③扇形统计图中圆心角a =______度;(2)若该校有2800名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.22.(8分)为进一步加强疫情防控工作,长清区某学校决定安装红外线体温检测仪,对进入测温区域的人员进行快速测温(如图1),其红外线探测点O 可以在垂直于地面的支杆OP 上下调节(如图2),已知探测最大角(OBC ∠)为61°,探测最小角(OAC ∠)为37°.若该校要求测温区域的宽度AB 为1.4米,请你帮助学校确定该设备的安装高度OC .(参考数据:sin610.87≈︒,cos610.48︒≈,tan61 1.8≈︒,sin370.6≈︒,cos370.8≈︒tan370.75︒︒≈)23.(10分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个.现在采取提高商品定价减少销售量的办法增加利润,定价每增加1元,销售量净减少10个. (1)商店若将准备获利2000元,则定价应增加多少元?(2)若商店要获得最大利润,则定价应增加多少元?最大利润是多少? 24.(10分)如图,一次函数1y x =-的图象与反比例函数ky x=(0x >)的图象交于点()3,B a ,与x 轴交于点A .点C 在反比例函数ky x=(0x >)的图象上的一点,CD x ⊥轴,垂足为D ,CD 与AB 交于点E ,OA AD =.(1)求a ,k 的值;(2)若点P 为x 轴上的一点,求当PB PC +最小时,点P 的坐标;(3)F 是平面内一点,是否存在点F 使得以A 、B 、C 、F 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由. 25.(12分)【发现问题】(1)如图1,已知CAB △和CDE △均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE △绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F . ①判断线段AD 和BE 的数量关系,并证明你的结论; ②图2中AFB ∠的度数是______. 【探究拓展】(3)如图3,若CAB △和CDE △均为等腰直角三角形,90ABC DEC ︒∠=∠=,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.26.(12分)综合与探究:如图,抛物线23y ax bx =+-(0a ≠)与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .(1)求此抛物线的函数表达式;(2)若点D 是第三象限抛物线上一动点,连接AD ,CD ,AC ,求ACD △面积的最大值,并求出此时点D 的坐标;(3)若点E 在抛物线的对称轴上,线段EB 绕点E 逆时针旋转90°后,点B 的对应点B '恰好也落在此抛物线上,请直接写出点E 的坐标.参考答案一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADCCDBABAD11. 115 12. 2 13.16- 14.()2245y x =-+ 15.426+ 16.①③. 三.解答题(本大题共10小题,共86分)17.(6分)计算:()03π12sin601231223332--︒+-=-= 18.(6分)2670x x +-=.公式法:算出64=△,11x ∴=,27x =-因式分解法:()()170x x -+=,11x ∴=,27x =- 配方法:()2316x +=,11x ∴=,27x =- 19.(6分) 证明:菱形ABCD ,AB AD BC CD ∴===,B D ∠=∠CE AB ⊥,CF AD ⊥.90BEC DFC ∴∠=∠=︒()BCE DCF AAS ∴△≌△(或者连接AC ,证()ACE ACF AAS △≌△) AE AF ∴=.20.(8分) 证明:12∠=∠,12BAE BAE ∴∠+∠=∠+∠,DAE BAC ∴∠=∠B D ∠=∠,DAE BAC ∴△∽△ AD AE AB AC ∴=,12920AC∴=,15AC ∴= 21.(8分)根据图中信息,解答下列问题: (1)①400;②60,60;③54 (2)1402800980400⨯=(人) 答:参加D 组(阅读)的学生人数为280人 (3)列表或画树状图正确共有12中等可能的结果,其中恰好抽到A ,C 两人同时参赛的有两种P ∴(恰好抽中甲、乙两人)21126== 22.(8分)方法1:解:在Rt OBC △中,8tan tan 6 1.1O B OBC CC∠==︒=, ∴设BC x =,则 1.8OC x =在Rt OAC △中,1tan ta 5n 37.80.71.4OC C AC O xA x=+==∠︒=, 1x ∴=.经检验,1x =是原方程的解1.8 1.8OC x ∴==方法2:解:在Rt OAC △中,7tan tan 330.547O C A C A O C ∠=︒===∴设3OC x =,则4AC x =在Rt OBC △中,3 1.81tan .t 4n 614a O C C x BC OB x ==-∠=︒=0.6x ∴=经检验,0.6x =是原方程的解3 1.8OC x ∴==23.(10分)(1)解:设定价应增加x 元()()5240180102000x x -+-=解得18x =,22x =-采取提高商品定价减少销售量的办法增加利润22x ∴=-不合题意舍去,8x ∴=答:定价应增加8元.(1)设定价增加x 元时获利y 元()()215240108016010026y x x x x -+=-+-=+当3x =时,y 有最大值,为2250元.答:若商店要获得最大利润,则定价应增加3元,最大利润是2250元. 24.(10分)(1)求出2a =,6k =;(2)求出()2,3C ,画图找到P 点,求出点P 的坐标1305⎛⎫⎪⎝⎭,; (3)()14,5F ,()22,1F -,()30,1F 25.(12分)【发现问题】 (1)AD BE =(2)①AD BE =,证明过程 ②60度 (3)写出45AFB ∠=度,2AD BE =证明过程26.(12分)(1)解出1a =,2b =,∴抛物线的函数表达式223y x x =+- (2)求出点()0,3C -,AC 直线关系式3y x =--设点()2,23D m m m +-,过点D 作x 轴的垂线,交AC 于点F , 则点(),3F m m --,()()223233DE m m m m m ∴=---+-=--23922m m S --∴=当32m =-时,S 有最大值为827,此时315,24D ⎛⎫-- ⎪⎝⎭,(3)()11,3E -,()21,2E --。

人教版九年级上册数学期末考试试卷(含解析)

人教版九年级上册数学期末考试试卷(含解析)

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案,每小题3分,共30分)1.下列属于一元二次方程的是( )A .x 2-3x+y=0B .x 2+2x= C .2x 2=5x D .x(x 2-4x)=32.抛物线的顶点坐标为( )A .(3,0) B.(-3,0) C .(0,3) D .(0,-3)3.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A . B . C . D .4.若关于x 的方程x 2﹣2x ﹣k =0有实数根,则k 的值可能为( )A .﹣4B .﹣3C .﹣2D .05.若△ABC ∽△DEF ,且S △ABC :S △DEF =3:4,则△ABC 与△DEF 的周长比为A .3:4B .4:3C 2D .26.如图,将就点C 按逆时针方向旋转75°后得到,若∠ACB =25°,则∠BCA′的度数为( )A .50°B .40°C .25°D .60°7.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为()A .B .C .D .8.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若∠ABD=55°,则∠BCD 的度数为( )1x 2y 2x 3=-()()2019nCoV -ABC A B C ''△50120,x ()()2501501120x x +++=()()250501501120x x ++++=()2501120x +=()50160x +=A .25°B .30°C .35°D .40°9.若二次函数的图象,过不同的六点、、、、、,则、、的大小关系是( )A .B .C .D .10.关于x 的方程k 2x 2+(2k-1)x+1 =0有实数根,则下列结论正确的是()A .当k=时,方程的两根互为相反数B .当k=0时,方程的根是x=-1C .若方程有实数根,则k≠0且k≤D .若方程有实数根,则k≤二、填空题。

九年级上学期期末考试数学试卷(附答案)

九年级上学期期末考试数学试卷(附答案)

九年级上学期期末考试数学试卷(附答案)一.单选题。

(每小题4分,共40分)1.﹣5的相反数是()A.15B.﹣15C.5D.﹣52.如图是一根空心方管,它的左视图是()A. B. C. D.3.一个数是8600,这个数用科学计数法表示8600为()A.8.6×102B.8.6×103C.86×102D.0.86×1044.下列各式计算正确的是()A.3x+3y=6xyB.4xy2-5xy2=﹣1C.﹣2(x-3)=﹣2x+6D.2a+a=3a25.把20个除颜色外完全相同的小球,放在一个不透明的盒子中,其中有m个白球,做大量重复试验,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子里,最终发现摸到白球的频率稳定在35%左右,则m的值大约是()A.7B.8C.9D.106.关于菱形一定具有的性质,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.邻边相等D.对角线相等7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,下列关系正确的是()A.sinA=BCAC B.tanB=ACABC.cosA=CDACD.sinB=CDBC(第7题图)(第8题图)(第9题图)8.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,AC⊥x轴于点C,BD⊥x轴于点D,连接OA ,BC ,若点C (1,0),BD=2,△BCD 面积为3,则△AOC 的面积是( ) A.2 B.3 C.4 D.59.如图,已知点C ,D 是以AB 为直径的半圆O 的三等分点,圆的半径为1,则图中阴影部分面积是( )A.16π B.316π C.124π D.112π+√3410.如图,二次函数y=ax 2+bx+c 的图象的顶点在第一象限,且过点(0,1)和(﹣1,0)下列结论:①ab >0,②b 2-4ac >0,③0<a+b+c <2,④0<b <1,⑤当y >﹣1时,x >0,其中正确结论个数是( )A.2个B.3个C.4个D.5个(第10题图)二.填空题。

九年级数学上学期期末考试试题

九年级数学上学期期末考试试题

九年级数学上学期期末考试试题一.填空题(每小题2分,共计20分)1.x 的取值范围为 .。

2.下列二次根式、32是同类二次根式的是 。

3.若关于x 的方程x 2 -2(k -1)x +k 2 =0有实数根,则k 的取值范围是 。

4.下列平面图形中,既是轴对称图形,又是中心对称图形的是 。

、5.一元二次方程x(x -2)=0的解是x 1=_________,x 2=_________.6.若⊙O 1和⊙O 2外切,⊙O 1半径为3cm ,⊙O 2半径为6cm ,则O 1O 2=_________cm . 7.已知关于x 的方程x 2-5x+2k=0的一个根是1,则k=__________.8.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球, 则摸到红球的概率是_________. 9.如图,△ABC 内接于⊙O ,∠C=30°,AB=5,则⊙O 的直径为_________ 10.如图,点A 、B 、C 是⊙O 上的三点,∠BAC=50°,则∠OBC 的度数是 二.单项选择题(每小题3分,共计18分) 11.2(-=( )A .3B .3-C .3±D .912.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是 ( ) A .外离B .外切C .相交D .内切13.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为( )A .12B .13C .14D .1614.如图,⊙O 是△ABC 的外接圆,已知∠ABO =30º,则∠ACB 的大小为(A .60ºB .30º C.45º D .50º 15.下列一元二次方程中没有..实数根的是()A .2240x x +-=B .2440x x -+=C .2250x x --=D .2340x x ++=16.如图,有一枚圆形硬币,如果要在这枚硬币的周围摆放几枚与它完全相同的硬币,使得周围的硬币都和这枚硬币相外切,且相邻的硬币相外切,则这枚硬币周围最多可摆放( )A .4枚硬币B .5枚硬币C .6枚硬币D .8枚硬币17.计算:.1880(0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.四. 解答题(每小题7分,共计14分) 19.解方程:24120x x +-=.20.如图,在ABC △中,AB 是⊙O 的直径,⊙O 与AC 交于点D ,60,75AB B C =∠=︒∠=︒,求BOD ∠的度数;AD CBO21. 随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2009年为10万只,预计2011年将达到14.4万只.求该地区2009年到2011年高效节能灯年销售量的平均增长率.22.如图,在△ABC 中,120,C ∠=︒,4AC BC AB ==,半圆的圆心O 在AB 上,且与AC ,BC 分别相切于点D ,E .(1)求半圆O 的半径;(2)求图中阴影部分的面积.六. 解答题(23题8分,24题10分,共计18分)23.已知关于x 的方程221(1)04x a -++=有实根.(1)求a 的值;(2)若关于x 的方程2(1)0mx m x a +--=的所有根均为整数,求整数m 的值.24.以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ. 求QOP的大小;直线PQ被⊙O截得的弦长.图二(备用图)参考答案:一、 填空题1、x≥2且x≠3 23、k≤124、(B )5、0与26、97、28、0.49、1010、650 二、单项选择题 11、A 12、B 13、C 14、A 15、D 16、C 三、解答题四、解答题19.解法一:因式分解,得()()620x x +-=于是得 60x +=或20x -= 126,2x x =-= 20.解:在ABC △中,60,75B C ∠=︒∠=︒ ,45A ∴∠=︒.AB 是⊙O 的直径,⊙O 与AC 交于点D, ∴290DOB A ∠=∠=︒.五、解答题22.(1)解:连结OD ,OC ,∵半圆与AC ,BC 分别相切于点D ,E . ∴DCO ECO ∠=∠,且OD AC ⊥. ∵AC BC =,∴CO AB ⊥且O 是AB 的中点.∴122AO AB ==.∵120C ∠=︒,∴60DCO ∠=︒. ∴30A ∠=︒.∴在R t AOD △中,112OD AO ==.即半圆的半径为1.(2)设CO =x ,则在R t AOC △中,因为30A ∠=︒,所以AC =2x ,由勾股定理得: 222AC OC AO -= 即 222(2)2x x -= 解得x =x =舍去)∴ 11422ABC S AB OC =⋅=⨯=△∵ 半圆的半径为1, ∴ 半圆的面积为2π,∴ 2S π=-=阴影六、解答题24.(1)解:如图一,连结AQ .由题意可知:OQ =OA =1.∵OP =2,∴A 为OP 的中点.∵PQ 与⊙O 相切于点Q ,∴OQP △为直角三角形. ∴112AQ OP OQ OA ====即ΔOAQ 为等边三角形. ∴∠QOP =60°.(2)解:由(1)可知点Q 运动1秒时经过的弧长所对的圆心角为30°,若Q 按照(1)中的方向和速度继续运动,那么再过5秒,则Q 点落在⊙O 与y 轴负半轴的交点处(如图二).设直线PQ 与⊙O 的另外一个交点为D ,过O 作OC ⊥QD 于点C ,则C 为QD 的中点. ∵∠QOP =90°,OQ =1,OP =2,∴QP ∵1122OQ OP QP OC ⋅=⋅,∴OC ∵OC ⊥QD ,OQ =1,OC ,∴QC .∴QD .图一图二。

九年级数学上期末测试题(含答案)

九年级数学上期末测试题(含答案)

九年级数学上期末测试题(含答案) 九年级数学上期末测试题班级。

姓名。

考号:一、选择题(每小题3分,共36分)1、一元二次方程2x^2-x+1=0的一次项系数和常数项依次是(。

)A、-1和1.B、1和1.C、2和1.D、0和12、在正三角形、正方形、棱形和圆中,既是轴对称图形又是中心对称图形的个数是(。

)A、4.B、3.C、2.D、13、若抛物线y=ax^2的对称轴是x=-1,则a的值为(。

)A、没有实数根。

B、有两不等实数根。

C、有两相等实数根。

D、恒有实数根4、如图,抛物线y=2x^2+bx+c的对称轴是x=-2,则b=()A、5.B、-5.C、±5.D、45、掷一次骰子(每面分别刻有1—6点),向上一面的点数是质数的概率等于( )A、2/11.B、3/11.C、4/11.D、5/116、一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率。

若设平均每次降价的百分率为x,则可列方程(。

)A、108x=72.B、108(1-x)=72.C、108(1-x)^2=72.D、108-2x=72二、填空题(每小题3分,共12分)13、函数y=-2x^2+x的图象的对称轴是x=(),最大值是()。

14、抛物线y=-2(x+1)^2-3开口向(),对称轴是x=(),顶点坐标是()。

如果y随x的增大而减小,那么x的取值范围是()。

15、如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,切点为C,若AB=23cm,OA=2cm,则图中阴影部分(扇形)的面积为()。

16、如图,在平面直角坐标系中,⊙P的半径等于2,把⊙P在平面直角坐标系内平移,使得圆与x、y轴同时相切,得到⊙Q,则圆心Q的坐标为()。

三、解答题(本题共8个小题,共72分。

解答应写出文字说明、证明过程或演算步骤)。

17、解方程(每题4分,共8分)。

1)x+2√(2x-3)=22;(2)5a-a^2+1=3a+5.18、如图,抛物线y=x^2-4x+3与直线y=kx-2相交于点A、B两点,且AB=2,则k的值为()。

人教版数学九年级上学期《期末考试试题》附答案

人教版数学九年级上学期《期末考试试题》附答案

人教版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单项选择题(本大题共8个小题,每小题4分,共32分)1. (2019•广东)已知x1.x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=22.观察下列四个图形,中心对称图形是( )A.B.C.D.3.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )A.70° B.55° C.35.5° D.35°4.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是( )A.B.﹣C.4 D.﹣15.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是( )A. (-1,-4)B. (1,-4)C. (-1,4)D.(1,4)6.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:AB的长为( )A. 1B. 2C. 3D. 47.用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为( ).A. π.B. 2π.C. 3π.D. 4π.8.从﹣3.﹣l ,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是( ).A.1/5B.2/5C.3/5D.4/5二、填空题(本大题共8个小题,每小题4分,共32分)11.(2019江苏镇江)已知抛物线2441(0)y ax ax a a =+++≠过点(,3)A m ,(,3)B n 两点,若线段AB 的长不大于4,则代数式21a a ++的最小值是 .12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .13.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC .若∠AOB = 120°,则∠ACB = 度.14.若关于x 的方程3x ﹣kx +2=0的解为2,则k 的值为 .15.如图,四边形ABCD 为⊙O 的内接四边形,∠A =100°,则∠DCE 的度数为 .16.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为 .三、解答题(本大题有5小题,共56分)17. (10分)(2019北京市) 关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.18. (10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC 向右平移3个单位后得到的△A 1B 1C 1,再画出将△A 1B 1C 1绕点B 1按逆时针方向旋转90°后所得到的△A 2B 1C 2;(2)求线段B 1C 1旋转到B 1C 2的过程中,点C 1所经过的路径长.19. (12分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.20.(12分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.21.(12分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.答案与解析一、单项选择题(本大题共8个小题,每小题4分,共32分)1. (2019•广东)已知x1.x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2[答案]D[解析]因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法.2.观察下列四个图形,中心对称图形是( )A.B.C.D.[答案]C[解析]根据中心对称图形的概念对各选项分析判断即可得解.A.不是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项错误;C.是中心对称图形,故本选项正确;D.不是中心对称图形,故本选项错误.3.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )A.70° B.55° C.35.5° D.35°[答案]D.[解析]根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°4.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是( )A.B.﹣C.4 D.﹣1[答案]A.[解析]∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是( )A. (-1,-4)B. (1,-4)C. (-1,4)D.(1,4)[答案]D[解析]把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4)6.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:AB的长为( )A. 1B. 2C. 3D. 4[答案]A[解析]连接BD,∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =, ∴AB =BC =17.用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为( ).A. π.B. 2π.C. 3π.D. 4π.[答案]D .[解析]易得扇形的弧长,除以2π即为圆锥的底面半径,从而可以计算面积. 扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π.8.从﹣3.﹣l ,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是( ).A.1/5B.2/5C.3/5D.4/5[答案]B .[解析]五个数中有两个负数,根据概率公式求解可得.∵在﹣3.﹣l ,π,0,3这五个数中,负数有﹣3和﹣1这2个,∴抽取一个数,恰好为负数的概率为.二、填空题(本大题共8个小题,每小题4分,共32分)11.(2019江苏镇江)已知抛物线2441(0)y ax ax a a =+++≠过点(,3)A m ,(,3)B n 两点,若线段AB 的长不大于4,则代数式21a a ++的最小值是 .[答案]74[解析]抛物线2441(0)y ax ax a a =+++≠过点(,3)A m ,(,3)B n 两点,∴4222m n a a+=-=- 线段AB 的长不大于4,413a ∴+12a ∴ 21a a ∴++的最小值为:2117()1224++=; 故答案为74. 12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 . [答案].[解析]根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为.13.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC .若∠AOB = 120°,则∠ACB = 度.[答案]60[解析]根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.14.若关于x 的方程3x ﹣kx +2=0的解为2,则k 的值为 .[答案]4.[解析]直接把x =2代入进而得出答案.∵关于x 的方程3x ﹣kx +2=0的解为2,∴3×2﹣2k +2=0,解得:k =4.15.如图,四边形ABCD 为⊙O 的内接四边形,∠A =100°,则∠DCE 的度数为 .[答案]100°[解析]∵四边形ABCD 为⊙O 的内接四边形,∴∠DCE =∠A =100°16.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为 .[答案]20%.[解析]设这两年中投入资金的平均年增长率是x ,由题意得:5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意舍去).这两年中投入资金的平均年增长率约是20%.三、解答题(本大题有5小题,共56分)17. (10分)(2019北京市) 关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.[答案]m=1,此方程的根为121x x ==[解析]先由原一元二次方程有实数根得判别式240b ac -≥进而求出m 的范围;结合m 的值为正整数,求出m 的值,进而得到一元二次方程求解即可.∵关于x 的方程22210x x m -+-=有实数根,∴()()22424121484880b ac m m m ∆=-=--⨯⨯-=-+=-≥ ∴1m ≤又∵m 为正整数,∴m=1,此时方程为2210x x -+=解得根为121x x ==,∴m=1,此方程的根为121x x ==18. (10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.[答案]见解析.[解析]根据平移的性质得出对应点位置以及利用旋转的性质得出对应点位置画出图形即可;根据弧长计算公式求出即可.此题主要考查了图形的旋转与平移变换以及弧长公式应用等知识,根据已知得出对应点位置是解题关键.(1)如图所示:(2)点C1所经过的路径长为:=2π.19. (12分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.[答案](1)如下图;(2)1 3[解析]此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键,难度中等.(1)1025%40÷=(人)获一等奖人数:408612104----=(人)(2)七年级获一等奖人数:1414⨯=(人)八年级获一等奖人数:1414⨯=(人)∴九年级获一等奖人数:4112--=(人)七年级获一等奖的同学人数用M表示,八年级获一等奖的同学人数用N表示,九年级获一等奖的同学人数用P1、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=41 123=.20.(12分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.[答案]见解析.[解析]本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理.(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF==.21.(12分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.[答案]见解析.[解析]此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.。

人教版九年级上册数学期末试题(含答案)

人教版九年级上册数学期末试题(含答案)

人教版九年级上册数学期末试题(含答案)人教版九年级上册数学期末试题(含答案)一、选择题1. 话费问题小明的手机话费每月固定为50元,但每分钟通话费用随通话时间的不同而有所变化。

以下是小明最近三个月的手机账单和通话时间统计,请根据数据选择正确的选项。

```plaintext月份账单总额(元)通话时间(分钟)1月 110 1202月 120 1503月 100 100```A. 1月的每分钟通话费用最高。

B. 3月的通话时间最短。

C. 2月的账单总额最高。

D. 这三个月中,账单总额与通话时间呈正相关关系。

答案:C2. 面积问题某地质博物馆针对不同年龄段的参观者推出了不同的票价政策。

以下是该博物馆的票价表,请根据数据选择正确的选项。

```plaintext年龄段票价(元)12岁以下 5013-18岁 6019-59岁 10060岁以上 80```A. 16岁的学生买一张票需要60元。

B. 60岁的老人买一张票需要50元。

C. 30岁的游客买一张票需要80元。

D. 10岁的儿童买一张票需要60元。

答案:A二、填空题1. 计算(1) 25 × 0.08 = _____答案:2(2) 100 ÷ 0.2 = _____答案:500(3) 125 - 39.8 = _____答案:85.2三、解答题1. 缩放比例今天小明去博物馆参观,他发现博物馆内的一尊雕像高1.8米。

晚上,小明用积木复制了这尊雕像,并将高度缩小到15厘米。

请你计算小明缩放雕像的比例,并用百分数表示。

解答:缩放的比例 = 缩小后的高度 / 原高度 = 15 / 180 = 1 / 12缩放的比例 = 1 / 12 = 8.33...%所以,小明缩放雕像的比例是8.33...%。

2. 配比问题某城市有三所学校,A、B、C。

A学校的学生男女比例为4:6,B 学校的学生男女比例为3:7,C学校的学生男女比例为7:3。

现在要将这三所学校的男生和女生合并成一个班级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省大石桥市水源二中2014届九年级数学上学期期末考
试试题
一、单项选择题。

(把正确答案的序号填在下面的表格里,每小题3分,共24分)
A
.01232
=++y y B .
x x 312
12
-= C .
03
2
611012=+-a a D .223x x x =-+ 2.如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是
3.如图,在菱形中,对角线、相交于点O ,E 为BC 的中点,则下列式子中,一定成立的是 A. B. C. D.
4.一个家庭有两个孩子,两个都是女孩的概率是 A .
21
B .
3
1 C .
4
1
D . 无法确定。

5.如果点A(-1,1y )、B(1,2y )、C(12 ,3y )是反比例函数x
y 1-=图象上的
三个点,
则下列结论正确的是
A.1y >2y >3y
B.3y >2y >1y
C.2y >1y >3y
D.3y >1y >2y 6.在联欢晚会上,有A 、B 、C 三名同学站在一个三角形的三个顶点位置上,他们
D 第3题图
A .
B .
C .
D .
在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子最适当的位置在△ABC 的
A.三边中线的交点,
B.三条角平分线的交点 ,
C.三边上高的交点,
D.三边中垂线的交点
7.边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边 中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是 A.2cm B.3cm C.4cm D.5cm 8.在同一直角坐标系中,函数y=kx-k 与k
y x
(k ≠0)的图象大致
二、认真填一填:
(每小题3分,共24分.)
9.菱形有一个内角为600
,较短的对角线长为6,则它的面积为 . 10.如图,一个正方形摆放在桌面上,则正方形的边长 为 .
11.已知直角三角形的两边长是方程x 2
-7x+12=0的两根,则第三边长 为
12.某地区为估计该地区的绵羊只数,先捕捉20只绵羊给它们 分别做上记号,然后放还,待有标记的绵羊完全混合于羊群后 第二次捕捉40只绵羊,发现其中有2只有记号,从而估计这个 地区有绵羊 只.
B
C
D
10题
7题
13.如图,在△ABC 中,∠C=900
,AD 平分∠CAB ,BC=8cm ,BD=5cm , 那么点D 到直线AB 的距离是______________.
14.如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边
形EFGH 为矩形,四边形ABCD 应具备的条件是______________________, 15.如图:双曲线x
k
y =
上有一点A ,过点A 作AB ⊥x 轴于点B ,
16.如图,矩形
ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和
BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为______. 三、解答题(共102分)
(2)(5x-1)2
=3(5x-1)
18.(8分)如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,
且PD∥AB,PE∥AC,求△PDE的周长。

19.(8分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE
⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;(2)AB=BC+AD.
20. (10分)10月初某地香菇价格大幅度下调,下调后每斤香菇价格是原价格
的2
3
,原来用60元买到的香菇下调后可多买2斤.香菇价格10
月底开始回
C
A
B
P
D E
21.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
22.(10分)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD 垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
23. (10分)中秋节吃月饼是中华民族的传统习俗,一超市为了吸引消费者,增
加销售量特设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买月饼的机会.
(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果. (2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买月饼的概率是多少?
25.(12分)【提出问题】
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,
以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
26.(14分)
如图,在平面直角坐标系中,四边形ABCD 是平行四边形,AD =6,若OA 、OB 的长是关于x 的一元二次方程01272=+-x x 的两个根,且OA >OB. (1)求OA 、OB 的长.
(2)若点E 为x 轴上的点,且S △AOE =
3
16
,求经过D 、E 两点的直线解析式及经过点D 的反比例函数的解析式,并判断△AOE 与△AOD 是否相似.
(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、
M 为顶点的四边形为菱形?若存在,直接写出F 点的坐标,若不存在,请说明理由.
九年数学参考答案
19.证明:(1)因为AD∥BC,E为CD的中点,
所以∠D=∠C,DE=EC.又∠AED=∠FEC,所以△ADE≌△FCE.所以FC=AD. (2)因为△ADE≌△FCE,所以AE=FE.又因为BE⊥AE,所以BE是线段AF的垂直平分线,所以AB=FB.因为FB=BC+FC=BC+AD,所以AB=BC+AD.
20. 解:(1)设10月初香菇价格下调后每斤x元.根据题意,得6060
2
3
2
x x
-=,
解得10
x=
经检验,10
x=是原方程的解答:10月初香菇价格下调后每斤10元.
(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.
22.解:(1)∵OA=OB=OD=1,
∴点A 、B 、D 的坐标分别为A (﹣1,0),B (0,1),D (1,0);
(2)∵点A 、B 在一次函数y=kx+b (k≠0)的图象上, ∴,解得,∴一次函数的解析式为y=x+1.
∵点C 在一次函数y=x+1的图象上,且CD⊥x 轴,∴点C 的坐标为(1,2), 又∵点C 在反比例函数y=(m≠0)的图象上,∴m=2;∴反比例函数的解析式为y=.
23(1)略(2)6
1 24. 解:猜想:BE ∥DF 且BE=DF.证明:∵ 四边形ABCD 是平行四边形, ∴ CB=AD ,
CB ∥AD. ∴ ∠BCE=∠DAF. 在△BCE 和△DAF 中,⎪⎩
⎪⎨⎧=∠=∠=,,,AF CE DAF BCE AD CB ∴ △BCE ≌
△DAF , ∴ BE=DF ,∠BEC=∠DFA ,∴ BE ∥DF ,即BE=DF 且BE ∥DF.
25.(1)证明:∵△ABC、△AMN 是等边三角形,
∴AB=AC,AM=AN ,∠BAC=∠MAN=60°,∴∠B AM=∠CAN,∵在△BAM 和△CAN 中,
∴△BAM≌△CAN(SAS ),∴∠ABC=∠ACN.
(2)解:结论∠ABC=∠ACN 仍成立.理由如下:∵△ABC、△AMN 是等边三角形, ∴AB=AC,AM=AN ,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM 和△CAN 中,
∴△BAM≌△CAN(SAS ),∴∠ABC=∠ACN.
(3)解:∠ABC=∠ACN.理由如下:∵BA=BC,MA=MN ,顶角∠ABC=∠AMN, ∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴=,
又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,
∴△BAM∽△CAN,∴∠ABC=∠ACN.
26.(1)O A =4 OB =3 (2)E (38,0)或(-3
8,0)D (6,4)则直线DE 的解析为1316
x 136y 516
56
+=-=或x y △AOD 与 △AOE 相似。

相关文档
最新文档