因式分解综合应用(习题及答案)

合集下载

经典因式分解练习题(附答案)

经典因式分解练习题(附答案)

经典因式分解练习题(附答案) 因式分解练题1.填空题:2.(a-3)(3-2a) = (3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=1,b=2;15.当m=3时,x2+2(3-3)x+25是完全平方式。

2.因式分解:1.m2(p-q)-p+q = (m-p)(m+p-q);2.a(ab+bc+ac)-abc = a(a-b)(b-c);3.x4-2y4-2x3y+xy3 = (x-y)(x+y)(x2+y2-2xy-2x3y);4.abc(a2+b2+c2)-a3bc+2ab2c2 = (ab+bc+ca)(a2+b2+c2-ab-bc-ca);5.a2(b-c)+b2(c-a)+c2(a-b) = (a-b)(b-c)(c-a);6.(x2-2x)2+2x(x-2)+1 = (x2-x+1)2;7.(x-y)2+12(y-x)z+36z2 = (x-3z+y)2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx) = (ax+by+ay-bx)2;10.(1-a2)(1-b2)-(a2-1)2(b2-1)2 = (1-a2-b2+a2b2)(1+a2b2);11.(x+1)2-9(x-1)2 = -8x2+20x-8;13.ab2-ac2+4ac-4a = a(b-c)2+4(c-a);15.(x+y)3+125 = (x+y+5)(x2-5x+25);17.x6(x2-y2)+y6(y2-x2) = (x2-y2)(x6-y6);8.x2-4ax+8ab-4b2 = (x-2a)2-4b2;12.4a2b2-(a2+b2-c2)2 = (2ab+a2+b2-c2)(2ab-a2-b2+c2);14.x3n+y3n = (x+y)(x2-xy+y2)(xn-1-xn-2y+。

+yn-1); 16.(3m-2n)3+(3m+2n)3 = 54m3+54mn2;18.8(x+y)3+1 = (2x+2y+1)(4x2+4y2+4xy-2x-2y+1);19.(a+b+c)3-a3-b3-c3 = 3(a+b)(b+c)(c+a);20.x2+4xy+3y2 = (x+3y)(x+y);21.x2+18x-144 = (x+12)(x-6);22.x4+2x2-8 = (x2-2)(x2+4);23.-m4+18m2-17 = -(m2-1)(m2-17);24.x5-2x3-8x = (x-2)(x+2)(x2+2x+2)(x2-2x-2);25.x8+19x5-216x2 = (x2-3x-6)(x2+3x-6)(x2+6);26.(x2-7x)2+10(x2-7x)-24 = (x2-7x-4)(x2-7x+6);27.5+7(a+1)-6(a+1)2 = -6a2+5a+6;28.(x2+x)(x2+x-1)-2 = (x2+x-1)2;29.x2+y2-x2y2-4xy-1 = (x-y)2(x+y-xy-1);30.(x-1)(x-2)(x-3)(x-4)-48 = (x2-5x+4)(x2-5x-8);3.证明(求值):1.已知a+b=0,代入a3-2b3+a2b-2ab2得到a3+2ab2,再代入a+b=0得到a3,所以a3-2b3+a2b-2ab2 = a3;2.设四个连续自然数为n-1,n,n+1,n+2,则它们的积为(n-1)n(n+1)(n+2),加1后变为(n2+n-1)2,是完全平方数;3.(ac-bd)2+(bc+ad)2 = a2c2+b2d2+2abcd+b2c2+a2d2-2abcd = (a2+b2)(c2+d2);4.a2+b2+c2+2ab-2bc-2ac = 6k2+12k+10,代入a=k+3,b=2k+2,c=3k-1得到a2+b2+c2+2ab-2bc-2ac = 6k2+12k+10;5.由题得m+n=-4,代入x2+mx+n的因式分解式(x-3)(x+4)得到m+n=7,所以(m+n)2=49;6.由题得7y-24 = 7(y-3)-3,所以x2+7xy+ay2-5x+43y-24 = (x+7y-3)(x+y-8)。

30道因式分解题及答案

30道因式分解题及答案

30道因式分解题及答案题目1:将3x2−2xy+x−4y因式分解。

答案1:3x2−2xy+x−4y可以因式分解为(x−4y)(3x+1)。

题目2:将2x2−5x−12因式分解。

答案2:2x2−5x−12可以因式分解为(x−4)(2x+3)。

题目3:将4x2−4x−3因式分解。

答案3:4x2−4x−3可以因式分解为(2x−3)(2x+1)。

题目4:将x2+7x+12因式分解。

答案4:x2+7x+12可以因式分解为(x+3)(x+4)。

题目5:将4x2−9y2因式分解。

答案5:4x2−9y2可以因式分解为(2x+3y)(2x−3y)。

题目6:将x3−8因式分解。

答案6:x3−8可以因式分解为(x−2)(x2+2x+4)。

题目7:将2x3−8y3因式分解。

答案7:2x3−8y3可以因式分解为2(x−y)(x2+xy+y2)。

题目8:将x4−16因式分解。

答案8:x4−16可以因式分解为(x2+4)(x2−4)。

题目9:将2x5+32y5因式分解。

答案9:2x5+32y5可以因式分解为2(x+2y)(x4−2x2y2+4y4)。

题目10:将x6−64因式分解。

答案10:x6−64可以因式分解为(x2−8)(x4+8x2+64)。

题目11:将4a2+b2−4ab−a−2b因式分解。

答案11:4a2+b2−4ab−a−2b可以因式分解为(4a−b)(a−b−1)。

题目12:将2a3+2a2−a−1因式分解。

答案12:2a3+2a2−a−1可以因式分解为(2a+1)(a2+a−1)。

题目13:将x3−3x2−4x+12因式分解。

答案13:x3−3x2−4x+12可以因式分解为(x−3)(x2+1)(x−2)。

题目14:将x4+x3−7x2−x+6因式分解。

答案14:x4+x3−7x2−x+6可以因式分解为(x−1)(x+2)(x+3)(x−1)。

题目15:将4x4+8x3+6x2+2x因式分解。

答案15:4x4+8x3+6x2+2x可以因式分解为2x(2x+1)(x2+1)。

初中数学《因式分解之运用公式法》专项练习(含答案)

初中数学《因式分解之运用公式法》专项练习(含答案)

运用公式法因式分解一、选择题(本大题共7小题)1.若多项式x2+mx+4能用完全平方公式分解因式,则m的值可以是()A、4B、﹣4C、±2D、±42.若a+b=4,则a2+2ab+b2的值是()A、8B、16C、2D、43.已知(19x﹣31)(13x﹣17)﹣(13x﹣17)(11x﹣23)可因式分解成(ax+b)(8x+c),其中a,b,c均为整数,则a+b+c=()A、﹣12B、﹣32C、38D、724.将x m+3﹣x m+1分解因式,结果是()A、x m(x3﹣x)B、x m(x3﹣1)C、x m+1(x2﹣1)D、x m+1(x﹣1)(x+1)5.下列各式中,不能用平方差公式分解因式的是()A、﹣a2+b2B、﹣x2﹣y2C、49x2y2﹣z2D、16m4﹣25n2p26.若x2﹣y2=30,且x﹣y=﹣5,则x+y的值是()A、5B、6C、﹣6D、﹣57.直角三角形的三条边的长度是正整数,其中一条直角边的长度是13,那么它的周长为()A、182B、180C、32D、30二、填空题(本大题共17小题)8.分解因式:⑴222x y x y++-+-4()520(1)+-++;⑵2x x x x()4()49.x2﹣y2=48,x+y=6,则x= ,y= .10.如果x+y=﹣1,x﹣y=﹣2022,那么x2﹣y2= .11.记248n=(12)(12)(12)(12)(12)nx=++++⋅⋅⋅+,且128x+=,则______1212.分解因式x(x+4)+4的结果.13.如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式___________.14.化简:(a+1)2﹣(a﹣1)2= .15.化简求值,其中12a =,2b =-,则22()()________a b a b +--=16.224488()()()()()________x y x y x y x y x y -++++=17.填空:⑴222_____4(2)x y x y ++=+;⑵2229_____121(3___)a b a -+=-;⑶2244____(2___)m mn m ++=+;⑷2_____6______(3)xy x y ++=+.18.若214x mx -+是一个完全平方式,则m 的值是19.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式 .20.已知y=2x ,则4x 2﹣y 2的值是 .21.已知248﹣1可以被60到70之间的某两个整数整除,则这两个数分别是 、 . 22.2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭= 23.设a ,b 为有理数,且20a b +=,设22a b +的最小值为m ,ab 的最大值为n ,则m n += .24.分解因式:24()520(1)x y x y ++-+-=三 、解答题(本大题共10小题)25.计算:⑴7373()()2424x y x y -+⑵(35)(35)x y x y ---+26.分解因式:(1)44a b - (2)2249()16()m n m n +--(3)22()()a b c d a b c d +++--+- (4)34xy xy -;(5)22()()a x y b y x -+- 27.利用平方差公式简化计算:⑴59.860.2⨯⑵10298⨯⑶2123461234512347-⨯ ⑷11411515⨯28.计算:⑴2()a b c ++ ⑵2()a b c -- ⑶2(23)a b c -+29.⑴先化简后求值:2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦,其中3x =, 1.5y =.⑵计算:(22)(22)x y y x -+-+.30.计算(1)2(23)x y -+ (2)(2)(2)a b b a --(3)2222()()a ab b a ab b ++-+ (4)(22)(22)x y y x -+-+31.计算:⑴2(811)a b -+⑵2(23)x y --32.计算:⑴2(3)(3)(9)x x x +-+;⑵(23)(45)(23)(54)a b a b a b b a ++--;33.已知实数a 、b 满足2()1a b +=,2()25a b -=,求22a b ab ++的值.34.分解因式:()()22114m n mn --+答案解析一 、选择题1.D ;∵x 2+mx+4=(x ±2)2,即x 2+mx+4=x 2±4x+2,∴m=±4.故选D .2.B3.A ;原式=(13x ﹣17)(19x ﹣31﹣11x+23)=(13x ﹣17)(8x ﹣8),∵可以分解成(ax+b )(8x+c )∴a=13,b=﹣17,c=﹣8∴a+b+c=﹣12.4.D ;x m+3﹣x m+1=x m+1•x 2﹣x m+1=x m+1(x 2﹣1)=x m+1(x+1)(x ﹣1).5.B6.C ;∵x 2﹣y 2=(x+y )(x ﹣y )=30,x ﹣y=﹣5∴x+y=﹣6.故选C .7.A ;设另一条直角边的长度为x ,斜边的长度z ,则z 2﹣x 2=132,且z >x ,∴(z+x )(z ﹣x )=169×1,∴{z +x =169z ﹣x =1,∴三角形的周长=z+x+13=169+13=182.故选A . 二 、填空题8.⑴2222222()4()4(2)(1)(2)x x x x x x x x +-++=+-=-+;⑵2224()520(1)4()20()25(225)x y x y x y x y x y ++-+-=+-++=+-9.∵x 2﹣y 2=(x+y )(x ﹣y )=48,x+y=6∴x ﹣y=8联立{x +y =6x ﹣y =8,解得{x =7y =﹣1. 10.2022;x 2﹣y 2=(x+y )(x ﹣y )∵x+y=﹣1,x ﹣y=﹣2022∴x 2﹣y 2=1×2022=2022.故填空2022.11.248(12)(12)(12)(12)(12)n x =++++⋅⋅⋅+248(21)(12)(12)(12)(12)(12)n =-++++⋅⋅⋅+2(21)(21)21n n n =-+=-∴2212112n n x +=-+=∴2128n =,∴64n =12.x (x+4)+4=x 2+4x+4=(x+2)213.22()()4a b a b ab -=+-或224()()ab a b a b =+--14.(a+1)2﹣(a ﹣1)2=(a+1+a ﹣1)(a+1﹣a+1)=4a .15.-4;原式=2222224a ab b a ab b ab ++-+-=;当12a =,2b =-时,原式14(2)42=⨯⨯-=- 16.1616x y -17.⑴4xy ;⑵66ab ,11b ;⑶2n ,n ;⑷29x ,2y .18.1±19.a 2+2ab+b 2=(a+b )2.20.∵y=2x ,∴2x ﹣y=0,∴4x 2﹣y 2=4x 2﹣y 2=(2x+y )(2x ﹣y )=(2x+y )×0,=0. 21.248﹣1=(224+1)(224﹣1),=(224+1)(212+1)(212﹣1),=(224+1)(212+1)(26+1)(26﹣1);∵26=64,∴26﹣1=63,26+1=65,∴这两个数是65、63.22.原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭. 23.222222()()120()22a b a b a b a b ++-⎡⎤+==+-⎣⎦, 因为2()0a b -≥,所以22a b +最小值200m =;222()()1400()44a b a b ab a b +--⎡⎤==--⎣⎦,所以ab 的最大值100n =,故300m n +=. 24.2224()520(1)4()20()25(225)x y x y x y x y x y ++-+-=+-++=+- 三 、解答题25.⑴原式222273499()()24416x y x y =-=-;⑵原式2222(3)(5)925x y x y =--=-; 26.(1)44222222()()()()()a b a b a b a b a b a b -=-+=-++(2)原式[][]7()4()7()4()m n m n m n m n =++-+--(113)(311)m n m n =++(3)22()()(22)(22)4()()a b c d a b c d a c b d a c b d +++--+-=++=++(4)324(4)(2)(2)xy xy xy y xy y y -=-=-+(5)2222()()()()()()()a x y b x y x y a b x y a b a b ---=--=--+ 27.⑴2259.860.2(600.2)(600.2)600.23599.96⨯=-+=-=⑵2210298(1002)(1002)10029996⨯=+-=-=⑶2222212346123451234712346(123461)(123461)12346(123461)1-⨯=--+=--= ⑷1141111241(1)(1)115151515125125⨯=+-=-= 28.⑴原式222222a b c ab ac bc =+++++⑵原式222222a b c ab ac bc =++--+⑶原式232234618a b c ab ac bc =++-+-29.⑴222222()()()2(2)2(22)2x y x y x y x x xy y x y x x xy x x y ⎡⎤-++-÷=-++-÷=-÷=-⎣⎦又3x =, 1.5y =,故原式3 1.5 1.5x y =-=-=.法2:2()()()2()22 1.5x y x y x y x x y x x x y ⎡⎤-++-÷=-⋅÷=-=⎣⎦⑵原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-30.(1)原式222(23)4129x y x xy y =-=-+(2)原式22222(2)(44)44a b a ab b a ab b =--=--+=-+-(3)原始22224224()()a b ab a b ab a a b b ⎡⎤⎡⎤=+++-=++⎣⎦⎣⎦(4)原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-31.⑴原式222(118)12117664b a b ab a =-=-+;⑵原式222(23)4129x y x xy y =+=++.32.⑴2224(3)(3)(9)(9)(9)81x x x x x x +-+=-+=-;⑵原式2222(49)(2516)a b b a =--22442242241006422514464244225a b a b a b a a b b =--+=-+-; 33.2222()()132a b a b a b ++-+==,22()()64a b a b ab +--==-,227a b ab ++=. 34.()()22114m n mn --+ 222214m n m n mn =--++222221(2)m n mn m n mn =++-+-22(1)()mn m n =+--(1)(1)mn m n mn m n =+-+++-。

因式分解练习题(有答案)

因式分解练习题(有答案)

因式分解练习题(有答案)篇一:因式分解过关练习题及答案因式分解专题过关1.将以下各式分解因式22(1)3p﹣6pq(2)2x+8x+82.将以下各式分解因式3322(1)xy﹣xy (2)3a﹣6ab+3ab.3.分解因式222222 (1)a(x﹣y)+16(y﹣x)(2)(x+y)﹣4xy4.分解因式:222232 (1)2x﹣x(2)16x﹣1(3)6xy﹣9xy﹣y (4)4+12(x﹣y)+9(x﹣y)5.因式分解:(1)2am﹣8a (2)4x+4xy+xy23226.将以下各式分解因式:322222 (1)3x﹣12x (2)(x+y)﹣4xy7.因式分解:(1)xy﹣2xy+y223 (2)(x+2y)﹣y228.对以下代数式分解因式:(1)n(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a﹣4a+4﹣b10.分解因式:a﹣b﹣2a+111.把以下各式分解因式:42422 (1)x﹣7x+1 (2)x+x+2ax+1﹣a22222(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+112.把以下各式分解因式:32222224445(1)4x﹣31x+15;(2)2ab+2ac+2bc ﹣a﹣b﹣c;(3)x+x+1;(4)x+5x+3x﹣9;(5)2a﹣a﹣6a﹣a+2. 3243222242432因式分解专题过关1.将以下各式分解因式22(1)3p﹣6pq;(2)2x+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p﹣6pq=3p(p﹣2q),222(2)2x+8x+8,=2(x+4x+4),=2(x+2).2.将以下各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.分析:(1)首先提取公因式xy,再利用平方差公式开展二次分解即可;(2)首先提取公因式3a,再利用完全平方公式开展二次分解即可.2解答:解:(1)原式=xy(x﹣1)=xy(x+1)(x﹣1);222(2)原式=3a(a﹣2ab+b)=3a(a﹣b).3.分解因式222222(1)a(x﹣y)+16(y﹣x);(2)(x+y)﹣4xy.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a(x﹣y)+16(y﹣x),=(x﹣y)(a ﹣16),=(x﹣y)(a+4)(a﹣4);22222222222(2)(x+y)﹣4xy,=(x+2xy+y)(x ﹣2xy+y),=(x+y)(x﹣y).4.分解因式:222232(1)2x﹣x;(2)16x﹣1;(3)6xy ﹣9xy﹣y;(4)4+12(x﹣y)+9(x﹣y).222分析:(1)直接提取公因式x即可;(2)利用平方差公式开展因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.2解答:解:(1)2x﹣x=x(2x﹣1);2(2)16x﹣1=(4x+1)(4x﹣1);223222(3)6xy﹣9xy﹣y,=﹣y(9x﹣6xy+y),=﹣y(3x﹣y);222(4)4+12(x﹣y)+9(x﹣y),=[2+3(x﹣y)],=(3x﹣3y+2).5.因式分解:2322 (1)2am﹣8a;(2)4x+4xy+xy分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.22解答:解:(1)2am﹣8a=2a(m﹣4)=2a(m+2)(m﹣2);322222(2)4x+4xy+xy,=x(4x+4xy+y),=x(2x+y).6.将以下各式分解因式:322222(1)3x﹣12x (2)(x+y)﹣4xy.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x=3x(1﹣4x)=3x(1+2x)(1﹣2x);22222222222(2)(x+y)﹣4xy=(x+y+2xy)(x+y ﹣2xy)=(x+y)(x﹣y).7.因式分解:22322(1)xy﹣2xy+y;(2)(x+2y)﹣y.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的构造特点,利用平方差公式开展因式分解即可.解答:解:(1)xy﹣2xy+y=y(x﹣2xy+y)=y(x﹣y);22(2)(x+2y)﹣y=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y). 223222328.对以下代数式分解因式:(1)n(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式开展因式分解. 解答:解:(1)n(m﹣2)﹣n(2﹣m)=n(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);22(2)(x﹣1)(x﹣3)+1=x﹣4x+4=(x﹣2).229.分解因式:a﹣4a+4﹣b.分析:此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有a的二次项a,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式开展分解.222222解答:解:a﹣4a+4﹣b=(a﹣4a+4)﹣b=(a﹣2)﹣b=(a﹣2+b)(a﹣2﹣b).10.分解因式:a﹣b﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法开展分解.此题中有a的二次项,a的一次项,有常数项.所以要考虑a﹣2a+1为一组.222222解答:解:a﹣b﹣2a+1=(a﹣2a+1)﹣b=(a﹣1)﹣b=(a﹣1+b)(a﹣1﹣b).11.把以下各式分解因式:42422(1)x﹣7x+1;(2)x+x+2ax+1﹣a(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+1分析:(1)首先把﹣7x变为+2x﹣9x,然后多项式变为x﹣2x+1﹣9x,接着利用完全平方公式和平方差公式分解因式即可求解;4222(2)首先把多项式变为x+2x+1﹣x+2ax﹣a,然后利用公式法分解因式即可解;222(3)首先把﹣2x(1﹣y)变为﹣2x(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;222422222424322222222篇二:因式分解练习题加答案200道因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解以下各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解以下各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

因式分解综合应用(添项拆项) (人教版)(含答案)

因式分解综合应用(添项拆项) (人教版)(含答案)

学生做题前请先回答以下问题问题1:因式分解的四种基本方法有哪些?问题2:添项拆项的目的是使多项式能够用进行因式分解,这种方法技巧性强,需要充分关注多项式的问题3:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化为因式分解综合应用(添项拆项)(人教版)一、单选题(共10道,每道10分)1.把4x4+1因式分解,正确结果是()A.4(x+1)*8.(2x²+2x+1X2x²-2x+1)c.(x²+2x+2)(x²-2x+2)p.(2x²+1)²答案:B解题思路:试题难度:三颗星知识点:因式分解的技巧-—添项拆项法2.把x⁴+2°因式分解,正确结果是()A.(x²+8)²8.(x²-4x+8)(x²+4x+8)c.(x-2)²(x+2)²D,(x²-8)²答案:B解题思路:试题难度:三颗星知识点:因式分解的技巧-—添项拆项法3.把x³-1因式分解,正确结果是()A.(X+1Xx-1)8.(x-1)<2-x+1)c.(x-1(2+x+1。

.(x+1)<²-x+1)答案:C解题思路:试题难度:三颗星知识点:因式分解的技巧-—添项拆项法4.把4x⁴+y⁴+3x²y²因式分解,正确结果是()A.(2x²+y³)²8.(2x²-xy+y²)(2x²+xy+y³)c.(2x+y)²(2x-y)²D.(2x+y+xy)(2x+y-xy)答案:B解题思路:试题难度:三颗星知识点:因式分解的技巧-—添项拆项法5.把α³+11a+12因式分解,正确结果是()A.(a+1)(a-1)(a-12)g.(α+1)(a+3)(a-4)c.(a- 1)a²+a- 12)D.(a+1)(a²-α+12)答案:D解题思路:法( 一):原式=a³-a+12a+12=a(a+1)(a-1)+12(a+1)=(a+1)(a²-a+12)法(二):原式=a+a²-a²+11a+12=a²(a+1)- (a²-1la-12)=a²(a+1)- (a-12)(a+1)=(a+1)(a²-a+12)故选D .试题难度:三颗星知识点:因式分解的技巧-—添项拆项法6.把m³-2m-1因式分解,正确结果是()A.m(m-1)²8(m+1)(m²-p2-1)c.(m+1)(m-1)²D.(m-1)(m²+m-1)答案:B解题思路:试题难度:三颗星知识点:因式分解的技巧-—添项拆项法Z .把x²-y²+2x-4y-3因式分解,正确结果是() A.(x-y- 1)²B.(x+y+1(x-y- 1)c.(x+y- 1)(x-y+3)o.(x+y+3)(x-y- 1)答案:D解题思路:试题难度:三颗星知识点:因式分解的技巧--添项拆项法8.把2x³+4x²-x-3因式分解,正确结果是()A.(X- 1)(x- 1)2x+3)8.(x+1)2(2x-3)c.(x+1)(2x²+2x-3)。

因式分解技巧及练习题附答案解析

因式分解技巧及练习题附答案解析
A. B.
C. D.
【答案】B
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.
【详解】
A.属于整式的乘法运算,不合题意;
B.符合因式分解的定义,符合题意;
C.右边不是乘积的形式,不合题意;
D.右边不是几个整式的积的形式,不合题意;
15.下面的多项式中,能因式分解的是()
A. B. C. D.
【答案】B
【解析】
【分析】
完全平方公式的考察,
【详解】
A、C、D都无法进行因式分解
B中, ,可进行因式分解
故选:B
【点睛】
本题考查了公式法因式分解,常见的乘法公式有:平方差公式:
完全平方公式:
16.若多项式 含有因式 和 ,则 的值为()
【详解】
解: ;
故选:A.
【点睛】
本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.
9.下列等式从左到右的变形,属于因式分解的是( )
A.8x2y3=2x2⋅4y3B.(x+1)(x﹣1)=x2﹣1
C.3x﹣3y﹣1=3(x﹣y)﹣1D.x2﹣8x+16=(x﹣4)2
【答案】D
C.x2-4x+3=(x-2)2-1D.a2-b2=(a+b)(a-b)
【答案】D
【解析】
【分析】
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.
【详解】
解:A.不是因式分解,而是整式的运算
B.不是因式分解,等式左边的x是取任意实数,而等式右边的x≠0

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

因式分解习题50道及答案

因式分解习题50道及答案

因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。

通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。

下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。

1. 将x^2 + 4x + 4因式分解。

答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。

答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。

答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。

答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。

答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。

答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。

答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。

答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。

10. 将x^2 + 6x + 9因式分解。

答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。

答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。

答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。

答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。

答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。

答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。

答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。

答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。

答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。

答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。

因式分解精选例题(附答案)

因式分解精选例题(附答案)

因式分解 例题解说及练习【例题优选】:(1) 5x 2 y 15x 3 y 2 20x 2 y 3评析:先查各项系数(其余字母临时不看) ,确立 5,15,20 的最大公因数是 5,确立系数是 5 ,再查各项能否都有字母 X ,各项都有时,再确立 X 的最低次幂是几,至此确认提取 X 2,同法确立提 Y ,最后确立提公因式 5X 2Y 。

提取公因式后,再算出括号内各项。

解: 5x 2 y15x 3 y 2 20x 2 y 3=5x 2y(1 3xy4y 2 )(2)3x 2 y 12x 2 yz 9x 3 y 2评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为 3,且同样字母最低次的项是 X 2Y解:3x 2 y 12 x 2 yz 9x 3 y 2= (9x 3 y 212x = 3(3x 3 y 2 4x22yz 3x 2 y)yz x 2 y)=3x 2 y(3xy 42 1)( 3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中, y-x 和 x-y 都能够做为公因式,但应防止负号过多的状况出现,所以应提取 y-x解:原式 =(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4)(4) 把32x 3 y 4 2x 3分解因式评析:这个多项式有公因式 2x 3,应先提取公因式,节余的多项式16y 4-1 具备平方差公式的形式解: 32x 3y42x3=2x 3 (16y 4 1)=2x 3 (4 y 2 1)(4 y 2 1) =2 x3 (2y 1)( 2y 1)( 4y 21)(5)(5) 把 x 7 y 2xy 8 分解因式评析:第一提取公因式xy 2,剩下的多项式x 6-y6能够看作( x 3 ) 2( y 3 ) 2 用平方差公式分解,最后再运用立方和立方差公式分解。

因式分解经典练习100道及答案

因式分解经典练习100道及答案

因式分解经典练习100道及答案一、提取公因式(1)3332-4518ab c a b c(2)334434343++243024x y z x y z x y z(3)(94)(92)(1)(94)--+----x x x x(4)(83)(2)(83)(75)-+---m x m x(5)(51)(5)(51)(54)(51)(31)--++--++---m n m n m n(6)344c b c+630(7)(3)(52)(3)(51)(3)(93)---+--++-+x x x x x x(8)334+412ac a c(9)2443+x y ax y(10)(54)(95)(54)(21)(54)(35)x x x x x x+-+++--+++ (11)44324++142835x z x yz x yz(12)2342-a x y a xy1220(13)2423+2012a b c a bc(14)43242-+20520x y x y z xyz(15)(41)(31)(41)(84)---+-+a b a b(16)33-xz y4016(17)(41)(45)(41)(52)+++++m x m x(18)(94)(83)(55)(94)m n n m ----+-(19)2232718x y z xyz-(20)222242x z x y z+二、公式法(21)2249369849x y x -+-(22)22144600625a ab b -+(23)228114464m n m -+-(24)224001160841a ab b ++(25)22361529a b -(26)22x y-121289(27)2x-814(28)212136x-(29)22-+78428025a ab b(30)22-+m mn n48422025三、分组分解法(31)48321812--++xy x y(32)22----a c ab bc ca5435543033 (33)221+--ab a b(34)22+-+-7653043a c ab bc ca(35)22x y xy yz zx+--+3512443035 (36)35257050+--ax ay bx by (37)3287218xy x y-++-(38)20410020+--ax ay bx by (39)48564856-+-mx my nx ny (40)40408080--+xy x y(41)22x y xy yz zx-++-2430163542 (42)22---+x y xy yz zx2449144928 (43)8756-+-ax ay bx by(44)2216538216a b ab bc ca----(45)2212353541a c ab bc ca+-+-(46)81648ax ay bx by+--(47)227228271231a c ab bc ca-+-+(48)224220591221a b ab bc ca++++(49)221851249x z xy yz zx----(50)63362112mx my nx ny--+四、拆添项(51)424169x x -+(52)2216162455a b a b --++(53)22362524305x y x y --+-(54)2281161081632a b a b --++(55)222581609011m n m n ---+(56)422442125x x y y -+(57)226469627x y x y ----(58)42244910516x x y y -+(59)4225111x x -+(60)42246416149m m n n -+五、十字相乘法(61)22+-+++x xy y x y20196441824 (62)222+-+++x y z xy yz xz3621575841 (63)22---+x xy y x y251083528 (64)222x y z xy yz xz-+--+635826646 (65)22--+++x xy y x y24112847820 (66)22x xy y x y+--++4536831328 (67)22x xy y x y---++1612422127 (68)22++--+ 284715654128x xy y x y(69)22569359192m mn n m n ---+-(70)22491435145824p pq q p q --++-(71)2235692829296x xy y x y -++-+(72)2221401627206x xy y x y +++++(73)22921101576x xy y x y ++++-(74)22213723112x xy y x y --++-(75)22228216612329a b c ab bc ac+++--(76)2225421221218x y z xy yz xz+-+++(77)2225465602921a b c ab bc ac+-+--(78)222204912634932x y z xy yz xz++--+(79)2282620324930x xy y x y -++-+(80)2223018621328x y z xy yz xz-+--+六、双十字相乘法(81)2291481586x xy y x y ---++(82)2228152537512x xy y x y +-+++(83)22251418173627a b c ab bc ac+--+-(84)22104121284016x xy y x y +++++(85)2224652137x xy y x y-++-(86)22291216243224a b c ab bc ac+++++(87)22991024337a ab b a b ---++(88)222091943x xy y x y +++++(89)2236306242521x xy y x y -----(90)225272822368x xy y x y -+-++七、因式定理(91)33112x x --(92)322163a a a --+(93)321257360x x x +-+(94)3266132x x x --+(95)32331315x x x ---(96)321624196x x x --+(97)321037960x x x +--(98)324721x x x ++-(99)32472x x x ---(100)324x x -+因式分解经典练习100道答案一、提取公因式(1)2229(52)ab c bc a-(2)3336(454)x y z z xz y++ (3)(94)(103)x x---(4)(83)(67)m x---(5)(51)(98)m n--+(6)346(15)c b c+(7)(3)(2)x x--+(8)324(13)ac a c+(9)232()x y y ax+(10)(54)(89)x x+-+ (11)22337(245)x z x z xy yz++ (12)2224(35)a xy x a y-(13)2324(53)a bcb c+(14)32325(44)xy x y xy z z-+(15)(41)(53)a b-+(16)338(52)xz y-(17)(41)(97)m x++(18)(94)(138)m n--+ (19)29(32)xyz xyz-(20)222(2)x z z y+二、公式法(21)(767)(767)x y x y++-+ (22)2(1225)a b-(23)(98)(98)m n m n++-+ (24)2(2029)a b+(25)(1923)(1923)a b a b+-(26)(1117)(1117)x y x y+-(27)(92)(92)x x+-(28)(116)(116)x x+-(29)2(285)a b-(30)2(225)m n-三、分组分解法(31)2(83)(32)x y--+(32)(667)(95)a b c a c--+(33)(21)(1)a b-+(34)(6)(75)a c ab c---(35)(76)(525)x y x y z--+(36)5(2)(75)a b x y-+ (37)2(49)(41)x y---(38)4(5)(5)a b x y-+(39)8()(67)m n x y+-(40)40(2)(1)x y--(41)(467)(65)x y z x y+--(42)(677)(47)x y z x y++-(43)(7)(8)a b x y+-(44)(252)(8)a b c a b--+(45)(35)(47)a c ab c---(46)4(2)(2)a b x y-+(47)(94)(837)a c ab c-++(48)(74)(653)a b a b c+++(49)(3)(645)x z x y z+--(50)3(3)(74)m n x y--四、拆添项(51)22(223)(223)x x x x+---(52)(411)(45)a b a b+---(53)(655)(651)x y x y+--+(54)(948)(944)a b a b+---(55)(591)(5911)m n m n+---(56)2222(25)(25)x xy y x xy y+---(57)(83)(89)x y x y++--(58)2222(774)(774)x xy y x xy y+---(59)22(51)(51)x x x x+---(60)2222(877)(877)m mn n m mn n+---五、十字相乘法(61)(44)(566)x y x y-+++(62)(93)(475)x y z x y z+-++(63)(54)(527)x y x y-+-(64)(72)(954)x y z x y z++-+(65)(344)(875)x y x y-+++(66)(934)(527)x y x y--+-(67)(221)(827)x y x y--+-(68)(734)(457)x y x y+-+-(69)(752)(871)m n m n+--+(70)(776)(754)p q p q-++-(71)(743)(572)x y x y-+-+(72)(742)(343)x y x y++++(73)(356)(321)x y x y+++-(74)(24)(73)x y x y+--+(75)(473)(732)a b c a b c+-+-(76)(62)(926)x y z x y z+-++(77)(66)(95)a b c a b c+++-(78)(573)(474)x y z x y z-+-+(79)(456)(245)x y x y-+-+ (80)(563)(632)x y z x y z-+++六、双十字相乘法(81)(946)(21)x y x y+---(82)(453)(754)x y x y++-+(83)(26)(573)a b c a b c---+ (84)(534)(274)x y x y++++ (85)(831)(37)x y x y-+-(86)(364)(324)a b c a b c++++(87)(327)(351)a b a b+---(88)(51)(43)x y x y++++ (89)(667)(63)x y x y--++(90)(44)(572)x y x y----七、因式定理(91)2(2)(361)x x x-++ (92)2(3)(251)a a a-+-(93)(3)(34)(45)x x x+--(94)2(2)(661)x x x-+-(95)2(3)(365)x x x-++ (96)(2)(43)(41)x x x-+-(97)(3)(54)(25)x x x-++ (98)2(1)(41)x x+-(99)2(2)(41)x x x-++ (100)2(2)(22)x x x+-+。

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)、填空题(共20题) 1、 a2-9b 2= ____________ 2、 2x3-12x2+4x =2x ( )3、 -27a3=( __ )34、 2xy2-8x 3 = 2x (_) ( __ )5、 ( x+2y )( y-2x )= - (x+2y )( __ )6、 x ( x-y ) +y ( y-x )= _________7、 a-a 3= a ( a+1)( )8、 1600a2-100=100( ___ ) (___ )9、 9a2+(_)+4 =( )2 10、 ( x+2)x-x-2= ( x+2) ___ ( ) 11、 ____________ a 3-a =a ( ) (12、 ( ____ )x2+4x+16 =( ______ )2 13、 ________________ 3a3+5a2+ ( ) = ( a+ ) ( +2a-4 ) 14、 (_)-2y2 = -2 ( —+1 )2 15、 x2-6x-7= ( x ) ( x_ 16、 3xy+6y2+4x2+8xy=3y ( )+4x ( ) =( ) ()17、 a2+3a-10= ( a+m ( a+n ),贝U m= ,n= ___18、 8a3-b 3= (2a-b ) (19、 ______________________________ xy+y2+mx+my=(y2+my + ( ) = ( ) ( )20、 ( x2+y2) 2-4x2y2= ___________3、下列各式中,能有平方差公式分解因式的是( )A 4x2+4B 、( 2x+3) 2 -4 (3x2+2) 2C 、9x2-2xD 、a2+b21、 多项式2a2+3a+1因式分解等于( ) A (a+1 ) (a-1 ) B 、( 2a+1 ) (2a-1)C 、 2a+1 ) ( a+1)D 、( 2a+1 )(a-1 ) 2、 下列各式分解因式正确的是( ) A 3x2+6x+3= 3 (x+1) 2 B、2x2+5xy-2y 2= (2x+y ) C 、 2x2+6xy= (2x+3) (x+2y ) D 、a2-6=(a-3) ( a-2) 二、选择题(共32题)(x+2y )4、把多项式x2-3x-70因式分解,得()A、(x-5 )(x+14) B 、(x+5 )(x-14 )C、(x-7)(x+10 ) D 、(x+7)(x-10)5、已知a+b=O,则多项式a3+3a2+4ab+b2+b3的值是( )A 0B 、1C 、-2D 、2 6把4a2+3a-1因式分解,得( ) A 、( 2a+1)( 2a-1) B 、( 2a-1 )( a-3) C 、( 4a-1)( a+1) D 、( 4a+1)( a-1 ) 7、 下列等式中,属于因式分解的是( ) A 、 a ( 1+b ) +b ( a+1) = ( a+1)( b+1) B 、 2a ( b+2) +b ( a-1 ) =2ab-4a+ab-b C 、 a 2-6a+10 =a ( a-6) +10 D ( x+3)2-2(x+3) =(x+3)( x+1)8、 2m2+6x+2x2是一个完全平方公式,则 m 的值是( ),3, 5 9 A 、0 B 、± - C 、 ±二 D 、二 22 49、 多项式3x3-27x 因式分解正确的是()A 、3x (x2-9 )B 、3x (x2+9 )C 、3x (x+3)( x-3)D 、3x (3x-1 ) ( 3x+1) 10、已知x >0,且多项式x3+4x2+x-6=0,贝U x 的值是( )A 、1B 、2C 、3D 、411、 多项式2a2+4ab+2b2+k 分解因式后,它的一个因式是(a+b-2),贝U k 的值 是( ) A 、4B、-4 C 、8 D 、-812、对a 4 + 4进行因式分解,所得结论正确的是( )A (a2+2)2B 、 (a2+2) (a2-2)C 、有一个因式为(a2+2a+2) D、不能因式分解+9 (n-m )分解因式得( )B 、( m-n )( a+3)( a-3) D 、( m+r) ( a+3)214、多项式m i -14m2+1分解因式的结果是()13、多项式 a2 (m-n ) A 、( a2+9)( m-n ) C 、( a2+9)( m+nB 、( m2+3m+1 ( m2-6m+1) D 、( m2-1 ) (m2+1))B 、 x2+xy+x=x (x+y )A 、( n2+4m+1 ( n2-4m+1)C 、( n2-m+1)( m2+m+1 15、下列分解因式正确的是(C、2m(2m-n) +n (n-2m) = (2m-n)2D、a2-4a+4= (a+2)( a-2)16、下列等式从左到右的变形,属于因式分解的是( )A 2x (a-b) =2ax-2bxB 、2a2+a-仁a (2a+1) -1C、( a+1)( a+2) = a 2+3a+2D、3a+6a2=3a (2a+1)17、下列各式① 2m+n 和m+2n ③x3+y3 和x2+xy 其中有公因式的是(A、①② B 、② 3n (a-b )和-a+b④a2+b2 和a2-b2)②③ C 、①④ D 、③④18、下列四个多项式中,能因式分解的是(A、x2+1 B 、x 2-1 C 、x 2+5y D 、x2-5y19、将以下多项式分解因式,结果中不含因式x-1的是(A、1 -x 3 B 、x2-2x+1C、x (2a+3)- (3-2a)D 、2x (m+n -2 (m+n20、若多项式2x2+ax可以进行因式分解,则a不能为()A、0 B 、-1 C 、1 D 、221、已知x+y= -3,xy=2,贝U x3y+xy3的值是()A、2 B 、4 C 、10 D 、20a a22、多项式x -y因式分解的结果是(x2+y2)(x+y)(x-y ),则a的值是()A、2 B 、4 C 、-2 D-423、对8 (a2-2b2) -a (7a+b) +ab进行因式分解,其结果为()A、(8a-b)(a-7b) B 、(2a+3b)( 2a-3b) C、a+2b)a-2b) D 、(a+4b)( a-4b)24、下列分解因式正确的是(A、x2-x-4= (x+2)( x-2 ) C、x(x-y)- y(y-x)= (x-y ) 2)B 、2x2-3xy+y 2 = (2x-y ) (x-y ) D 、4x-5x 2+6= (2x+3)( 2x+2)25、多项式a=2x2+3x+1,b=4x2-4x-3,贝U M和N的公因式是()A、2x+1 B 、2x-3 C 、x+1 D 、x+326、多项式(x-2y )2+8xy因式分解,结果为( )A、( x-2y+2 ) (x-2y+4 ) B 、( x-2y-2 ) (x-2y-4 )C、( x+2y)2 D 、( x-2y ) 227、下面多项式① x 2+5X-50 ②x3-1③ x3-4x ④ 3x2-12他们因式分解后,含有三个因式的是()A、①②、B、③④ C ③D、④128、已知x=.,则代数式(x+2)(x+4)+x2-4的值是()A 4+2「2B 、4-2「2C 、2_2D 、4 一229、下列各多项式中,因式分解正确的()A 4x2 -2 = (4x-2)x2B 、1-x 2=(1-x)2C、x2+2 = (x+2)(x+1) D 、x2-仁(x+1)(x-1)30、若x2+7x-30与x2-17x+42有共同的因式x+m贝U m的值为()A -14B 、-3 C、3 D 、1031、下列因式分解中正确的个数为()① x 2+y2= (x+y)(x-y )② x2-12x+32= (x-4 )(x-8 )③ x3+2xy+x=x (x2+2y)④x4-仁(x2+1)(x2-1A 1B 、2C 、3D 、432、下列各式中,满足完全平方公式进行因式分解的是()A、0.0 9- x 2 B 、x2+20x+100C、4x 2+4x+4 D 、x2-y2-2xy三、因式分解(共42题)1、x2 (a-b)+ (b-a)2、x3-xy 23、(a+1)2-9 (a-1 ) 24、x (xy+yz+xz)-xyz5、(x-1 )(x-3 )+16 a2-4a+4-b 27、(x2-2x )2+2x (x-2 )+18、(x+y+z)3 -x 3-y 3-z 349、x -5x 2+410、5+7 (x+1)+2 (x+1 )2412、x +x2+1513、a -2a 3-8a15、a2 (x-y ) +16 (y-x )16、x2+6xy+9y2-x-3y-3017、(x2+y2-z2)2-4x2y218、xy2-xz 2+4xz-4x19、x2 (y-z ) +y2 (z-x ) +z2 (x-y )20、3x2-5x-11221、3n2x-4n 2y-3n2x+4n2y22、x2 (2-y ) + (y-2 )4 423、x +x2y2+y424、x -1625、(x-1 ) 2- (y+1) 226、( x-2) ( x-3) -2027、2 (x+y ) 2-4 (x+y ) -3028、x2+1-2x+4 (x-129、( a2+a) ( a2+a+1 ) -1230、5x+5y+x2+2xy+y231、x3+x2-x-132、x (a+b) 2 +x2 (a+b)33、( x+2 ) 2 -y 2-2x-334、( x2-6) ( x2-4) -1535、(x+1) 2-2 (x2-1 )36、( ax+by ) 2+ (ax-by ) 2-2 (ax+by ) (ax-by )37、( a+1) ( a+2) (a+3)(a+4)-3438、( a+1) + (a+1 ) 2 +1439、x +2x3+3x2+2x+140、4a3-31a+15541、a +a+142、a3+5a2+3a-9四、求值(共10题)1、x+y=1, xy=2 求x2+y2-4xy 的值2、x2+x-1=0,求x4+x3+x 的值亠a2+b2 + 3、已知a (a-1 ) - (a2-b) +仁0,求一2 — -ab 的值5、若(x+m) (x+n) =x2-6x+5,求2mn的值4、xy=1,求囂争+ -^2-的值x2+2x+1 y2+y5、6 已知x>y>0, x-y=1 , xy=2,求x2-y2的值7、已知a=「2+1 , b=「3-1,求ab+a-b-1 的值8、已知x=m+1,y= -2m+1, z=m-2,求x2+y2-z 2+2xy 的值。

因式分解的四种方法(习题及答案)

因式分解的四种方法(习题及答案)

因式分解的四种方法(习题)例题示范例1:2222(1)2(1)(1)x y x y y -+-+-【思路分析】考虑因式分解顺序的口诀“一提二套三分四查”,观察式子里面有公因式2(1)y -,先提取,然后再利用公式法因式分解,分解完后要查一下是否分解彻底.【过程书写】222(1)(21)(1)(1)(1)y x x y y x -++=+-+=解:原式 巩固练习1.下列从左到右的变形,是因式分解的是()A .232393x y z x z y =⋅B .25(2)(3)1x x x x +-=-++C .22()a b ab ab a b +=+D .211x x x x ⎛⎫+=+ ⎪⎝⎭2.把代数式322363x x y xy -+因式分解,结果正确的是()A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .(3)x x y -D .23()x x y -3.因式分解:(1)22363a b ab ab +-;(2)()()y x y y x ---;解:原式=解:原式=(3)2441a a -+;(4)256x x -+;解:原式=解:原式=(5)2168()()x y x y --+-;(6)41x -;解:原式=解:原式=(7)222(1)4a a +-;(8)25210ab bc a ac --+;解:原式=解:原式=(9)223(2)3m x y mn --;(10)2ab ac bc b -+-;解:原式=解:原式=(11)2222a b a b -++;(12)2(2)(4)4x x x +++-;解:原式=解:原式=(13)321a a a +--;(14)2244a a b -+-;解:原式=解:原式=(15)222221a ab b a b ++--+;解:原式=(16)228x x --;(17)226a ab b --;解:原式=解:原式=(18)2231x x -+;(19)32412x x x --;解:原式=解:原式=(20)2()()2x y x y +++-;(21)(1)(2)6x x ---.解:原式=解:原式=思考小结在进行因式分解时,要观察式子特征,根据特征选择合适的方法:①若多项式各项都含有相同的因数或相同的字母,首先考虑__________________.②若多项式只含有符号相反的两项,且两项都能写成一个单项式的平方,则考虑利用____________________进行因式分解.③若多项式为二次三项式的结构,则通常要考虑____________或_______________.④若多项式项数较多,则考虑_______________.【参考答案】巩固练习1.C 2.D 3.(1)3ab (a +2b -1)(2)(x -y )(y +1)(3)2(21)a -(4)(x -2)(x -3)(5)(4-x +y )2(6)(x 2+1)(x +1)(x -1)(7)(a +1)2(a -1)2(8)(b -2a )(a -5c )(9)3m (2x -y +n )(2x -y -n )(10)(b -c )(a -b )(11)(a +b )(a -b +2)(12)2(x +1)(x +2)(13)2(1)(1)a a +-(14)(a -2+b )(a -2-b )(15)2(1)a b +-(16)(x -4)(x +2)(17)(a -3b )(a +2b )(18)(2x -1)(x -1)(19)x (x +2)(x -6)(20)(x +y -1)(x +y +2)(21)(x +1)(x -4)思考小结①提公因式②平方差公式③完全平方公式,十字相乘法④分组分解法。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)1)a2(x﹣y)+16(y﹣x)分析:首先将括号内的项变为相反数,再利用平方差公式进行二次分解即可。

解答:a2(x﹣y)+16(y﹣x)=a2(x﹣y)﹣16(x﹣y)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4)。

4.分解因式:1)2x2﹣x;(2)16x2﹣1y2分析:(1)先提取公因式x,再利用平方差公式进行二次分解即可;2)先利用完全平方公式将16x2拆分,再利用差平方公式进行二次分解即可。

解答:(1)2x2﹣x=x(2x﹣1);2)16x2﹣1y2=(4x)2﹣(1y)2=(4x+1y)(4x﹣1y)。

5.因式分解:1)2am2﹣8a;(2)3a3﹣6a2b+3ab2.分析:(1)先提取公因式2a,再利用平方差公式进行二次分解即可;2)先提取公因式3ab,再利用完全平方公式进行二次分解即可。

解答:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);2)3a3﹣6a2b+3ab2=3ab(a﹣2b+1)。

6.将下列各式分解因式:1)3x﹣12x3;(2)(x2+y2)2﹣4x2y2分析:(1)先提取公因式3x,再利用平方差公式进行二次分解即可;2)先利用平方公式将(x2+y2)2拆分,再利用差平方公式进行二次分解即可。

解答:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);2)(x2+y2)2﹣4x2y2=(x2﹣2xy+y2)(x2+2xy+y2)﹣(2xy)2=(x﹣y)(x+y)(x﹣yi)(x+yi),其中i是虚数单位。

7.因式分解:1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2分析:(1)先将各项变为同类项,再利用平方差公式进行二次分解即可;2)先利用平方公式将(x+2y)2拆分,再利用差平方公式进行二次分解即可。

解答:(1)x2y﹣2xy2+y3=xy(x﹣2y+y2)=xy(x﹣y)2;2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y)。

因式分解练习题加答案 200道分解因解题目

因式分解练习题加答案 200道分解因解题目

因式分解3a3b2c—6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6—2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y—x)=(x+y)(x-y)^25。

因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x—1得因式,试分解x3+3x2-4=(x—1)(x+2)^28、因式分解ab(x2-y2)+xy(a2—b2)=(ay+bx)(ax—by)9、因式分解(x+y)(a-b-c)+(x-y)(b+c—a)=2y(a—b-c)10、因式分解a2-a-b2-b=(a+b)(a—b—1)11。

因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a—7b)^212、因式分解(a+3)2-6(a+3)=(a+3)(a-3)13、因式分解(x+1)2(x+2)—(x+1)(x+2)2=-(x+1)(x+2)abc+ab—4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2—30x+25=(3x-5)^2(4)x2-7x—30=(x—10)(x+3)35。

因式分解x2-25=(x+5)(x-5)36。

因式分解x2-20x+100=(x-10)^237。

因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x—1)(2x—5)39、因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)—x=x(x+1)(3)x2-4x—ax+4a=(x—4)(x—a)(4)25x2—49=(5x-9)(5x+9)(5)36x2—60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x—3)(x-6)(8)2x2-5x—3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x—4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41。

专题04 因式分解(28题)(解析版)--2024年中考数学真题分类汇编

专题04 因式分解(28题)(解析版)--2024年中考数学真题分类汇编

专题04因式分解(28题)一、单选题1.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .2.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .二、填空题3.(2024·甘肃·中考真题)因式分解:228x -=.【答案】()()222x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()2222822x x -=-()()222x x =+-.故答案为:()()222x x +-.4.(2024·黑龙江绥化·中考真题)分解因式:2228mx my -=.【答案】()()222m x y x y +-【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my -=()2224m x y -=()()222m x y x y +-故答案为:()()222m x y x y +-.5.(2024·浙江·中考真题)因式分解:27a a -=【答案】()7a a -【分析】本题考查了提公因式法因式分解,先提公因式a 是解题的关键.【详解】解:()277a a a a -=-.故答案为:()7a a -.6.(2024·甘肃临夏·中考真题)因式分解:214x -=.7.(2024·四川眉山·中考真题)分解因式:3312m m -=.【答案】()()322m m m +-【分析】本题考查因式分解,涉及提公因式法因式分解及公式法因式分解,根据多项式的结构特征,先提公因式再利用平方差公式因式分解即可得到答案,综合应用提公因式法因式分解及公式法因式分解是解决问题的关键.【详解】解:3312m m -()234m m =-()()322m m m =+-,故答案为:()()322m m m +-.8.(2024·北京·中考真题)分解因式:325x x -=.【答案】()()55x x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()()()32225555x x x x x x x -=-=+-.故答案为:()()55x x x +-.9.(2024·山东威海·中考真题)因式分解:()()241x x +++=.【答案】()23x +【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:()()241x x +++24281x x x =++++269x x =++()23x =+故答案为:()23x +.10.(2024·四川凉山·中考真题)已知2212a b -=,且2a b -=-,则a b +=.【答案】6-【分析】本题考查了因式分解的应用,先把2212a b -=的左边分解因式,再把2a b -=-代入即可求出a b +的值.【详解】解:∵2212a b -=,∴()()12a b a b +-=,∵2a b -=-,∴6a b +=-.故答案为:6-.11.(2024·山东·中考真题)因式分解:22x y xy +=.【答案】()2xy x +【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.12.(2024·四川遂宁·中考真题)分解因式:4ab a +=.【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +13.(2024·四川广安·中考真题)分解因式:39a a -=.【答案】()()33a a a +-【分析】本题主要考查了分解因式,先提取公因式a 再利用公式法即可得到答案.【详解】解:()()3933a a a a a -=+-,故答案为:()()33a a a +-.14.(2024·四川自贡·中考真题)分解因式:23x x -=.【答案】()3x x -【分析】根据提取公因式法因式分解进行计算即可.【详解】解:()233x x x x -=-,故答案为:()3x x -.【点睛】此题考查了提公因式法因式分解,熟练掌握提取公因式的方法是解本题的关键.15.(2024·四川内江·中考真题)分解因式:25m m -=.【答案】()5m m -【分析】原式提取公因式即可得到结果.【详解】原式=()5m m -.故答案为:()5m m -.【点睛】本题考查了提公因式法.16.(2024·内蒙古赤峰·中考真题)因式分解:233am a -=.【答案】()()311a m m +-【分析】先提取公因式3a ,再利用平方差公式分解因式.【详解】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.【点睛】此题考查了综合利用提公因式法和公式法分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式)是解题的关键.17.(2024·四川广元·中考真题)分解因式:2(1)4a a +-=.【答案】()21a -/()21a -+【分析】首先利用完全平方式展开2(1)a +,然后合并同类项,再利用完全平方公式进行分解即可.【详解】2222(1)412421(1)a a a a a a a a +-=++-=-+=-.故答案为:2(1)a -.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式:222)2(a ab b a b ±+=±.18.(2024·陕西省·中考真题)分解因式:2a ab -=.【答案】a (a ﹣b ).【详解】解:2a ab -=a (a ﹣b ).故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.19.(2024·吉林省中考真题)因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).20.(2024·四川宜宾·中考真题)分解因式:222m -=.【答案】2(1)(1)m m +-【详解】解:222m -=22(1)m -=2(1)(1)m m +-.故答案为2(1)(1)m m +-.21.(2024·四川达州·中考真题)分解因式:3x 2﹣18x+27=.【答案】3(x ﹣3)2【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x 2-18x+27,=3(x 2-6x+9),=3(x-3)2.故答案为:3(x-3)2.22.(2024·江苏扬州·中考真题)分解因式:2242a a -+=.【答案】()221a -【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.23.(2024·福建省·中考真题)因式分解:x 2+x =.【答案】()1x x +【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+24.(2024·江苏盐城·中考真题)分解因式:x 2+2x +1=【答案】()21x +/()21x +【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).25.(2024·江西省·中考真题)因式分解:22a a +=.【答案】(2)a a +【详解】根据分解因式提取公因式法,将方程a 2+2a 提取公因式为a (a+2).故a 2+2a=a (a+2).故答案是a (a+2).三、解答题26.(2024·黑龙江齐齐哈尔·中考真题)(1)()2144cos 60π52-⎛⎫-︒--+ ⎪⎝⎭(2)分解因式:3228a ab -【答案】(1)7;(2)()()222a a b a b +-【分析】本题考查了实数的混合运算,因式分解;(1)根据算术平方根,特殊角的三角函数值,零指数幂,负整数指数幂,进行计算即可求解;(2)先提公因式2a ,进而根据平方差公式因式分解,即可求解.【详解】(1)解:原式124142=+⨯-+2214=+-+7=;(2)解:原式()2224a a b =-()()222a a b a b =+-27.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m-+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.28.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b cm n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.【答案】(1)证明见解析;(2),m n 不可能都为整数,理由见解析.【分析】本小题考查整式的运算、因式分解、等式的性质等基础知识:考查运算能力、推理能力、创新意识等,以及综合应用所学知识分析、解决问题的能力.(1)根据题意得出()3,b a m n c amn =+=,进而计算212b ac -,根据非负数的性质,即可求解;(2)分情况讨论,①,m n 都为奇数;②,m n 为整数,且其中至少有一个为偶数,根据奇偶数的性质结合已知条件分析即可.【详解】(1)解:因为3,b c m n mn a a+==,所以()3,b a m n c amn =+=.则()22212[3]12b ac a m n a mn-=+-。

因式分解练习题加答案-100题

因式分解练习题加答案-100题

因式分解下列各式:1.3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)2.xy+6-2x-3y=(x-3)(y-2)3.x2(x-y)+y2(y-x)=(x+y)(x-y)^24.2x2-(a-2b)x-ab=(2x-a)(x+b)5.a4-9a2b2=a^2(a+3b)(a-3b)6.x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^27.ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)8.(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)9.a2-a-b2-b=(a+b)(a-b-1)10.(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^211.(a+3)2-6(a+3)=(a+3)(a-3)12.(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.x2-25=(x+5)(x-5)36.x2-20x+100=(x-10)^237.x2+4x+3=(x+1)(x+3)38.4x2-12x+5=(2x-1)(2x-5)39.(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.2ax2-3x+2ax-3=(x+1)(2ax-3)42.9x2-66x+121=(3x-11)^243.8-2x2=2(2+x)(2-x)44.x2-x+14 =整数内无法分解45.9x2-30x+25=(3x-5)^246.-20x2+9x+20=(-4x+5)(5x+4)47.12x2-29x+15=(4x-3)(3x-5)48.36x2+39x+9=3(3x+1)(4x+3)49.21x2-31x-22=(21x+11)(x-2)50.9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.2ax2-3x+2ax-3=(x+1)(2ax-3)53.x(y+2)-x-y-1=(x-1)(y+1)54.(x2-3x)+(x-3)2=(x-3)(2x-3)55.9x2-66x+121=(3x-11)^256.8-2x2=2(2-x)(2+x)57.x4-1=(x-1)(x+1)(x^2+1)58.x2+4x-xy-2y+4=(x+2)(x-y+2)59.4x2-12x+5=(2x-1)(2x-5)60.21x2-31x-22=(21x+11)(x-2)61.4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解综合应用(习题)
➢ 例题示范 例1:因式分解22(22)(24)9x x x x ---++.
【过程书写】
解:令22x x t -=,则
222(2)(4)9
289
21
(1)t t t t t t t =-++=+-+=++=+原式
22
4(21)(1)
x x x =-+=-即,原式
例2:已知221x x ++是多项式32x x ax b -++的一个因式,求a ,b 的值,并将该多项式因式分解.
【思路分析】
①由已知可设32x x ax b -++= (221x x ++)( ___________ );
②化简,对照系数即可.
【过程书写】
解:设322(21)()x x ax b x x x m -++=+++,则
3232(2)(21)x x ax b x m x m x m -++=+++++
∴2121m m a m b +=-⎧⎪+=⎨⎪=⎩
解得533a b m =-⎧⎪=-⎨⎪=-⎩
322253(21)(3)
(1)(3)
x x x x x x x x ---=++-=+-∴
➢ 巩固练习
1. 把下列各式因式分解.
(1)222()8()12x x x x +-++;
(2)22(24)(22)9x x x x -+--+++;
(3)(1)(2)(3)(4)24x x x x -+-++;
(4)32256x x x +--;
(5)31x -;
(6)3234x x +-;
(7)222241x y x y xy +---.
2. 方程2230x x --=的解为______________________.
3. 若a ,b ,c 是△ABC 的三边长,且满足 3222230a a b ab ac bc b -+-+-=,则△ABC 的形状是
_____________________________.
4. 若a ,b ,c 是△ABC 的三边长,且满足222a b c ab bc ac ++=++,则△ABC
的形状是_______________________.
5. 已知多项式3210x mx nx -++有因式2x -和1x +,求m 的值.
【思路分析】
①由已知可设3210x mx nx -++=(2x -)(1x +)( ___________ );
②化简,对照系数即可.
【过程书写】
6. 已知关于x 的多项式23x x m ++因式分解以后,有一个因式为32x -,试求
m 的值,并将此多项式因式分解.
7. 用试根法将多项式32252x x x ---因式分解.
【思路分析】
①将x =____代入多项式,发现322520x x x ---=,
所以多项式中有因式___________;
②设32252x x x ---=( __________ )( ________________ );
③化简,对照系数即可.
【过程书写】
8. 对于一个图形,通过不同的方法计算其面积时,可得到一个数学等式,例如
由图1可得到2232(2)()a ab b a b a b ++=++.
画出你的拼图.
【参考答案】
➢ 巩固练习
1. (1)(2)(1)(2)(3)x x x x +--+
(2)4(1)x -
(3)2(2)(3)(8)x x x x -++-
(4)(1)(2)(3)x x x +-+
(5)2(1)(1)x x x -++
(6)2(1)(2)x x -+
(7)(1)(1)x y xy x y xy -++---
2. x =-1或x =3
3. 等腰三角形或直角三角形
4. 等边三角形
5. ①x +a
②m =6
6. m =-2;232(32)(1)x x x x +-=-+
7. ①2,(x -2);
②2(2)(2)x x mx n -++
32252(2)(1)(21)x x x x x x ---=-++
8. (1)22252(2)(2)a ab b a b a b ++=++
(2)2223()(2)a ab b a b a b ++=++。

相关文档
最新文档