ngw行星减速器的设计大学论文

合集下载

毕业设计(论文)-行星轮系减速器设计[管理资料]

毕业设计(论文)-行星轮系减速器设计[管理资料]

第一章概述行星轮系减速器较普通齿轮减速器具有体积小、重量轻、效率高及传递功率范围大等优点,逐渐获得广泛应用。

同时它的缺点是:材料优质、结构复杂、制造精度要求较高、安装较困难些、设计计算也较一般减速器复杂。

但随着人们对行星传动技术进一步的深入地了解和掌握以及对国外行星传动技术的引进和消化吸收,从而使其传动结构和均载方式都不断完善,同时生产工艺水平也不断提高,完全可以制造出较好的行星齿轮传动减速器。

根据负载情况进行一般的齿轮强度、几何尺寸的设计计算,然后要进行传动比条件、同心条件、装配条件、相邻条件的设计计算,由于采用的是多个行星轮传动,还必须进行均载机构及浮动量的设计计算。

行星齿轮传动根据基本够件的组成情况可分为:2K—H、3K、及K—H—V三种。

若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW型、NGWN型和N型等。

我所设计的行星齿轮是2K—H行星传动NGW型。

第二章原始数据及系统组成框图(一)有关原始数据课题: 一种自动洗衣机行星轮系减速器的设计原始数据及工作条件:使用地点:自动洗衣机减速离合器内部减速装置;传动比:p i=输入转速:n=2600r/min输入功率:P=150w行星轮个数:n=3w内齿圈齿数z=63b(二)系统组成框图洗涤:A 制动,B 放开,运动经电机、带传动、中心齿轮、行星轮、行星架、波轮脱水:A 放开,B 制动,运动经电机、带传动、内齿圈(脱水桶)、中心齿轮、行星架、波轮与脱水桶等速旋转。

自动洗衣机的工作原理:见图第三章减速器简介减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。

减速器降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。

降速同时降低了负载的惯量,惯量的减少为减速比的平方。

一般的减速器有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等等。

NGW型行星齿轮减速器设计

NGW型行星齿轮减速器设计

本科毕业论文(设计)题目 NGW型行星齿轮减速器设计学院工程技术学院专业机械设计制造及其自动化年级 2011级学号姓名指导教师(副教授)成绩 ____________________年月日目录摘要 (1)ABSTRACT. (2)0文献综述 (3)0.1行星轮的特点 (3)0.2发展概况 (4)1 传动方案的确定 (6)1.2行星机构的类型选择 (6)1.2.1行星机构的类型及特点 (6)1.1.2确定行星齿轮传动类型 (9)2 齿轮的设计计算 (10)2.1 配齿计算 (10)2.1.1确定各齿轮的齿数 (10)2.1.2初算中心距和模数 (11)2.2几何尺寸计算 (12)2.3 装配条件验算 (14)2.3.1 邻接条件 (14)2.3.2同心条件 (15)2.3.3安装条件 (15)2.4 齿轮强度校核 (16)2.4.1 a-c传动强度校核 (16)2.4.2 c-b传动强度校核 (20)3 轴的设计计算 (24)3.1行星轴设计 (24)3.2 转轴的设计 (26)3.2.1 输入轴设计 (26)3.2.2 输出轴设计 (27)4 行星架及相关部件 (29)4.1 行星架的设计与行星轮的支撑 (29)4.2行星架变形的计算和校核 (30)4.3浮动齿式联轴器的设计与计算 (30)4.4减速器的润滑 (31)4.4.1减速器润滑方式的选择 (31)4.4.2行星齿轮减速器润滑油的选择 (32)附录 (35)参考文献 (36)致谢 (38)NGW型行星齿轮减速器设计摘要:本文介绍了NGW型行星齿轮减速器的设计过程。

它具有行星齿轮传动的通用的优点,比如:质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点。

因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织等工业部门均获得了广泛的应用。

首先介绍了行星齿轮减速器的应用背景及发展趋势。

接下来是选定型号的行星齿轮减速器的具体设计过程,包括行星机构的类型选择,齿轮齿数的确定,齿轮强度的校核,轴和键的尺寸及强度校核,行星齿轮减速器的结构设计等组成部分。

NGW型行星齿轮传动系统的优化设计方案

NGW型行星齿轮传动系统的优化设计方案

分类号密级毕业设计(论文)NGW型行星齿轮传动及优化设计所在学院机械与电气工程学院专业机械设计制造及其自动化班级姓名学号指导老师年月日诚信承诺我谨在此承诺:本人所写的毕业论文《NGW型行星齿轮传动系统的优化设计》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。

承诺人(签名):年月日摘要渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。

渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。

NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,以基本构件命名,又称为ZK-H型行星齿轮传动机构。

本设计的基本思想是以两级外啮合接触强度相等为原则分配传动比,而构造是以高速级传动比为设计变量的目标函数,采用黄金分割法得到合理的传动比分配。

然后采用离散变量的组合型法分别进行单级传动的优化设计。

关键词:渐开线齿轮,离散变量,齿轮传动,优化设计AbstractInvolute planetary gear reducer is a kind of at least one gear around the axis of the geometry of the fixed position for circular motion of gear transmission, the transmission usually use internal meshing and use more several planet round and load, in order to make power diversion. Involute planetary gear transmission has the following advantages: transmission range, compact structure, small volume and quality, and generally high efficiency, low noise and stable operation, etc, so are widely used in lifting, metallurgy, construction machinery, transportation, aviation, machine tools, electric machinery and defense industry and other sectors for slowing down, variable speed or growth gear transmission devicePlanetary gear transmission mechanism NGW modeled drive principle: when the shaft from motor driver, drive the sun turn rebirth, then drive the planet wheel rotation, with the inner circle teeth fixed, then drive planet shelf as the output motion, the planet round in the planet shelf is rotation and the revolution, to the same structure of the second and third or multi-stage transmission. NGW modeled planetary gear transmission main institutions by the sun, planets wheel, inner wheel gear circle and of planet shelf, with basic component named, also called ZK-H planetary gear transmission mechanism.The basic idea of this design is based on the two levels of meshing contact strength for principle equal distribution ratio, and structure is based on the level as the design variables transmission ratio, the objective function of the separation of gold get reasonable distribution of transmission ratio. And then the discrete variable combination method, single stage of transmission of optimization design.Key Words:Involute gear, discrete variables, gear transmission, optimization design目录摘要IAbstract II目录III第1章绪论11.1 引言11.2 行星齿轮传动的特点及国内外研究现状21.2.1行星齿轮传动的特点及应用21.2.2 国内外的研究状况及其发展方向31.3 本文的主要内容4第2章NGW齿轮结构分析52.1NGW齿轮渐开线齿廓曲线方程52.2齿根过渡曲线方程72.3 行星轮系中各轮齿数的确定8第3章NGW型行星齿轮传动优化设计11 3.1双极NGW行星减速器传动比分配113.2优化设计分析错误!未定义书签。

探究NGW型行星减速器参数化设计

探究NGW型行星减速器参数化设计

探究NGW型行星减速器参数化设计作者:程宁峰来源:《中国机械》2013年第18期摘要:本文以VC集成开发环境为基础,通过Pro/E二次开发工具包,进行了NGW型行星减速器的参数化设计,从而一方面提高了系统设计检查的合理性,另一方面实现了行星减速器设备的自动化装配与更新,保证了设计周期的大大缩减,以及设计流程的逐步简化,为NGW型行星减速器参数化设计提供了可靠的参考依据。

关键词:NGW型;行星减速器;参数化设计NGW型行星减速器参数化设计的基本原理在于,通过程序控制与三维模型的结合,以已有的Pro/E 零件模型为基础,按照系统的实际运行需要,对完全控制模型的大小和形状进行参数化设计。

NGW型行星减速器参数化设计有助于这一模型的参数化编程,进而实现参数设计的修改和检索功能,并依据全新的参数值建立新的模型[1]。

1. NGW型行星减速器参数化设计的主要内容第一,主程序的编写。

将零件模型中已经预先设计好的相关参数与减速器设计方案中的输入参数相互联系起来,实施数据通信,从而达到自动更新装配模型和减速器零件的目标,若现有的设计不符合设计规定,可以实施重新设计[2]。

第二,建设SQL 数据库、装配体库及减速器零件库,为设计时调用做好相关数据准备。

第三,编写Pro/E和VC的接口程序,并将减速器设计菜单项增加到Pro/E 主菜单栏中,从而实现参数化设计程序界面的启动功能。

2. NGW型行星减速器参数化设计的流程和结构2.1. 设计流程在开始运行程序前,程序设计人员应输入使用寿命、行星轮数目、减速器输出转速、额定转速和电动机额定功率等参数。

按照系统设计输入相关数据,按照综合优化设计的基本原则,设计齿轮传动情况,同时,设计太阳轮轴、行星轮轴、行星架等减速器零件。

根据模块参数化设计的计算结果,对现有三维零件模型进行系统更新,如果无需修改零件参数值,则可将零件模型直接保存,同时建立设计文档。

模型更新完成后,系统可校核相应的刚度和强度,如果未达到设计条件,需要重新进行设计,并保证其满足系统运行需要[3]。

NGWN(III)型行星轮减速器设计

NGWN(III)型行星轮减速器设计

NGWN(III)型行星轮减速器设计1 前言随着现代化工业的发展,机械化和自动化水平不断地提高,各工业部门需要大量的减速器,并要求减速器的体积小、重量轻、传动比大、效率高、承载能力大、运转可靠和寿命长等。

而行星齿轮传动具有减速比大、传动效率高、结构小巧、承载能力强等优点,在许多情况下可代替二级、三级的普通齿轮减速器和涡轮减速器,因此行星轮减速器被广泛应用于各个方面。

行星传动不仅适用于高转速、大功率,而且在低速大转矩的传动装置上也已获得广泛的应用,所以目前行星传动技术已成为世界各国机械传动重点之一。

目前国外的减速器,以德国、丹麦和日本处于领先地位,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。

行星轮减速装置经过一个多世纪的发展设计理论及制造技术有了很大的进步,而且与新技术革命的发展紧密结合。

当今世界行星轮减速装置总的发展趋势是向着大功率、大传动比、小体积、高机械效率、高的承载能力以及利用寿命长的目标发展,而且其重量更轻,噪声更低,效率更高,可靠性也更高。

目前世界各国由工业化信息化时代正在进入知识化时代,行星轮在设计上的研究也趋于完善,制造技术也不断改进。

行星齿轮传动类型很多,行星齿轮传动根据基本够件的组成情况可分为:2K—H、3K、及K—H—V三种。

若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW 型、NGWN型和N型等。

我所研究的NGWN(III)行星齿轮属于3Z型行星齿轮传动的一种。

本文主要对NGWN(III)齿轮减速器设计方法进行了探讨,主要内容包括齿轮传动比的分配计算,主要零部件参数设计,标准零部件的选用,以及减速器中零件三维模型的设计。

2 选题背景2.1 题目来源生产实际2.2 研究的目的与意义由于行星轮齿轮减速器具有质量小、体积小、传动比大以及效率高等优点,因此行星轮减速器被广泛应用于工程机械、矿山机械、冶金机械、起重运输机械、飞机、轮船等各个方面。

毕业设计NGWN(III)型行星轮减速器设计

毕业设计NGWN(III)型行星轮减速器设计

1 前言NGWN(III)型行星轮减速器设计1 前言随着现代化工业的发展,机械化和自动化水平不断地提高,各工业部门需要大量的减速器,并要求减速器的体积小、重量轻、传动比大、效率高、承载能力大、运转可靠和寿命长等。

而行星齿轮传动具有减速比大、传动效率高、结构小巧、承载能力强等优点,在许多情况下可代替二级、三级的普通齿轮减速器和涡轮减速器,因此行星轮减速器被广泛应用于各个方面。

行星传动不仅适用于高转速、大功率,而且在低速大转矩的传动装置上也已获得广泛的应用,所以目前行星传动技术已成为世界各国机械传动重点之一。

目前国外的减速器,以德国、丹麦和日本处于领先地位,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。

行星轮减速装置经过一个多世纪的发展设计理论及制造技术有了很大的进步,而且与新技术革命的发展紧密结合。

当今世界行星轮减速装置总的发展趋势是向着大功率、大传动比、小体积、高机械效率、高的承载能力以及利用寿命长的目标发展,而且其重量更轻,噪声更低,效率更高,可靠性也更高。

目前世界各国由工业化信息化时代正在进入知识化时代,行星轮在设计上的研究也趋于完善,制造技术也不断改进。

行星齿轮传动类型很多,行星齿轮传动根据基本够件的组成情况可分为:2K—H、3K、及K—H—V三种。

若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW 型、NGWN型和N型等。

我所研究的NGWN(III)行星齿轮属于3Z型行星齿轮传动的一种。

本文主要对NGWN(III)齿轮减速器设计方法进行了探讨,主要内容包括齿轮传动比的分配计算,主要零部件参数设计,标准零部件的选用,以及减速器中零件三维模型的设计。

NGWN(III)行星轮减速器的设计2 选题背景2.1 题目来源生产实际2.2 研究的目的与意义由于行星轮齿轮减速器具有质量小、体积小、传动比大以及效率高等优点,因此行星轮减速器被广泛应用于工程机械、矿山机械、冶金机械、起重运输机械、飞机、轮船等各个方面。

NGWN型行星减速器的优化设计

NGWN型行星减速器的优化设计

3.1.2 建立配齿目标函数 行星轮系配齿优化设计应在满足同心条件、
邻接条件、装配条件下, 求出各轮齿数和传动比误 差, 使传动比误差满足传动精度要求, 则目标函数 可表示为:
第一步根据行星轮系传动比的取值范围, 在
满足同心条件、邻接条件、装配条件下, 进行配齿
优化设计, 求出各轮齿数和传动比误差, 使传动比
4.2.2 齿宽约束
4.2.3 轮齿弯曲强度约束
对 NGWN 行星减速器, 当齿面硬度 HB>350
时, 只计算齿轮的齿弯曲强度。根据对直齿圆柱齿
轮的齿弯曲强度要求
得[1]:
然 后 计 算 齿 宽 系 数 Φd=bmin/d, (d 为 齿 轮 的 分 度圆直径)。齿宽系数在许用范围内就行, 否则应加 大模数。根据式( 5) 计算出行星轮最小齿宽 b1、b2, 然后计算出齿宽系数 Φd, 齿宽系数在 0.3- 0.6 的范 围内即满足要求。整个计算过程可用 C++语言编 成了计算程序, 在计算机上可顺利运行。经强度优 化计算后, 模数必须为标准值, 齿宽也应圆整为整 数, 故需将最优解圆整到符合工程要求的值。最后 得到符合工程要求的值。
误差满足传动精度要求作为目标函数。
第二步调用第一步可行的齿数组合方案, 对
行星齿轮减速器各齿轮进行强度优化设计, 使行
星齿轮减速器体积最小作为目标函数。
图 1 NGWN 型行星齿轮减速器传动简图
3.2 确定配齿计算约束条件 3.2.1 同心条件
根据行星齿轮传动中, 各对相互啮合齿轮的中 心距应相等的同心条件, 即由行星减速器三个啮合 齿轮副 a- g、g- b、f- e 的中心距: 关系可换为:
- 49 -
《机 电 技 术 》2007 年 第 3 期

行星齿轮减速器设计行星齿轮减速器设计毕业论文

行星齿轮减速器设计行星齿轮减速器设计毕业论文

行星齿轮减速器设计行星齿轮减速器设计毕业论文行星轮齿传动计设业毕文1论引言行星轮齿传动在国我已有许了年多的展史发很早就有了应,。

然用,自而20 纪世06 代年以来我,才开始国行对星齿传轮进行动了深较、系统入研究的试制工和。

无论作在是计设论理面方,是还试在制应用和实践面方,取得了较大的成就并均获了许多的得研究果。

成2近0多来年尤,其是我改国开革放以,随来着国科学我技水术平的步进发展和我国已从世界上,多许工业达发国家进了大量先引的进械机备设技和术,过经我机械国科人员技不积断极吸的收消和,化与时俱进,开拓新创地努力 1 进奋使,国的我星行动传技术有迅了的速展发。

2 设背景试为某计水泥械机装设计所置配需用行的星齿轮减器,已速知该行齿轮星速器的要求减输功入为率740pW K,入输转速n1 100r0mp传动为比p 3i5.5 许传动允比1差偏iP 0.1 天要每求作工1 6时小,求寿要为命2 年;要求且该行星齿减轮速器传结构动紧,外廓尺凑寸小较传动和率高效。

3设计计算 .31 选取行星轮齿速器减的动传型类和动简传图据上根述设计求可要知该,行星齿轮减速器传递率高功、动比传较大、作工境环恶等特劣。

故采点用级行星双齿传动轮。

2-AX型结简构单制造,方便适,用于任工况下的何大功率的小传动选用。

由个两2X- 型A行星轮传动串联齿成而双级的行齿星减速器较为轮合,理名义传动可分比为ip1 7. 1i p 25 进行传动传动。

简如图图1所示:1图.32配计齿算据根X-2 A行星型齿轮传比动i p 的值按和配其齿计算公,可得第一式级传的动内齿轮b1 行星齿轮c 1的数。

齿现考到该行虑星轮传齿的外廓动尺寸故选,第一取级中心齿轮a1 数为71和行星齿轮为数np3 。

据内齿根轮bz i p1 z11 a z1 b1 .7 117 103.7110 3 内齿对轮齿数进行整圆后,时实此际的P 值给与定P 的稍值变化,但有必是须控制其在传动比差范围内。

NGW行星轮减速器设计

NGW行星轮减速器设计

NGW行星减速器的设计之青柳念文创作摘要本文完成了对一级行星齿轮减速器的布局设计.该减速器具有较小的传动比,而且,它具有布局紧凑、传动效率高、外廓尺寸小和重量轻、承载才能大、运动平稳、抗冲击和震动的才能较强、噪声低的特点,适用于化工、轻工业以及机器人等范畴.这些功用对于现代机械传动的发展有着较重要的意义.首先简要先容了课题的布景以及齿轮减速器的研究现状和发展趋势,然后比较了各种传动布局,从而确定了传动的基本类型.论文主体部分是对传动机构主要构件包含太阳轮、行星轮、内齿圈及行星架的设计计算,通过所给的输入功率、传动比、输入转速以及工况系数确定齿轮减速器的大致布局之后,对其停止了整体布局的设计计算和主要零部件的强度校核计算.其中该减速器的设计与其他减速器的布局设计相比有三大特点:其一,为了使三个行星轮的载荷平均分配,采取了齿式浮动机构,即太阳轮与高速轴通过齿式联轴器将二者毗连在一起,从而实现了太阳轮的浮动;其二,该减速器的箱体采取的是法兰式箱体,上下箱体分别铸造而成;其三,内齿圈与箱体采取分离式,通过螺栓和圆锥销将其与上下箱体固定在一起.最后对整个设计过程停止了总结,基本上完成了对该减速器的整体布局设计.关键词:行星齿轮,传动机构,布局设计,校核计算The design of NGW planetary gear reducerABSTRACTThis completed a single-stage planetary gear reducer design. The gear has a smaller transmission ratio, and it has a compact, high transmission efficiency, outline, small size and light weight, carrying capacity, smooth motion, shock and vibration resistant and low noise characteristics, Used in chemical, light industry and robotics fields. The function of the development of modern mechanical transmission has a more important significance.First paper introduces the background and the subject of gear reducer situation and development trend, and then compared various transmission structures, which determine the basic type of transmission. Thesis is the main part of the main components of drive mechanism including the sun wheel, planet gear, ring gear and planet carrier in the design calculation, given by the input power, gear ratio, input speed and the condition factor to determine the approximate structure after the gear reducer And to carry out the design and calculation of the overall structure and main components of the strength check calculation. One of the other gear reducer design and compared the structural design of the three major characteristics: First, the three planetary gear to make the load evenly, using a gear-type floating body, the sun gear and high-speed shaft through the gear together Coupling the two together to achieve a floating sun gear; Second, the box uses a reducer flange box, upper and lower box were cast;Third, the ring gear and Box with separate, through bolts and tapered pins will be fixed together with the upper and lower box. Finally, a summary of the entire design process is basically complete the overall design of the reducer.KEY WORDS:planetary gear,driving machanism,structural design,checking calculation目录前言1第1章传动方案的确定51.1 设计任务51.1.1 齿轮传动的特点51.1.2 齿轮传动的两大类型561.2.1 行星机构的类型及特点61.2.2 确定行星齿轮传动类型8第2章齿轮的设计计算102.1 配齿计算102.1.1 确定各齿轮的齿数102.1.2 初算中心距和模数112.2 几何尺寸计算122.3 装配条件验算152.3.1 邻接条件152.3.2 同心条件152.3.2 装置条件152.4 齿轮强度校核162.4.1 a-c传动强度校核162.4.1 c-b传动强度校核21第3章轴的设计计算263.1 行星轴设计263.2 转轴的设计283.2.1 输入轴设计283.2.2 输出轴设计29第4章行星架和箱体的设计314.1 行星架的设计314.1.1 行星架布局方案314.1.2 行星架制造精度334.2 箱体的设计35结论37谢辞38参考文献38附录40外文资料翻译43主要代号)rad)rad前言本课题通过对行星齿轮减速器的布局设计,初步计算出各零件的设计尺寸和装配尺寸,并对涉及成果停止参数化分析,为行星齿轮减速器产品的开辟和性能评价实现行星齿轮减速器规模化生产提供了参考和实际依据.通过本设计,要能弄懂该减速器的传动原理,达到对所学知识的复习与巩固,从而在以后的工作中能处理近似的问题.齿轮是使用量大面广的传动元件.今朝世器上齿轮最大传递功率已达6500kW,最大线速度达210m/s(在实验室中达300m/s);齿轮最大重量(组合式),最大模数m达50mm.我国自行设达200t,最大直径达m256.计的高速齿轮(增)减速器的功率已达44000kW,齿轮圆周速度达150m/s以上.由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛.20世纪末的20多年,世界齿轮技术有了很大的发展.产品发展的总趋势是小型化、高速化、低噪声、高靠得住度.技术发展中最引人注目标是硬齿面技术、功率分支技术和模块化设计技术.硬齿面技术到20世纪80年月时在国外日趋成熟.采取优质合金钢锻件渗碳淬火磨齿的硬齿面齿轮,精度不低于IS01328一1975的6级,综合承载才能为中硬齿面调质齿轮的4倍,为软齿而齿轮的5一6倍.一个中等规格的硬齿面齿轮减速器的重量仅为软齿面齿轮减速器的1/3左右.功率分支技术主要指行星及大功率齿轮箱的功率双分及多分支装置,如中心传动的水泥磨主减速器,其核心技术是均载.模块化设计技术对通用和尺度减速器旨在追求高性能和知足用户多样化大覆盖面需求的同时,尽可以减少零部件及毛坯的品种规格,以便于组织生产,使零部件生产形成批量,降低成本,取得规模效益.其他技术的发展还表示在实际研究(如强度计算、修形技术、现代设计方法的应用,新齿形、新布局的应用等)更完善、更接近实际;普遍采取各种优质合金钢锻件;资料和热处理质量节制水平的提高;布局设计更合理;加工精度普遍提高到ISO的4一6级;轴承质量和寿命的提高;润滑油质量的提高;加工装备和检测手段的提高等方面.这些技术的应用和日趋成熟,使齿轮产品的性能价格比大大提.高,产品越来越完美.如非常粗略地估计一下,输出IOONm转矩的齿轮装置,如果在1950年时重10kg,到80年月便可做到仅约lkg.20世纪70年月至90年月初,我国的高速齿轮技术履历了测绘仿制、技术引进(技术攻关)到独立设计制造3个阶段.现在我国的设计制造才能基本上可知足国内生产需要,设计制造的最高参数:最大功率44MW,最高线速度168m/s,最高转速67000r/min.我国的低速重载齿轮技术,特别是硬齿面齿轮技术也履历了测绘仿制等阶段,从无到有逐步发展起来.除了试探掌握制造技术外,在20世纪80年月末至90年月初推广硬齿面技术过程中,我们还作了处理“断轴”、“选用”等一系列有意义的工作.在20世纪70-80年月一直认为是国内重载齿轮两大困难的“水泥磨减速器”和“轧钢机械减速器”,可以说已完全处理.20世纪80年月至90年月初,我国相继制订了一批减速器尺度,如ZBJ19004一88《圆柱齿轮减速器》、ZBJ19026一90《运输机械用减速器》和YB/T050一93《冶金设备用YNK齿轮减速器》等几个硬齿面减速器尺度,我国有自己知识产权的尺度,如YB/T079 - 95《三环减速器》.按这些尺度生产的许多产品的主要技术指标都可达到或接近国外同类产品的水平,其中YNK减速器较完整地吸取了德国FLENDER公司同类产品的特点,并连系国情作了许多改进与创新.(1)渐开线行星齿轮效率的研究行星齿轮传动的效率作为评价器传动性能优劣的重要指标之一,国表里有许多学者对此停止了系统的研究.现在,计算行星齿轮传动效率的方法很多,国表里学者提出了许多有关行星齿轮传动效率的计算方法,在设计计算中,较常常使用的计算方有3种:啮合功率法、力偏移法、和传动比法(克莱依涅斯法),其中以啮合功率法的用途最为广泛,此方法用来计算普通的2K2H和3K型行星齿轮的效率十分方便.(2)渐开线行星齿轮均载分析的研究现状行星齿轮传动具有布局紧凑、质量小、体积小、承载才能大等优点.这些都是由于在其布局上采取了多个行星轮的传动方式,充分操纵了同心轴齿轮之间的空间,使用了多个行星轮来分担载荷,形成功率流,并合理的采取了内啮合传动,从而使其具有了上述的许多优点.但是,这只是最抱负的情况,而在实际应用中,由于加工误差和装配误差的存在,使得在传动过程中各个行星轮上的载荷分配不平均,造成载荷有集中在一个行星轮上的现象,这样,行星齿轮的优越性就得不到发挥,甚至不如普通的外传动布局.所以,为了更好的发挥行星齿轮的优越性,均载的问题就成了一个十分重要的课题.在布局方面,起初人们只尽力地提高齿轮的加工精度,从而使得行星齿轮的制造和装配变得比较坚苦.后来通过时间采纳了对行星齿轮的基本构件径向不加限制的专门措施和其它可自动调位的方法,即采取各种机械式地均载机构,以达到各行星轮间的载荷分布平均的目标.典型的几种均载机构有基本构件浮动的均载机构、杠杆联动均载机构和采取弹性件的均载机构.随着我国市场经济的推进,“九五”期间,齿轮行业的专业化生产水平有了分明提高,如一汽、二汽等大型企业集团的齿轮变速箱厂、车轿厂,通过企业改组、改制,改为相对独立的专业厂,参与市场竞争;随着兵工转平易近用,农机齿轮企业转加工非农用齿轮产品,调整了企业产品布局;私有企业的堀起,中外合资企业的涌现,齿轮行业的整体布局得到优化,行业实力增强,技术前进加快.近十几年来,计算机技术、信息技术、自动化技术在机械制造中的广泛应用,改变了制造业的传统观念和生产组织方式.一些先进的齿轮生产企业已经采取精益生产、火速制造、智能制造等先进技术.形成了高精度、高效率的智能化齿轮生产线和计算机网络化管理.适应市场要求的新产品开辟,关键工艺技术的创新竞争,产品质量竞争以及员工技术素质与创新精力,是2l世纪企业竞争的核心.在2l世纪成套机械装备中,齿轮仍然是机械传动的基本部件.由于计算机技术与数控技术的发展,使得机械加工精度、加工效率太为提高,从而推动了机械传动产品多样化,整机配套的模块化、尺度化,以及造型设计艺术化,使产品更加精美、雅观.CNC机床和工艺技术的发展,推动了机械传动布局的飞速发展.在传动系统设计中的电子节制、液压传动,齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向.在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势.工业通用变速箱是指为各行业成套装备及生产线配套的大功率和中小功率变速箱.国内的变速箱将继续淘汰软齿面,向硬齿面(50~60HRC)、高精度(4~5级)、高靠得住度软启动、运行监控、运行状态记录、低噪声、高的功率与体积比和高的功率与重量比的方向发展.中小功率变速箱为适应机电一体化成套装备自动节制、自动调速、多种节制与通讯功能的接口需要,产品的布局与外型在相应改变.矢质变频代替直流伺服驱动,已成为近些年中小功率变速箱产品(如摆轮针轮传动、谐波齿轮传动等)追求的方针.随着我国航天、航空、机械、电子、动力及核工业等方面的疾速发展和工业机器人等在各工业部分的应用,我国在谐波传动技术应用方面已取得显著成绩.同时,随着国家高新技术及信息财产的发展,对谐波传动技术产品的需求将会更加突出.总之,当当代界各国减速器及齿轮技术发展总趋势是向六高、二低、二化方面发展.六高即高承载才能、高齿面硬度、高精度、高速度、高靠得住性和高传动效率;二低即低噪声、低成本;二化即尺度化、多样化.减速器和齿轮的设计与制造技术的发展,在一定程度上标记着一个国家的工业水平,因此,开辟和发展减速器和齿轮技术在我国有广阔的前景.的基本内容:(1)选择传动方案.传动方案的确定包含传动比的确定和传动类型的确定.(2)设计计算及校核.传动布局的设计计算,都大致包含:选择传动方案、传动零件齿轮的设计计算与校核、轴的设计计算与校核、轴承的选型与寿命计算、键的选择与强度计算、箱体的设计、润滑与密封的选择等.在对行星齿轮减速器的布局停止深入分析的基础上,依据给定的减速器设计的主要参数,通过CAD绘图软件建立行星齿轮减速器各零件的二维平面图,绘制出减速器的总装图对其停止分析.第1章传动方案的确定1.1 设计任务设计一个行星齿轮传动减速器.原始条件和数据:传动比i=5.5,功率p=120kw,输入转速N=1000 rpm,中等冲击.使用寿命10年.且要求该齿轮传动布局紧凑、外廓尺寸较小.齿轮传动的特点齿轮传动与其它传动比较,具有瞬时传动比恒定、工作靠得住、寿命长、效率高、可实现平行轴任意两相交轴和交错轴之间的传动,适应的圆周速度和传动功率范围大,但齿轮传动的制造成本高,低精度齿轮传动时噪声和振动较大,不适宜于两轴间间隔较大的传动.齿轮传动是以主动轮的轮齿依次推动从动轮来停止工作的,是是现代机械中应用十分广泛的一种传动形式.齿轮传动可按一对齿轮轴线的相对位置来划分,也可以按工作条件的分歧来划分.随着行星传动技术的迅速发展,今朝,高速渐开线行星齿轮传动装置所传递的功率已达到20000kW,输出转矩已达到4500kN m•.占有关资料先容,人们认为今朝行星齿轮传动技术的发展方向如下.(1)尺度化、多品种今朝世界上已有50多个渐开线行星齿轮传动系列设计;而且还演化出多种型式的行星减速器、差速器和行星变速器等多品种的产品.(2)硬齿面、高精度行星传动机构中的齿轮广泛采取渗碳和氮化等化学热处理.齿轮制造精度一般均在6级以上.显然,采取硬齿面、高精度有利于进一步提高承载才能,使齿轮尺寸变得更小.(3)高转速、大功率行星齿轮传动机构在高速传动中,如在高速汽轮中已获得日益广泛的应用,其传动功率也越来越大.(4)大规格、大转矩在中低速、重载传动中,传递大转矩的大规格的行星齿轮传动已有了较大的发展.齿轮传动的两大类型轮系可由各种类型的齿轮副组成.由锥齿轮、螺旋齿轮和蜗杆涡轮组成的轮系,称为空间轮系;而由圆柱齿轮组成的轮系,称为平面轮系.根据齿轮系运转时各齿轮的几何轴线相对位置是否变动,齿轮传动分为两大类型.(1)普通齿轮传动(定轴轮系)当齿轮系运转时,如果组成该齿轮系的所有齿轮的几何位置都是固定不变的,则称为普通齿轮传动(或称定轴轮系).在普通齿轮传动中,如果各齿轮副的轴线均相互平行,则称为平行轴齿轮传动;如果齿轮系中含有一个相交轴齿轮副或一个相错轴齿轮副,则称为不服行轴齿轮传动(空间齿轮传动).(2)行星齿轮传动(行星轮系)当齿轮系运转时,如果组成该齿轮系的齿轮中至少有一个齿轮的几何轴线位置不固定,而绕着其他齿轮的几何轴线旋转,即在该齿轮系中,至少具有一个作行星运动的齿轮,则称该齿轮传动为行星齿轮传动,即行星轮系.行星机构的类型及特点行星齿轮传动与普通齿轮传动相比较,它具有许多独特的优点.行星齿轮传动的主要特点如下:(1)体积小,质量小,布局紧凑,承载才能大.一般,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的51~21(即在承受相同的载荷条件下).(2)传动效率高.在传动类型选择恰当、布局安插合理的情况下,其效率值可达0.97~0,99.(3)传动比较大.可以实现运动的合成与分解.只要适当选择行星齿轮传动的类型及配齿方案,即可以用少数几个齿轮而获得很大的传动比.在仅作为传递运动的行星齿轮传动中,其传动比可达到几千.应该指出,行星齿轮传动在其传动比很大时,仍然可坚持布局紧凑、质量小、体积小等许多优点.(4)运动平稳、抗冲击和振动的才能较强.由于采取了数个布局相同的行星轮,平均地分布于中心轮的周围,从而可使行星轮与转臂的惯性力相互平衡.同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抵抗冲击和振动的才能较强,工作较靠得住.最罕见的行星齿轮传动机构是NGW 型行星传动机构.行星齿轮传动的型式可按两种方式划分:按齿轮啮合方式分歧分有NGW、NW、NN、WW、NGWN和N等类型.按基本布局的组成情况分歧有2Z-X、3Z、Z-X-V、Z-X等类型.行星齿轮传动最显著的特点是:在传递动力时它可停止功率分流;同时,其输入轴与输出轴具有同轴性,即输入轴与输出轴均设置在同一主轴线上.所以,行星齿轮传动现已被人们用来代替普通齿轮传动,而作为各种机械传动系统的中的减速器、增速器和变速装置.尤其是对于那些要求体积小、质量小、布局紧凑和传动效率高的航空发动机、起重运输、石油化工和刀兵等的齿轮传动装置以及需要变速器的汽车和坦克等车辆的齿轮传动装置,行星齿轮传动已得到了越来越广泛的应用,表1-1列出了常常使用行星齿轮传动的型式及特点:表1-1常常使用行星齿轮传动的传动类型及其特点传动形式简图性能参数特点传动比效率最大功率/kWNGW (2Z-X负号机构)BAXi=1.13~13.7推荐2.8~9不限效率高,体积小,重量轻,布局简单,制造方便,传递公路范围大,轴向尺寸小,可用于各个工作条件,在机械传动中应用最广.单级传动比范围较小,耳机和三级传动均广泛应用NW (2Z-X 负号机构)BAXi=1~50推荐7~21效率高,径向尺寸比NGW型小,传动比范围较NGW型大,可用于各种工作条件.但双联行星齿轮制造、装置较复杂,故|BAXi| 7时不宜采取NN (2Z-X 负号机构)推荐值:BXEi=8~30≤40 传动比打,效率较低,适用于短期工作传动.当行星架X从动时,传动比|i|大于某一值后,机构将发生自锁WW (2Z-X 负号机构)BXAi=1.2~数千|BXAi|=1.2~5时,效率可达0.9~0.7,i>5以后.随|i|增加徒降≤20 传动比范围大,但外形尺寸及重量较大,效率很低,制造坚苦,一般不必与动力传动.运动精度低也不必于分度机构.当行星架X从动时,|i|从某一数值起会发生自锁.常常使用作差速器;其传动比取值为XABiNGW (Ⅰ)型(3Z)小功率传动BAEi≤500;推荐:BAEi=20~100BAEi增加而下降短期工作≤120,长期工作≤10布局紧凑,体积小,传动比范围大,但效率低于NGW型,工艺性差,适用于中小功率功率或短期工作.若中心轮A输出,当|i|大于某一数值时会发生自锁NGWN (Ⅱ)型(3Z)BAEi=60~500推荐:BAEi=64~300bAEi增加而下降短期工作≤120,长期工作≤10布局更紧凑,制造,装置比上列Ⅰ型传动方便.由于采取单齿圈行星轮,需角度变成才干知足同心条件.效率较低,宜用于短期工作.传动自锁情况同上确定行星齿轮传动类型根据设计要求:持续运转、传动比小、布局紧凑和外廓尺寸较小.根据表1-1中传动类型的工作特点可知,2Z-X(A)型效率高,体积小,机构简单,制造方便.适用于任何工况下的大小功率的传动,且广泛地应用于动力及辅助传动中,工作制度不限.本设计选用2Z-X(A)型行星传动较合理,其传动简图如图1-1所示.图1-1减速器设计方案(单级NGW—2Z-X(A)型行星齿轮传动)拟定的设计方案如下图:图2-2 减速器整体装配图第2章 齿轮的设计计算2.1 配齿计算确定各齿轮的齿数据2Z-X(A)型行星传动的传动比p i 值和按其配齿计算(见参考文献[1])公式(3-27)~公式(3-33)可求得内齿轮b 和行星轮c 的齿数b z 和c z .现思索到行星齿轮传动的外廓尺寸较小,故选择中心轮a 的齿数a z =17和行星轮p n =3.根据内齿轮 a p b z i z )1(-=1715.5⨯-=)(b z =76.5对内齿轮齿数停止圆整,同时思索到装置条件,取79=b z ,此时实际的p 值与给定的p 值稍有变更,但是必须节制在其传动比误差的范围内.实际传动比为a b z z i +=1=647.51779= 其传动比误差5.5647.55.5-=-=∆pp i i i i =2.67%由于外啮合采取角度变位的传动,行星轮c 的齿数c z 应按如下公式计算,即c ab c z z z z ∆+-=2'因为62=-a b z z 为偶数,故取齿数修正量为1-=∆c z .此时,通过角变位后,既不增大该行星传动的径向尺寸,又可以改善a-c 啮合齿轮副的传动性能.故c z =301-217-79= 在思索到装置条件为322==+C z z ba (整数)初算中心距和模数1. 齿轮资料、热处理工艺及制造工艺的选定太阳轮和行星轮资料为20GrMnTi ,概况渗碳淬火处理,概况硬度为57~ 61HRC.试验齿轮齿面接触疲劳极限lim H σ=1591Mpa. 试验齿轮齿根弯曲疲劳极限太阳轮lim F σ=485Mpa.行星轮lim F σ=485⨯0.7Mpa=339.5Mpa (对称载荷).齿形为渐开线直齿.最终加工为磨齿,精度为6级.内齿圈资料为38GrMoAlA ,淡化处理,概况硬度为973HV. 试验齿轮的接触疲劳极限lim H σ=1282Mpa 验齿轮的弯曲疲劳极限lim F σ=370MPa 齿形的终加工为插齿,精度为7级. 2. 减速器的名义输出转速2n 由 i =21n n 得 2n =in 1=5.51000min r min r3. 载荷不平衡系数P K采取太阳轮浮动的均载机构,取15.1==P P F H K K . 4. 齿轮模数m 和中心距a 首先计算太阳轮分度圆直径:3lim 21a 1d u u k k k T K H d H HP A td ±=∑σϕ式中:u 一齿数比为76.11730= A K 一使用系数为1.25; td K 一算式系数为768; ∑H K 一综合系数为2;1T 一太阳轮单个齿传递的转矩.ηηpp a n n P n T T 1119549===985.0100031209549⨯⨯⨯m N •=376m N •其中 η—高速级行星齿轮传动效率,取ηd ϕ—齿宽系数暂取a d blim H σ=1450Mpa代入3lim 21a 1d uu k k k T K H d H HP A td ±=∑σϕ32a 76.1)176.1(15915.06.115.125.123.376768d +⨯⨯⨯⨯⨯⨯=mm 模数 m =63.41766.78==a a z d 取 m =5 则 mm z z m a g a )3017(521)(210+⨯⨯=+=mm取 mm a 5.122=齿宽 5.421755.0=⨯⨯=•=d b d ϕ 取 mm b 62=2.2 几何尺寸计算1. 计算变位系数 (1) a-c 传动 啮合角ac α 因 20cos 5.1225.117cos cos 0==ααa a ac所以 ac α=“‘543920变位系数和ααα2tan )(inv inv z z x ac c a -+=∑=(17+30)⨯20tan 220543920"'inv inv -图2-1选择变位系数线图中心距变动系数y y=55.1175.1220-=-m a a =1 齿顶降低系数y ∆141.01141.1=-=-=∆∑y x y 分配边位系数:根据线图法,通过查找线图2-1 中心距变动系数y y=55.1175.1220-=-m a a =1 齿顶降低系数y ∆141.01141.1=-=-=∆∑y x y 分配边位系数:根据线图法,通过查找线图2-1 得到边位系数 549.0=a x则 592.5490.0141.1-=-=∑a c x x x (2) c-b 传动由于内啮合的两个齿轮采取的是高度变位齿轮,所以有0=+=∑b c x x x从而 592.0-=-=c b x x 且 a a ='αα='0=y 0=∆y 2. 几何尺寸计算成果对于单级的2Z-X(A)型的行星齿轮传动按公式停止几何尺寸的计算,各齿轮副的计算成果如下表:表3-1各齿轮副的几何尺寸的计算成果注:齿顶高系数:太阳轮、行星轮—1=*a h ,内齿轮—8.0=*a h ;顶隙系数:内齿轮—25.0=*c2.3 装配条件验算对于所设计的单级2Z-X(A)型的行星齿轮传动应知足如下装配条件 邻接条件按公式验算其邻接条件,即p ac ac n a d πsin 2'<已知行星轮c 的齿顶圆的直径ac d =164.513,5.122'=ac a 和3=p n 代入上式,则得mm 176.2123sin 5.1222=⨯⨯<π知足邻接条件同心条件按公式对于角变位有''cos cos bc c b ac ca z z z z αα-=+已知17=a z 30=c z 79=b z ,"''543925 =ac α 20'=bc α代入上式得20cos 3079543920cos 3017"'-=+ 装置条件按公式验证其装置条件,即得)(整数C n z z pb a =+ 将 17=a z 79=b z 3=p n 代入该式验证得3237917=+ 知足装置条件 啮合要素的验算1. a-c 传动端面重合度a ε(1)顶圆齿形曲率半径a ρ22)2()2(b a a d d -=ρ 太阳轮221)2874.79()20076.99(-=a ρmm 行星轮222)2954.140()2513.164(-=a ρ mm(2)端面啮合长度a g)sin (''21t a a a a g αρρ-±=式中“±”号正号为外啮合,负号为内啮合;'t α端面节圆啮合角.直齿轮't α=ac α="'543925则mm g a )543925sin 5.122416.4231.29("' ⨯-+= mm(3)端面重合度 20cos 567.18)cos /(cos ⨯==παπβεt n a a m g2. b c -端面重合度a ε(1)顶圆齿形曲率半径a ρ 22)2()2(b a a d d -=ρ 行星轮1a ρ由上面计算得,1a ρmm 内齿轮222)218.371()208.391(-=a ρmm mm(2)端面啮合长度a g''21sin t a a a a g αρρ+-== 20sin 5.122597.61146.42⨯+-mmmm(3)端面重合度 )cos /(cos t n a a a m g πβε= =20cos 505.24⨯π 2.4 齿轮强度校核2.4.1 a-c 传动强度校核本节仅列出相啮合的小齿轮(太阳轮)的强度计算过程,大齿轮(行星。

NGW行星齿轮减速器的设计

NGW行星齿轮减速器的设计

NGW行星齿轮减速器的设计首先,我们需要确定NGW行星齿轮减速器的传动比。

传动比是指输入轴转速与输出轴转速之间的比值,通常由齿轮的齿数比确定。

在确定传动比时,需要考虑到被传动装置的工作条件和要求,以及NGW行星齿轮减速器的结构特点和制造工艺。

一般而言,NGW行星齿轮减速器的传动比可以根据工作条件和设计要求进行选择。

接下来,我们需要进行NGW行星齿轮减速器的齿轮参数设计。

齿轮的参数设计包括齿轮的模数、齿数、齿轮啮合角等。

模数决定了齿轮的尺寸和齿面接触强度,一般通过强度计算来确定。

齿数决定了齿轮的传动比,并且齿数的选择还需要满足齿轮传动的平滑性要求。

齿轮啮合角则决定了齿轮的啮合性能和传动效率,一般通过减速器的运动试验来确定。

在设计NGW行星齿轮减速器时,还需要考虑到齿轮的材料选择和热处理工艺。

齿轮的材料应具有良好的力学性能和疲劳强度,一般选择高强度合金钢或工程塑料。

齿轮的热处理工艺包括淬火和回火等,可以提高齿轮的强度和硬度,延长使用寿命。

此外,NGW行星齿轮减速器还需要进行结构设计和强度计算。

结构设计包括减速器的内部组成部分、外部壳体和密封装置等。

强度计算主要包括齿轮的强度计算和轴的强度计算等,以确保减速器在工作过程中能够承受所需的工作载荷和传动力矩。

最后,需要进行NGW行星齿轮减速器的动力学分析和传动效率计算。

动力学分析可以通过数值模拟或实验来进行,以研究减速器在工作过程中的振动和噪声情况。

传动效率计算可以通过减速器的理论计算和实际测试来进行,以评估减速器的传动效率和能量损耗情况。

综上所述,NGW行星齿轮减速器的设计涉及传动比的选择、齿轮参数设计、材料选择、热处理工艺、结构设计、强度计算、动力学分析和传动效率计算等多个方面。

通过合理的设计和优化,可以实现减速器的高精度、高扭矩传动,并满足各种机械设备的要求。

紧凑结构NGW型行星减速器的设计

紧凑结构NGW型行星减速器的设计
( 稿 日期 2 0 - 8 1 ) 收 070 — 1 -
】 0
维普资讯
械设 计 手册 中 给 出 了适 用 于各 种 减 速 比的
许 多组 合 。但 该 手 册 中给 出 的太 阳轮 齿 数 均大于 1 3齿 , 照 该 资 料 设 计 的减 速 器 体 按
5 结论
通过对 叶 片式气 动 马 达 的分 析 , 用 质 利 量 流 量连 续 性 、 力学 定 律 和力 矩 平衡 原 理 热 完 成 了其 数 学模 型 的建 立 , 方 法 和结 果 对 该 该 类气动 马达 的动态 特性 分析具 有指 导性 的
作用 , 同时对 优 化 叶 片式 气 动 马达 的结 构 设 计 奠定 了理论基 础 。
参 考文 献 :
[ 李富成. 1 】 正反转性能相 同的叶片式风马达主要参
数 设 计 计 算[ 。 岩 机 械 与 风 动 工 具 ,9 7 1 J凿 】 17()
[ 成大先. 2 】 机械设计 手册 ( 气压传动 ) 。 [ 北京 : M】 化学
工 业 出 版 社 .0 4 2 .3 2 . . 20 .21— 21 4
星 减 速器 的设 计 。 N W 型 行 星 减 速 器 又 称 2 — 负号 机 G ZX
应 用 在 产 品 设 计 中。 由于 设 计 计 算 比较 复 杂 、 要 考 虑 的 因 素 多 。 次 设 计 时都 要 收 需 每 集 许 多 资 料 “ 习 ” 番 。通 用 设 计 资 料 由 学 一
控制 研 究 [】中南 大 学 硕 士 论 文 ,0 3 3 。 D. 20 。3
[】 MC( 5S 中国) 限公 司. 有 现代实 用气动技术 [ . M】北
京 : 械 工业 出版 社 。0 3 机 2o 。

NGW行星齿轮减速器回差分析

NGW行星齿轮减速器回差分析
伺服系统的种类很多,组成状况和工作状况多样。常见的闭环伺服系统(反馈控 制系统)组成如图1.1所示。
o一铡量比较斛曰~放洲
回一齿轮传动装置 回~n载
田~反僦斛
壬i一~系统辅^ ∈o一一误差佰号
币。一一执行电动机转角
壬。一一系境辅出
U一一执行电动机聍控制电压
图1.1伺服系统方框图
伺服系统把从反馈回路来的反馈信号与指令信号比较,鉴别位置或速度误差,然 后由伺服电机做出必要的修正。
corresponding backlash are derived.As a result,the author develops the statistical formulas
for the calculation of the backlash in NGW planetary gear reducers.Also,the validity of
实现速度控制和位置控制的伺服系统又称为随动系统。 精度、稳定性和灵敏度是伺服系统的三项主要性能指标。 伺服系统的优点和用途较多,概括起来主要有: 1)可以完成的控制精度高、速度快,非一般人工操作可及。如各种机床运动部分的 速度、运动轨迹、位置控制都是依靠各种伺服系统来实现。它们不仅能完成转动 控制、直线运动控制,丽且能依靠多套伺服系统的配合,完成复杂的空间曲线的 控制、仿形机床控制、机器人手臂关节控制等。 2)能够完成的某些控制无法用人工操作代替,如冶金工业中炼钢炉的电极位置控 制,水平连铸机的拉坯运动控制等。
传动链的回差定义为在工作状态下,传动链的输入轴由正向改为反向旋转时,输 出轴在转角上的滞后量,记为AB。
如图t.2所示,设2△代表传动链中的总间隙,竹为输入轴转角,能为输出轴转
角,当I红1<△时,纯=0;当}仍i>△时,两轮啮合,吼随仍变化,当仍反向时,开

NGW51行星减速器设计研究

NGW51行星减速器设计研究

110027) Abstract: In recent years, China’s plastic packaging
industry has developed rapidly. It can meet the needs of the domestic market and has certain international competitiveness. It has gradually become a major packaging manufacturing and consumption country in the world. Plastic packaging accounts for a relatively high total output value in the packaging industry and plays an irreplaceable role in the fields of food, beverages, daily necessities, bulk chemicals and agricultural production. As the production of various types of packaging products continues to develop in the direction of economy and scale, the requirements for plastic packaging for production automation are also increasing. Focus on a plastic packaging bag automatic finishing and bundling mechanism, the purpose is to replace the current artificial bag binding, improve production efficiency.

2Z-X型NGW啮合两级行星齿轮减速器设计

2Z-X型NGW啮合两级行星齿轮减速器设计

XXXXX毕业设计(论文) 2Z-X型NGW啮合两级行星齿轮减速设计学号:姓名:专业:系别:指导教师:二○一五年六月摘要本文完成了对2Z-X型NGW啮合方式两级行星齿轮减速的设计。

该减速器具有较小的传动比,而且,它具有结构紧凑、传动效率高、外廓尺寸小和重量轻、承载能力大、运动平稳、抗冲击和震动的能力较强、噪声低的特点。

首先简要介绍了课题的背景以及齿轮减速器的研究现状和发展趋势,然后比较了各种传动结构,从而确定了传动的基本类型。

论文主体部分是对传动机构主要构件包括太阳轮、行星轮、内齿圈及转臂的设计计算,通过所给的输入功率、传动比、输入转速以及工况系数确定齿轮减速器的大致结构之后,对其进行了整体结构的设计计算和主要零部件的强度校核计算。

最后对整个设计过程进行了总结,基本上完成了对该减速器的整体结构设计。

关键词:行星齿轮;传动机构;结构设计;校核计算ABSTRACTThis paper completed the 2Z-X of NGW structural design of the planetary gear reducer. The reducer has a smaller gear ratio, and it has a compact, high transmission efficiency, small size and light weight profile, large carrying capacity, smooth movement, a strong ability to shock and vibration, low noise characteristics.Briefly introduces the background and current situation and development trend of research topics gear reducer, and then compare the various transmission structure, which determines the basic types of transmission. The main part of the paper is the main member of the transmission mechanism including a sun gear, planetary gear, the ring gear and the planet carrier is designed to calculate, by means of a given input power, the transmission ratio, the input rotation speed and the operating conditions to determine the approximate coefficients after the configuration of the gear reducer its strength check calculation carried out to calculate the overall structure and design of the major components. Finally, a summary of the entire design process, basically completed the overall structural design of the reducer. KEYWORDS:Planetary gear; transmission mechanism; Structural design; Checking calculation目录摘要 (I)ABSTRACT (II)目录 .............................................................................................................................. I II 1绪论 (1)1.1研究背景及意义 (1)1.2行星齿轮减速器研究现状 (1)1.3行星齿轮减速器发展趋势 (2)1.4论文的基本内容 (2)2总体方案设计 (3)2.1设计要求 (3)2.2总体方案选择 (3)2.2.1行星机构的类型及特点 (3)2.2.2确定行星齿轮传动类型 (5)3齿轮的设计计算 (6)3.1配齿计算 (6)3.2初步计算齿轮的主要参数 (7)3.2.1计算高速级齿轮的模数m (7)3.2.2计算低速级的齿轮模数m (7)3.3啮合参数计算 (8)3.3.1高速级 (8)3.3.2低速级 (8)3.3.3高速级变位系数 (9)3.3.4低速级变位系数 (9)3.4几何尺寸的计算 (9)3.4.1 高速级 (9)3.4.2 低速级 (10)3.4.3插齿刀齿根圆直径的计算 (10)3.5装配条件的验算 (11)3.5.1邻接条件 (11)3.5.2同心条件 (11)3.5.3安装条件 (12)3.6传动效率的计算 (12)ϕ的确定 (12)3.6.1 高速级啮合损失系数1xϕ的确定 (13)3.6.2低速级啮合损失系数2x3.7齿轮强度的验算 (14)3.7.1 高速级外啮合齿轮副接触强度的校核 (14)3.7.2 高速级外啮合齿轮副弯曲强度的校核 (16)3.7.3 高速级内啮合齿轮副接触强度的校核 (17)3.7.4 低速级外啮合齿轮副接触强度的校核 (18)3.7.5低速级外啮合齿轮副弯曲强度的校核 (19)3.7.6低速级内啮合齿轮副接触强度的校核 (21)4轴的设计计算 (22)4.1行星轴设计 (22)4.1.1初算轴的最小直径 (22)4.1.2选择行星轮轴轴承 (23)4.2转轴的设计 (24)4.2.1 输入轴设计 (24)4.2.2 输出轴设计 (25)5转臂、箱体及附件的设计 (27)5.1转臂的设计 (27)5.1.1转臂结构方案 (27)5.1.2转臂制造精度 (28)5.2箱体的设计 (30)5.3其他附件的选用 (31)5.3.1标准件及附件的选用 (31)5.3.2密封和润滑 (32)结论 (33)致谢 (34)参考文献 (35)1绪论1.1研究背景及意义行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。

减速器设计论文

减速器设计论文

第一章绪论1.1 行星齿轮传动的发展历史行星齿轮在我国已有了许多年的发展历史,很早就有了应用。

然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。

无论是设计理论方面,还是试制和应用实践方面,均得了较大的成就,并获得了许多研究成果。

近20多年来,尤其是我国改革开放以来,随着科技技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量的先进设备和技术,进过我国科技人员的不断吸收和消化,与时俱进,开拓创新地努力奋进,是我国行星传动技术有了迅速的发展。

行星齿轮减速机主要传动结构为:行星轮,太阳轮,外齿圈。

行星减速机因为结构原因,单级减速最小为3,最大一般不超过10,常见减速比为:3.4.5.6.8.10,减速机级数一般不超过3,但有部分大减速比定制减速机有4级减速。

相对其他减速机,行星减速机具有高刚性、高精度(单级可做到1分以内)、高传动效率(单级在97%-98%)、高的扭矩/体积比、终身免维护等特点。

因为这些特点,行星减速机多数是安装在步进电机和伺服电机上,用来降低转速,提升扭矩,匹配惯量。

行星减速机额定输入转速最高可达到18000rpm(与减速机本身大小有关,减速机越大,额定输入转速越小)以上,工业级行星减速机输出扭矩一般不超过2000Nm,特制超大扭矩行星减速机可做到10000Nm以上。

工作温度一般在-25℃到100℃左右,通过改变润滑脂可改变其工作温度。

起重机用双速差动行星齿轮减速装置是自由度为1的差动轮系所得到的单自由度行星齿轮减速装置,该变速器由两个行星轮系组成,该行星齿轮减速装置采用两级变速,使起重机在不同的载荷下不同的速度,满足工作需要。

同时,行星齿轮传动具有体积小、结构紧凑、传动功率大、承载能力高等优点,并且只要选择行星传动的类型和配齿方案,便可利用少数几个齿轮而得到很大的传动比。

此外,行星齿轮传动由于它的三个基本构件都可以转动,故可以实现运动的合成与分解,以及有级和无级变速传动等复杂的运动。

NGW型行星齿轮减速器——行星轮的设计

NGW型行星齿轮减速器——行星轮的设计

目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。

渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。

渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。

NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。

在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。

因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。

2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。

ngw行星减速器的设计

ngw行星减速器的设计

NGW行星减速器的设计摘要本文完成了对一级行星齿轮减速器的结构设计。

该减速器具有较小的传动比,而且,它具有结构紧凑、传动效率高、外廓尺寸小和重量轻、承载能力大、运动平稳、抗冲击和震动的能力较强、噪声低的特点,适用于化工、轻工业以及机器人等领域。

这些功用对于现代机械传动的发展有着较重要的意义。

行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。

然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。

无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。

近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展。

齿轮传动原理就是在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里输入,另一个齿轮作为从动轮,动力从它输出。

也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过,这种齿轮叫惰轮。

在包含行星齿轮的齿轮系统中,情形就不同了。

由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合。

确定选用2Z-X(A)型的行星传动较为合理。

我们简要介绍了课题的背景以及齿轮减速器的研究现状和发展趋势,然后比较了各种传动结构,从而确定了传动的基本类型。

论文主体部分是对传动机构主要构件包括太阳轮、行星轮、内齿圈及行星架的设计计算,通过所给的输入功率、传动比、输入转速以及工况系数确定齿轮减速器的大致结构之后,对其进行了整体结构的设计计算和主要零部件的强度校核计算。

其中该减速器的设计与其他减速器的结构设计相比有三大特点:其一,为了使三个行星轮的载荷均匀分配,采用了齿式浮动机构,即太阳轮与高速轴通过齿式联轴器将二者连接在一起,从而实现了太阳轮的浮动;其二,该减速器的箱体采用的是法兰式箱体,上下箱体分别铸造而成;其三,内齿圈与箱体采用分离式,通过螺栓和圆锥销将其与上下箱体固定在一起。

行星减速器结构设计和实现机械制造自动化专业论文设计

行星减速器结构设计和实现机械制造自动化专业论文设计

目录摘要 (I)Abstract (II)引言 (1)1.1研究背景 (3)1.2国内外行星减速器研究现状和发展趋势分析 (4)1.3主要研究内容 (6)2行星减速器的结构分析 (7)2.1行星减速器的结构原理分析 (7)2.2行星齿轮传动形式的分析与选择 (8)2.3旧式与新式NGW行星减速器特点分析与选择 (12)3减速器主要参数的设计计算 (15)3.1行星减速器传动比计算并选择 (15)3.2行星减速器级数的选择 (15)3.3传动比的分配与行星齿轮数的选择 (15)4减速器传动部件的设计计算与校核 (17)4.1一级轮系参数的计算与校核 (17)4.2二级轮系参数的计算与校核 (22)4.3轴的参数计算 (27)4.4选择输入与输出轴的联接方式 (28)4.5轴承的参数计算与选择 (29)5计算机三维建模与仿真 (32)5.1行星减速器主要部件三维建模过程 (32)5.2行星减速器的装配 (37)5.3行星减速器的运动仿真与干涉检查 (40)5.4实物模型制作 (42)参考文献 (43)结论 (44)致谢 (45)摘要本文是作者在研究了现代工业机器人的部分需求后进行相关设计,主要是针对新型制造技术所涉及到的工业机器人对于小轴向尺寸,高速比减速器的需求。

对新兴技术进行进行相关设计。

主要根据新式超薄NGW型行星减速器进行相关设计,设计一款能满足对工件内部进行加工的新兴工业机器人的需求的减速器。

首先深入了解行星减速器功能及工作要求,然后掌握行星减速器结构设计的基本知识和设计方法,了解行星减速器的工作原理、工作过程,进行相应结构设计。

然后根据行星减速器构成、工作原理、主要特点和技术指标,分析,加以论证,确定行星减速器最终方案然后进行计算。

然后制作行星减速器电脑三维模型,完成各种仿真分析。

然后制作行星减速器的模型,检查其运动状态,进行调试,达到足够的相似度。

关键词:新式、超薄、NGW型行星减速器、三维建模、仿真分析AbstractIn this paper,the author studies some requirements of modern industrial robots and designs the relevant design,mainly for the needs of industrial robots involved in new manufacturing technology for small axial size,high-speed ratio reducer.Design the new technology.Based on the new ultra-thin NGW type planetary reducer,a reducer is designed to meet the needs of the new industrial robot processing the workpiece.First, understand the function and working requirements of the planetary reducer,then master the basic knowledge and design methods of the structural design of the planetary reducer, understand the working principle and working process of the planetary reducer,and carry out the corresponding structural design.Then,according to the composition,working principle, main characteristics and technical indexes of planetary reducer,the final scheme of planetary reducer is determined and calculated.Then the computer three-dimensional model of planetary reducer is made and all kinds of simulation analysis are completed.Then make the model of planetary reducer, check its motion state,debug,and achieve enough similarity.Key words:new;ultra-thin;NGW type planetary reducer;3D modeling; simulation analysis引言随着现代工业的快速发展,自动化、机械化水平不断提高,各生产行业都需要使用大量的减速器,这样,减速器的应用就更为广泛。

行星减速器毕业论文

行星减速器毕业论文

第1章绪论§1.1行星轮减速器功用和特点行星减速器是指原动机与工作机行星减速器之间独立封闭式传动装置,用来降低转速并相应地增大转矩。

行星齿轮机构具有优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大,占据空间小的显著优点,在工程上获得广泛应用。

汽车上的行星齿轮主要用在两个地方,一是驱动桥减速器、二是变速器。

此外,在某些场合,也有用作增速的装置,并称为增速器。

行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。

它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些助用对于现代机械传动发展有着重要意义。

因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、冶金、矿山、电工和航空航天等工业部门均获得了广泛的应用。

§1.2行星齿轮的发展方向世界各先进工业国,经由工业化、信息化时代,正在进入知识化时代,行星齿轮传动在设计上日趋完善,制造技术不断进步,使行星齿轮传动已达到了较高水平。

我国随着改革开放在消化吸收国外先进技术方面也取得了长足的进步。

目前行星齿轮传动正向以下几个方向发展:1、向无级变速行星齿轮传动发展。

实现无级变速就是让行星齿轮传动中三个基本构件都转动并传递功率,这只要对原行星机构中固定的构件附加一个传动,就能成为无级变速器。

2、向复合式齿轮传动发展。

近年来,国外将蜗杆传动、螺旋齿轮传动、圆锥齿轮传动与行星齿轮传动组合使用,构成复合式行星齿轮箱。

其高速级用前述各种定轴类型传动,低速级用行星齿轮传动,这样可适应相交轴间的传动,可实现大传动比和大转矩输出等不同用途,充分利用各类型传动的特点,克服各自的弱点,以适应市场上多样化需求。

3、向少齿差行星齿轮传动方向发展。

这类传动主要用于大传动比、小功率传动。

4、向制造技术的发展方向。

采用新型优质钢材,经热处理获得高硬齿面(内齿轮离子渗氮,外齿轮渗碳淬火),精密加工以获高齿轮精密及低粗糙度(内齿轮R0.2~0.4μm),从而提精插齿达5~6级精度,外齿轮经磨齿达5级精度,粗糙度n高承载能力,保证可靠性和使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NGW行星减速器的设计摘要本文完成了对一级行星齿轮减速器的结构设计。

该减速器具有较小的传动比,而且,它具有结构紧凑、传动效率高、外廓尺寸小和重量轻、承载能力大、运动平稳、抗冲击和震动的能力较强、噪声低的特点,适用于化工、轻工业以及机器人等领域。

这些功用对于现代机械传动的发展有着较重要的意义。

行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。

然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。

无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。

近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展。

齿轮传动原理就是在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里输入,另一个齿轮作为从动轮,动力从它输出。

也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过,这种齿轮叫惰轮。

在包含行星齿轮的齿轮系统中,情形就不同了。

由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合。

确定选用2Z-X(A)型的行星传动较为合理。

我们简要介绍了课题的背景以及齿轮减速器的研究现状和发展趋势,然后比较了各种传动结构,从而确定了传动的基本类型。

论文主体部分是对传动机构主要构件包括太阳轮、行星轮、内齿圈及行星架的设计计算,通过所给的输入功率、传动比、输入转速以及工况系数确定齿轮减速器的大致结构之后,对其进行了整体结构的设计计算和主要零部件的强度校核计算。

其中该减速器的设计与其他减速器的结构设计相比有三大特点:其一,为了使三个行星轮的载荷均匀分配,采用了齿式浮动机构,即太阳轮与高速轴通过齿式联轴器将二者连接在一起,从而实现了太阳轮的浮动;其二,该减速器的箱体采用的是法兰式箱体,上下箱体分别铸造而成;其三,内齿圈与箱体采用分离式,通过螺栓和圆锥销将其与上下箱体固定在一起。

最后对整个设计过程进行了总结,基本上完成了对该减速器的整体结构设计。

关键词:行星齿轮; 传动机构; 结构设计; 校核计算AbstractThis completed a single-stage planetary gear reducer design. The gear has a smaller transmission ratio,and it has a compact,high transmission efficiency outline,small size and light weight,carrying capacity,smooth motion,shock and vibration resistant and low noise characteristics,Used in chemical,light industry and robotics fields.The function of the development of modern mechanical transmission has a more important significance.Planetary gear transmission has many years of development in our country, and it has been used in many years. However,since 1960s,our country began to carry on the more thorough and systematic research and trial manufacture of planetary gear transmission.Both in the design theory or in the trial production and application practice,have made great achievements,and obtained a lot of research results.In the past 20 years especially since the reform and opening-up of our country,with the progress and development of the scientific and technological level of the country, China has from many of the world's industrial developed countries introduced a large number of advanced machinery and equipment and technology,after our country mechanical science and technology personnel constantly active absorption and elimination, advancing with the times. pioneering and innovative efforts to forge ahead, planetary transmission technology of our country has developed rapidly.The principle of gear transmission is in a pair of meshing gears, a gear as the driving gear,power is inputted from there it, another gear as the wheel,the power output from it.Also some gears only as transfer station, and one side of the driving gear, the other side and from the meshing ofwheel,power from where it through, the gear called idler.In gear system includes a planetary gear, the situation is different. Due to the presence of planet carrier.That is to say,can have three rotating shafts allow dynamic input / output,by means of the clutch or brake and the like,need time which limits an axis of rotation, the remaining two axes drive,as a result,between the gear meshing relationship to each other can have a variety of combinations.To determine the choice of 2Z-X (A) type of planetary transmission is more reasonable.First paper introduces the background and the subject of gear reducer situation and development trend,and then compared various transmission structures,which determine the basic type of transmission.Thesis is the main part of the main components of drive mechanism including the sun wheel,planet gear,ring gear and planet carrier in the design calculation,given by the input power,gear ratio,input speed and the condition factor to determine the approximate structure after the gear reducer And to carry out the design and calculation of the overall structure and main components of the strength check calculation.One of the other gear reducer design and compared the structural design of the three major characteristics: First,the three planetary gear to make the load evenly,using a gear-type floating body,the sun gear and high-speed shaft through the gear together Coupling the two together to achieve a floating sun gear;Second,the box uses a reducer flange box,upper and lower box were cast;Third,the ring gear and Box with separate,through bolts and tapered pins will be fixed together with the upper and lower box. Finally,a summary of the entire design process is basically complete the overall design of the reducer.Key words: planetary gear;driving machanism; structural design; checking calculation目录前言............................... 错误!未定义书签。

相关文档
最新文档