函数与导数压轴题方法归纳与总结
导数压轴题的几种处理方法
2、直接求导后对参数展开讨论,然后求出含参最值,从而 确定参数范围
例题: 设
,其中
.
(1)若
有极值,求 的取值范围;
(2)若当
,
恒成立,求 的取值范围.
解:( 1)由题意可知:
则
有两个不同的实数根,故
解得:
,即
(2)由于
,
恒成立,则
由于
,且
有极值,
,
( 4 分)
,即
(6 分)
,则①Βιβλιοθήκη 当时,在则当
时,
有零点需满足
二、适当处理后能够简化运算:
上都单调递减,于是函数 上单调递减,所以当
,即
.
3、(2014 年一测 )已知函数 f (x)=xlnx , g(x)=k(x-1) ( 1)若 f (x)>=g(x),求 k 的范围
.⑴解 : 注意到函数 f (x) 的定义域为 (0, ) ,
所以 f (x) g(x) 恒成立
f (x)
x
设 h(x) ln x k (x 1) (x 0) ,
h (x) x x2
x x2
1
k
xk
则
,
g(x)
恒成立 ,
x
------------2
分
当 k 0 时 , h (x) 0 对 x 0 恒成立 , 所以 h(x) 是 (0, ) 上的增函数 ,
注意到 h(1) 0 , 所以 0 x 1 时 , h(x) 0 不合题意 .-------4 分
处取得极大值、在
处取得极小值,
,解得:
;
(8 分)
②
当
时,
,即
在
上单调递增,且
高考压轴题:导数题型及解题方法总结很全.
注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max
专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)
专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。
高考压轴题函数与导数考点
e
e
e
e
∴切线方程为 y-3=3(x-1),即 3x-ey=0. ee
例 2.求 f(x)=ex(1+2)在点(1,f(1))处的切线方程. x
解:由 f(x)=ex(1+2),得 f ′(x)=ex(- 1 +1+2)
x
x² x
由 f(1)=3e,得切点坐标为(1,3e),由 f ′(1)=2e,得切线斜率为 2e;
∴曲线 H(x0)=-2x03+3x0²-3 与直线 y=m 有三个不同交点,
H′(x0)=-6x0²+6x0=-6x0(x0-1) 令 H′(x0)>0,则 0<x0<1;令 H′(x0)<0,则 x0<0 或 x0>1 ∴H(x0)在(-∞,0)递减,在(0,1)递增,在(1,+∞)递减, ∴H(x0)的极小值=H(0)=-3,H(x0)的极大值=H(1)=-2, 由题意得-3<x<-2. 例 4.由点(-e,e-2)可向曲线 f(x)=lnx-x-1 作几条切线,并说明理由. 解:设切点为(x0,lnx0-x0-1),则切线斜率 f ′(x0)=x10-1,切线方程为
当 x0=x2 时,切线方程为ห้องสมุดไป่ตู้y-f(x2)=f ′(x0)(x-x2) 例 1.求 f(x)=1x3+4过点 P(2,4)的切线方程.
33 解:设切点为(x0,13x03+43),则切线斜率 f ′(x0)=x0²,
所以切线方程为:y-13x03+43=x0² (x-x0), 由切线经过点 P(2,4),可得 4-13x03+43=x0² (2-x0),整理得:x03-3x0²+4 =0,解得 x0=-1 或 x0=2 当 x0=-1 时,切线方程为:x-y+2=0; 当 x0=2 时,切线方程为:4x-y-4=0. 例 2.求 f(x)=x3-4x²+5x-4 过点 (2,-2)的切线方程. 解:设切点为(x0,x03-4x0²+5x0-4),则切线斜率 f ′(x0)=3x0²-8x0+5, 所以切线方程为:y-(x03-4x0²+5x0-4)=(3x0²-8x0+5) (x-x0), 由切线经过点 P(2,4),可得 4-(x03-4x0²+5x0-4)=(3x0²-8x0+5) (2-x0), 解得 x0=1 或 x0=2 当 x0=1 时,切线方程为:2x+y-2=0; 当 x0=2 时,切线方程为:x-y-4=0. 例 3.过 A(1,m)(m≠2)可作 f(x)=x3-3x 的三条切线,求 m 的取值范围. 解:设切点为(x0,x03-3x0),则切线斜率 f ′(x0)=3x0²-3,切线方程为
函数与导数压轴题题型与解题方法(高考必备)
函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
导数压轴题十种构造方法大全以及解题方法导引
导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
高考函数与导数类压轴题的6大模型与23种考法总结!压轴题不只学霸才能解~
高考函数与导数类压轴题的6大模型与23种考法总结!压轴
题不只学霸才能解~
只有学霸才会解'压轴题'嘛?
在高考数学里,这个问题的答案一定是否定的,数学压轴题十之有九是对函数与导数问题的考查,此类题型确实不简单,但极具规律性,属于难,但是容易备考的题型。
今天车车帮你整理好了压轴题的所有题型和命题角度,无论你的数学成绩如何,请务必试试攻克它。
文末查看电子版领取方式。
\
本文目录
题型一切线型
1.求在某处的切线方程
2.求过某点的切线方程
3.已知切线方程求参数
题型二单调型
1.主导函数需“二次求导”型
2.主导函数为“一次函数”型
3.主导函数为“二次函数”型
4.已知函数单调性,求参数范围
题型三极值最值型
1.求函数的极值
2.求函数的最值
3.已知极值求参数
4.已知最值求参数
题型四零点型
1.零点(交点,根)的个数问题
2.零点存在性定理的应用
3.极值点偏移问题
题型五恒成立与存在性问题
1.单变量型恒成立问题
2.单变量型存在性问题
3.双变量型的恒成立与存在性问题
4.等式型恒成立与存在性问题
题型六与不等式有关的证明问题
1.单变量型不等式证明
2.含有e x与lnx的不等式证明技巧
3.多元函数不等式的证明
4.数列型不等式证明的构造方法。
高考导数压轴题型归类总结
⑴当a 0时,f (x) x2e x ,f '(x) (x2 2x)e x,故f '(1) 3e.
所以曲线y f (x)在点(1, f (1))处的切线的斜率为3e.
f '(x) x (a 2)x 2a 4ae . ⑵
2
2
x
w.w.w. k.s.5.u.c.o.m
令f '(x) 0,解得x 2a,或x a 2.由a 2 知, 2a a 2. 3
函数f ( x)在x 2a处取得极大值f (2a),且f (2a) 3ae 2a . w.w.w.k.s.5.u.c.o.m
函数f (x)在x a 2处取得极小值f (a 2),且f (a 2) (4 3a)ea2.
② 若a < 2 ,则 2a > a 2 ,当 x 变化时, f '(x),f (x) 的变化情况如下表: 3
5
已知函数 f (x) =ln(1+ x )- x + x x2 ( k ≥0). 2
(Ⅰ)当 k =2时,求曲线 y = f (x) 在点(1, f (1))处的切线方程;
(Ⅱ)求 f (x) 的单调区间.
解:(I)当 k 2 时, f (x) ln(1 x) x x2 , f '(x) 1 1 2x 1 x
(0,)
,
令 g(x) ax2 x 1 a, x (0,),
8. (是一道设计巧妙的好题,同时用到 e 底指、对数,需要构造函数,证存在且唯一时结合零 点存在性定理不好想,⑴⑵联系紧密)
已知函数 f (x) ln x, g(x) ex.
⑴若函数 φ (x) = f (x)- x 1 ,求函数 φ (x)的单调区间; x1
2
以下分两种情况讨论:
(完整版)高考数学导数压轴题7大题型总结
目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。
导数解答题是高考数学必考题目,然而学生由于缺乏方法,同时认识上的错误,绝大多数同学会选择完全放弃,我们不可否认导数解答题的难度,但也不能过分的夸大。
掌握导数的解体方法和套路,对于基础差的同学不说得满分,但也不至于一分不得。
为了帮助大家复习,今天就总结倒数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题。
1导数单调性、极值、最值的直接应用tatimeandAllthingsintheirbeingaregoodforsot a ti m e an dAl l th i n gs in th ei r be i ng ar eg oo d2交点与根的分布3不等式证明(一)做差证明不等式tatimeandAllthingsintheirb(二)变形构造函数证明不等式etatimeandAllthingsintheirbeingaregoo(三)替换构造不等式证明不等式dtatimeandAllthingsintheirbeingaregoodforsoi m e an dAl l th i n gs in th ei r be i ng ar eg oo df or s o4不等式恒成立求字母范围(一)恒成立之最值的直接应用(二)恒成立之分离参数tatimeandAllthingsintheirbeinga(三)恒成立之讨论字母范围rtatimeandAllthingsint5函数与导数性质的综合运用hetatimeandAllthingsintheirbeingarego6导数应用题odtatimeandAllthin7导数结合三角函数gstatimeandAllthingsintheirbeingaregoo。
高考导数压轴题-函数与导数核心考点(完美版)
题型二 单调型
1.主导函数需 “二次求导 ”型 I 不含参求单调区间
例
1.求函数
f
(x
)=
x(
ex
-
1)-
1 2x
2的单调区间
.
解: f(x)的定义域为 R f ′x()= ex(1+x)-1-x=(x+ 1)(ex+1)
令 f ′x()>0,得 x<- 1 或 x> 0;令 f ′x()<0,得- 1< x<0
所以切线方程为: y- 13x03+43=x02(x-x0),
由切线经过点
P(2,4),可得
4-
13x03+
4 3=
x02(2-
x0),整理得:
x03-
3x02+
4
= 0,解得 x0=- 1 或 x0=2
当 x0=- 1 时,切线方程为: x-y+ 2= 0;
当 x0=2 时,切线方程为: 4x-y-4=0. 例 2.求 f(x)=x3- 4x2+5x-4 过点 (2,- 2)的切线方程 . 解:设切点为 (x0,x03- 4x02+5x0-4),则切线斜率 f ′x(0)= 3x02-8x0+5,
点 P 在曲线上 切点
点 P 不在曲线上 不是切点
点 P 在曲线上 不确定是切点
O
P
O
O
P
P
Step1 设切点为 (x0,f(x0)),则切线斜率 f ′x(0),切线方程为:
y- f(x0)=f ′x(0)(x- x0)
Step2 因为切线过点 (a, b),所以 b-f(x0)= f ′x(0)(a-x0),解得 x0=x1 或 x0=x2
∵切线经过点 P(1,m), ∴ m- (x03-4x02+5x0-4)= (3x02- 8x0+ 5) (1-x0), 即:- 2x03+ 3x02-3-m=0,即 m=- 2x03+3x02-3 ∵过点 A(1, m)(m≠2可) 作 f(x)=x3- 3x 的三条切线, ∴方程 m=- 2x03+ 3x02-3,有三个不同的实数根 .
函数与导数解题方法知识点技巧总结材料
函数与导数解题方法知识点技巧总结1. 高考试题中,关于函数与导数的解答题(从宏观上)有以下题型: 〔1〕求曲线()y f x =在某点出的切线的方程 〔2〕求函数的解析式〔3〕讨论函数的单调性,求单调区间 〔4〕求函数的极值点和极值 〔5〕求函数的最值或值域 〔6〕求参数的取值X 围 〔7〕证明不等式 〔8〕函数应用问题2. 在解题中常用的有关结论〔需要熟记〕:〔1〕曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+。
〔2〕假如可导函数()y f x =在0x x =处取得极值,如此0()0f x '=。
反之不成立。
〔3〕对于可导函数()f x ,不等式()0(0)f x '><的解是函数()f x 的递增〔减〕区间。
〔4〕函数()f x 在区间I 上递增〔减〕的充要条件是:,()0(0)x I f x '∀∈≥≤恒成立〔()f x '不恒为0〕. 〔5〕假如函数()f x 在区间I 上有极值,如此方程()0f x '=在区间I 上有实根且非二重根。
〔假如()f x '为二次函数且I R =,如此有0∆>〕。
〔6〕假如函数()f x 在区间I 上不单调且不为常量函数,如此()f x 在I 上有极值。
〔7〕假如,()0x I f x ∀∈>恒成立,如此min ()0f x >;假如,()0x I f x ∀∈<恒成立,如此max ()0f x < 〔8〕假如0x I ∃∈使得0()0f x >,如此max ()0f x >;假如0x I ∃∈使得0()0f x <,如此min ()0f x <. 〔9〕设()f x 与()g x 的定义域的交集为I ,假如,()()x I f x g x ∀∈>恒成立,如此有min [()()]0f x g x ->. 〔10〕假如对112212,,()()x I x I f x g x ∀∈∈>恒成立,如此min max ()()f x g x >.假如对1122,x I x I ∀∈∃∈,使得12()()f x g x >,如此min min ()()f x g x >. 假如对1122,x I x I ∀∈∃∈,使得12()()f x g x <,如此max max ()()f x g x <.〔11〕()f x 在区间1I 上的值域为A ,()g x 在区间2I 上值域为B ,假如对1122,x I x I ∀∈∃∈使得12()()f x g x =成立,如此A B ⊆。
导数压轴大题大招(精华)
导数压轴大题方法总结一、零点问题(隐零点压轴)【压轴1】已知函数f(x)=e x ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【压轴2】已知函数ln ()x f x x=.(Ⅰ)求函数()y f x =在点(1,0)处的切线方程;(Ⅱ)设实数k 使得()f x kx <恒成立,求k 的取值范围;(Ⅲ)设()() (R)g x f x kx k =-∈,求函数()g x 在区间21[,e ]e上的零点个数.【压轴3】已知函数1()x x f x xe ae -=-,且'(1)f e =.(Ⅰ)求a 的值及()f x 的单调区间;(Ⅱ)若关于x 的方程2()2(2)f x kx k =->存在两个不相等的正实数根12,x x ,证明:124ln x x e->.二、零点问题(放缩法压轴)【压轴1】设函数2)(--=ax e x f x.(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值.【压轴2】已知函数+3()e x m f x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值;(Ⅱ)当1m ≥时,证明:()3()f x g x x >-.【压轴3】已知函数221ln )(-+-=a ax x x f ,R a ∈.(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若2)()(+=x xf x g ,求证:当a <e2ln 时,)(x g >a 2.【压轴4】已知函数121ln )(2+++=x ax x x f .(Ⅰ)当2-=a 时,求)(x f 的极值点;(Ⅱ)当0=a 时,证明:对任意的x >0,不等式x xe ≥)(x f 恒成立.【压轴5】已知对任意的x >0,不等式1ln 2---x kx xe x ≥0恒成立,求实数k 的取值范围.【压轴6】已知函数x x x x f ln +=)(,当x >1时,不等式)∈(),()1(Z k x f x k <-恒成立,则的最大值为多少?三、対数平均【压轴1】【压轴2】已知函数2ln )(-+=xa x x f .(I)讨论)(x f 的单调性;(II)若函数)(x f y =的两个零点为)(,2121x x x x <,证明:a x x 221>+.【压轴3】已知函数()()ln f x x ax b a b =-+∈R ,有两个不同的零点12x x ,.(I)求()f x 的最值;(II)证明:1221x x a < 【压轴4】已知函数()()ln ,x a f x m a m R x-=-∈在x e =(e 为自然对数的底)时取得极值且有两个零点.(I)求实数m 的取值范围;(II)记函数()f x 的两个零点为12,x x ,证明:212x x e >.四、极值点偏移【压轴1】已知函数2)1()2()(-+-=x a e x x f x 有两个零点.(I)求a 的取值范围(II)设21,x x 是)(x f 的两个零点,求证:221<+x x 【压轴2】已知函数()()21ln 12f x x ax a x =-++-.(Ⅰ)若1a >-,讨论()f x 的单调性;(Ⅱ)若01x <<,求证:()()11f x f x +<-;(Ⅲ)若0a >,设1x ,2x 为函数()f x 的两个零点,记1202x x x +=,()'f x 为函数()f x 的导函数,求证:()0'0f x >.【压轴3】已知函数(),x f x x e x R -=⋅∈.(Ⅰ)求()f x 的单调区间与极值;(Ⅱ)已知()g x 与()f x 关于1x =对称,求证:1x >时,()()f x g x >;(Ⅲ)若12x x ≠且()()12f x f x =,求证:122x x +>.【压轴4】已知函数()()2ln +2f x x ax a x =--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设0a >,求证:当10x a <<时,11f x f x a a ⎛⎫⎛⎫+>- ⎪ ⎪⎝⎭⎝⎭;(Ⅲ)若函数()y f x =的图像与x 轴交与A ,B 两点,线段AB 重点的横坐标为0x ,求证:()0'0f x <.【压轴5】已知函数()xf x e ax =+.(Ⅰ)若()f x 在0x =处切线过点()2,1-,求a 的值;(Ⅱ)讨论()f x 在()1,+∞内的单调性;(Ⅲ)令1a =,()()2F x xf x x =-,且12x x ≠求证:122x x +<-.【压轴6】已知函数()x f x e x a =-+,21()x g x x a e=++,a R ∈.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若存在[]0,2x ∈,使得()()f x g x <成立,求a 的取值范围;(Ⅲ)设1x ,2x 是函数()f x 的两个不同零点,求证:121x x e +<.【压轴7】已知函数21()ln (1)2f x x ax a x =-+-)0(<a .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()y F x =的图象为曲线C .设点11(,)A x y ,22(,)B x y 是曲线C 上的不同两点.如果在曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在“中值相依切线”,请说明理由.【压轴8】已知函数()()11ln 0f x a x x a a x ⎛⎫=++-> ⎪⎝⎭.(Ⅰ)求()f x 的极值点;(Ⅱ)若曲线()y f x =上总存在不同两点()()()()1122,,,P x f x Q x f x ,使得曲线()y f x =在,P Q 两点处的切线互相平行,证明:122x x +>五、二次求导【压轴1】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(Ⅰ)求a ,b 的值;(Ⅱ)求()f x 的单调区间.【压轴2】设a 为实数,函数()22,xf x e x a x R =-+∈。
高考数学导数压轴大题7大题型梳理归纳
导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。
函数与导数压轴题方法归纳与的总结
函数与导数压轴题方法归纳与总结题型与方法题型一切线问题例1(二轮复习资料p6例2)归纳总结:题型二利用导数研究函数的单调性例2已知函数f(x)=ln x-a x.(1)求f(x)的单调区间;(2)若f (x )在[1,e]上的最小值为32,求a 的值; (3)若f (x )<x 2在(1,+∞)上恒成立,求a 的取值范围.归纳总结:题型三 已知函数的单调性求参数的范围例 3.已知函数()1ln sin g x x x θ=+⋅在[)1,+∞上为增函数,且()0,θπ∈, ()1ln ,m f x mx x m R x-=--∈ (1)求θ的值.(2)若[)()()1,f x g x -+∞在上为单调函数,求m 的取值范围.归纳总结:题型四 已知不等式成立求参数的范围例4..设f (x )=a x+x ln x ,g (x )=x 3-x 2-3. (1)当a =2时,求曲线y =f (x )在x =1处的切线方程;(2)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(3)如果对任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2都有f (s )≥g (t )成立,求实数a 的取值范围.归纳总结:跟踪1.已知()ln 1m f x n x x =++(m,n 为常数)在x=1处的切线为x+y -2=0(10月重点高中联考第22题)(1) 求y=f(x)的单调区间;(2) 若任意实数x ∈1,1e ⎡⎤⎢⎥⎣⎦,使得对任意的t ∈[1,2]上恒有32()2f x t t at ≥--成立,求实数a 的取值范围。
跟踪2. 设f (x )=-13x 3+12x 2+2ax .(加强版练习题)(1)若f (x )在(23,+∞)上存在单调递增区间,求a 的取值范围; (2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值.题型五 利用导数研究函数的零点或方程根的方法例5 已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.归纳总结:跟踪1.已知函数f (x )=x 2-a ln x 在(1,2]是增函数,g (x )=x -ax 在(0,1)为减函数. (1)求f (x )、g (x )的解析式;(2)求证:当x >0时,方程f (x )=g (x )+2有唯一解.题型六 已知函数的零点(或两函数的交点分布或方程根的分布)求参数的范围例6.已知函数f (x )=ln x +a x (a ∈R ),g (x )=1x. (1)求f (x )的单调区间与极值;(2)若函数f (x )的图象与函数g (x )的图象在区间(0,e 2]上有公共点,求实数a 的取值范围.归纳总结:跟踪1.已知f(x)=ax2 (a∈R),g(x)=2ln x.(第三章专题一例3)(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[2,e]上有两个不等解,求a的取值范围.题型七利用导数求函数的极值与最值例7.已知函数f(x)=x ln x.(1)求函数f(x)的极值点;(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数).归纳总结:题型八 证明函数不等式例8.1.证明:ln x ≤x -12.已知函数f (x )=a x +ln x ,其中为常数(1)求f (x )的单调区间(2)若a<0,且f (x )在区间 (0,e]上的最大值为-2,求a 的值(3)当a=-1时,试证明:1()ln 2x f x x x >+归纳总结:跟综1.已知函数1()ln a f x x ax x +=++(a ∈R )(5月摸底考试最后一题) (1) 当12a >-时,讨论f(x)的单调性; (2) 当a=1时,若关于x 的不等式2()53f x m m ≥--恒成立,求实数m 的取值范围;(3) 证明:1ln 32n n n+≤+(n ∈*N )题型九解决优化问题7.某分公司经销某品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).本章易错归纳与总结。
导数压轴题题型归纳及处理技巧
导数压轴题题型归纳及处理技巧以下是 8 条关于导数压轴题题型归纳及处理技巧的内容:1. 哎呀,导数压轴题里有一种常见的题型就是求最值问题呀!就像在登山的时候,要找到那最高的山峰!比如函数y=x³-3x²+5,你能快速找到它的最值吗?2. 嘿,还有判断函数单调性的题型呢!这就像开汽车,要清楚什么时候加速什么时候减速。
像函数 f(x)=xlnx,你能判断它的单调性吗?3. 哇塞,导数里那种恒成立问题也很让人头疼啊!就好比要让一个球一直保持在一个固定的位置。
比如f(x)≥a 在某个区间恒成立,这可得好好琢磨琢磨怎么处理哦!像函数 f(x)=e^x+x,若f(x)≥kx 恒成立,你能搞定吗?4. 哦哟,导数压轴题里的不等式证明可不好惹呢!就像是要跨过一条很难跨的沟。
比如要证明某个不等式成立,怎么把导数的知识用上呀?比如 x>0 时,证明 e^x>1+x,你知道怎么下手吗?5. 嘿呀,有一种题型是利用导数求曲线的切线方程呢!这就像在给一条曲线画上漂亮的切线。
比如给定曲线y=x²,在某点处的切线怎么求呢,你会吗?6. 哇哦,那些与极值点有关的题型也挺有趣的嘛!就如同在一群小朋友里找到那个最特别的。
比如给定一个函数,怎么去找它的极值点呢?像函数g(x)=x³-3x,它的极值点在哪儿呀?7. 哈哈,还有根据导数信息画函数图象的题型呢!这可像是根据描述去画一幅神秘的画。
比如知道了导数的一些情况,那函数图象大概长啥样呢?你能想象出来吗?8. 哎呀呀,最后还有一类是把导数和其他知识综合起来的题型呢!这就像把不同的拼图块拼成一幅完整的画。
比如和数列结合起来,那可真是够有挑战性呢!像这样的综合题,你能勇敢挑战吗?我觉得导数压轴题虽然难,但只要掌握了这些题型和处理技巧,多练习多总结,就一定能攻克它!。
高考压轴题:导数题型及解题方法总结很全
高考压轴题:导数题型及解题方法(自己总结供参考)一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)题型3 求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线2x y =与曲线x e y ln 2=的公切线方程。
(答案02=--e y x e )二.单调性问题题型1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。
分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。
高考数学函数压轴题方法归纳总结
高考数学函数压轴题方法归纳总结一、利用导数证明不等式1.已知()()21xf x ax e x =-+.(1)当1a =时,讨论函数()f x 的零点个数,并说明理由;(2)若0x =是()f x 的极值点,证明()()2ln 11f x ax x x ≥-+++.【思路引导】(1)由题意1a =时,得()()21xf x x e x =-+,利用导数得到函数的单调性,进而可判定函数的零点个数;(2)求得函数的导数()()12xf x eax a x -'=++,由0x =是()f x 的极值点,得1a =,得到函数的解析式,令1x t -=,转化为证明1ln 2t te t t +≥++,设()()ln 20xh x ex e x x x =⋅--->, 根据导数得到()h x 的单调性和最小值,证得()0h x ≥,即可作出证明. 2.已知函数()()22xf x e ax x a R =--∈.(1)当0a =时,求()f x 的最小值; (2)当12e a <-时,证明:不等式()12ef x >-在()0,+∞上恒成立. 【思路引导】(1)()2xf x e x =-, ()2xf x e '=-,由单调区间及极值可求得最小值。
(2) 由导函数()22xf x e ax =--',及12e a <-, ()12222102e f e a e ⎛⎫=-->---= ⎪⎝⎭, ()010f '=-<,由根的存在性定理可知存在()00,1x ∈使得()00f x '=,只需证()f x 最小值()()0020000022x x f x e ax x e x ax =--=-+>12e -,由隐零点00220x e ax --=回代,即证()12t t g t e t ⎛⎫=-- ⎪⎝⎭12e >-。
3.已知函数()ln f x x =,()()1g x a x =-(1)当2a =时,求函数()()()h x f x g x =-的单调递减区间;(2)若1x >时,关于x 的不等式()()f x g x <恒成立,求实数a 的取值范围; (3)若数列{}n a 满足11n n a a +=+, 33a =,记{}n a 的前n 项和为n S ,求证:()ln 1234...n n S ⨯⨯⨯⨯⨯<.【思路引导】(Ⅰ)求出()h x ',在定义域内,分别令()'0h x >求得x 的范围,可得函数()h x 增区间, ()'0h x <求得x 的范围,可得函数()h x 的减区间;(Ⅱ)当0a ≤时,因为1x >,所以()1ln 0a x x -->显然不成立,先证明因此1a ≥时, ()()f x g x <在()1,+∞上恒成立,再证明当01a <<时不满足题意,从而可得结果;(III )先求出等差数列的前n 项和为()12n n n S +=,结合(II )可得ln22,ln33,ln44,,ln n n <<<⋅⋅⋅<,各式相加即可得结论.4.已知函数()sin xf x e x ax =-.(1)若1a =,求曲线()y f x =在()()0,0f 处的切线方程; (2)若()f x 在0,4π⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的取值范围; (3)当1a ≤时,求证:对于任意的x ∈ 30,4π⎡⎤⎢⎥⎣⎦,均有()0f x ≥. 【思路引导】(1)求出()1x xf x e sinx e cosx '=+-,由()0f 的值可得切点坐标,由()'0f 的值,可得切线斜率,利用点斜式可得曲线()y f x =在点()()1,1f 处的切线方程;(2)函数()f x 在[0,4π]上单调递增⇔ ()f x '在[0,4π]上恒有()0f x '≥.即sin x (4x π+)a ≥恒成立,令()sinxg x =(4x π+),只需求出()g x 的最小值即可得结果;(3)先证明当x ∈ [0,2π]时, ()()0f x g x a '=-≥,()f x 递增,有()()()min 00f x f x f ≥==成立,再讨论两种情况若0a ≤,不等式恒成立,只需分两种情况证明a ∈(0,1]时也恒成立即可. 5.已知函数()2ln f x a x =+且()f x a x ≤.(1)求实数a 的值; (2)令()()xf x g x x a=-在(),a +∞上的最小值为m ,求证: ()67f m <<.【思路引导】由题意知: 2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立, 令()2ln h t a at t =-+,由于()10h =,故2ln 0a at t -+≤ ()()1h t h ⇔≤, 可证: ()h t 在()0,1上单调递增;在()1,+∞上单调递减.故2a =合题意.6.已知函数()1ln xf x x ax-=+(其中0a >, e 2.7≈). (1)当1a =时,求函数()f x 在()()1,1f 点处的切线方程; (2)若函数()f x 在区间[)2,+∞上为增函数,求实数a 的取值范围; (3)求证:对于任意大于1的正整数n ,都有111ln 23n n>+++. 【思路引导】(1)()21x f x x='-, ()10f '=, ()10f =,可求得切线方程。
导数压轴题学总结
导数压轴题常用技巧归类总结一.隐零点代换导函数为超越函数,零点存在却无法求出,我们称之为隐零点。
对零点“设而不求”,通过整体代换,从而解决问题.我们称这类问题为“隐零点”问题。
操作步骤如下:第一步:用零点存在性定理判定导函数零点的存在性,列出零点方程()00'=x f ,并结合()x f '的单调性得到零点范围;第二步:以零点为分界点,说明导函数()x f '的正负,进而得到()x f 的最值表达式;第三步:将零点方程适当变形,整体代入最值式子进行化简。
题型一不需要估计零点的取值范围例1已知函数ax xx x f --=1ln )(.(1)求函数)(x f 的单调区间;(2)若21<<a ,求证:1)(-<x f .题型二估计隐零点的范围(卡根问题)例2已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 最大值.方法总结:1.隐零点的解题方法是“设而不求”,先把导函数的零点设出来,然后利用隐零点的双重身份,即是导函数的编号零点,又是原函数的极值点。
2.有时需要根据零点存在定理估计隐零点的取值范围,估计范围越小,结果越精确。
二.放缩法题型一指数与对数放缩常见的指数放缩:)1();0(1=≥=+≥x ex e x x e x x 常见的对数放缩:)(ln );1(1ln 11e x ex x x x x x =≤=-≤≤-注:所有公式先证后用,否则扣分。
例1(2018年全国3卷)已知函数()x ex ax x f 12-+=,(2)证明:当1≥a 时,()0≥+e x f 例2(2016年山东理科)已知()()R a xx x x a x f ∈-+-=,12ln 2,(2)求证:当1=a 时,23)()('+>x f x f 对任意[]2,1∈x 恒成立。
例3已知x x ex x f ln )(2-=,求证:exe x f x 1)(+<题型二三角函数放缩常见三角函数的放缩:x x x x tan sin ,2,0<<⎪⎭⎫ ⎝⎛∈π题型三其他类型放缩(结合端点效应)例5(2016年四川理科21)设xa ax x f ln )(2--=(2)当1>x 时,x e xx f -->11)(恒成立,求a 的取值范围。
导数压轴题题型归纳
导数压轴题题型归纳1. 高考命题回忆例1已知函数f(x)=e x-ln(x+m).(2021全国新课标Ⅱ卷)(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.例2已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),假设曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2(2021全国新课标Ⅰ卷)(Ⅰ)求a,b,c,d的值(Ⅱ)假设x≥-2时,()()f x kg x≤,求k的取值范围。
2. 在解题中经常使用的有关结论※(10)若对11x I ∀∈、22x I ∈ ,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ∀∈,22x I ∃∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ∀∈,22x I ∃∈,使得12()()f x g x <,则max max ()()f x g x <.(11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B ,若对11x I ∀∈,22x I ∃∈,使得1()f x =2()g x 成立,则A B ⊆。
(12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大于0,极小值小于0.(13)证题中常用的不等式:① ln 1(0)x x x ≤-> ②≤ln +1(1)x x x ≤>-()③ 1xex ≥+ ④ 1xe x -≥-⑤ ln 1(1)12x x x x -<>+ ⑥ 22ln 11(0)22x x x x <->3. 题型归纳①导数切线、概念、单调性、极值、最值、的直接应用例7(构造函数,最值定位)设函数()()21xf x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .例8(分类讨论,区间划分)已知函数3211()(0)32f x x ax x b a =+++≥,'()f x 为函数()f x 的导函数. (1)设函数f(x)的图象与x 轴交点为A,曲线y=f(x)在A 点处的切线方程是33y x =-,求,a b 的值;(2)假设函数()'()axg x ef x -=⋅,求函数()g x 的单调区间.例9(切线)设函数.(1)当时,求函数在区间上的最小值;(2)当时,曲线在点处的切线为,与轴交于点求证:.例10(极值比较)已知函数其中 ⑴当时,求曲线处的切线的斜率;⑵当时,求函数的单调区间与极值.例11(零点存在性定理应用)已知函数()ln ,().xf x xg x e ==a x x f -=2)(1=a )()(x xf x g =]1,0[0>a )(x f y =)))((,(111a x x f x P >l l x )0,(2x A a x x >>2122()(23)(),xf x x ax a a e x =+-+∈R a ∈R 0a =()(1,(1))y f x f =在点23a ≠()f x1x x⑴假设函数φ (x ) = f (x )-,求函数φ (x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g (x )相切.例12(最值问题,两边分求)已知函数. ⑴当时,讨论的单调性; ⑵设当时,假设对任意,存在,使,求实数取值范围.例13(二阶导转换)已知函数⑴假设,求的极大值; ⑵假设在概念域内单调递减,求知足此条件的实数k 的取值范围.例14(综合技术)设函数⑴讨论函数的单调性;⑵假设有两个极值点,记过点的直线斜率为,问:是否存在,使得?假设存在,求出的值;假设不存在,请说明理由.11x x 1()ln 1af x x ax x-=-+-()a ∈R 12a ≤()f x 2()2 4.g x x bx =-+14a =1(0,2)x ∈[]21,2x ∈12()()f x g x ≥b x x f ln )(=)()()(R a x ax f x F ∈+=)(x F kx x f x G -=2)]([)(1()ln ().f x x a x a R x =--∈()f x ()f x 12,x x 11(,()),A x f x 22(,())B x f x k a 2k a =-a。
高考数学导数压轴题解题技巧
高考数学导数压轴题解题技巧包括:
函数法:将参数k当成整个函数中的一部分,分情况讨论k的不同取值对函数的影响。
放缩法:有的参数给的一个范围,通过单调性分析,可以简化为一个端点值讨论即可。
比如给k≤2,你可以转化为
k=2,这样题中就没有参数了,大大降低难度。
此外,还有分离参数等方法。
在解决导数压轴题时,需要注意:
遇到有关单调性或最值的题目,考虑使用导数法。
对于存在性问题,如求参数的取值范围,可以运用分离参数法。
对于与零点存在性有关的问题,最好借助零点存在性定理严格说明,即需在给定单调区间【以单调增区间为例】上找到,进而严格说明使得。
在应用这些技巧时,要结合题目的具体条件和已知信息,灵活运用所学知识解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与导数压轴题方法归纳与总结
题型与方法
题型一切线问题
例1(二轮复习资料p6例2)
归纳总结:
题型二 利用导数研究函数的单调性
例2已知函数f (x )=ln x -a x
. (1)求f (x )的单调区间;
(2)若f (x )在[1,e]上的最小值为32
,求a 的值; (3)若f (x )<x 2在(1,+∞)上恒成立,求a 的取值范围.
归纳总结:
题型三 已知函数的单调性求参数的范围
例 3.已知函数()1
ln sin g x x x θ=+⋅在[)1,+∞上为增函数,
且()0,θπ∈,
()1
ln ,m f x mx x m R x -=--∈
(1)求θ的值.
(2)若[)()()1,f x g x -+∞在上为单调函数,求m 的取值范围.
归纳总结:
题型四 已知不等式成立求参数的范围
例4..设f (x )=a x
+x ln x ,g (x )=x 3-x 2-3. (1)当a =2时,求曲线y =f (x )在x =1处的切线方程;
(2)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;
(3)如果对任意的s ,t ∈⎣⎡⎦⎤12,2都有f (s )≥g (t )成立,求实数a 的取值范围.
归纳总结:
跟踪1.已知()ln 1
m f x n x x =++(m,n 为常数)在x=1处的切线为x+y -2=0(10月重点高中联考第22题)
(1) 求y=f(x)的单调区间;
(2) 若任意实数x ∈1,1e ⎡⎤
⎢⎥⎣⎦,使得对任意的t ∈[1,2]上恒有32
()2f x t t at ≥--成立,求
实数a 的取值范围。
跟踪2.设f (x )=-13x 3+12
x 2+2ax .(加强版练习题) (1)若f (x )在(23
,+∞)上存在单调递增区间,求a 的取值范围; (2)当0<a <2时,f (x )在[1,4]上的最小值为-163
,求f (x )在该区间上的最大值.
题型五 利用导数研究函数的零点或方程根的方法
例5已知函数f (x )=x 3-3ax -1,a ≠0.
(1)求f (x )的单调区间;
(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.
归纳总结:
跟踪1.已知函数f (x )=x 2-a ln x 在(1,2]是增函数,g (x )=x -a x 在(0,1)为减函数.
(1)求f (x )、g (x )的解析式;
(2)求证:当x >0时,方程f (x )=g (x )+2有唯一解.
题型六 已知函数的零点(或两函数的交点分布或方程根的分布)求参数的范围
例6.已知函数f (x )=ln x +a x (a ∈R ),g (x )=1x
. (1)求f (x )的单调区间与极值;
(2)若函数f (x )的图象与函数g (x )的图象在区间(0,e 2]上有公共点,求实数a 的取值范围.
归纳总结:
跟踪1.已知f(x)=ax2 (a∈R),g(x)=2ln x.(第三章专题一例3)
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若方程f(x)=g(x)在区间[2,e]上有两个不等解,求a的取值范围.
题型七利用导数求函数的极值与最值
例7.已知函数f(x)=x ln x.
(1)求函数f(x)的极值点;
(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中
e为自然对数的底数).
题型八证明函数不等式
例8.
1.证明:ln x≤x-1
2.已知函数f(x)=a x+ln x,其中为常数
(1)求f(x)的单调区间
(2)若a<0,且f(x)在区间(0,e]上的最大值为-2,求a的值
(3)当a=-1时,试证明:
1
()ln
2 x f x x x
>+
跟综1.已知函数1()ln a f x x ax x +=++
(a ∈R )(5月摸底考试最后一题) (1) 当12
a >-时,讨论f(x)的单调性; (2) 当a=1时,若关于x 的不等式2()53f x m m ≥--恒成立,求实数m 的取值范
围;
(3) 证明:1ln 32n n n
+≤+
(n ∈*N )
题型九解决优化问题
7.某分公司经销某品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).本章易错归纳与总结。