平面直角坐标系规律题41840

合集下载

专题:平面直角坐标系中的变化规律(含答案)

专题:平面直角坐标系中的变化规律(含答案)

专题:平面直角坐标系中的变化规律——掌握不同规律,以不变应万变◆类型一沿坐标轴方向运动的点的坐标规律探究1.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2016次运动后,动点P的坐标是________.2.(2017·阿坝州中考)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P2017的坐标是________.◆类型二绕原点呈“回”字形运动的点的坐标规律探究3.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,请你观察图形,猜想由里向外第10个正方形四条边上的整点个数共有() A.10个B.20个C.40个D.80个第3题图第4题图4.(2017·温州中考)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P1P2︵,P2P3︵,P3P4︵,…得到斐波那契螺旋线,然后顺次连接P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上的点P9的坐标为()A.(-6,24) B.(-6,25)C.(-5,24) D.(-5,25)◆类型三图形变化中的点的坐标探究5.(2017·河南模拟)如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3…,则O10的坐标是()A.(16+4π,0) B.(14+4π,2)C.(14+3π,2) D.(12+3π,0)6.如图,在直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换后的三角形有何变化,找出规律,按此变换规律再将三角形OA3B3变换成三角形OA4B4,则A4的坐标是__________,B4的坐标是__________;(2)若按(1)中找到的规律将三角形OAB进行了n次变换,得到三角形OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测点A n的坐标是__________,点B n的坐标是__________.参考答案与解析1.(2016,0)解析:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等.∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).2.(672,1)解析:由已知得P7(2,1),P13(4,1),所以P6n+1(2n,1).因为2017÷6=336……1,所以P2017(336×2,1),即P2017(672,1).3.C解析:每个正方形四个顶点一定为整点,由里向外第n个正方形每条边上除顶可见,第n个正方形每条边上除顶点外还有(n-1)个整点,四条边上除顶点外有4(n-1)个整点,加上4个顶点,共有4(n-1)+4=4n(个)整点.当n=10时,4n=4×10=40,即由里向外第10个正方形的四条边上共有40个整点.故选C.4.B解析:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离为21+5=26,所以P9的坐标为(-6,25),故选B.5.C6.(1)(16,3)(32,0)(2)(2n,3)(2n+1,0)解析:(1)∵A1(2,3),A2(4,3),A3(8,3),∴A4的横坐标为24=16,纵坐标为3.故点A4的坐标为(16,3).又∵B1(4,0),B2(8,0),B3(16,0),∴B4的横坐标为25=32,纵坐标为0.故点B4的坐标为(32,0).(2)由A1(2,3),A2(4,3),A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故点A n的坐标为(2n,0).由B1(4,0),B2(8,0),B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故点B n的坐标为(2n+1,0).。

平面直角坐标系找规律100题

平面直角坐标系找规律100题

以下是关于在平面直角坐标系中寻找规律的100道题目:1. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并继续这个规律。

2. 连接点(-1, 0), (0, 1), (1, 0), (0, -1), (-1, 0) 形成一个图形。

这个图形是什么?3. 找到缺失的坐标:(2, 5), (4, 10), (6, ?)。

4. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并继续这个规律。

5. 连接点(1, 1), (2, 2), (3, 3), (4, 4), ... 形成一条直线。

这条直线的斜率是多少?6. 找到缺失的坐标:(3, 6), (5, ?), (7, 14)。

7. 绘制点(-1, 0), (-2, 0), (-3, 0), (-4, 0), ... 并继续这个规律。

8. 连接点(0, 1), (1, 0), (0, -1), (-1, 0), (0, 1) 形成一个图形。

这个图形是什么?9. 找到缺失的坐标:(2, 4), (4, ?), (6, 12)。

10. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并找出这个规律的方程。

11. 连接点(1, 2), (2, 4), (3, 6), (4, 8), ... 形成一条直线。

这条直线的斜率是多少?12. 找到缺失的坐标:(2, 5), (4, ?), (6, 11)。

13. 绘制点(-1, -1), (0, 0), (1, 1), (2, 2), ... 并继续这个规律。

14. 连接点(-1, 1), (-2, 2), (-3, 3), (-4, 4), ... 形成一条直线。

这条直线的斜率是多少?15. 找到缺失的坐标:(3, 6), (5, ?), (7, 13)。

16. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并找出这个规律的方程。

七年级数学下册 专题训练:平面直角坐标系中点的规律探究(精选30题)(解析版)

七年级数学下册 专题训练:平面直角坐标系中点的规律探究(精选30题)(解析版)

七年级下册数学《第七章平面直角坐标系》专题:平面直角坐标系中点的规律探究一、选择题(共10题)1.(2022秋•定远县期中)如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是()A.(505,1009)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)【分析】设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2022=505×4+2即可得出点A2022的坐标.【解答】解:设第n次跳动至点A n,观察,发现:A(﹣1,0),A1(﹣1,1),A2(1,1),A3(1,2),A4(﹣2,2),A5(﹣2,3),A6(2,3),A7(2,4),A8(﹣3,4),A9(﹣3,5),…,∴A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(506,1011).故选:D.【点评】本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律是解题的关键.2.(2022秋•古田县期中)在平面直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去.设P n(x n,y n),n=1,2,3…,则x1+x2+…+x2017的值为()A.2016B.2017C.﹣2016D.2015【分析】根据给定的平移规律,可得x1=1,x2=﹣1,x3=﹣1,x4=3,进一步可得x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,再根据2017÷4=504...1,进一步计算即可.【解答】解:根据题意,可得x1=1,x2=﹣1,x3=﹣1,x4=3,∴x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,∵2017÷4=504...1,∴x2017=2×504+1=1009,∴x1+x2+…+x2017=504×2+1009=2017,故选:B.【点评】本题考查了坐标与平移,找出点坐标之间的规律是解题的关键.3.(2022秋•李沧区期末)如图,在平面直角坐标系中,A1(1,﹣2),A2(2,0),A3(3,2),A4(4,0),…根据这个规律,点A2023的坐标是()A.(2022,0)B.(2023,0)C.(2023,2)D.(2023,﹣2)【分析】由图形得出点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,继而求得答案.【解答】解:观察图形可知,点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,2023÷4=505……3,所以点A2023坐标是(2023,2).故选:C.【点评】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解题的关键是根据图形得出规律.4.(2021春•浉河区期末)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2021次跳动至点A2021的坐标是()A.(﹣1009,1009)B.(﹣1010,1010)C.(﹣1011,1011)D.(﹣1012,1012)【分析】根据点的坐标、坐标的平移寻找规律即可求解.【解答】解:因为A1(﹣1,1),A2(2,1),A3(﹣2,2),A4(3,2),A5(﹣3,3),A6(4,3),A7(﹣4,4),A8(5,4),…A2n﹣1(﹣n,n),A2n(n+1,n)(n为正整数),所以2n﹣1=2021,n=1011,所以A2020(﹣1011,1011),故选:C.【点评】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.5.(2021秋•九江期末)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙都从点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,0)D.(﹣1,﹣1)【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.【解答】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒,则两个物体每次相遇时间间隔为121+2=4秒,则两个物体相遇点依次为(﹣1,1)、(﹣1,﹣1)、(2,0),∵2022=3×673…3,∴第2022次两个物体相遇位置为(2,0),故选:A.【点评】本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.6.(2022春•启东市期中)如图,在平面直角坐标系xOy中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8)…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2020+a2021+a2022的值为()A.2021B.2022C.1011D.1012【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.【解答】解:由直角坐标系可知A(1,1),B(2,﹣1),C(3,2),D(4,﹣2),……,即a1=1,a2=1,a3=2,a4=﹣1,a5=3,a6=2,a7=4,a8=﹣2,……,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,∴a2021=﹣505,2023÷4=505……3,∴a2022=506,故a2020+a2021+a2022=1012,故选:D.【点评】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.7.(2022•浉河区校级开学)如图,在平面直角坐标系中,A1(2,0),B1(0,1),A1B1的中点为C1;A2(0,3),B2(﹣2,0),A2B2的中点为C2;A3(﹣4,0),B3(0,﹣3),A3B3的中点为C3;A4(0,﹣5),B4(4,0),A4B4的中点为C4;…;按此做法进行下去,则点C2022的坐标为()A.(﹣1012,−20232)B.(﹣1011,20232)C.(﹣1011,−20232)D.(﹣1012,−20212)【分析】根据题意得点∁n的位置按4次一周期的规律循环出现,可求得点C2022在第二象限,从而可求得该题结果.【解答】解:由题意可得,点∁n的位置按4次一周期的规律循环出现,∵2022÷4=505……2,∴点C2022在第二象限,∵位于第二象限内的点C2的坐标为(﹣1,32),点C6的坐标为(﹣3,72),点C10的坐标为(﹣5,112),……∴点∁n的坐标为(−2,r12),∴当n=2022时,−2=−20222=−1011,r12=2022+12=20232,∴点C2022的坐标为(﹣1011,20232),故选:B.【点评】此题考查了点的坐标方面规律性问题的解决能力,关键是能根据题意确定出该点的出现规律.8.(2022春•冷水滩区校级期中)如图,已知A1(1,2)A2(2,2)A3(3,0)A4(4,﹣2)A5(5,﹣2)A6(6,0)……,按这样的规律,则点A2021的坐标为()A.(2021,2)B.(2020,2)C.(2021,﹣2)D.2020,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【解答】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故选:C.【点评】本题考查了平面直角坐标系中的点的规律问题,发现题中的规律并正确计算出点A2021所处的循环组是解题的关键.9.(2022春•宣化区期末)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2021,﹣1)C.(2022,1)D.(2022,0)【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:12×2×1=,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,∴点P1秒走12个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2022÷4=505余2,∴P的坐标是(2022,0),故选:D.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标()A.(14,0)B.(14,﹣1)C.(14,1)D.(14,2)【分析】观察图形可知,横坐标相等的点的个数与横坐标相同,根据求和公式求出第100个点的横坐标以及在这一横坐标中的所有点中的序数,再根据横坐标是奇数时从上向下排列,横坐标是偶数时从下向上排列,然后解答即可.【解答】解:由图可知,横坐标是1的点共有1个,横坐标是2的点共有2个,横坐标是3的点共有3个,横坐标是4的点共有4个,…,横坐标是n的点共有n个,1+2+3+…+n=or1)2,当n=13时,13×(13+1)2=91,当n=14时,14×(14+1)2=105,所以,第100个点的横坐标是14,∵100﹣91=9,∴第100个点是横坐标为14的点中的第9个点,∵第142=7个点的纵坐标是0,∴第9个点的纵坐标是2,∴第100个点的坐标是(14,2).故选:D.【点评】本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.二、填空题(共10题)11.(2022春•东洲区期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是.A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)【分析】观察图形可知:每4次运动为一个循环,并且每一个循环向左运动4个单位,用2022÷4可判断出第2022次运动时,点P在第几个循环第几次运动中,进一步即可计算出坐标.【解答】解:动点P的运动规律可以看作每运动四次为一个循环,每个循环向左运动4个单位,∵2022÷4=505……2,∴第2022次运动时,点P在第506次循环的第2次运动上,∴横坐标为﹣(505×4+2)=﹣2022,纵坐标为0,∴此时P(﹣2022,0).故答案为:(﹣2022,0).【点评】本题考查规律型:点坐标,解答时注意探究点的运动规律,又要注意动点的坐标的象限符号.12.(2022秋•肃州区校级期末)如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…则点A2022的坐标是.【分析】根据题意可以发现规律:A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n ﹣1),A4n+3(﹣n﹣1,﹣n﹣1),根据规律求解即可.【解答】解:根据题意可以发现规律:A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),A6(2,﹣2),A7(﹣2,﹣2),A8(﹣2,2),…,∴A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n﹣1),A4n+3(﹣n﹣1,﹣n﹣1),∵2022=4×505+2,∴点A2022的坐标为(506,﹣506),故答案为:(506,﹣506).【点评】本题主要考查规律性:点的坐标,读懂题意,找出点的坐标规律是解答此题的关键.13.(2021秋•同安区期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A2021的坐标为.【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),由2021是奇数,且2021=2n﹣1,则可求A2n﹣1(3032,1010).【解答】解:观察图形可得,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵2021是奇数,且2021=2n﹣1,∴n=1011,(3032,1010),∴A2n﹣1故答案为(3032,1010).【点评】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.14.(2022•嘉峪关一模)如图,平面直角坐标系xOy内,动点P按图中箭头所示方向依次运动,第1次从点(0,1)运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),……按这样的运动规律,动点P第2022次运动到的点的坐标是.【分析】根据图形分析点P的运动规律:第n次运动到的点的横坐标为n,纵坐标每四次为一个循环,即可得到答案.【解答】解:∵第1次运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),…,∴第n次运动到的点的横坐标为n,纵坐标每四次一个循环,从第一次运动到的纵坐标开始,分别为0、﹣2、0、1、…,∵2022÷4=505⋯2,∴动点P第2022次运动到的点的坐标是(2022,﹣2),故答案为:(2022,﹣2).【点评】此题考查了图形坐标的规律,正确理解图形运动坐标变化规律,得到点P的坐标是解题的关键.15.(2022秋•涡阳县校级月考)如图,一动点在第一象限内及x轴,y轴上运动,第一分钟,它从原点运动到(1,0),第二分钟,从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,每分钟运动1个单位长度.第30分钟,动点所在的位置的坐标是.【分析】根据移动次数与点的坐标的所呈现的规律进行计算即可.【解答】解:根据移动的方向,距离所呈现的规律可得,当移动到点(1,0)时,对应的移动次数为1次,当移动到点(2,0)时,对应的移动次数为4+2×2=8次,当移动到点(3,0)时,对应的移动次数为8+1=9次,当移动到点(4,0)时,对应的移动次数为9+3×2+1+4×2=24次,当移动到点(5,0)时,对应的移动次数为24+1=25次,所以移动30次,所对应的点的坐标为(5,5),故答案为:(5,5).【点评】本题考查点的坐标,发现移动次数与点的坐标所呈现的规律是正确解答的关键.16.(2022•绥化三模)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,点P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2),…,根据这个规律,点P2022的坐标为.【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限,被4除余3的点在第一象限的角平分线上,点P2022的在第三象限,且横纵坐标的绝对值=2022÷4的商,纵坐标是2022÷4的商+1,再根据第三项象限内点的符号得出答案即可.【解答】解:∵2022÷4=505…2,∴点P2022在第二象限,∵P6(﹣1,2),P10(﹣2,3),P14(﹣3,4),…,6÷4=1…2,10÷4=2…2,14÷2=3..2,…,∴P2022(﹣505,506).故答案为:(﹣505,506).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.17.(2022秋•杏花岭区校级期中)在平面直角坐标系xOy中,对于点P(x,y),我们把点P1(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,⋯,A n,若点A1的坐标为(3,1),则点A2022的坐标为.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2022除以4,根据商和余数的情况确定点A2022的坐标即可.【解答】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2022÷4=505余2,∴点A2022的坐标与A2的坐标相同,为(0,4);故答案为:(0,4).【点评】此题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.18.(2022春•长安区校级期中)如图1,弹性小球从点P(0,3)出发,沿图中所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到长方形的边时,记为点P1,第2次碰到长方形的边时,记为点P2,…,第n次碰到长方形的边时,记为点P n,则点P3的坐标是;点P2022的坐标是.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2022除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,根据图形知点P3的坐标是(8,3),根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2022÷6=337,当点P第2021次碰到矩形的边时为第337个循环组的第6次反弹,点P的坐标为(0,3),故答案为:(8,3),(0,3).【点评】本题考查了矩形的性质、点的坐标的规律;作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.19.(2022春•五华区校级期中)如图,在直角坐标系中,长方形OABC的长为2,宽为1,将长方形OABC沿x轴翻转1次,点A落在A1处,翻转2次,点A落在A2处,翻转3次,点A落在A3处(点A3与点A2重合),翻转4次,点A落在A4处,以此类推…,若翻转2022次,点A落在A2022处,则A2022的坐标为.【分析】探究规律,利用规律解决问题即可.【解答】解:由题意A1(3,2),A2(A3)(5,0),A4(6,1),•••,发现4次一个循环,∵2022÷4=505.....2,∴A2022的纵坐标与A2相同,横坐标=505×6+5=3035,∴A2022(3035,0),故答案为:(3035,0).【点评】本题考查坐标与图形的变化﹣对称,规律型问题,解题的关键是学会探究规律的方法,属于中考填空题中的压轴题.20.(2022春•江岸区校级月考)如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点.其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…根据这个规律,第87个点的坐标为,第2022个点的坐标为.【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点的横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束.例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,......,右下角的点的横坐标为9时,共有92=81个,9是奇数,以横坐标为9,纵坐标为0的点结束,故第87个点的坐标为(10,5),右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),∴第2020个点的坐标为(45,3)故答案为:(10,5),(45,3).【点评】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.三、解答题(共10题)21.(2022秋•无为市月考)在平面直角坐标系中,一个动点A从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4,A6,A12,A14.(2)按此规律移动,n为正整数,则点A4n的坐标为,点A4n+2的坐标为.(3)动点A从点A2022到点A2023的移动方向是.(填“向上”、“向右”或“向下”)【分析】(1)根据点的坐标变化即可填写各点的坐标;(2)根据(1)发现规律即可写出点A4n的坐标(n为正整数);(3)根据(2)发现的规律,每四个点一个循环,进而可得蜗牛从点A2020到点A2021的移动方向.【解答】解:(1)根据点的坐标变化可知:各点的坐标为:A4(2,0),A6(3,1),A12(6,0),A14(7,1);故答案为:(2,0),(3,1),(6,0),(7,1);(2)根据(1)发现:点A4n的坐标(n为正整数)为(2n,0);点A4n+2的坐标为(2n+1,1);故答案为:(2n,0),(2n+1,1);(3)因为每四个点一个循环,所以2023÷4=505…3.所以从点A2022到点A2023的移动方向是向下.故答案为:向下.【点评】本题考查了规律型﹣点的坐标,解决本题的关键是根据点的坐标变化发现规律,总结规律,运用规律.22.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…(1)填写下列各点的坐标:P9(、),P12(、),P15(、)(2)写出点P3n的坐标(n是正整数);(3)点P60的坐标是(、);(4)指出动点从点P210到点P211的移动方向.【分析】由题意可以知道,动点运动的速度是每次运动一个单位长度,(0,1)→(1,1)→(1,0)→(1,﹣1)……通过观察找到有规律的特殊点,如P3、P6、P9、P12,发现其中规律是脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,明确这个规律即可解决以上所有问题.【解答】解:(1)由动点运动方向与长度可得P3(1,0),P6(2,0),可以发现脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,即动点运动三次与横轴相交,故答案为P9(3,0),P12(4、0),P15(5、0).(2)由(1)可归纳总结点P3n的坐标为P3n(n,0),(n是正整数);(3)根据(2),∵60=3×20,∴点P60的横坐标是20故点P60的坐标是(20、0)故答案为(20、0).(4)∵210=3×70,符合(2)中的规律∴点P210在x轴上,又由图象规律可以发现当动点在x轴上时,偶数点向上运动,奇数点向下运动,而点P210是在x轴上的偶数点所以动点从点P210到点P211的移动方向应该是向上.【点评】本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定动点移动的数字与方向上的规律,然后再进一步按规律解决要求的点的位置.23.(2021秋•长丰县期末)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2、4、6、8、…,顶点依次用A1、A2、A3、A4、…表示.(1)请直接写出A5、A6、A7、A8的坐标;(2)根据规律,求出A2022的坐标.【分析】(1)看图观察即可直接写出答案;(2)根据正方形的性质找出部分A n点的坐标,根据坐标的变化找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n 为自然数)”,依此即可得出结论.【解答】解:(1)A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2);(2)观察发现:A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1),A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2),A9(﹣3,﹣3),…,∴A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数),∵2022=505×4+2,∴A2022(﹣506,506).【点评】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标的变化找出变化规律是关键.24.一个质点在第一象限及x轴、y轴移动,在第一秒时,它从原点移动到(0,1),然后按着下列左图中箭头所示方向移动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动1个单位.(1)该质点移动到(1,1)的时间为秒,移动到(2,2)的时间为秒,移动到(3,3)的时间为秒,…,移动到(n,n)的时间为秒.(2)该质点移动到(7,4)的时间为秒.【分析】(1)根据图形可得出质点移动到(1,1),(2,2),(3,3)的时间,根据规律可得出质点移动(n,n)的时间;(2)现有(1)的结论得出(7,7)的时间,再加上3即可得出移动到(7,4)的时间.【解答】解:(1)由图可知移动到(1,1)的时间为2秒,移动到(2,2)的时间为6秒,移动到(3,3)的时间为12秒,根据变化规律可得移动到(n,n)的时间为n(n+1),故答案为:2,6,12,n(n+1);(2)由(1)可得移动到(7,7)的时间为7×8=56,56+3=59,∴移动到(7,4)的时间为59秒,故答案为59.【点评】本题主要考查点的坐标的变化规律,关键是要能找到质点移动到(n,n)的时间的规律.25.(2022•马鞍山一模)如图,某小区绿化区的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1,A1的坐标为(2,2),A2的坐标为(5,2).(1)A3的坐标为,A n的坐标为用含n的代数式表示;(2)若护栏长为2020,则需要小正方形个,大正方形个.【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A 2,A 3,…,A n 各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020米包含多少这样的长度,进而便可求出结果.【解答】解:(1)∵A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2,∵小正方形的边长为1,∴A 1,A 2,A 3,…,A n 各点的横坐标依次大3,∴A 3(5+3,2),A n (2+3+3+⋅⋅⋅+3︸(K1)个3,2),即A 3(8,2),A n (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.【点评】本题是点的坐标的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.26.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变成△OA 2B 2,第三次将△OA 2B 2变成△OA 3B 3,已知A (1,5),A 1(2,5),A 2(4,5),A 3(8,5);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后三角形有何变化,找出规律.按此规律将△OA 3B 3变成△OA 4B 4,则A 4的坐标是,B 4的坐标是.(2)若按第(1)题中找到的规律将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点的坐标有何变化,找出规律,推测A n 的坐标是,B n 的坐标是.【分析】(1)对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是5,同理B 1,B 2,B n 也一样找规律.(2)根据第一问得出的A 4的坐标和B 4的坐标,再此基础上总结规律即可知A n 的坐标是(2n ,5),B n 的坐标是(2n +1,0).【解答】解:(1)因为A(1,5),A1(2,5),A2(4,5),A3(8,5)…纵坐标不变为5,同时横坐标都和2有关,为2n,那么A4(16,5);因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,同时横坐标都和2有关为2n+1,那么B的坐标为B4(32,0);故答案为:(16,5),(32,0);(2)由上题第一问规律可知A n的纵坐标总为5,横坐标为2n,B n的纵坐标总为0,横坐标为2n+1,∴A n的坐标是(2n,5),B n的坐标是(2n+1,0).故答案为:(2n,5),(2n+1,0).【点评】本题考查了学生观察图形及总结规律的能力,涉及的知识点为:平行于x轴的直线上所有点纵坐标相等,x轴上所有点的纵坐标为0.27.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…∁n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,∁n,D n;(3)请求出四边形A5B5C5D5的面积.【分析】(1)根据点的坐标规律解答即可;(2)根据点的坐标规律解答即可;(3)根据四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5计算即可.【解答】解:(1)A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).(2)A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).(3)∵A5(17,0),B5(0,18),C5(﹣19,0),D5(0,﹣20).∴四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5=12×17×18+12×18×19+12×19×20+12×20×17=684.故答案为:A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).【点评】此题考查点的坐标,关键是根据图形得出点的坐标的规律进行分析.28.(2021春•自贡期末)综合与实践问题背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB和CD中点P1、P2,然后写出它们的坐标,则P1,P2.探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.拓展应用:(3)利用上述规律解决下列问题:已知三点E(﹣1,2),F(3,1),G(1,4),第四个点H(x,y)与点E、点F、点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.【分析】(1)根据坐标的确定方法直接描点,:分别读出各点的纵横坐标,即可得到各中点的坐标;(2)根据(1)中的坐标与中点坐标找到规律;(3)利用(2)中的规律进行分类讨论即可答题.【解答】解:(1)如图:A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB和CD中点P1、P2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为(1+22,1+22).故答案为:(1+22,1+22).(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,32)、(2,52)、(0,3)∴①HG过EF中点(1,32)时,r12=1,r42=32解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,52)时,−1+2=2,2+2=52解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,3+2=0,1+2=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).【点评】本题考查了坐标与图形性质.通过此题,要熟记平面直角坐标系中线段中点的横坐标为对应线段的两个端点的横坐标的平均数,中点的纵坐标为对应线段的两个端点的纵坐标的平均数.29.(2022•包河区二模)如图,在平面直角坐标系中,点A1的坐标为(1,0)、点A2的坐标为(2,0)、点A3的坐标为(3,0)、…,过点A1、A2、A3、…分别作x轴垂线,交直线y=x于点B1、B2、B3、…,△OA1B1覆盖的整点(横、纵坐标均为整数的点)的个数记为P1,面积的值记为S1;△OA2B2覆盖的整点的个数记为P2,面积的值记为S2;△OA3B3覆盖的整点的个数记为P3,面积的值记为S3;…(1)由题意可知:P1=3、S1=12;P2=6、S2=2;P3=10、S3=92;则P4=、S4=;(2)P7﹣S7=;。

平面直角坐标系中的规律问题

平面直角坐标系中的规律问题

平面直角坐标系的问题1、如图,平面直角坐标系中点A的坐标为(-1,0),B的坐标为(1,0),C的坐标为(3,0),D为y轴正半轴上一点,且∠ODB=30°延长DB至E,使BE=BD,P为X轴上正半轴上一动点(p在C的右边),M在EP 上,且∠EMA等于60°,AM叫BE与N1.求证BE=BC2.求证角ANB=∠EPC3.当P点运动时,求BP-BN得值2、如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴,y轴的正半轴上,且满足根号(OB²-3)+绝对值(OA-1)=0.(1)求点A、B坐标。

(2)若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP。

设△ABP面积为S,点P 的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围。

(3)在(2)的条件下,是否存在点P,使以点A、B、P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由。

3、如图,在平面直角坐标系中,点A(0,a)在y轴正半轴上,点C(b,0)在x正半轴上,B的坐标为(-2,0),且(a+b-7)² +丨2a-b-2丨≤0①求△ABC的面积②D为线段OA上一动点(不与O.A重合),直线BD交AC于E点,∠DAE、∠BEA的平分线交于F点,,过O点做∠AOC的平分线交∠EBO的平分线于G点,在①的条件下,下列结论:1·∠AFE+∠BGO的值不变;2·∠AFE-∠BGO的值不变,有且只有一个值是正确的,请选出正确的结论并说明理由4、如图:在平面直角坐标系中,A 为y 轴正半轴上的一点,过A 作x 轴的平行线,交函数y=-2/x(x<0)的图像于B ,交函数y=6/x(x>0)的图像于C ,过C 作y 轴的平行线交BO 的延长线于D 。

(1)如果点A 的坐标为(0,2),求线段AB 与线段CA 的长度之比。

八下平面直角坐标系里的规律题

八下平面直角坐标系里的规律题

八下平面直角坐标系里的规律题一、引言:了解平面直角坐标系平面直角坐标系是数学中一个基本的概念,它在几何、代数等领域都有着广泛的应用。

在这个坐标系中,我们可以用两个变量x和y来表示点的位置。

本文将重点讨论平面直角坐标系中的规律题,帮助大家掌握解题技巧,提高解题能力。

二、坐标系的基本概念和符号表示平面直角坐标系由两条互相垂直的数轴组成,分别为x轴和y轴。

横坐标为x,纵坐标为y。

坐标原点为(0,0),正负坐标表示点在x轴和y轴上的位置。

如点A的坐标为(3,5),表示点A位于第一象限。

三、平面直角坐标系的规律题类型1.点的坐标规律:如点的坐标和、差、积、商等规律。

2.线段的规律:如线段的中点、中线、平行线等规律。

3.三角形的规律:如三角形面积、周长、角度等规律。

4.图形变换规律:如平移、旋转、缩放等变换规律。

四、解题方法与技巧1.利用坐标系中点的性质解题:熟练掌握点的坐标和、差、积、商等基本运算。

2.利用几何图形性质解题:了解各种几何图形的性质,如直线、圆、三角形等。

3.利用数学公式解题:熟记相关数学公式,如坐标变换、面积公式等。

4.画图辅助解题:对于复杂题目,可以尝试画图辅助分析,使问题更加直观。

五、典型例题解析这里给出一个典型例题进行解析:已知点A(2,3),B(5,7),求线段AB的中点坐标。

解:利用中点公式,线段AB的中点坐标为((2+5)/2,(3+7)/2)=(3.5,5.5)。

六、巩固练习与答案解析1.已知点A(-3,2),求点A到原点的距离。

解:利用距离公式,OA = √(-3+2)= √(9+4)= √13。

2.已知点A(2,-1),B(4,3),求线段AB的斜率。

解:利用斜率公式,k = (3-(-1))/(4-2)= 4/2 = 2。

七、总结:提高解题能力的策略1.熟练掌握平面直角坐标系的基本概念和运算。

2.了解各类规律题的解题思路和方法。

3.多做练习,积累经验,提高解题速度。

4.学会画图辅助解题,使问题更加直观。

(完整版)整理好的平面直角坐标系找规律解析

(完整版)整理好的平面直角坐标系找规律解析

平面直角坐标系找规律题型解析1、如图,正方形ABCD 的顶点分别为A(1,1) B(1,-1) C(-1,-1) D(-1,1),y 轴上有一点P(0,2)。

作点P 关于点A 的对称点p1,作p1关于点B 的对称点p2,作点p2关于点C 的对称点p3,作p3关于点D 的对称点p4,作点p4关于点A 的对称点p5,作p5关于点B 的对称点p6┅,按如此操作下去,则点p2011的坐标是多少?解法1:对称点P1、P2、P3、P4每4个点,图形为一个循环周期。

设每个周期均由点P1,P2,P3,P4组成。

第1周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第2周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第3周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第n 周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)解法2:根据题意,P1(2,0) P2(0,-2) P3(-2,0) P4(0,2)。

根据p1-pn 每四个一循环的规律,可以得出:P4n (0,2),P4n+1(2,0),P4n+2(0,-2),P4n+3(-2,0)。

2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。

此题是每四个点一循环,起始点是p 点。

2、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A4( , ),A8( , ),A10( , ),A12( );(2)写出点A4n 的坐标(n 是正整数);(3)按此移动规律,若点Am 在x 轴上,请用含n 的代数式表示m (n 是正整数)(4)指出蚂蚁从点A2011到点A2012的移动方向.(5)指出蚂蚁从点A100到点A101的移动方向.(6)指出A106,A201的的坐标及方向。

(完整版)平面直角坐标系规律题(带答案)

(完整版)平面直角坐标系规律题(带答案)

平面直角坐标系规律题1.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2).....根据这个规律,第2016个点的坐标为什么?2.如图,一个质点在第一象限及x轴、y轴上运动,一秒钟后,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒运动一个单位长度,那么第2016秒后质点所在位置的坐标是()3.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是______.第2016次呢?4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是()。

第2016个点的坐标是()5、如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为________.答案:1.解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),2.(8 ,44)3.观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故答案为:(51,50).4.经过观察可得:以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).5.由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),所以,点A4n+1(2n,1).故答案为:(2n,1).。

关于平面直角坐标系的最难规律题

关于平面直角坐标系的最难规律题

在数学学习中,平面直角坐标系是一个非常基础且重要的概念。

它不仅仅在数学课堂上有着重要地位,更是在实际生活中有着广泛的应用。

今天我们要探讨的主题是关于平面直角坐标系中的最难规律题,我们将以从简到繁、由浅入深的方式来深入探讨这一主题。

1. 第一步:理解平面直角坐标系的基本概念在开始深入讨论关于平面直角坐标系的最难规律题之前,我们首先需要对平面直角坐标系有一个基本的了解。

平面直角坐标系是由两条相互垂直的数轴构成,通常水平的为x轴,垂直的为y轴。

这个概念相信大家都已经非常熟悉了,所以不再赘述。

2. 第二步:挖掘平面直角坐标系中的常见规律题在学习平面直角坐标系的过程中,我们通常会遇到一些常见的规律题,比如直线的方程、点到直线的距离、曲线的图像等等。

这些规律题在平面直角坐标系中有着重要的地位,而且也是我们理解最难规律题的基础。

3. 第三步:解析平面直角坐标系中的难点在掌握了平面直角坐标系的基本概念和常见规律题之后,我们来看一下最难规律题中的难点所在。

其实,平面直角坐标系中最难的规律题往往涉及到多个概念的综合运用,需要我们具备较高的逻辑思维能力和数学运算能力。

4. 第四步:举例分析具体的最难规律题为了更好地理解平面直角坐标系中的最难规律题,我们通过具体的例子来进行分析。

某一曲线的方程为y=x^2+3x-2,求曲线上满足条件的点的坐标。

这个题目涉及到了曲线方程的运用、方程求解的方法等多个知识点,是一个典型的最难规律题。

5. 第五步:总结归纳平面直角坐标系中最难规律题的解题思路通过对平面直角坐标系中最难规律题的全面评估和具体例子的分析,我们来总结归纳一下解题思路。

对于这类最难规律题,我们首先需要理解题目所涉及的概念和知识点,然后将其综合运用进行解题。

在解题过程中,灵活运用数学运算方法和逻辑推理是非常重要的。

个人观点和理解:平面直角坐标系中的最难规律题确实需要我们具备较高的数学素养和解决问题的能力。

通过不断的练习和思考,我们可以逐渐提升自己的解题能力,掌握这些最难规律题的解题方法。

备战中考数学二轮专题归纳提升真题平面直角坐标系规律探究问题(解析版)

备战中考数学二轮专题归纳提升真题平面直角坐标系规律探究问题(解析版)

专题01 平面直角坐标系规律探究问题【知识点梳理】1、关于x 轴、y 轴或原点对称的点的坐标的特征点P (a ,b )与关于x 轴对称点的坐标为 (a ,-b ) 点P (a ,b )与关于y 轴对称点的坐标为 (-a ,b ) 点P (a ,b )与关于原点对称点的坐标为 (-a ,-b ) 口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号 2、点的平移点P (a ,b )沿x 轴向右(或向左)平移m 个单位后对应点的坐标是(a ±m,b ); 点P (a ,b )沿y 轴向上(或向下)平移n 个单位后对应点的坐标是(a,b ±n ). 口诀:横坐标右加左减,纵坐标上加下减.3、两点间的距离:在x 轴或平行于x 轴的直线上的两点P 1 (x 1,y ),P 2 (x 2,y )间的距离为|x 1−x 2| 在y 轴或平行于y 轴的直线上的两点P 1 (x ,y 1),P 2 (x ,y 2)间的距离为|y 1−y 2| 任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2的中点坐标为(x 1+x 22,y 1+y 22)任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2=√(x 1−x 2)2+(y 1−y 2)2【典例分析】【例1y)经过某种变换后得到点P ′(−y +1,x +2),我们把点P ′(−y +1,x +2)叫做点P(x,y)的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…、nP 、…,若点p 1的坐标为(2,0),则点P 2022的坐标为_____。

【答案】(1,4).解析:解:P 1 坐标为(2,0),则P 2坐标为(1,4),P 3坐标为(-3,3),P 4坐标为(-2,-1),P 5坐标为(2,0),∴P n 的坐标为(2,0),(1,4),(-3,3),(-2,-1)循环, ∵2022=4×505+2, ∴P 2022 坐标与P 2点重合, 故答案为(1,4).【练1】在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(y -1,-x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,2),则A 2023的坐标为________【答案】(-3,0)解析:解:∵A1(3,2),A2(1,-2),A3(-3,0),A4(-1,4),A5(3,2),…,∴点A n的坐标4个一循环.∵2023=505×4+3,∴点A2023的坐标与点A2的坐标相同.∴A2023的坐标为(-3,0),故答案为:(-3,0).【练2】某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2022的坐标为()A.(22021﹣1,22021+1)B.(22022﹣1,22022+1)C.(22022﹣2,22022+2)D.(22021﹣2021,22021+2021)【答案】B【解析】解:∵一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,∴A n(2n﹣1,2n+1),∴A2022的坐标为:(22022﹣1,22022+1),故选:B.【练3】对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2022(1,﹣1)=.【答案】(21011,21011)【解析】解:由题意可得:P1(1,﹣1)=(0,2),P2(1,﹣1)=(2,﹣2)P3(1,﹣1)=(0,4),P4(1,﹣1)=(4,﹣4)P5(1,﹣1)=(0,8),P6(1,﹣1)=(8,﹣8)…当n为奇数时,P n(1,﹣1)=(0,),当n为偶数时,P n(1,﹣1)=(2n2,2n2),∴P2022(1,﹣1)应该等于(21011,21011).故答案是:(21011,21011).【例2】如图,在平面直角坐标系中,A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…根据这个规律,探究可得点A2022的坐标是()A.(2022,0)B.(2022,2)C.(2021,﹣2)D.(2022,﹣2)【答案】A【解析】解:观察图形可知,点A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…的横坐标依次是1、2、3、4、…、n,纵坐标依次是2、0、﹣2、0、2、0、﹣2、…,四个一循环,2022÷4=505…2,故点A2022坐标是(2022,0).故选:A.【练1】如图,动点P1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2022,0)D.(2022,1)【答案】C【解析】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位,∴2022=4×505+2.当第505循环结束时,点P位置在(2020,0),在此基础之上运动两次到(2022,0).故选C.【练2】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1)B.(2022,2)C.(2022,﹣2)D.(2022,0)【答案】D【解析】解:观察图象,动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P的纵坐标是0,故选:D.【练3】如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2022的坐标是_____________.【答案】(1011,1).【解析】观察图象可知,点A的纵坐标每4个点循环一次,∵2022=505×4+2,∴点A2022的纵坐标与点A2的纵坐标相同,∵A2(1,1),A6(3,1),A10(5,1)……,∴点A2022的坐标是(1011,1).【例3】如图,在平面直角坐标系上有个点A(-1,O),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2022次跳动至点A2022的坐标是( )A.(-505, 1011)B.(505, 1010)C.(-506, 1010)D.(506, 1011)【答案】D【解析】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(505+1,505×2+1),即(506,1011).故选:D.【练1】如图所示,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位……依此规律跳动下去,点P第99次跳动至点P99的坐标是_____【答案】(-25,50)【解析】解:由题中规律可得出如下结论:设点Px的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n-1)和4n-3,在y轴左侧的点的下标是:4n-2和4n-1;判断P199的坐标,就是看99=4(n-1)和99=4n-3和99=4n-2和99=4n-1这四个式子中哪一个有负整数解,从而判断出点的横坐标.由上可得:点P第99次跳动至点P99的坐标是(-25,50)故答案为:(-25,50).【练2】如图,在平面直角坐标系上有点A0(1,0),点A0第一次跳动至点A1(−1,1),第二次点A1跳动至点A2(2,1),第三次点A跳动至点A3(−2,2),第四次点A3跳动至点A4(3,2),……依2此规律跳动下去,则点A2021与点A2022之间的距离是()A.2023B.2022C.2021D.2020【答案】A【解析】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至A2022点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(﹣1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012﹣(﹣1011)=2023.故选:A.【练3】在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(﹣1,3),第四次从点A3跳动到点A4(﹣1,4),…,按此规律下去,则点A2021的坐标是()A.(673,2021)B.(674,2021)C.(﹣673,2021)D.(﹣674,2021)【答案】B【解析】解:因为A1(0,1),A2(1,2),A3(﹣1,3),A4(﹣1,4),A5(2,5),A6(﹣2,6),A7(﹣2,7),A8(3,8),…A3n﹣1(n,3n﹣1),A3n(﹣n,3n),A3n+1(﹣n,3n+1)(n为正整数),∵3×674﹣1=2021,∴n=674,所以A2021(674,2021),故选:B.【例4】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2022个点的坐标为________【答案】(45,6)【解析】解:观察图形,可知:第1个点的坐标为(1,0),第4个点的坐标为(1,1),第9个点的坐标为(3,0),第16个点的坐标为(1,3),…,∴第(2n-1)2个点的坐标为(2n-1,0)(n为正整数).∵2025=452,∴第2025个点的坐标为(45,0).又∵2025-3=2022,∴第2022个点在第2025个点的上方3个单位长度处,∴第2022个点的坐标为(45,3).故答案为:(45,3).【练1】如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)【答案】B【解析】解:根据题意可知:O A1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【练2】如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2022秒时,点所在位置的坐标是( )A .(2,44)B .(41,44)C .(44,41)D .(44,2)【答案】【解析】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x 轴时的横坐标为时间的平方,当点离开y 轴时的纵坐标为时间的平方, 此时时间为奇数的点在x 轴上,时间为偶数的点在y 轴上, ∵2022=452﹣3=2025﹣3,∴第2025秒时,动点在(45,0),故第2022秒时,动点在(45,0)向左一个单位,再向上2个单位, 即(44,2)的位置. 故选:D .【练3】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…根据这个规律探索可得,第99个点的坐标为( )A.(14,−1)B.(14,0)C.(14,1)D.(14,2)【答案】C【解析】解:在横坐标上,第一列有一个点,第二列有2个点…第n 个有n 个点, 并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为(n,n−12),(n,n−12−1),…,(n,1−n 2);偶数列的坐标为(n,n2),(n,n2−1),…,(n,1−n2), ∵1+2+3+4+……+13=91∴第99个点位于第14列自上而下第7行.−6),即(14,1).代入上式得(14,142故选C.【例5】如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,发现A(3,0),A1(12,3),A2(15,0)…那么点A2022的坐标为.【答案】(12135,0)【解析】解:∵∠AOB=90°,点A(3,0),B(0,4),根据勾股定理得AB=5,根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A2n﹣1(12n,3),A2n(12n+3,0),∵2022=2n,∴n=1011,∴点A2022的坐标为(12135,0),故答案为:(12135,0).【练1】如图,动点P从(0,3)出发沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2022次碰到长方形的边时点P的坐标为.【答案】(0,3【解答过程】解:如图所示:经过6次反弹后动点回到出发点(0,3),∵2022÷6=337∴当点P第2022次碰到矩形的边时与P点起点位置重合,∴点P的坐标为(0,3).故答案为:(0,3).【练2】如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点P1,P2,P3,...,P2022,则点P2022的坐标是()A.(2022,2)B.(2022,√3)C.(4043,2)D.(4043, √3)【答案】D【解析】解:由题意可知P1是1P的横坐标是3,P3的横坐标是5,P4的横坐标是7…依此类推下去,P n的横坐标是2n-1,∴P2022的横坐标是2×2022-1=4043纵坐标都是√3,故选:D.连续作旋转变换,依【练3】如图,在直角坐标系中,已知点A(−3,0),B(0,4),对OAB次得到Δ1,Δ2,Δ3,Δ4,…,则∆2022的直角顶点的坐标为______.【答案】(8088,0)【解析】解:∵点A(-3,0)、B(0,4),∴AB=√32+42=5由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2022÷3=674,∴∆2022的直角顶点是第674个循环组的最后一个三角形的直角顶点;∵674×12=8088,∴∆2022的直角顶点的坐标为(8088,0).故答案为(8088,0).【例6】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2021B2022C2022的顶点B2022的坐标是_____.【答案】(0,-22011)【解析】解:∵正方形OA1B1C1的边长为1,∴OB1=√2∴OB2=2∴B2(0,2),同理可知B3(-2,2),B4(-4,0),B5(-4,-4),B6(0,-8),B7(8,-8),B9(16,16),B10(0,32).由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标的符号相同,每次正方形的边长变为原来的√2倍,∵2022÷8=252⋯⋯6,∴B8n+6(0,-24n+3),∴B2022(0,-22011).故答案为:(0,-22011).【练1】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2022的坐标是_____.【答案】(0,-22011)【解析】解:由等腰直角三角形的性质,可知:A 1(1,1),A 2(0,2),A 3(﹣2,2),A 4(0,﹣4),A 5(﹣4,﹣4),A 6(0,﹣8),A 7(8,﹣8),A 8(16,0),A 9(16,16),A 10(0,32),A 11(﹣32,32),…,∵2022=252×8+6∴点A 8n+6的坐标为(0,24n+3)(n 为自然数).∴点A 2022的坐标为(0,24×252+3),即(0,-22011),故答案为:(0,-22011).【练2】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点2A ,作正方形A 2B 2C 2C 1……按这样的规律进行下去,第2022个正方形的面积为_____.【答案】5×(32)4042.【解析】解:∵点A 的坐标为(1,0),点D 的坐标为(0,2)∴正方形ABCD 的边长为√5,设其面积为S 1=5,依此类推,接下来的面积依次为S 2,S 3,S 4⋯⋯第2022个正方形的面积为S 2022,又∵三角形相似,∴ OA OD =A 1B AB =A 2B 1A 1B 1=⋯=12. ∴ S 2=5×94,S 3=5×(94)2…… ∴S 2022=5×(94)2022−1=5×(94)2021=5×(32)4042.【练3】如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线B n B n+1都在y 轴上,且B n B n+1的长度依次增加1个单位长度,顶点A n都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为;用n的代数式表示A n的纵坐标:.【答案】2;【解析】解:作A1D⊥y轴于点D,则B1D=B1B2÷2=(3﹣1)÷2=1,∴A1的纵坐标=B1D+B1O=1+12,同理可得A2的纵坐标=OB2+(B2B3)÷2=3+(6﹣3)÷2 4.5,∴A n的纵坐标为,故答案为2,.。

平面直角坐标系中的规律问题专项训练(30道)

平面直角坐标系中的规律问题专项训练(30道)

平面直角坐标系中的规律问题专项训练(30道)【北师大版】考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,涵盖了平面直角坐标系中的规律问题所有类型!1.(2021•张湾区模拟)如图,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如图顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2021个点的坐标为()A.(46,4)B.(46,3)C.(45,4)D.(45,5)2.(2021春•嘉祥县期末)如图,长方形BCDE的各边分别平行于x轴、y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.(﹣1,﹣1)B.(2,0)C.(1,﹣1)D.(﹣1,1)3.(2021春•德阳期末)如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为()A.(505,﹣504)B.(506,﹣505)C.(505,﹣505)D.(﹣506,506)4.(2021春•乌苏市期末)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1向右跳到A2(2,1),第三次点A2跳到A3(﹣2,2),第四次点A3向右跳动至点A4,(3,2),…,依此规律跳动下去,则点A2019与点A2020之间的距离是()A.2021B.2020C.2019D.20185.(2021春•西宁期末)如图,在平面直角坐标系中,A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…根据这个规律,探究可得点A2021的坐标是()A.(2020,0)B.(2021,2)C.(2020,﹣2)D.(2021,﹣2)6.(2021春•绥中县期末)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2021的坐标为()A.(﹣505,﹣505)B.(﹣505,506)C.(506,506)D.(505,﹣505)7.(2021春•东港区校级期末)在平面直角坐标系中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点A2,A2的伴随点A3,…,这样依次得到点A1,A2,A3,A4,…A n,…若点A1的坐标为(3,1),则点A2021的坐标为()A.(0,4)B.(﹣3,1)C.(0,﹣2)D.(3,1)8.(2021春•上杭县期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1),…,按照这样的规律下去,点A2021的坐标为()A.(6062,2020)B.(3032,1010)C.(3030,1011)D.(6063,2021)9.(2021春•九龙坡区期中)在平面直角坐标系内原点O (0,0)第一次跳动到点A 1(0,1),第二次从点A 1跳动到点A 2(1,2),第三次从点A 2跳动到点A 3(﹣1,3),第四次从点A 3跳动到点A 4(﹣1,4),…,按此规律下去,则点A 2021的坐标是( )A .(673,2021)B .(674,2021)C .(﹣673,2021)D .(﹣674,2021)10.(2021春•路南区期末)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第21秒时,点P 的坐标为( )A .(21,﹣1)B .(21,0)C .(21,1)D .(22,0)11.(2021春•铜梁区校级期末)如图,在平面直角坐标系中,一动点从原点O 出发,按“向上、向右、向下、向下、向右、向上…”的方向依次不断地移动,每次移动1个单位长度,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(1,﹣1),…那么点A 23的坐标是( )A .(7,﹣1)B .(8,1)C .(7,1)D .(8,﹣1)12.(2021春•青龙县期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1)B.(2022,2)C.(2022,﹣2)D.(2022,0)13.(2021春•抚顺期末)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0);(2,0);(2,1);(3,2)、(3,1),(3,0)、(4,0),…,根据这个规律探索可得,第20个点的坐标为()A.(6,4)B.(6,5)C.(7,3)D.(7,5)14.(2021春•福州期末)如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→…则2021分钟时粒子所在点的横坐标为()A.886B.903C.946D.99015.(2021春•海珠区校级月考)如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是()A.(3,44)B.(41,44)C.(44,41)D.(44,3)16.(2021春•凤翔县期末)如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,正方形ABCD的顶点C 的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C.(﹣2021,3)D.(﹣2021,﹣3)17.(2021春•武昌区期中)如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)18.(2021春•西平县期末)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,你观察图形,猜想由里向外第2021个正方形四条边上的整点个数共有()A.2021个B.4042个C.6063个D.8084个19.(2021•河南模拟)某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2021的坐标为()A.(22020﹣1,22020+1)B.(22021﹣1,22021+1)C.(22021﹣2,22021+2)D.(22020﹣2021,22020+2021)20.(2021春•蓝山县期末)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7……,都是斜边在x轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)21.(2020•克什克腾旗二模)如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n的坐标是()A.(2n,3)B.(2n﹣1,3)C.(2n+1,0)D.(2n,0)22.(2021春•潍坊期末)如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,发现A(3,0),A1(12,3),A2(15,0)…那么点A2021的坐标为.23.(2021春•龙港区期末)如图,两种大小不等的正方形间隔排列在平面直角坐标系中,已知小正方形的边长为1且A1的坐标为(2,2),A2的坐标为(5,2).(1)A3的坐标为;(2)A n的坐标为.(用含n的代数式表示)24.(2021春•新余期末)如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(1,2),第2次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(5,2).…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是.25.(2021•青田县模拟)如图,动点P从(0,3)出发沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2021次碰到长方形的边时点P的坐标为.26.(2021春•广水市期末)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上.将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2021次后,点P的坐标为.27.(2020春•江汉区期末)如图,在平面直角坐标系中,有若干个横坐标和纵坐标分别为整数的点,其顺序按图中“→”方向排列,第1个点为(1,0),后面依次为(2,0),(1,1),(1,2),(2,1),(3,0)…,根据这个规律,第110个点的坐标为.28.(2020•浙江自主招生)对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2015(1,﹣1)=.29.(2021•东城区校级模拟)如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线B n B n+1都在y轴上,且B n B n+1的长度依次增加1个单位长度,顶点A n都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为;用n的代数式表示A n的纵坐标:.30.(2021春•西城区校级期中)在直角坐标系中,我们把横,纵坐标都为整数的点叫敝整点,该坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点p作向上或向右运动(如图1所示).运动时间(s)与整点(个)的关系如下表:整点P运动的时间(秒)可以得到整点P的坐标可以得到整点P的个数1(0,1)(1,0)22(0,2)(1,1)(2,0)343(0,3)(1,2)(2,1)(3,0)………根据上表的运动规律回答下列问题:(1)当整点p从点O出发4s时,可以得到的整点的个数为个;(2)当整点p从点O出发8s时,在直角坐标系中描出可以得到的所有整点,并顺次连接这些整点;(3)当整点P从点O出发时,可以得到整点(16,4)的位置.。

七年级平面直角坐标系动点规律问题(经典难题)(可编辑修改word版)

七年级平面直角坐标系动点规律问题(经典难题)(可编辑修改word版)
点 A 、 B 、 O 的坐标分别为 1, 0 、 0 , 1 、 0 , 0,点 P1 , P2 , P3 ,…中相邻两点都关
于 △ ABO 的一个顶点对称,点 P1 与点 P2 关于点 A 对称,点 P2 与点 P3 关于点 B 对称,点 P3 与点 P4 关于点 O 对称,点 P4 与点 P5 关于点 A 对称,点 P5 与点 P6 关于点 B 对称,点 P6 与 点 P7 关于点 O 对称,…对称中心分别是 A , B , O , A , B , O ,…且这些对称中心依次
律走下去,当机器人走到 A6 时,A6 的坐标是

8、如图,将边长为 1 的正三角形 OAP 沿 x 轴正方向连续翻转 2019 次,点 P 依次落在点
P1, P2 ,, P2019 的位置,则点 P2019 的横坐标为
.
y
P
AO
P1
x
9、如图,在平面直角坐标系上有个点 P(1,0),点 P 第 1 次向上跳动 1 个单位至点
3.如图 3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,
其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),
(1,2),(2,2),…的规律排列,根据这个规律,第 2019 个点的横坐
标为

4.在平面直角坐标系中,一蚂蚁从原点 O 出发,按向上、向右、向下、向右的方向依次 不断移动,每次移动 1 个单位,其行走路线如下图所示。
C.(0,5)
D.(5,5)
图2 2、如图 2,所有正方形的中心均在坐标原点,且各边与 x 轴或 y 轴平行.从内到外,它们 的边长依次为 2,4,6,8,…,顶点依次用 A1,A2,A3,A4,…表示,则顶点 A55 的坐 标是( )

平面直角坐标系规律题(解析版)

平面直角坐标系规律题(解析版)

【期末复习】浙教版八年级上册提分专题:平面直角坐标系规律题【类题训练】1.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0),F(﹣4,0)同时出发,沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以4个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇地点的坐标是()A.(2,﹣2)B.(﹣2,﹣2)C.(﹣2,2)D.(2,2)【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体甲是物体乙的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:由题意知:矩形的边长为8和4,①第一次相遇物体甲与物体乙运动的时间为(2+4+4+2)÷(4+2)=2(秒),∴第一次相遇地点的坐标是(﹣2,2);②第二次相遇物体甲与物体乙运动的时间为(8×2+4×2)÷(4+2)=4(秒),∴第二次相遇地点的坐标是(4,0);③第三次相遇地点的坐标是(﹣2,﹣2);④第四次相遇地点的坐标是(﹣2,2);…则每相遇三次,为一个循环,∵2022÷3=674,故两个物体运动后的第2022次相遇地点的坐标为:(﹣2,﹣2),故答案为:B.2.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)……,则第50个点的坐标为()A.(7,6)B.(8,8)C.(9,6)D.(10,5)【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律“S n=”,依次变化规律解不等式100≤即可得出结论.【解答】解:设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=.当50≤S n,即50≤,解得:n≤﹣(舍去),或n≥.∵9<<10,则第50个点的横坐标为10.故选:D.3.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角(∠AOM =∠BOM),当点P第2022次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)【分析】动点的反弹与光的反射入射是一个道理,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,动点回到起始的位置,将2019除以6得到336,且余数为3,说明点P第2022次碰到矩形的边时为第336个循环组的第6次反弹,因此点P的坐标为(0,3).【解答】解:如图,根据反射角与入射角的定义作出图形,解:如图,第6次反弹时回到出发点,∴每6次碰到矩形的边为一个循环组依次循环,∵2022÷6=337,∴点P第2022次碰到矩形的边时是第336个循环组的第6次碰边,坐标为(0,3).故选:A.4.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第30次运动后,动点P的坐标是()A.(30,1)B.(30,0)C.(30,2)D.(31,0)【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第30次运动后,动点P的坐标.【解答】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4个数一个循环,因为30÷4=7……2,所以经过第30次运动后,动点P的坐标是(30,0).故选:B.5.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2),……则第2022秒点P所在位置的坐标是()A.(44,2)B.(44,3)C.(45,3)D.(45,2)【分析】分析点P在坐标系中的运动路线,寻找点P运动至x轴或y轴时的点坐标的规律.【解答】解:根据题意列出P的坐标寻找规律.P1(1,0);P8(2,0);P9(3,0);P24(4,0);P48(6,0);即P2n(2n+2)坐标为(2n,0).P2024(44,0).∴P2022坐标为P2024(44,0)退回两个单位→(44,1)→(44,2).故选:A.6.如图,在平面直角坐标系中,A1(2,0),B1(0,1),A1B1的中点为C1;A2(0,3),B2(﹣2,0),A2B2的中点为C2;A3(﹣4,0),B3(0,﹣3),A3B3的中点为C3;A4(0,﹣5),B4(4,0),A4B4的中点为C4;…;按此做法进行下去,则点C2022的坐标为()A.(﹣1012,﹣)B.(﹣1011,)C.(﹣1011,﹣)D.(﹣1012,﹣)【分析】根据题意得点∁n的位置按4次一周期的规律循环出现,可求得点C2022在第二象限,从而可求得该题结果.【解答】解:由题意可得,点∁n的位置按4次一周期的规律循环出现,∵2022÷4=505……2,∴点C2022在第二象限,∵位于第二象限内的点C2的坐标为(﹣1,),点C6的坐标为(﹣3,),点C10的坐标为(﹣5,),……∴点∁n的坐标为(﹣,),∴当n=2022时,﹣=﹣=﹣1011,==,∴点C2022的坐标为(﹣1011,),故选:B.7.如图,已知A1(1,2)A2(2,2)A3(3,0)A4(4,﹣2)A5(5,﹣2)A6(6,0)……,按这样的规律,则点A2021的坐标为()A.(2021,2)B.(2020,2)C.(2021,﹣2)D.2020,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【解答】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故选:C.8.如图,正方形的边长依次为2,4,6,8,……,他们在直角坐标系中的位置如图所示,其中A1(1,1),A2(﹣1,1),A3(﹣1.﹣1),A1(1,﹣1),A5(2.,2),A6(﹣2,2),A7(﹣2,﹣2),A8(2.﹣2),A9(3,3),A10(﹣3,3),……,按此规律接下去,则A2016的坐标为()A.(﹣504,﹣504)B.(504,﹣504)C.(﹣504,504)D.(504,504)【分析】由正方形的中心都是位于原点,边长依次为2,4,6,8,…,可得第n个正方形的顶点横坐标与纵坐标的绝对值都是n.计算2016÷4,根据商和余数知道是第几个正方形的顶点,且在哪一个象限,进而得出A2016的坐标.【解答】解:∵2016÷4=504,∴顶点A2016是第504个正方形的顶点,且在第二象限,横坐标是﹣504,纵坐标是504,∴A2016(﹣504,504),故选:C.9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第一次移动到A1,第二次移动到A2,…,第n次移动到A n,则A2022的坐标是()A.(2022,0)B.(1011,1)C.(1011,0)D.(2022,1)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2022的坐标.【解答】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2022÷4=505……2,所以A2022的坐标为(505×2+1,1),则A2021的坐标是(1011,1).故选:B.10.如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是.【分析】由题意观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),由2022=505×4+2,推出D2022(﹣2023,2022).【解答】解:∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……∴D2(﹣3,2),D3(﹣3,﹣4),D4(5,﹣4),D5(5,6),D6(﹣7,6),……,观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),∵2022=4×505+2,∴D2022(﹣2023,2022);故答案为:(﹣2023,2022).11.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…,根据这个规律探索可得,第10个点的坐标为,第55个点的坐标为.【分析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第10个点和第55个点的坐标,我们可以通过加法计算算出第10个点和第50个点分别位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【解答】解:在横坐标上,第一列有一个点,第二列有2个点…第n个有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,∵1+2+3+4=10,1+2+3+…+10=55,∴第10个点在第4列自下而上第4行,所以奇数列的坐标为(n,)(n,﹣1)…(n,);偶数列的坐标为(n,)(n,﹣1)…(n,1﹣),由加法推算可得到第55个点位于第10列自下而上第10行.代入上式得第10个点的坐标为(4,2),第55个点的坐标为(10,5),故答案为:(4,2),(10,5).12.如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D,C,P,H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2).(1)若点M在线段EG上,当点M与点A的距离最小时,点M的坐标为;(2)把一条长为2022个单位长度且无弹性的细线(粗细忽略不计)的一端固定在A处,并按AB→C→D→E→F→G→H→P→A…的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标为.【分析】(1)根据“垂线段最短”可确定点M的坐标;(2)先计算出该图形的周长是20,再由2022÷20的计算结果确定此题结果.【解答】解:(1)由垂线段最短可得,当AM⊥EG时点M与点A的距离最小,由题意得此时M的坐标为(1,﹣2),故答案为:(1,﹣2);(2)由题意得,此图形的周长为:2×[3﹣(﹣3)+2﹣(﹣2)]=2×(6+4)=2×10=20,∵2022÷20=101……2,∴细线的另一端在点B的位置,即另一端所在位置的点的坐标为(﹣1,2),故答案为:(﹣1,﹣2).13.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的规律第13次运动到点的坐标;经过第2022次运动后,动点P的坐标.【分析】由题意可得点P的运动按4次一周期的规律循环出现,再根据计算2022÷4=5…2可得此题结果.【解答】解:由题意可得,点P第n次运动后的横坐标为n,纵坐标按1,0,2,0,1,…4次一周期的规律循环出现,∵13÷4=3•1,2022÷4=5…2,∴第13次运动到点的坐标(13,1);经过第2022次运动后,动点P的坐标是(2022,0),故答案为:(13,1),(2022,0).14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第22个点的坐标为.【分析】观察图形,可知:每列的个数成等差数列,由等差数列的求和公式可得出第22个点为第7列的由上往下第1个,可求出第22个点的坐标(此处纵坐标为6﹣1).【解答】解:观察图形,可知:每列的个数成等差数列.∵1+2+3+4+5+6=21,∴第22个点为第7列从上往下的第1个.∴第22个点的坐标为(7,6).故答案为:(7,6).15.如图,在平面直角坐标系中,点A1在x轴的正半轴上,且OA1=1,以点A1为直角顶点,逆时针方向作Rt△A1OA2,使A1A2=OA1;再以点A2为直角顶点,逆时针方向作Rt△A2OA3,使A2A3=OA2;再以点A3为直角顶点,逆时针方向作Rt△A3OA4,使A3A4=OA3;依次进行作下去,则点A2022的坐标为.【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【解答】解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍,∵2022=252×8+6,根据规律OAn=()n﹣1,∴OA2022=()2021,∴点A2022的在第三象限的角平分线上,∴点A2022的横坐标为:﹣()2021÷=﹣()2020=﹣21010,点A2022的纵坐标为:﹣()2021÷=﹣()2020=﹣21010∴点A2022的坐标为(﹣21010,﹣21010),故答案为:(﹣21010,﹣21010).16.在平面直角坐标系中,﹣蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A4(,),A8(,);(2)写出点A4n的坐标(n是正整数)A4n(,);(3)求出A2022的坐标.【分析】根据题意可直接找出点的坐标规律,A4n(2n,0),A4n+1(2n,1),A4n+2(2n+1,1),A4n+3(2n+1,0),根据规律直接求出A4(2,0),A8(4,0),A4n(2n,0)A2022(1012,1).【解答】解:观察图形可知,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),...,A4n(2n,0),A4n+1(2n,1),A4n+2(2n+1,1),A4n+3(2n+1,0),(1)根据题意,可直接读出A4(2,0),A8(4,0),故答案为:2,0,4,0;(2)根据点的坐标规律可知,A4n(2n,0),故答案为:2n,0;(3)∵2022=4×505+2,∴A2022(1011,1).17.对于任何实数a,可用[a]表示不超过a的最大整数,即整数部分,{a}表示a的小数部分.例如:[1.3]=1,{﹣2.6}=0.4.(1)[]=,{﹣}=;(2)在平面直角坐标系中,有一序列点P1([1],{1}),P2([],{}),P3([],{}),P4([2],{2}),P5([],{}),…请根据这个规律解决下列问题:①点P10的坐标是;②横坐标为10的点共有个;③在前2022个点中,纵坐标相等的点共有个,并求出这些点的横坐标之和.【分析】(1)根据题意直接求解即可;(2)①根据题意找出点P n的坐标为P n([],{}),然后再求出点P10的坐标即可;②根据[]=10,可推出100≤n<121,再找出其中的整数即可;③将前几个点的坐标求出,找出规律:当n的值为平方数时,纵坐标为0,只有纵坐标为0时的点的纵坐标相等,再根据44<<45进行求解即可.【解答】解:(1)∵1<2<4,∴1<<2,∴[]=1,∵﹣4<﹣3<﹣1,∴﹣2<﹣<﹣1,∴{﹣}=﹣﹣(﹣2)=2﹣,故答案为:1,2﹣;(2)∵P1([1],{1}),P2([],{}),P3([],{}),P4([2],{2}),P5([],{}),…∴可发现点P n的坐标为P n([],{}),①根据规律可知,点P10的坐标为([],{}),∵9<10<16,∴3<<4,∴[]=3,{}=﹣3,∴点P10的坐标是(3,﹣3),故答案为:(3,﹣3);②∵点P n的坐标为P n([],{}),∴当[]=10时,100≤n<121,其中的整数共21个,故答案为:21;③根据题意可得,P1(1,0),P2(1,﹣1),P3(1,﹣1),P4(2,0),P5(2,﹣2),P6(2,﹣2),P7(2,﹣2),P8(2,2﹣2),P9(3,0),P10(3,﹣3),…可以发现,当n的值为平方数时,纵坐标为0,只有纵坐标为0时的点的纵坐标相等,∵44<<45,∴在前2022个点中,纵坐标相等的点共有44个,这些点的横坐标之和为1+2+3+...+44=990,∴在前2022个点中,纵坐标相等的点共有44个,这些点的横坐标之和为990,故答案为:44.18.在平面直角坐标系中,乙蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动一个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4();A8();A12()(2)指出蚂蚁从点A100到A101的移动方向.【分析】(1)观察图形可知,A4,A8、A12都在x轴上,求出OA4、OA8、OA12的长度,然后写出坐标即可;(2)根据100是4的倍数,可知从点A100到A101的移动方向与从点O到A1的方向一致.【解答】解:(1)由图可知,A4,A8、A12都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,OA12=6,∴A4(2,0),A8(4,0),A12(6,0)(2))∵100÷4=25,∴100是4的倍数,∴从点A100到A101的移动方向与从点O到A1的方向一致,为↑.故答案为:2,0;4,0;6,0.19.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为,B4的坐标为.(2)按以上规律将△OAB进行n次变换得到△OA n B n,则A n的坐标为,B n的坐标为;(3)△OA n B n的面积为.【分析】(1)根据题目中的信息可以发现A1、A2、A3各点坐标的关系为横坐标是2n,纵坐标都是3,故可求得A4的坐标;B1、B2、B3各点的坐标的关系为横坐标是2n+1,纵坐标都为0,从而可求得点B4的坐标.(2)根据(1)中发现的规律可以求得A n、B n点的坐标;(3)依据A n、B n点的坐标,利用三角形面积计算公式,即可得到结论.【解答】解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).∴A4的横坐标为:24=16,纵坐标为:3.故点A4的坐标为:(16,3).又∵B1(4,0)、B2(8,0)、B3(16,0).∴B4的横坐标为:25=32,纵坐标为:0.故点B4的坐标为:(32,0).故答案为:(16,3),(32,0).(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故A n的坐标为:(2n,3).由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0);故答案为:(2n,3),(2n+1,0);(3)∵A n的坐标为:(2n,3),B n的坐标为:(2n+1,0),∴△OA n B n的面积为×2n+1×3=3×2n.。

平面直角坐标系找规律100题

平面直角坐标系找规律100题

平面直角坐标系找规律100题【实用版】目录一、平面直角坐标系的基本概念1.有序数对和点2.平行于坐标轴的直线上的点的坐标特点3.各象限的角平分线上的点的坐标特点二、平面直角坐标系中的找规律问题1.6 个 1 循环2.点 P4n 在直线 yx 上(第三象限)3.初一数学题中的平面直角坐标系和找规律4.平面直角坐标系专题三、平面直角坐标系中的公式及做题技巧1.相邻 4 项之和都是 02.关于 x 轴、y 轴、原点的对称性四、平面直角坐标系中的例题解析1.点 A(-2, 1) 所在象限2.点 P 关于 x 轴、y 轴的对称点3.三角形 ABC 的面积和平移问题正文一、平面直角坐标系的基本概念平面直角坐标系是由两条互相垂直的直线组成的,通常称为 x 轴和y 轴。

它们将平面分成四个部分,称为第一、二、三、四象限。

在平面直角坐标系中,每个点都可以用一个有序数对 (a, b) 表示,其中 a 表示点在 x 轴上的位置,b 表示点在 y 轴上的位置。

1.有序数对和点有序数对是指有顺序的两个数 a 与 b 组成的数对,记作 (a, b)。

在平面直角坐标系中,一个点的位置可以表示为一个有序数对 (a, b),其中 a 表示点在 x 轴上的坐标,b 表示点在 y 轴上的坐标。

2.平行于坐标轴的直线上的点的坐标特点平行于 x 轴 (或横轴) 的直线上的点的纵坐标相同;平行于 y 轴(或纵轴) 的直线上的点的横坐标相同。

3.各象限的角平分线上的点的坐标特点第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

二、平面直角坐标系中的找规律问题1.6 个 1 循环在平面直角坐标系中,有一组数据为 1, 1, 2, 1, 3, 1, 4, 1,...,可以发现每 6 个数循环一次,即 1, 1, 2, 1, 3, 1。

2.点 P4n 在直线 yx 上(第三象限)已知点 P 的坐标为 (x, y),其中 x = 4n,n 为整数。

(完整版)平面直角坐标系规律题(带答案)

(完整版)平面直角坐标系规律题(带答案)

1.2.3.平面直角坐标系规律题如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中方向排列,如(1, 0), (2 , 0), ( 2, 1) , (1 , 1), (1 , 2), (2 ,2) ••…根据这个规律,第2016个点的坐标为什么?如图,一个质点在第一象限及x轴、y轴上运动,一秒钟后,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)T( 0,1) T( 1,1) T( 1,0)T…],且每秒运动一个单位长度,那么第2016秒后质点所在位置的坐标是(如图,在平面直角坐标系上有点 A (1, 0),点A第一次跳动至点A1( -1 ,1),第四次向右跳动5个单位至点A4( 3,2 ),•••, 依此规律跳动下去,点A第100次跳动至点A100的坐标是.第2016次呢?)65%5 -4 -3-2 -1 ° 1 2 3 4 5'玄如图,在平面直角坐标系上有个点P ( 1 , 0),点P第1次向上跳动1个单位至点P1 (1, 1),紧接着第2次向左跳动2个单位至点P2 (-1 , 1 ),第3次向上跳动1个单位,第4次向JA -----------------------------右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是()。

电-------------第2016个点的坐标是( ) 4 --------------4.5、如图,在平面直角坐标系中,一动点从原点0出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0, 1),A2(1, 1),A3(1, 0),A4(2, 0),…,那么点A4n +1(n是自然数)的坐标为_________答案:1.解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于例如:右下角的点的横坐标为 1,: 共有1 个, 1=12,右下角的点的横坐标为 2时, 共有 4 个, 4=22,右下角的点的横坐标为 3时, 共有 9 个, 9=32,右下角的点的横坐标为 4时, 共有 16个, 16=42,右下角的点的横坐标为 n时, 共有 n 2 个,T 452=2025,45 是奇数,/•第 2025 个点是(45, 0), 第2016个点是(45, 9),第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), 第2n 次跳动至点的坐标是(n +1, n ),•••第100次跳动至点的坐标是(51,50).故答案为:(51,50). 经过观察可得:以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为 100十2=50 其中4的倍数的跳动都在 y 轴的右侧,那么第100次跳动得到的横坐标也在 y 轴右侧.P 1横坐标为1,P 4横坐 标为2, P 8横坐标为3,依此类推可得到:P n 的横坐标为n *4+1 (n 是4的倍数). 故点P 100的横坐标为:100* 4+仁26,纵坐标为:100* 2=50,点P 第100次跳动至点P 100的坐标是(26,50). 2. 3. (8 , 44)观察发现,第2次跳动至点的坐标是(2,1),x 轴上右下角的点的横坐标的平方,4.。

平面直角坐标系规律题

平面直角坐标系规律题

. -平面直角坐标系规律题1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,那么顶点A55的坐标是〔〕第1题第6题第9题2、在平面直角坐标系中,对于平面内任一点〔a,b〕,假设规定以下三种变换:1、f〔a,b〕=〔﹣a,b〕.如:f〔1,3〕=〔﹣1,3〕;2、g〔a,b〕=〔b,a〕.如:g〔1,3〕=〔3,1〕;3、h〔a,b〕=〔﹣a,﹣b〕.如:h〔1,3〕=〔﹣1,﹣3〕.按照以上变换有:f〔g〔2,﹣3〕〕=f〔﹣3,2〕=〔3,2〕,那么f〔h〔5,﹣3〕〕等于〔〕3、在坐标平面内,有一点P〔a,b〕,假设ab=0,那么P点的位置在〔〕4、点P到x轴的距离为3,到y轴的距离为2,那么点P的坐标一定为〔〕A、〔3,2〕B、〔2,3〕C、〔﹣3,﹣2〕D、以上都不对5、假设点P〔m,4﹣m〕是第二象限的点,那么m满足〔〕6、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到〔0,1〕,然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2021秒时质点所在位置的坐标是〔〕7、点P〔3,a﹣1〕到两坐标轴的距离相等,那么a的值为〔〕8、假设,那么点P〔x,y〕的位置是〔〕9、如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到〔0,1〕,接着它按图所示在x轴、y轴的平行方向来回运动,〔即〔0,0〕→〔0,1〕→〔1,1〕→〔1,0〕→〔2,0〕→…〕且每秒运动一个单位长度,那么2021秒时,这个粒子所处位置为〔〕10、假设点N到x轴的距离是1,到y轴的距离是2,那么点N的坐标是〔〕11、在直角坐标系中,适合条件|x|=5,|x﹣y|=8的点P〔x,y〕的个数为〔〕12、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于〔2,﹣3〕,那么经两次跳动后,它不可能跳到的位置是〔〕13、观察以下有序数对:〔3,﹣1〕〔﹣5,〕〔7,﹣〕〔﹣9,〕…根据你发现的规律,第100个有序数对是.14、如图,在平面直角坐标系中,有假设干个整数点,其顺序按图中“→〞方向排列,如〔1,0〕,〔2,0〕,〔2,1〕,〔3,2〕,〔3,1〕,〔3,0〕〔4,0〕根据这个规律探索可得,第100个点的坐标为.第14题第15题第17题15、如图,A l〔1,0〕,A2〔1,1〕,A3〔﹣1,1〕,A4〔﹣1,﹣1〕,A5〔2,﹣1〕,….那么点A2007的坐标为.16、甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4,….依此运动规律,那么经过第11次运动后,动点P所在位置P11的坐标是.17、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到〔0,1〕,然后接着按图中箭头所示方向运动,即〔0,0〕→〔0,1〕→〔1,1〕→〔1,0〕→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.18、如图,在平面直角坐标系上有个点P〔1,0〕,点P第1次向上跳动1个单位至点P1〔1,1〕,紧接着第2次向左跳动2个单位至点P2〔﹣1,1〕,第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是.点P第2021次跳动至点P2021的坐标是.第18题第19题19、如图,在平面直角坐标系中,有假设干个整数点,其顺序按图中“→〞方向排列,如〔0,0〕→〔1,0〕→〔1,1〕→〔2,2〕→〔2,1〕→〔2,0〕…根据这个规律探索可得,第100个点的坐标是_________ .20、如图,A1〔1,0〕,A2〔1,﹣1〕,A3〔﹣1,﹣1〕,A4〔﹣1,1〕,A5〔2,1〕,…,那么点A2021的坐标是.第20题第22题第24题第25题21、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.22、电子跳蚤游戏盘为△ABC〔如图〕,AB=8,AC=9,BC=10,如果电子跳蚤开场时在BC边上P0点,BP0=4,第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规定跳下去,第2021次落点为P2021,那么点P2021与A点之间的距离为.23、在y轴上有一点M,它的纵坐标是6,用有序实数对表示M点在平面内的坐标是.24、如图,一个动点在第一象限内及x轴,y轴上运动,在第一分钟,它从原点运动到〔1,0〕,第二分钟,从〔1,0〕运动到〔1,1〕,而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,且每分钟运动1个单位长度.当动点所在位置分别是〔5,5〕时,所经过的时间是分钟,在第1002分钟后,这个动点所在的位置的坐标是.25、如下图,在平面直角坐标系中,有假设干个整数点,其顺序按图中箭头方向排列,如〔1,0〕,〔2,0〕,〔2,1〕,〔3,2〕,〔3,1〕,〔3,0〕,…,根据这个规律探索可得,第102个点的坐标为_________ .26、观察以下有规律的点的坐标:依此规律,A11的坐标为,A12的坐标为.27、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点〔3,0〕〔允许重复过此点〕处,那么质点不同的运动方案共有种.28、,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A 〔10,0〕、C〔0,4〕,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.答案与评分标准选择题1、〔2021•〕如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,那么顶点A55的坐标是〔〕A、〔13,13〕B、〔﹣13,﹣13〕C、〔14,14〕D、〔﹣14,﹣14〕考点:点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系规律题1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()第1题第6题第9题2、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:1、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);2、g(a,b)=(b,a).如:g(1,3)=(3,1);3、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()3、在坐标平面内,有一点P(a,b),若ab=0,则P点的位置在()4、点P到x轴的距离为3,到y轴的距离为2,则点P的坐标一定为()A、(3,2)B、(2,3)C、(﹣3,﹣2)D、以上都不对5、若点P(m,4﹣m)是第二象限的点,则m满足()6、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()7、已知点P(3,a﹣1)到两坐标轴的距离相等,则a的值为()8、若,则点P(x,y)的位置是()9、如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()10、若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是()11、在直角坐标系中,适合条件|x|=5,|x﹣y|=8的点P(x,y)的个数为()12、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是()13、观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是.14、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为.第14题第15题第17题15、如图,已知A l(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),….则点A2007的坐标为.16、已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4,….依此运动规律,则经过第11次运动后,动点P所在位置P11的坐标是.17、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.18、如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P100的坐标是.点P第2009次跳动至点P2009的坐标是.第18题第19题19、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,0)→(1,0)→(1,1)→(2,2)→(2,1)→(2,0)…根据这个规律探索可得,第100个点的坐标是_________ .20、如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是.第20题第22题第24题第25题21、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.22、电子跳蚤游戏盘为△ABC(如图),AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上P0点,BP0=4,第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规定跳下去,第2008次落点为P2008,则点P2008与A点之间的距离为.23、在y轴上有一点M,它的纵坐标是6,用有序实数对表示M点在平面内的坐标是.24、如图,一个动点在第一象限内及x轴,y轴上运动,在第一分钟,它从原点运动到(1,0),第二分钟,从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,且每分钟运动1个单位长度.当动点所在位置分别是(5,5)时,所经过的时间是分钟,在第1002分钟后,这个动点所在的位置的坐标是.25、如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中箭头方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第102个点的坐标为_________ .26、观察下列有规律的点的坐标:依此规律,A11的坐标为,A12的坐标为.27、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方案共有种.28、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.答案与评分标准选择题1、(2010•武汉)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A、(13,13)B、(﹣13,﹣13)C、(14,14)D、(﹣14,﹣14)考点:点的坐标。

专题:规律型。

分析:观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.解答:解:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得:3=4×0+3,A3的坐标为(0+1,0+1),即A3(1,1),;7=4×1+3,A7的坐标为(1+1,1+1),A7(2,2),;11=4×2+3,A11的坐标为(2+1,2+1),A11(3,3);…55=4×13+3,A55(14,14),A55的坐标为(13+1,13+1);故选C.点评:本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置及所在的正方形,然后就可以进一步推得点的坐标.2、(2009•济南)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:1、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);2、g(a,b)=(b,a).如:g(1,3)=(3,1);3、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A、(﹣5,﹣3)B、(5,3)C、(5,﹣3)D、(﹣5,3)专题:新定义。

分析:先根据题例中所给出点的变换求出h(5,﹣3)=(﹣5,3),再代入所求式子运算f(﹣5,3)即可.解答:解:按照本题的规定可知:h(5,﹣3)=(﹣5,3),则f(﹣5,3)=(5,3),所以f(h (5,﹣3))=(5,3).故选B.点评:本题考查了依据有关规定进行推理运算的能力,解答时注意按照从里向外依次求解,解答这类题往往因对题目中的规定的含义弄不清楚而误选其它选项.3、在坐标平面内,有一点P(a,b),若ab=0,则P点的位置在()A、原点B、x轴上C、y轴D、坐标轴上考点:点的坐标。

分析:根据坐标轴上点的的坐标特点解答.解答:解:∵ab=0,∴a=0或b=0,(1)当a=0时,横坐标是0,点在y轴上;(2)当b=0时,纵坐标是0,点在x轴上.故点P在坐标轴上.故选D.点评:本题主要考查了坐标轴上点的的坐标特点,即点在x轴上点的坐标为纵坐标等于0;点在y 轴上点的坐标为横坐标等于0.4、点P到x轴的距离为3,到y轴的距离为2,则点P的坐标一定为()A、(3,2)B、(2,3)C、(﹣3,﹣2)D、以上都不对考点:点的坐标。

分析:点P到x轴的距离为3,则这一点的纵坐标是3或﹣3;到y轴的距离为2,那么它的横坐标是2或﹣2,从而可确定点P的坐标.解答:解:∵点P到x轴的距离为3,∴点的纵坐标是3或﹣3;∵点P到y轴的距离为2,∴点的横坐标是2或﹣2.∴点P的坐标可能为:(3,2)或(3,﹣2)或(﹣3,2)或(﹣3,﹣2),故选D.点评:本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离.5、若点P(m,4﹣m)是第二象限的点,则m满足()A、m<0B、m>4C、0<m<4D、m<0或m>4考点:点的坐标。

分析:根据点在第二象限的坐标特点解答即可.解答:解:∵点P(m,4﹣m)是第二象限的点,∴m<0,4﹣m>0,∴m<0.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A、(16,16)B、(44,44)C、(44,16)D、(16,44)考点:点的坐标。

专题:规律型。

分析:通过观察和归纳要知道所有偶数的平方均在x轴上,且坐标为k,便对应第k2个点,且从k2向上走k个点就转向左边;所有奇数的平方均在y轴上,且坐标为k,便对应第k2个点,且从k2向右走k个点就转向下边,计算可知2008=442+72,从而可求结果.解答:解:由观察及归纳得到,箭头指向x轴的点从左到右依次为:0,3,4,15,16,35,36…我们所关注的是所有偶数的平方均在x轴上,且坐标为k,便对应第k2个点,且从k2向上走k个点就转向左边,如22向上走2便转向;箭头指向y轴的点依次为:0,1,8,9,24,25…我们所关注的是所有奇数的平方均在y轴上,且坐标为k,便对应第k2个点,且从k2向右走k个点就转向下边,如52向右走5便转向;因为2008=442+72,所以先找到(44,0)这是第1936个点,还有72步,向上走44步左转,再走28步到达,距y轴有44﹣28=16个单位,所以第2008秒时质点所在位置的坐标是(16,44).故选D.点评:本题主要考查了学生观察和归纳能力,会从所给的数据和图形中寻求规律进行解题.7、已知点P(3,a﹣1)到两坐标轴的距离相等,则a的值为()A、4B、3C、﹣2D、4或﹣2考点:点的坐标。

相关文档
最新文档