饱和蒸汽发电技术在废热利用系统中的应用

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

饱和蒸汽发电技术在废热利用系统中的应用

发表时间:2017-10-26T12:13:43.693Z 来源:《电力设备》2017年第16期作者:于宝龙1 孙克庆2

[导读] 摘要:根据饱和蒸汽膨胀做功特点,分别介绍了单级汽轮机、多级除湿汽轮机、机内再热除湿汽轮机及螺杆膨胀机等四种适于饱和蒸汽余热发电的技术,并通过实际工程表明,此类技术可靠,节能效果显著,经济效益可观,适合于在钢铁、化工及玻璃等存在大量饱和蒸汽余热资源的行业中广泛应用

(吉林紫金铜业有限公司吉林省 133300)

摘要:根据饱和蒸汽膨胀做功特点,分别介绍了单级汽轮机、多级除湿汽轮机、机内再热除湿汽轮机及螺杆膨胀机等四种适于饱和蒸汽余热发电的技术,并通过实际工程表明,此类技术可靠,节能效果显著,经济效益可观,适合于在钢铁、化工及玻璃等存在大量饱和蒸汽余热资源的行业中广泛应用

关键词:饱和蒸汽发电技术;废热利用系统;应用

1前言

随着近15年节能工作的大力开展,利用水泥,钢铁及其他工业余热的过热蒸汽发电技术已被广泛应用,但如钢铁生产过程中,在转炉、加热炉等汽化冷却装置内产生的大量低温低压饱和蒸汽,除少量自用外,大部分对空排放,造成了极大的能源浪费,因此,近几年,部分钢铁企业开始采用低压饱和蒸汽发电技术回收生产过程中的大量低温余热,取得了良好的社会效益与经济效益。

2饱和蒸汽发电技术

相比技术成熟的过热蒸汽发电技术,饱和蒸汽在膨胀做功后,蒸汽湿度增加,若采用常规汽轮机,则会导致液击现象的发生,影响汽轮机效率、缩短叶片使用寿命,为解决上述问题,必须采用新型膨胀机以满足饱和蒸汽的发电要求。

2.1单级汽轮机技术

德国设计的KKK汽轮机组,全部采用单级悬臂式结构,膨胀叶轮直接安装于齿轮箱一端输入轴,由于叶轮可自由膨胀,所以从冷态启动至全负荷运行,只需要10min的暖机预热过程,而短期停机后的重新启动过程,也可在10s内完成。同时由于采用单级叶轮设计,饱和蒸汽膨胀做功后产生的凝结水直接通过回收装置排出汽轮机,不存在对后级叶片的液击问题。KKK机组的较强适应性,不仅适用于过热蒸汽、饱和蒸汽,甚至适用于任何气体、任何有余压(压力≥0.2MPa即可)可利用的场合。如天然气、煤气减压站、高炉炉顶煤气能量回收(TRT)等。

2.2多级除湿汽轮机技术

某轮机动力有限公司为钢铁制造的BN5.5-0.5饱和凝汽式汽轮机,额定功率5.5MW,进汽压力为0.5MPa饱和蒸汽。该汽轮机采用了以下针对饱和蒸汽的特有设计:

(1)进汽、补汽口前增设旋流式蒸汽过滤网汽水分离器。

(2)通流部分各压力级前设置疏水槽沟,末三级隔板设置除湿疏水环形槽。

(3)末一、二级叶片等进汽边硬化处理。

2.3机内再热除湿汽轮机技术

机内再热除湿多级冲动式汽轮机,是由广州能源研究所开发的一种新型饱和蒸汽发电设备,原理为在汽轮机汽缸内的其中一相邻级或若干相邻级的级间设置蒸汽再热器,由该汽轮机的主汽门后的主蒸汽管上引出一股新蒸汽通入蒸汽再热器中,用于加热汽轮机中膨胀到一定程度的湿饱和蒸汽,降低其湿度,以保护汽轮机不受水蚀损害。该汽轮机可以广泛适用于饱和或过热度较低的蒸汽,在保持较高汽轮机效率的情况下有效避免了叶片的水蚀问题。

2.4螺杆膨胀机技术

螺杆膨胀机的结构是由一对阴阳螺杆转子、机壳体、进汽端座、后端座、阻流式轴封、支持轴承和止推轴承组成的,工作原理是压力较高的流体进入螺杆齿槽,推动螺杆转动,齿槽容积增加,流体降压膨胀做功,实现能量转换。螺杆膨胀机既可以用于发电,也可以用于驱动泵、压缩机、风机等,其特点如下:

(1)适用热源广泛:同时适合过热蒸汽、饱和蒸汽、汽水混合物、热水、易结垢污染热源、石化热工质等:

(2)热源参数波动:允许热源的压力、流量、温度有较大波动,机组能够安全平稳的运行;

(3)操作简单:机组运行可以不暖机车、不盘车、不飞车:长期无大修、维修简单;设备不易损坏,可手动和自动操作,事故率低;

(4)安装投运方便:机组占地小,基础简单、现场安装方便,可以整机快装、移动,通用性强。

3 饱和蒸汽直接发电方案

将转炉汽化冷却装置产生的饱和蒸汽通过汽水分离器后并入汽轮发电机组发电。

转炉余热锅炉产生的饱和蒸汽,压力为2.45MPa,经过蓄热器蓄能稳定后,在流量稳定的情况下蓄热器后压力为0.9MPa,蒸汽流量90t/h。考虑沿程管道冷凝损失及除氧加热用汽量,汽轮机进汽参数为79t/h-0.7MPa-饱和温度。

进入汽机前设置汽液分离器,从而保证进入汽机的蒸汽干度为99.5%。乏汽经凝汽器冷凝后,通过凝结水泵打到除氧器,除氧后的给水通过给水泵回到转炉汽化冷却器系统。

饱和蒸汽送入凝汽式汽轮机,经计算,排汽压力为12kPa的条件下,每吨蒸汽发电量为:117.5kW,排汽干度为:89.1%。

4 饱和蒸汽过热后发电方案

饱和蒸汽过热后发电系统,相比饱和蒸汽直接发电方案,在气液分离器与汽机之间增设过热锅炉,过热炉的特点是:通过布置在绝热炉膛里的气体燃烧器,通过燃烧高炉煤气,产生高温烟气,通过布置在烟道里的过热器,将饱和蒸汽加热为过热蒸汽,煤气在炉膛内燃烧后产生的烟气直接通过过热器、冷凝水加热器,最后从炉尾排出。

该方案是将汽水分离器后的0.7MPa,165℃饱和蒸汽通过一台燃用高炉煤气的过热锅炉加热,使饱和蒸汽变为过热蒸汽,考虑锅炉本体阻力后,出口过热蒸汽的压力为0.5MPa,蒸汽过热到350℃,满足普通汽轮机对进汽温度的要求,不再受排汽干度的限制。

过热后的蒸汽送入凝汽式汽轮机,经计算,排汽压力为7kPa的条件下,每吨蒸汽发电量为:168.7kW,排汽干度为:98.3%,完全满足汽轮机对排汽干度的要求。

5 两种方案技术、经济指标对比

两个方案的简单经济性比较如下:(年运行时间按7200h计算,饱和方案投资按4000万计算,过热方案投资按4600万计算。)通过上述比较可见,无论是年利润还是投资回收期,饱和蒸汽过热后发电方案均好于饱和蒸汽直接发电方案。

第二方案消耗的高炉煤气和多发的电相比较可以看出,高炉煤气耗量为16500 Nm3/h,多发的电量为14170-9300=4870kW.h,每度电消耗煤气量:16500÷4870=3.38 Nm3/(kW.h)。

为了说明过热方案中消耗的高炉煤气的发电效率高,我们以65t/h的中温中压煤气锅炉为例,以下是65t/h的中温中压煤气锅炉发电的计算数据:

锅炉出口蒸汽参数(63t/h,3.82Mpa,450℃),发电量15MW,高炉煤气消耗量69500Nm3/h,每度电消耗煤气量:69500÷15000=4.63Nm3/(kW.h)。

由此可见采用饱和蒸汽过热方案,每度电消耗煤气量(3.38Nm3/ kW.h)低于高炉煤气锅炉发电(4.63Nm3/kW.h)。

饱和蒸汽过热发电方案中,高炉煤气利用率高主要体现在:

1)高炉煤气的能量经过热锅炉使蒸汽焓提高,蒸汽提高的焓基本都能够转化为电能,而不再额外增加冷凝损失(冷凝损失,即汽轮机排汽经过凝汽器冷却后带走的热量),所以,第二方案中消耗的高炉煤气大部分能够转换为电能。

2)不受末两级叶片排汽干度的限制,可降低排汽参数,增加发电量。

第二发电方案中,由于配套的煤气过热炉尾部增设的凝结水加热器,可使除氧器给水得到预热,增设的回热系统,对整个系统的效率有一定的提高;另外,除氧给水温度的升高,可降低除氧系统的自用蒸汽,从而增加用于发电的蒸汽量,经过计算,可增加5t/h的蒸汽用于发电。

第一方案中,由于受汽轮机排汽干度的限制,汽轮机排汽压力较高,浪费了蒸汽的做功能力,节能效果小于第二方案。

第一方案选择的饱和蒸汽汽轮机制造难度较高,使用寿命低,相比之下,第二方案更实用也更经济。

6 结束语

综上所述,饱和蒸汽余热发电技术可靠,节能效果显著,经济效益可观,适合于在钢铁、化工及玻璃等存在大量饱和蒸汽余热资源的行业中广泛应用。

参考文献

[1]何梅松,饱和蒸汽发电技术在废热利用系统中的应用,硫酸工业,2006(1):41-44.

[2]沈强,饱和蒸汽工业汽轮机的成功运用,冶金动力,2003(1):32-37.

相关文档
最新文档