河北省唐山市2019-2020学年中考数学模拟试题含解析

合集下载

河北省唐山市2019-2020学年中考数学三月模拟试卷含解析

河北省唐山市2019-2020学年中考数学三月模拟试卷含解析

河北省唐山市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.2.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π3.下列安全标志图中,是中心对称图形的是()A.B.C.D.4.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x 的函数图象大致为A.B.C.D.5.运用乘法公式计算(3﹣a)(a+3)的结果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2D.a2﹣3a+96.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.2137.如图,圆O是等边三角形内切圆,则∠BOC的度数是()A.60°B.100°C.110°D.120°8.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4409.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为()A.3B.3C.3D.310.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A .55°B .60°C .65°D .70°11.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( ) A .6.5×105 B .6.5×106 C .6.5×107 D .65×105 12.﹣22×3的结果是( ) A .﹣5B .﹣12C .﹣6D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.14.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .15.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒lcm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P′,设Q 点运动的时间为t 秒,若四边形QP′CP 为菱形,则t 的值为_____.16.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,若⊙O 的半径是5,CD =8,则AE =______.17.如图,有一直径是2的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC ,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.18.函数y=36x x +- 中,自变量x 的取值范围为_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在ABC ∆中,AB AC =,以AB 为直径的圆交BC 于D ,交AC 于E .过点E 的切线交OD 的e的切线.延长线于F.求证:BF是O20.(6分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?21.(6分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共人,使用过共享单车的有人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?22.(8分)如图,在四边形ABCD 中,点E 是对角线BD 上的一点,EA ⊥AB ,EC ⊥BC ,且EA=EC .求证:AD=CD .23.(8分)已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD.24.(10分)如图所示,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:△ACE ≌△BCD ;若AD =5,BD =12,求DE 的长.25.(10分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A .由父母一方照看;B .由爷爷奶奶照看;C .由叔姨等近亲照看;D .直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?26.(12分)先化简,再求值:a b a -÷(a ﹣22ab b a-),其中a=3tan30°+1,2cos45°. 27.(12分)如图,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =求O e 的半径.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.2.B【解析】【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴»BC的长=6011803ππ⋅⋅=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.3.B【解析】试题分析:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不符合题意;D.不是中心对称图形,故此选项不合题意;故选B.考点:中心对称图形.4.B【解析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1。

河北省唐山市2019-2020学年第三次中考模拟考试数学试卷含解析

河北省唐山市2019-2020学年第三次中考模拟考试数学试卷含解析

河北省唐山市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( )A .12B .59C .49D .232.下列各数中是无理数的是( )A .cos60°B .·1.3C .半径为1cm 的圆周长D .38 3.已知a=12(7+1)2,估计a 的值在( ) A .3 和4之间B .4和5之间C .5和6之间D .6和7之间 4.下列选项中,可以用来证明命题“若a 2>b 2,则a >b“是假命题的反例是( )A .a =﹣2,b =1B .a =3,b =﹣2C .a =0,b =1D .a =2,b =15.半径为R 的正六边形的边心距和面积分别是( )A .32R ,2332R B .12R ,2332R C .32R ,234R D .12R ,234R 6.如图所示:有理数,a b 在数轴上的对应点,则下列式子中错误..的是( )A .0ab >B .0a b +<C .1a b <D .0a b -<7.如图,AB 与⊙O 相切于点A ,BO 与⊙O 相交于点C ,点D 是优弧AC 上一点,∠CDA =27°,则∠B 的大小是( )A .27°B .34°C .36°D .54°8.如图,△ABC 中,AD ⊥BC ,AB=AC ,∠BAD=30°,且AD=AE ,则∠EDC 等于( )A .10°B .12.5°C .15°D .20°9.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .710.cos45°的值是( )A .12B .32C .22D .1 11.如图,在底边BC 为23,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB 于点D ,交BC 于点E ,则△ACE 的周长为( )A .2+3B .2+23C .4D .3312.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC 中,∠A=80°,∠B=40°,BC 的垂直平分线交AB 于点D ,联结DC .如果AD=2,BD=6,那么△ADC 的周长为 .14.因式分解2242x x -+=______.15.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).16.如图,在正六边形ABCDEF 的上方作正方形AFGH ,联结GC ,那么GCD ∠的正切值为___.17.将直线y=x 沿y 轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.18.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB 是120m ,则乙楼的高CD 是_____m (结果保留根号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?20.(6分)如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .21.(6分)如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.22.(8分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.23.(8分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,(1)求证:BC=2AD;(2)若cosB=34,AB=10,求CD的长.24.(10分)关于x的一元二次方程ax2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.25.(10分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD 平分∠ABC ;(2)连接EC ,若∠A =30°,DC =3,求EC 的长.26.(12分)如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O 于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H .(1)求证:∠D=2∠A ;(2)若HB=2,cosD=35,请求出AC 的长.27.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D.【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键. 2.C【解析】分析:根据“无理数”的定义进行判断即可.详解:A选项中,因为1cos602=o,所以A选项中的数是有理数,不能选A;B选项中,因为·1.3是无限循环小数,属于有理数,所以不能选B;C选项中,因为半径为1cm的圆的周长是2πcm,2π是个无理数,所以可以选C;D38=2,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键. 3.D【解析】【分析】7的范围,进而可得7的范围.【详解】解:a=12×(77,∵27<3,∴6<7<7,∴a的值在6和7之间,故选D.【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.4.A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1,∴a =﹣2,b =1是假命题的反例.故选A .【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.5.A【解析】【分析】首先根据题意画出图形,易得△OBC 是等边三角形,继而可得正六边形的边长为R ,然后利用解直角三角形求得边心距,又由S 正六边形=6V OBC S 求得正六边形的面积.【详解】解:如图,O 为正六边形外接圆的圆心,连接OB ,OC ,过点O 作OH ⊥BC 于H ,∵六边形ABCDEF 是正六边形,半径为R ,∴∠BOC=3600166⨯︒=︒, ∵OB=OC=R ,∴△OBC 是等边三角形,∴BC=OB=OC=R ,60OBC ∠=︒∵OH ⊥BC ,∴在Rt OBH V 中,sin sin 60∠=︒=OH OBH OB, 即32=OH R ∴32=OH R ,即边心距为32R ;∵2112224=⋅=⋅=V OBC S BC OH R R R ,∴S 正六边形=2266==V OBC S R R , 故选:A .【点睛】本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.6.C【解析】【分析】从数轴上可以看出a 、b 都是负数,且a <b ,由此逐项分析得出结论即可.【详解】由数轴可知:a<b<0,A 、两数相乘,同号得正,ab >0是正确的;B 、同号相加,取相同的符号,a+b <0是正确的;C 、a <b <0,1a b>,故选项是错误的; D 、a-b=a+(-b )取a 的符号,a-b <0是正确的.故选:C .【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.7.C【解析】【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB 与⊙O 相切于点A ,∴OA ⊥BA .∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C .考点:切线的性质.8.C试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故选C.考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.10.C【解析】【分析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45°= .故选:C.【点睛】本题考查特殊角的三角函数值.11.B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:∵DE垂直平分AB,∴,∴△ACE的周长故选B.点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.B【解析】【分析】先由平均数是3可得x的值,再结合方差公式计算.【详解】∵数据1、2、3、x、5的平均数是3,∴12355x++++=3,解得:x=4,则数据为1、2、3、4、5,∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故选B.【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得∠BCD的度数,继而求得∠ADC的度数,则可判定△ACD是等腰三角形,继而求得答案.试题解析:∵BC的垂直平分线交AB于点D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周长为:AD+DC+AC=2+6+6=1.考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质.14.22(1)x -.【解析】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为:22(1)x -. 15.12π【解析】根据圆锥的侧面展开图是扇形可得,2120612360p p ´=,∴该圆锥的侧面面积为:12π, 故答案为12π.16.31+【解析】【分析】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===解直角三角形可得DF ,根据正切的定义即可求得GCD ∠的正切值【详解】 延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M, 设正方形的边长为a ,则,CD GF DE a ===AF //CD ,90,CDG AFG ∴∠=∠=o1209030,EDM ∠=-=o o o3cos30,2DM DE =⋅=o 23,DF DM a ∴==)331,DG GF FD a a a ∴=+== ()3131tan .a GD GCD CD a ∠===故答案为:3 1.+【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.17.y=x+12【解析】【分析】已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.【详解】∵直线 y=x 沿y 轴向上平移1个单位长度,∴所得直线的函数关系式为:y=x+1.∴A (0,1),B (1,0),∴AB=12,过点 O 作 OF ⊥AB 于点 F ,则12AB•OF=12OA•OB , ∴OF=222OA OB AB ⋅== 2.故答案为y=x+12.【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b (k 、b 为常数,k≠0)的图象为直线,当直线平移时 k 不变,当向上平移m 个单位,则平移后直线的解析式为 y=kx+b+m .18.3【解析】【分析】利用等腰直角三角形的性质得出AB=AD ,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m ,又∵∠CAD=30°,∴在Rt △ADC 中,tan ∠CDA=tan30°=CD AD = 解得:m ),故答案为【点睛】此题主要考查了解直角三角形的应用,正确得出tan ∠CDA=tan30°=CD AD是解题关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)m=-6,点D 的坐标为(-2,3);(2)1tan BAO 2∠=;(3)当2x <-或06x <<时,一次函数的值大于反比例函数的值.【解析】【分析】(1)将点C 的坐标(6,-1)代入m y x=即可求出m ,再把D (n ,3)代入反比例函数解析式求出n 即可.(2)根据C (6,-1)、D (-2,3)得出直线CD 的解析式,再求出直线CD 与x 轴和y 轴的交点即可,得出OA 、OB 的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】 ⑴把C (6,-1)代入m y x=,得()m 616=⨯-=-. 则反比例函数的解析式为6y x=-, 把y 3=代入6y x =-,得x 2=-, ∴点D 的坐标为(-2,3).⑵将C (6,-1)、D (-2,3)代入y kx b =+,得6123k b k b +=-⎧⎨-+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩.∴一次函数的解析式为1y x 22=-+, ∴点B 的坐标为(0,2),点A 的坐标为(4,0).∴OA 4OB 2==,,在在Rt ΔABO 中, ∴OB 21tan BAO OA 42∠===. ⑶根据函数图象可知,当x 2<-或0x 6<<时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.20.证明见解析【解析】试题分析:证明三角形△ABC ≅△DEF,可得AB =DE .试题解析:证明:∵BF =CE ,∴BC=EF,∵AB ⊥BE ,DE ⊥BE ,∴∠B=∠E=90°,AC=DF,∴△ABC ≅△DEF,∴AB=DE.21.(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,)或(0,3﹣)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴BC=32, 点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3∴P 1(0,3+32),P 2(0,3﹣32);②当PB=PC 时,OP=OB=3,∴P 3(0,-3);③当BP=BC 时,∵OC=OB=3∴此时P 与O 重合,∴P 4(0,0);综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t ,∴S △MNB=12×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1, 当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.22.(1)m=3,k=12;(2)或【解析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=kx,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.【详解】解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=kx的图像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).设直线AB的函数表达式为y=k′x+b(k′≠0),则4326k bk b=+⎧⎨=+''⎩解得236 kb⎧=-⎪⎨⎪=⎩'∴直线AB的函数表达式为y=-23x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.23.(1)证明见解析;(2)CD =7.【解析】【分析】(1)根据三角函数的概念可知tanA =CD AD ,cos ∠BCD =CD BC,根据tanA =2cos ∠BCD 即可得结论;(2)由∠B 的余弦值和(1)的结论即可求得BD ,利用勾股定理求得CD 即可.【详解】(1)∵tanA =CD AD ,cos ∠BCD =CD BC,tanA =2cos ∠BCD , ∴CD AD =2·CD BC , ∴BC =2AD.(2)∵cosB =BD BC =34,BC =2AD , ∴BD AD =32. ∵AB =10,∴AD =25×10=4,BD =10-4=6, ∴BC =8,∴CD 22BC BD -7.【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.24.(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解析】【详解】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.25.(1)见解析;(2)EC =【解析】【分析】(1)直接利用直角三角形的性质得出12DE BE AB ==,再利用DE ∥BC ,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt △BCD 中,∠3=60°,DC =DB 的长,进而得出EC 的长.【详解】(1)证明:∵AD ⊥DB ,点E 为AB 的中点, ∴12DE BE AB ==. ∴∠1=∠2.∵DE ∥BC ,∴∠2=∠3.∴∠1=∠3.∴BD 平分∠ABC.(2)解:∵AD ⊥DB ,∠A =30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD =90°,∴∠4=30°.∴∠CDE =∠2+∠4=90°.在Rt △BCD 中,∠3=60°,3DC =, ∴DB =2. ∵DE =BE ,∠1=60°,∴DE =DB =2.∴22437EC DE DC =+=+=.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB ,DE 的长是解题关键. 26.(1)证明见解析;(2)AC=45.【解析】【分析】(1)连接OC ,根据切线的性质得到90OCP ∠=︒,根据垂直的定义得到90DEP ∠=︒,得到COB D ∠=∠,然后根据圆周角定理证明即可;(2)设O e 的半径为r ,根据余弦的定义、勾股定理计算即可.【详解】(1)连接OC .∵射线DC 切O e 于点C ,90OCP ∴∠=︒.DE AP ⊥Q ,90DEP ∴∠=︒,90P D ∴∠+∠=︒,90P COB ∠+∠=︒,COB D ∴∠=∠,由圆周角定理得:2COB A ∠=∠,2D A ∴∠=∠;(2)由(1)可知:90OCP ∠=︒,COP D ∠=∠,3cos cos 5COP D ∴∠=∠=,CH OP ⊥Q ,90CHO ∴∠=︒,设O e 的半径为r ,则2OH r =-,在Rt CHO ∆中,23cos 5OH r HOC OC r -∠===,5r ∴=,523OH ∴=-=,∴由勾股定理可知:4CH =,1028AH AB HB ∴=-=-=. 在Rt AHC ∆中,90CHA =︒∠,由勾股定理可知:2245AC AH CH =+=.【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.27.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒==,在Rt△BDC中,CDBDtan60===︒,∴AB=AD-BD=14 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.。

河北省唐山市2019-2020学年中考数学四模试卷含解析

河北省唐山市2019-2020学年中考数学四模试卷含解析

河北省唐山市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.化简a 1a 11a +--的结果为( ) A .﹣1 B .1 C .a 1a 1+- D .a 11a+- 2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .63.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x ) 4.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是( )A .B .C .D .5.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为( )A .①B .②C .③D .④6.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A.95B.185C.165D.1257.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3 B.2.4 C.2.5 D.2.68.下列几何体中,其三视图都是全等图形的是()A.圆柱B.圆锥C.三棱锥D.球9.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.34B.43C.35D.4510.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为()A.100°B.105°C.110°D.115°11.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B.2C.82D.912.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。

河北省唐山市2019-2020学年中考数学一月模拟试卷含解析

河北省唐山市2019-2020学年中考数学一月模拟试卷含解析

河北省唐山市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )A .B .C .D .2.二次函数2y x =的对称轴是( ) A .直线y 1=B .直线x 1=C .y 轴D .x 轴3.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )1 2 3 4 5 成绩(m ) 8.28.08.27.57.8A .8.2,8.2B .8.0,8.2C .8.2,7.8D .8.2,8.04.在同一直角坐标系中,函数y=kx-k 与ky x=(k≠0)的图象大致是 ( ) A . B .C .D .5.下列四个多项式,能因式分解的是( ) A .a -1 B .a 2+1 C .x 2-4yD .x 2-6x +96.如图,在菱形ABCD 中,AB=5,∠BCD=120°,则△ABC 的周长等于( )A .20B .15C .10D .57.下列四个图案中,不是轴对称图案的是( )A.B.C.D.8.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形9.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是()A.极差是20 B.中位数是91 C.众数是1 D.平均数是9110.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.1211.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )A.1个B.2个C.3个D.412.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果m,n互为相反数,那么|m+n﹣2016|=___________.14.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.15.用换元法解方程2231512x xx x-+=-,设y=21xx-,那么原方程化为关于y的整式方程是_____.16.在△ABC中,若∠A,∠B满足|cosA-12|+(sinB-22)2=0,则∠C=_________.17.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.18.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=%,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?20.(6分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.21.(6分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.22.(8分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为.23.(8分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA 级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.24.(10分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD 和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.25.(10分)如图,一次函数y=2x﹣4的图象与反比例函数y=kx的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.26.(12分)路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120 角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)27.(12分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为»BD的中点.求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.考点:中心对称图形;轴对称图形.【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).3.D【解析】【分析】【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.4.D【解析】【分析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数kyx=(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数kyx=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数kyx=(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.6.B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B7.B【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.8.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理. 9.D 【解析】 【分析】 【详解】试题分析:因为极差为:1﹣78=20,所以A 选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B 选项正确; 因为1出现了两次,最多,所以众数是1,所以C 选项正确; 因为9178988598905x ++++==,所以D 选项错误.故选D .考点:①众数②中位数③平均数④极差. 10.B 【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解. 详解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD 是∠BAC 的角平分线,90C ,∠=︒ ∴DE=CD=2, ∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等. 11.B 【解析】 【分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确;②对称轴x 2ba=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误. 综上所述:正确的结论有2个. 故选B . 【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 12.C 【解析】 【分析】分为三种情况:①AP=OP ,②AP=OA ,③OA=OP ,分别画出即可. 【详解】 如图,分OP=AP (1点),OA=AP (1点),OA=OP (2点)三种情况讨论. ∴以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有4个. 故选C. 【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1. 【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n ﹣1|,∵m ,n 互为相反数,∴m+n=0,∴|m+n ﹣1|=|﹣1|=1;故答案为1.考点:1.绝对值的意义;2.相反数的性质. 14.1. 【解析】试题解析:根据题意,将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF ,则AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=1,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.15.6y 2-5y+2=0【解析】【分析】根据y =21x x -,将方程变形即可. 【详解】根据题意得:3y +152y =, 得到6y 2-5y +2=0故答案为6y 2-5y +2=0【点睛】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键. 16.75°【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA 及sinB 的值,从而得出∠A 及∠B 的度数,利用三角形的内角和定理可得出∠C 的度数.【详解】∵|cosA -12|+(sinB -2)2=0,∴cosA=12,sinB=2, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°. 【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA 及sinB 的值,另外要求我们熟练掌握一些特殊角的三角函数值.17.2.4cm【解析】分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP 的值,利用sin ∠B 的值,可求出PD . 详解:由图2可得,AC=3,BC=4,∴AB=22345+=.当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B=ACAB=35,∴PD=BP·sin∠B=2×35=65=1.2(cm).故答案是:1.2 cm.点睛:本题考查了动点问题的函数图象,勾股定理,锐角三角函数等知识,解答本题的关键是根据图形得到AC、BC的长度,此题难度一般.1822【解析】根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是2.解:根据图形中正方形的性质,得∠AOB=90°,2.∴扇形OAB 90222π⨯=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【解析】【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出BD DF=CE ED,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的14,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴BD DF=CE ED.∵BD=CD,∴CD DF=CE ED,即CD CE=DF ED.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=12BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=12•BC•AD=12×3×2=42,S△DEF=14S△ABC=14×42=3.又∵12•AD•BD=12•AB•DH,∴AD BD8624 DHAB105⋅⨯===.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=245.∵S△DEF=12·EF·DG=12·EF·245=3,∴EF=4.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.21.(1)证明见解析;(2)①∠OCE=45°;②EF =【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在OCE 中,∠E=30°,利用内角和定理,得:∠OCE=45°.②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=OCE=45°.等腰直角三角形的斜倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=则EF=GE-FG=【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=∴EF=GE-FG=【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.22.(1)详见解析;(2)83.【解析】【分析】(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.【详解】(1)如图,DE、DF为所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=23Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE 的面积=4×33故答案为:3【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).23.(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.由题意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w随x的增大而减小,∴当a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴当a=67时,w最小=﹣50×67+30000=26650(元),此时200﹣67=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.24.解:(1)直线CD和⊙O的位置关系是相切,理由见解析(2)BE=1.【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD 可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理25.(1)y=6x;(2)(4,0)或(0,0)【解析】【分析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x ﹣4,可得y=2×1﹣4=2,∴A (1,2),把(1,2)代入y=k x,可得k=1×2=6, ∴反比例函数的解析式为y=6x ; (2)根据题意可得:2x ﹣4=,解得x 1=1,x 2=﹣1,把x 2=﹣1,代入y=2x ﹣4,可得y=﹣6,∴点B 的坐标为(﹣1,﹣6).设直线AB 与x 轴交于点C ,y=2x ﹣4中,令y=0,则x=2,即C (2,0),设P 点坐标为(x ,0),则×|x ﹣2|×(2+6)=8,解得x=4或0,∴点P 的坐标为(4,0)或(0,0).【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。

河北省唐山市2019-2020学年中考数学一模考试卷含解析

河北省唐山市2019-2020学年中考数学一模考试卷含解析

河北省唐山市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是( ) A .x 1+x 2=1B .x 1•x 2=﹣1C .|x 1|<|x 2|D .x 12+x 1=122.下列各点中,在二次函数2y x =-的图象上的是( ) A .()1,1B .()2,2-C .()2,4D .()2,4--3.2018的相反数是( ) A .12018B .2018C .-2018D .12018-4.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C .AB CBBD CD= D .AD ABAB AC= 5.左下图是一些完全相同的小正方体搭成的几何体的三视图 .这个几何体只能是( )A .B .C .D .6.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等7.已知平面内不同的两点A (a+2,4)和B (3,2a+2)到x 轴的距离相等,则a 的值为( ) A .﹣3B .﹣5C .1或﹣3D .1或﹣58.如图所示,直线a ∥b ,∠1=35°,∠2=90°,则∠3的度数为( )A.125°B.135°C.145°D.155°9.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为()A.13.51×106B.1.351×107C.1.351×106D.0.1531×10810.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A.4个B.3个C.2个D.1个11.如果k<0,b>0,那么一次函数y=kx+b的图象经过( )A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac <0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.14.如图,OAB ∆与OCD ∆是以点O 为位似中心的位似图形,相似比为3:4,90OCD =o ∠,60AOB ∠=o ,若点B 的坐标是(6,0),则点C 的坐标是__________.15.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是_________16.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =42,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为___.17.已知正比例函数的图像经过点M( )、、,如果,那么________.(填“>”、“=”、“<”)18.不等式组2672x x -≥⎧⎨+>-⎩的解集是____________;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算﹣14﹣23116()|3|2÷-+-20.(6分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长. (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)21.(6分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.22.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.23.(8分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.24.(10分)如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.25.(10分)计算:(﹣4)×(﹣12)+2﹣1﹣(π﹣1)0+36.26.(12分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B 级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.27.(12分)解不等式313212xx+->-,并把解集在数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x 1+x 2=﹣22=﹣1,x 1x 2=﹣12,故A 、B 选项错误; ∵x 1+x 2<0,x 1x 2<0,∴x 1、x 2异号,且负数的绝对值大,故C 选项错误; ∵x 1为一元二次方程2x 2+2x ﹣1=0的根, ∴2x 12+2x 1﹣1=0, ∴x 12+x 1=12,故D 选项正确, 故选D .【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键. 2.D 【解析】 【分析】将各选项的点逐一代入即可判断. 【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象; 当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D . 【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式. 3.C 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得. 【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018, 故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 4.C 【解析】 【分析】由∠A 是公共角,利用有两角对应相等的三角形相似,即可得A 与B 正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.5.A【解析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.考点:几何体的三视图6.C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.7.A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.8.A【解析】分析:如图求出∠5即可解决问题. 详解:∵a ∥b , ∴∠1=∠4=35°, ∵∠2=90°, ∴∠4+∠5=90°, ∴∠5=55°,∴∠3=180°-∠5=125°, 故选:A .点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题. 9.B 【解析】 【分析】根据科学记数法进行解答. 【详解】1315万即13510000,用科学记数法表示为1.351×107.故选择B. 【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n (1≤│a│<10且n 为整数). 10.B 【解析】试题解析:①∵二次函数的图象的开口向下, ∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上, ∴c>0,∵二次函数图象的对称轴是直线x=1,12ba,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点, 240b ac ∴->, 24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1, ∴抛物线上x=0时的点与当x=2时的点对称, 即当x=2时,y>0 ∴4a+2b+c>0, 故错误;④∵二次函数图象的对称轴是直线x=1,12ba,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个. 故选B. 11.D 【解析】 【分析】根据k 、b 的符号来求确定一次函数y=kx+b 的图象所经过的象限. 【详解】 ∵k <0,∴一次函数y=kx+b 的图象经过第二、四象限. 又∵b >0时,∴一次函数y=kx+b 的图象与y 轴交与正半轴. 综上所述,该一次函数图象经过第一、二、四象限. 故选D . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交. 12.C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0. ∴abc <0, ①正确; 2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0, 即4a-2b+c <0 ∵b=-2a , ∴4a+4a+c <0 即8a+c <0,故⑤正确. 正确的结论有①②⑤, 故选:C 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.a+b=1. 【解析】试题分析:根据作图可知,OP 为第二象限角平分线,所以P 点的横纵坐标互为相反数,故a+b=1. 考点:1角平分线;2平面直角坐标系.14.(2,) 【解析】分析:首先解直角三角形得出A 点坐标,再利用位似是特殊的相似,若两个图形OAB ∆与OCD ∆是以点O 为位似中心的位似图形,相似比是k ,OAB ∆上一点的坐标是(),x y , 则在OCD ∆中,它的对应点的坐标是(),kx ky 或(),kx ky --,进而求出即可.详解:OAB 与OCD ∆是以点O 为位似中心的位似图形,90OCD ∠=o ,90.OAB ∴∠=︒60AOB ∠=o ,若点B 的坐标是()6,0,1cos606 3.2OA OB =⋅︒=⨯=。

河北省唐山市2019-2020学年中考数学五模考试卷含解析

河北省唐山市2019-2020学年中考数学五模考试卷含解析

河北省唐山市2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程(x+2017)2=1的解为( )A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20172.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( ) A.B.C.D.3.16的相反数是( )A.6 B.-6 C.16D.16-4.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为()A.0.135×106B.1.35×105C.13.5×104D.135×103 5.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.3y-2x=B.2y3x=C.3y2x=D.2y-3x=6.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×10107.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.8.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A.259×104B.25.9×105C.2.59×106D.0.259×107A .24π cm 2B .48π cm 2C .60π cm 2D .80π cm 210.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A .15°B .30°C .45°D .60°11.如图,ABC ∆中,6AB =,4BC =,将ABC ∆绕点A 逆时针旋转得到AEF ∆,使得//BC AF ,延长BC 交AE 于点D ,则线段CD 的长为( )A .4B .5C .6D .712.一元二次方程x 2﹣5x ﹣6=0的根是( ) A .x 1=1,x 2=6B .x 1=2,x 2=3C .x 1=1,x 2=﹣6D .x 1=﹣1,x 2=6二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若一组数据1,2,3,x 的平均数是2,则x 的值为______.14.如图,AB 为半圆的直径,且AB=2,半圆绕点B 顺时针旋转40°,点A 旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).15.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表: 价格/(元/kg )12108合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较16.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).17.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.18.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?20.(6分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).21.(6分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB 的度数及P点坐标.22.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.23.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a=___ ;b=____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率. 24.(10分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树E .其他根据以上统计图,解答下列问题: (1)本次接受调查的市民共有 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数. 25.(10分)如图,已知一次函数1y k x b =+的图象与反比例函数2k y x=的图象交于点()4,A m -,且与y 轴交于点B ;点C 在反比例函数2k y x=的图象上,以点C 为圆心,半径为2的作圆C 与x 轴,y 轴分别相切于点D 、B .(1)求反比例函数和一次函数的解析式; (2)请连结OA ,并求出AOB ∆的面积; (3)直接写出当0x <时,210k k x b x+->的解集. 26.(12分)如图1,在平面直角坐标系xOy 中,抛物线y =ax 2+bx ﹣32与x 轴交于点A (1,0)和点B (﹣3,0).绕点A 旋转的直线l :y =kx+b 1交抛物线于另一点D ,交y 轴于点C . (1)求抛物线的函数表达式;(2)当点D 在第二象限且满足CD =5AC 时,求直线l 的解析式;(3)在(2)的条件下,点E 为直线l 下方抛物线上的一点,直接写出△ACE 面积的最大值; (4)如图2,在抛物线的对称轴上有一点P ,其纵坐标为4,点Q 在抛物线上,当直线l 与y 轴的交点C 位于y 轴负半轴时,是否存在以点A ,D ,P ,Q 为顶点的平行四边形?若存在,请直接写出点D 的横坐标;若不存在,请说明理由.27.(12分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】利用直接开平方法解方程.【详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故选A.【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.2.C【解析】由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】∵关于x的一元二次方程x2−2x+k+2=0有实数根,∴△=(−2)2−4(k+2)⩾0,解得:k⩽−1,在数轴上表示为:故选C.【点睛】本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.3.D【解析】【分析】根据相反数的定义解答即可.【详解】根据相反数的定义有:16的相反数是16.故选D.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.4.B【解析】【分析】根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).【详解】解:135000用科学记数法表示为:1.35×1.故选B.【点睛】利用待定系数法即可求解. 【详解】设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=32 -.∴函数的解析式是:32y x =-.故选A.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.7.C【解析】试题解析:左视图如图所示:故选C.8.C【解析】【分析】绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.【详解】n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,故侧面积=πrl=π×6×4=14πcm1.故选:A.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.10.B【解析】【分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.【分析】先利用已知证明BAC BDA :△△,从而得出BA BCBD BA=,求出BD 的长度,最后利用CD BD BC =-求解即可. 【详解】//AF BC QFAD ADB ∴∠=∠BAC FAD ∠=∠Q BAC ADB ∴∠=∠B B ∠∠=QBAC BDA ∴V :VBA BCBD BA ∴= 646BD ∴= 9BD ∴=945CD BD BC ∴=-=-=故选:B . 【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键. 12.D 【解析】 【分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题. 【详解】 x 2-5x-6=1 (x-6)(x+1)=1 x 1=-1,x 2=6 故选D . 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法. 二、填空题:(本大题共6个小题,每小题4分,共24分.)【分析】根据这组数据的平均数是1和平均数的计算公式列式计算即可.【详解】∵数据1,1,3,x的平均数是1,∴12324x+++=,解得:2x=.故答案为:1.【点睛】本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.14.4π9【解析】【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.【详解】∵S阴影=S扇形ABA′+S半圆-S半圆=S扇形ABA′=2 402 360π⨯=49π,故答案为49π.【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键. 15.C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.16.9π【解析】【分析】根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC=12AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.【详解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=12AB=12×6=3(cm ), ∵△ABC 以点B 为中心顺时针旋转得到△BDE ,∴S △BDE=S △ABC ,∠ABE=∠CBD=180°﹣60°=110°,∴阴影部分的面积=S 扇形ABE +S △BDE ﹣S 扇形BCD ﹣S △ABC=S 扇形ABE ﹣S 扇形BCD =2120?6360π﹣21203360πg =11π﹣3π=9π(cm1).故答案为9π.【点睛】本题考查了旋转的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键.17.1【解析】【详解】 解:34012412x x +≥⎧⎪⎨-≤⎪⎩①②, 解不等式①得:43x ≥-, 解不等式②得:50x ≤,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.18.2y x =-等【解析】【分析】根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,所以解析式满足a <0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,例如:2y x =-.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.20千米【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE 和直角三角形CBE 中利用斜边相等两次利用勾股定理得到AD 2+AE 2=BE 2+BC 2,设AE 为x ,则BE=10﹣x ,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E 应建在离A 站x 千米的地方.则BE=(50﹣x )千米在Rt △ADE 中,根据勾股定理得:AD 2+AE 2=DE 2∴302+x 2=DE 2在Rt △CBE 中,根据勾股定理得:CB 2+BE 2=CE 2∴202+(50﹣x )2=CE 2又∵C 、D 两村到E 点的距离相等.∴DE=CE∴DE 2=CE 2∴302+x 2=202+(50﹣x )2解得x=20∴基地E 应建在离A 站20千米的地方.考点:勾股定理的应用.20.CD 的长度为17cm .【解析】【分析】在直角三角形中用三角函数求出FD ,BE 的长,而FC =AE =AB +BE ,而CD =FC -FD ,从而得到答案.【详解】解:由题意,在Rt △BEC 中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=BE EC,∴BE=ECtan30°=51×33=173(cm);∴CF=AE=34+BE=(34+173)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣FD=34+173﹣51=173﹣17,答:CD的长度为173﹣17cm.【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.21.(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解析】【分析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【详解】(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠A BO+∠CBH=90°,∴∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCH ,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C 点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ ﹣∠ABQ=∠ABC ﹣∠ABQ ,即∠PBA=∠QBC ,在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△QBC ,∴PA=CQ ;(3)∵△BPQ 是等腰直角三角形,∴∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,△PBA ≌△QBC ,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P 点坐标为(1,0).【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.两人之中至少有一人直行的概率为59. 【解析】【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为59.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.23.(1)0.3,45;(2)108 ;(3)1 6【解析】【分析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可. 【详解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列关系表格为:由表格可知,满足题意的概率为:1 6 .考点:1、频数分布表,2、扇形统计图,3、概率24.(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)4y x =,324y x =+;(2)4;(3)40x -<<. 【解析】【分析】(1)连接CB ,CD ,依据四边形BODC 是正方形,即可得到B (1,2),点C (2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;(2)依据OB=2,点A 的横坐标为-4,即可得到△AOB 的面积为:2×4×12=4; (3)依据数形结合思想,可得当x <1时,k 1x+b−2k x>1的解集为:-4<x <1. 【详解】解:(1)如图,连接CB ,CD , ∵⊙C 与x 轴,y 轴相切于点D ,B ,且半径为2,90CBO CDO BOD ∴∠=∠=︒=∠,BC CD =,∴四边形BODC 是正方形,2BO OD DC CB ∴====,()0,2B ∴,点()2,2C ,把点()2,2C 代入反比例函数2k y x =中, 解得:24k =, ∴反比例函数解析式为:4y x=, ∵点()4,A m -在反比例函数4y x =上,把()4,A m -代入4y x =中,可得414m ==--, ()4,1A ∴--,把点()0,2B 和()4,1A --分别代入一次函数1y k x b =+中, 得出:1412k b b -+=-⎧⎨=⎩, 解得:1342k b ⎧=⎪⎨⎪=⎩,∴一次函数的表达式为:324y x =+; (2)如图,连接OA , 2OB Q =,点A 的横坐标为4﹣,AOB ∴∆的面积为:12442⨯⨯=; (3)由()4,1A --,根据图象可知:当0x <时,210k k x b x +->的解集为:40x -<<.【点睛】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C ,B 点坐标. 26.(1)y =12x 2+x ﹣32;(2)y =﹣x+1;(3)当x =﹣2时,最大值为94;(4)存在,点D 的横坐标为﹣377.【解析】【分析】(1)设二次函数的表达式为:y =a (x+3)(x ﹣1)=ax 2+2ax ﹣3a ,即可求解;(2)OC ∥DF ,则1,5AC AO CD OF == 即可求解; (3)由S △ACE =S △AME ﹣S △CME 即可求解;(4)分当AP 为平行四边形的一条边、对角线两种情况,分别求解即可.【详解】(1)设二次函数的表达式为:y =a (x+3)(x ﹣1)=ax 2+2ax ﹣3a ,即:332a -=-, 解得:12a =, 故函数的表达式为: 21322y x x =+-①; (2)过点D 作DF ⊥x 轴交于点F ,过点E 作y 轴的平行线交直线AD 于点M ,∵OC ∥DF ,∴1,5AC AO CD OF ==OF =5OA =5, 故点D 的坐标为(﹣5,6),将点A 、D 的坐标代入一次函数表达式:y =mx+n 得:650m n m n =-+⎧⎨=+⎩,解得:11.m n =-⎧⎨=⎩即直线AD 的表达式为:y =﹣x+1,(3)设点E 坐标为213,22x x x ⎛⎫+- ⎪⎝⎭, 则点M 坐标为(),1x x -+, 则221315122222EM x x x x x =-+--+=--+, ()211912244ACE AME CME S S S EM x V V V ,=-=⨯⨯=-++ ∵104a =-<,故S △ACE 有最大值, 当x =﹣2时,最大值为94; (4)存在,理由:①当AP 为平行四边形的一条边时,如下图,设点D 的坐标为213,22t t t ⎛⎫+- ⎪⎝⎭, 将点A 向左平移2个单位、向上平移4个单位到达点P 的位置,同样把点D 左平移2个单位、向上平移4个单位到达点Q 的位置,则点Q 的坐标为215222t t t ⎛⎫-++ ⎪⎝⎭,,将点Q 的坐标代入①式并解得:3t ;=- ②当AP 为平行四边形的对角线时,如下图,设点Q 坐标为213,22t t t ⎛⎫+- ⎪⎝⎭,点D 的坐标为(m ,n ), AP 中点的坐标为(0,2),该点也是DQ 的中点, 则:20213222,2m t n t t +⎧=⎪⎪⎨++-⎪=⎪⎩ 即: 2111,22m t n t t =-⎧⎪⎨=--+⎪⎩将点D 坐标代入①式并解得:7m =.故点D 的横坐标为:3-7或7-.【点睛】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.27.(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD ,∠B=∠D=90°,根据折叠的性质得到∠E=∠B ,AB=AE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF ,EF=DF ,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD 是矩形,∴AB=CD ,∠B=∠D=90°,∵将矩形ABCD 沿对角线AC 翻折,点B 落在点E 处,∴∠E=∠B ,AB=AE ,∴AE=CD ,∠E=∠D ,在△AEF 与△CDF 中,∵∠E=∠D ,∠AFE=∠CFD ,AE=CD ,∴△AEF ≌△CDF ;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF ≌△CDF ,∴AF=CF ,EF=DF ,∴DF 2+CD 2=CF 2,即DF 2+42=(8﹣DF )2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S △ACE ﹣S △AEF =12×4×8﹣12×4×3=1.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.。

河北省唐山市2019-2020学年中考三诊数学试题含解析

河北省唐山市2019-2020学年中考三诊数学试题含解析

河北省唐山市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各式:①a 0=1 ②a 2·a 3=a 5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x 2+x 2=2x 2,其中正确的是 ( ) A .①②③ B .①③⑤ C .②③④ D .②④⑤2.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+3.如图所示的图形为四位同学画的数轴,其中正确的是( ) A . B .C .D .4.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m5.如图①是半径为2的半圆,点C 是弧AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .43πB .43π3C .33πD .3﹣23π 6.小轩从如图所示的二次函数y=ax 2+bx+c (a≠0)的图象中,观察得出了下面五条信息:①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤3a b 2=.你认为其中正确信息的个数有A .2个B .3个C .4个D .5个7.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数的图象与x 轴有两个不同交点的概率是( ).A .B .C .D .8.下列计算正确的是( )A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 69.下列各数中负数是( )A .﹣(﹣2)B .﹣|﹣2|C .(﹣2)2D .﹣(﹣2)310.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)11.如图,△ABC 中,D 为BC 的中点,以D 为圆心,BD 长为半径画一弧交AC 于E 点,若∠A=60°,∠B=100°,BC=4,则扇形BDE 的面积为何?( )A .13π B .23π C .49π D .59π 12.已知点()2,4P -,与点P 关于y 轴对称的点的坐标是( )A .()2,4--B .()2,4-C .()2,4D .()4,2-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知三个数据3,x+3,3﹣x 的方差为23,则x=_____. 14.如图,在Y ABCD 中,AB=8,P 、Q 为对角线AC 的三等分点,延长DP 交AB 于点M ,延长MQ 交CD 于点N ,则CN=__________.15.12的相反数是______.16.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:__________.17.计算(﹣a)3•a2的结果等于_____.18.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE为矩形.20.(6分)解不等式组:2(3)47{22x xxx+≤++>并写出它的所有整数解.21.(6分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.22.(8分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A 类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A ,B ,C 这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.23.(8分)如图,要修一个育苗棚,棚的横截面是Rt ABC V ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)24.(10分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.25.(10分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.26.(12分)如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,OF ⊥AB ,交AC 于点F ,点E 在AB 的延长线上,射线EM 经过点C ,且∠ACE+∠AFO=180°.求证:EM 是⊙O 的切线;若∠A=∠3,求阴影部分的面积.(结果保留π和根号).27.(12分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;该班学生的身高数据的中位数是;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.2.D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP )比2016年增长了12%,∴2017年的国内生产总值为1+12%; ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),∵这两年GDP 年平均增长率为x%, ∴2018年的国内生产总值也可表示为:()21%x +,∴可列方程为:(1+12%)(1+7%)=()21%x +.故选D .点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.3.D【解析】【分析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A 选项图中无原点,故错误;B 选项图中单位长度不统一,故错误;C 选项图中无正方向,故错误;D 选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.4.D【解析】【分析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC , ∴,即,解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.5.D【解析】【分析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=12OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM=OPOM=12,22OM OP-3∴∠POM=60°,3∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S半圆-2S弓形MCN=12×π×22-2×(21202360π⨯-12×3×1)323π,故选D.【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.6.D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴xb12a3=-=-,∴2b a3=-<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴b12a3=-=-,则3a b2=.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.7.C【解析】分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.解答:解:掷骰子有6×6=36种情况.根据题意有:4n-m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选C.点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.8.D【解析】【分析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案. 【详解】A 、2a 2﹣a 2=a 2,故A 错误;B 、(ab)2=a 2b 2,故B 错误;C 、a 2与a 3不是同类项,不能合并,故C 错误;D 、(a 2)3=a 6,故D 正确,故选D .【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键. 9.B【解析】【分析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.【详解】A 、-(-2)=2,是正数;B 、-|-2|=-2,是负数;C 、(-2)2=4,是正数;D 、-(-2)3=8,是正数.故选B .【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键. 10.A【解析】【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.11.C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC ,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S 扇形DBE =24024=3609ππ⋅⋅. 故选C .点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=2360n r π⋅⋅. 12.C【解析】【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点()2,4P -,与点P 关于y 轴对称的点的坐标是()2,4,故选:C .【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.±1【解析】【分析】先由平均数的计算公式求出这组数据的平均数,再代入方差公式进行计算,即可求出x 的值.【详解】解:这三个数的平均数是:(3+x+3+3-x )÷3=3, 则方差是:13[(3-3)2+(x+3-3)2+(3-x-3)2]=23, 解得:x=±1; 故答案为:±1. 【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.1【解析】【分析】根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.【详解】∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q为对角线AC的三等分点,∴12CN CQAM AQ==,21CP CDAP AM==,设CN=x,AM=1x,∴82 21x=,解得,x=1,∴CN=1,故答案为1.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.15.﹣12.【解析】【分析】根据只有符号不同的两个数叫做互为相反数解答.【详解】1 2的相反数是12-.故答案为1 2 -.【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.16.300200(110%)20x x =⨯-- 【解析】 【分析】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据甲检测300个比乙检测200个所用的时间少10%,列出方程即可. 【解答】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据题意有:()300200110%20x x =⨯--. 故答案为()300200110%.20x x =⨯-- 【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.17.﹣a 5【解析】【分析】根据幂的乘方和积的乘方运算法则计算即可.【详解】解:(-a)3•a 2=-a 3•a 2=-a 3+2=-a 5.故答案为:-a 5.【点睛】本题考查了幂的乘方和积的乘方运算.18.16或1【解析】【分析】题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是1;故它的周长是16或1.故答案为:16或1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,{AED CFB A CAD BC∠=∠∠=∠=,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.20.原不等式组的解集为122x-≤<,它的所有整数解为0,1.【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.【详解】解:()2347{22x xxx+≤++>①②,解不等式①,得1-2x≥,解不等式②,得x<2,∴原不等式组的解集为12 2x-≤<,它的所有整数解为0,1.【点睛】本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.(1)5;(2)1或﹣1.【解析】【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,据此进一步计算可得.【详解】(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=1或﹣1.【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用.22.(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图23.33.3【解析】【分析】根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可. 【详解】解:∵AC=sin ABACB∠=1.5sin27︒=1.50.45=103∴矩形面积=10⨯103≈33.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【点睛】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.24.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.25.(1)45;(2)710.【解析】【分析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.26.(1)详见解析;(2)12π 【解析】【分析】(1)连接OC ,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A ,根据等腰三角形的性质得到∠OCE=90°,得到OC ⊥CE ,于是得到结论;(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE ,得到△BOC 是等边三角形,根据扇形和三角形的面积公式即可得到结论.【详解】:(1)连接OC ,∵OF ⊥AB ,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°,∴∠ACE=90°+∠A ,∵OA=OC ,∴∠A=∠ACO ,∴∠ACE=90°+∠ACO=∠ACO+∠OCE ,∴∠OCE=90°,∴OC ⊥CE ,∴EM 是⊙O 的切线;(2)∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°,∴∠ACO=∠BCE ,∵∠A=∠E ,∴∠A=∠ACO=∠BCE=∠E ,∴∠ABC=∠BCO+∠E=2∠A ,∴∠A=30°,∴∠BOC=60°,∴△BOC 是等边三角形,∴OB=BC=3,∴阴影部分的面积=260(3)1313333602224ππ⋅-⨯⨯=-,【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键.27.(1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)3 5 .【解析】【分析】(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率. 【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.故答案为160或1;(4)列树状图得:P(一男一女)=1220=35.。

河北省唐山市2019-2020学年第二次中考模拟考试数学试卷含解析

河北省唐山市2019-2020学年第二次中考模拟考试数学试卷含解析

河北省唐山市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.2.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC 的是()A.BA CABD CE=B.EA DAEC DB=C.ED EABC AC=D.EA ACAD AB=3.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A .1B .3C .5D .1或54.下列计算正确的是( ) A .(﹣8)﹣8=0B .3+=3C .(﹣3b )2=9b 2D .a 6÷a 2=a 35.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠36.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )A .主视图B .俯视图C .左视图D .一样大7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x-= D .72072054848x-=+ 8.下列函数中,y 关于x 的二次函数是( ) A .y =ax 2+bx+c B .y =x(x ﹣1) C .y=21xD .y =(x ﹣1)2﹣x 29.函数2(0)y x x=->的图像位于( ) A .第一象限B .第二象限C .第三象限D .第四象限10.如图所示的图形,是下面哪个正方体的展开图( )A .B .C .D .11.下列由左边到右边的变形,属于因式分解的是( ).A .(x +1)(x -1)=x 2-1B .x 2-2x +1=x(x -2)+1C .a 2-b 2=(a +b)(a -b)D .mx +my +nx +ny =m(x +y)+n(x +y) 12.下列计算正确的是( ) A .(a 2)3=a 6 B .a 2+a 2=a 4 C .(3a )•(2a )2=6aD .3a ﹣a =3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk=<的图象经过点C ,则k 的值为 .14.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°15.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为________.(用含n 的代数式表示,其中n 为正整数)16.如图所示,四边形ABCD 中,60BAD ∠=︒,对角线AC 、BD 交于点E ,且BD BC =,30ACD ∠=︒,若19AB =7AC =,则CE 的长为_____.17.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年品种甲9.8 9.9 10.1 10 10.2 甲乙9.4 10.3 10.8 9.7 9.8 乙经计算,x10 x10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定.18.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.20.(6分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB =8 cm ,水面最深地方的高度为2 cm ,求这个圆形截面的半径.21.(6分)已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F . 求证:△ABF ≌△CDE ; 如图,若∠1=65°,求∠B 的大小.22.(8分)如图,一次函数y 1=﹣x ﹣1的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数2ky x=图象的一个交点为M (﹣2,m ). (1)求反比例函数的解析式; (2)求点B 到直线OM 的距离.23.(8分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知A B C D ,,,分别为“果圆”与坐标轴的交点,直线334y x =-与“果圆”中的抛物线234y x bx c =++交于B C 、两点 (1)求“果圆”中抛物线的解析式,并直接写出“果圆”被y 轴截得的线段BD 的长;(2)如图,E 为直线BC 下方“果圆”上一点,连接AE AB BE 、、,设AE 与BC 交于F ,BEF △的面积记为BEF S V ,ABF V 的面积即为ABFS △,求ABFBEFS S V V 的最小值(3)“果圆”上是否存在点P ,使APC CAB ∠=∠,如果存在,直接写出点P 坐标,如果不存在,请说明理由。

河北省唐山市2019-2020学年中考数学二模考试卷含解析

河北省唐山市2019-2020学年中考数学二模考试卷含解析

河北省唐山市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2018的值为()A .20151()2B .20162()2 C .20152()2 D .20161()23.已知反比例函数y=kx 的图象在一、三象限,那么直线y=kx ﹣k 不经过第( )象限.A .一B .二C .三D .四4.如图,△ABC 的面积为8cm 2 , AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm 2B .3cm 2C .4cm 2D .5cm 25.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .6.如图是几何体的三视图,该几何体是( )A.圆锥B.圆柱C.三棱柱D.三棱锥7.如图,两张完全相同的正六边形纸片(边长为2a)重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是()A.5:2 B.3:2 C.3:1 D.2:18.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为()A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩9.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A.B.C.D.10.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()米A.200米B.2003米C.2203米D.100(31)11.如图钓鱼竿AC长6m,露在水面上的鱼线BC长32m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.33m C.23m D.4m12.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2;⑤3a+c<1.其中,正确结论的序号是________________.,则圆锥底面半径为cm.14.若圆锥的母线长为4cm,其侧面积212cm15.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.16.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.18.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?20.(6分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF .i )求证:△CAE ∽△CBF ;ii )若BE=1,AE=2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB EF k BC FC==时,若BE =1,AE=2,CE=3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB=∠GEF=45°时,设BE=m ,AE=n ,CE=p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)21.(6分)如图,在△ABC 中,AB=AC ,CD 是∠ACB 的平分线,DE ∥BC ,交AC 于点 E .求证:DE=CE . 若∠CDE=35°,求∠A 的度数.22.(8分)先化简2211a a a a⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 23.(8分)已知,关于 x 的一元二次方程(k ﹣1)x 22k =0 有实数根,求k 的取值范围. 24.(10分)如图是某旅游景点的一处台阶,其中台阶坡面AB 和BC 的长均为6m ,AB 部分的坡角∠BAD 为45°,BC 部分的坡角∠CBE 为30°,其中BD ⊥AD ,CE ⊥BE ,垂足为D ,E .现在要将此台阶改造为直接从A 至C 的台阶,如果改造后每层台阶的高为22cm ,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm 且不足22cm 2≈1.4143)25.(10分)解不等式组21114(2)x x x +-⎧⎨+>-⎩… 26.(12分)如图,在△ABC 中,BC =12,tanA=34,∠B =30°;求AC 和AB 的长.27.(12分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式; (2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.题目要求的.)1.A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.A【解析】【分析】根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“S n=(12)n﹣2”,依此规律即可得出结论.【详解】如图所示,∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,∴S n=(12)n﹣2.当n=2018时,S2018=(12)2018﹣2=(12)3.故选A.【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“S n=(12)n﹣2”.3.B根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.【详解】∵反比例函数y=kx的图象在一、三象限,∴k>0,∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.故选:B.【点睛】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=kx(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.4.C【解析】【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.5.C分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可. 详解:从左边看竖直叠放2个正方形.故选:C .点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.6.C【解析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.详解:∵几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选C .点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.7.C【解析】【分析】求出正六边形和阴影部分的面积即可解决问题;【详解】解:正六边形的面积226(2a)==,阴影部分的面积2a =⋅=,∴空白部分与阴影部分面积之比是2=:23=:1,故选C .【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.A【解析】根据图形,结合题目所给的运算法则列出方程组.【详解】图2所示的算筹图我们可以表述为:2114327x y x y +=⎧⎨+=⎩. 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.9.C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.10.D【解析】【分析】 在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长.【详解】∵在热气球C 处测得地面B 点的俯角分别为45°,∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°,∴AC =2×100=200米,∴AD∴AB =AD+BD =100(故选D .【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.【解析】 【分析】因为三角形ABC 和三角形AB′C′均为直角三角形,且BC 、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度. 【详解】解:∵sin ∠CAB =BC AC ==∴∠CAB =45°. ∵∠C′AC =15°, ∴∠C′AB′=60°.∴sin60°=''62B C =解得:B′C′= 故选:B . 【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题. 12.B 【解析】根据题意,在实验中有3个阶段, ①、铁块在液面以下,液面得高度不变;②、铁块的一部分露出液面,但未完全露出时,液面高度降低; ③、铁块在液面以上,完全露出时,液面高度又维持不变; 分析可得,B 符合描述; 故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.②③④⑤ 【解析】试题解析:∵二次函数与x 轴有两个交点, ∴b 2-4ac >1,故①错误,观察图象可知:当x >-1时,y 随x 增大而减小,故②正确, ∵抛物线与x 轴的另一个交点为在(1,1)和(1,1)之间, ∴x=1时,y=a+b+c <1,故③正确,∵当m >2时,抛物线与直线y=m 没有交点,∴方程ax 2+bx+c-m=1没有实数根,故④正确, ∵对称轴x=-1=-2b a, ∴b=2a , ∵a+b+c <1,∴3a+c <1,故⑤正确, 故答案为②③④⑤. 14.3 【解析】∵圆锥的母线长是5cm ,侧面积是15πcm 2, ∴圆锥的侧面展开扇形的弧长为:l=2305s r π==6π, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=622l πππ==3cm , 15.3【解析】试题分析:根据点D 为AB 的中点可得:CD 为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E 、F 分别为中点可得:EF 为△ABC 的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质 16.5 【解析】 【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解. 【详解】解:如图,设圆心为O ,弦为AB ,切点为C .如图所示.则AB=8cm ,CD=2cm . 连接OC ,交AB 于D 点.连接OA .∵尺的对边平行,光盘与外边缘相切, ∴OC ⊥AB .∴AD=4cm.设半径为Rcm,则R2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm.故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.17.132.【解析】【详解】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.18.1【解析】【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案为:1.【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.20千米【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C 、D 两村到E 点的距离相等. ∴DE=CE ∴DE 2=CE 2∴302+x 2=202+(50﹣x )2 解得x=20∴基地E 应建在离A 站20千米的地方. 考点:勾股定理的应用.20.(1)i )证明见试题解析;ii ;(2)4;(3)222(2p n m -=+. 【解析】 【分析】(1)i )由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF ,又由于AC CEBC CF==故△CAE ∽△CBF ;ii )由AEBF=,再由△CAE ∽△CBF ,得到∠CAE=∠CBF ,进一步可得到∠EBF=1°,从而有222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,由AB EFk BC FC==,得到::1:BC AB AC k =::1:CF EF EC k =,故AC AEBC BF==BF =2222222211()k k CE EF BE BF k k++=⨯=+,代入解方程即可;(3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(2AB BC AC =+,222::1:1:(2EF FC EC =,故22222222(2(2)(2(2p EF BE BF m m n ==++=++=+,从而有222(2p n m -=+. 【详解】解:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵AC CEBC CF==,∴△CAE ∽△CBF ;ii )∵AEBF=,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,∵AB EFk BC FC==,∴2::1::1BC AB AC k k =+,2::1::1CF EF EC k k =+,∴21AC AE k BC BF==+,∴21BF k =+,2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得104k =; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,∴22222222(22)(22)()(22)()(22)22p EF BE BF m m n =+=++=++=+++, ∴222(22)p n m -=+.【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质. 21. (1)见解析;(2) 40°. 【解析】 【分析】(1)根据角平分线的性质可得出∠BCD=∠ECD ,由DE ∥BC 可得出∠EDC=∠BCD ,进而可得出∠EDC=∠ECD ,再利用等角对等边即可证出DE=CE ;(2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A 的度数. 【详解】(1)∵CD 是∠ACB 的平分线,∴∠BCD=∠ECD .∵DE ∥BC ,∴∠EDC=∠BCD ,∴∠EDC=∠ECD ,∴DE=CE . (2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC ,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°. 【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD ;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°. 22.-1 【解析】 【分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围. 【详解】 解:2211a a a a⎛⎫-÷⎪--⎝⎭ (1)(1)12a a a a a ---=•-1(1)12a a a a a -+-=•-2a =, 当2a =-时,原式212-==-. 【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键. 23.0≤k≤65且 k≠1. 【解析】 【分析】根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于 k 的一元一次不等式组,解之即可求出 k 的取值范围. 【详解】解:∵关于 x 的一元二次方程(k ﹣1)x 2+x+3=0 有实数根,∴2k≥0,k-1≠0,Δ2k 2-4⨯3(k-1)≥0, 解得:0≤k≤65且 k≠1. ∴k 的取值范围为 0≤k≤65且 k≠1. 【点睛】本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于 k 的一元一次不等式组是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 24.33层.【解析】【分析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD和CE的长,二者的和乘以100后除以20即可确定台阶的数.【详解】解:在Rt△ABD中,m,在Rt△BEC中,EC=12BC=3m,∴,∵改造后每层台阶的高为22cm,∴改造后的台阶有()×100÷22≈33(个)答:改造后的台阶有33个.【点睛】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质.25.﹣1≤x<1.【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,则不等式组的解集为﹣1≤x<1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.26.【解析】【分析】如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;【详解】解:如图作CH⊥AB于H.在Rt △BCH 中,∵BC =12,∠B =30°, ∴CH =12BC =6,BH 22BC CH -3 在Rt △ACH 中,tanA =34=CH AH, ∴AH =8, ∴AC 22AH CH +10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 27.(1)2142y x x =-++;(2)P (1,72); (3)3或5. 【解析】 【分析】(1)将点A 、B 代入抛物线212y x bx c =-++,用待定系数法求出解析式. (2)对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , 由∠PBO=∠BAO ,得tan ∠PBO=tan ∠BAO ,即PG BOBG AO=,可求出P 的坐标. (3)新抛物线的表达式为2142y x x m =-++-,由题意可得DE=2,过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF ,∴2=1DE EO DO FH OF OH ==,∴FH=1.然后分情况讨论点D 在y 轴的正半轴上和在y 轴的负半轴上,可求得m 的值为3或5. 【详解】解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)∴2204b c c --+=⎧⎨=⎩,解得14b c =⎧⎨=⎩, ∴抛物线解析式为2142y x x =-++, (2)()2211941222y x x x =-++=--+,∴对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , ∵∠PBO=∠BAO ,∴tan ∠PBO=tan ∠BAO ,∴PG BO BG AO=,∴121BG=,∴12BG=,72OG=,∴P(1,72),(3)设新抛物线的表达式为2142y x x m=-++-则()0,4D m-,()2,4E m-,DE=2过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF ∴2=1DE EO DOFH OF OH==,∴FH=1.点D在y轴的正半轴上,则51,2F m⎛⎫--⎪⎝⎭,∴52OH m=-,∴42512DO mOH m-==-,∴m=3,点D在y轴的负半轴上,则91,2F m⎛⎫-⎪⎝⎭,∴92OH m=-,∴42912DO mOH m-==-,∴m=5,∴综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.。

河北省唐山市2019-2020学年中考第五次模拟数学试题含解析

河北省唐山市2019-2020学年中考第五次模拟数学试题含解析

河北省唐山市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为()A.πB.32πC.6﹣πD.23﹣π2.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3 D.t>-53.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体4.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C .球会过球网并会出界D .无法确定5.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4D .1或46.若点M (﹣3,y 1),N (﹣4,y 2)都在正比例函数y=﹣k 2x (k≠0)的图象上,则y 1与y 2的大小关系是( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .不能确定7.如图,已知△ABC 中,∠C=90°,AC=BC=2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )A .2-2B .3C .3-1D .18.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =﹣1x图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( ) A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 19.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >210.对于有理数x 、y 定义一种运算“”:,其中a 、b 、c 为常数,等式右边是通常的加法与乘法运算,已知,,则的值为( )A .-1B .-11C .1D .1111.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A ,B在围成的正方体中的距离是()A.0 B.1 C.2D .3 12.一、单选题在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A. B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是_____.14.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.15.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是_____(填序号)16.解不等式组31524315x xx-<-⎧⎪⎨+≥-⎪⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为___________.17.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=23,则CE的长为_______18.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?20.(6分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.21.(6分)如图,AB 是⊙O 直径,BC ⊥AB 于点B ,点C 是射线BC 上任意一点,过点C 作CD 切⊙O 于点D ,连接AD .求证:BC =CD ;若∠C =60°,BC =3,求AD 的长.22.(8分)先化简,再求代数式(222311a a a --+-)÷11a +的值,其中a=2sin45°+tan45°. 23.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为 ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率. 24.(10分)如图,AB 是⊙O 的直径,点C 是AB 延长线上的点,CD 与⊙O 相切于点D ,连结BD 、AD .求证;∠BDC =∠A .若∠C =45°,⊙O 的半径为1,直接写出AC 的长.25.(10分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m = ,n = ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.26.(12分)如图所示,AB 是⊙O 的一条弦,DB 切⊙O 于点B ,过点D 作DC ⊥OA 于点C ,DC 与AB 相交于点E . (1)求证:DB=DE ;(2)若∠BDE=70°,求∠AOB 的大小.27.(12分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.【详解】由题意可得,BC=CD=4,∠DCB=90°,连接OE,则OE=12 BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴阴影部分面积为:2••90222360BC CD OE OB π⨯⨯--=442290422360π⨯⨯⨯⨯-- =6-π, 故选C . 【点睛】本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 2.B 【解析】 【分析】先利用抛物线的对称轴方程求出m 得到抛物线解析式为y=-x 2+4x ,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x <3的范围内有公共点可确定t 的范围. 【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2, ∴222(1)b ma -=-=⨯-, 解之:m=4, ∴y=-x 2+4x ,当x=2时,y=-4+8=4, ∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解, 当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4, ∴ 3<t≤4, 故选:B 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 3.D 【解析】【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞. 【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项. 故选D . 【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难. 4.C 【解析】分析:(1)将点A(0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入2(6) 2.6y a x =-+, 得:36a+2.6=2, 解得:160a ,=-∴y 与x 的关系式为21(6) 2.660y x =--+; 当x=9时,()2196 2.6 2.45 2.4360y =--+=>,∴球能过球网, 当x=18时,()21186 2.60.2060y =--+=>,∴球会出界. 故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围. 5.C 【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0, 解得 a 1=-2,a 2=1. 即a 的值是1或-2. 故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.6.A【解析】【分析】根据正比例函数的增减性解答即可.【详解】∵正比例函数y=﹣k2x(k≠0),﹣k2<0,∴该函数的图象中y随x的增大而减小,∵点M(﹣3,y1),N(﹣4,y2)在正比例函数y=﹣k2x(k≠0)图象上,﹣4<﹣3,∴y2>y1,故选:A.【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时,y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时,y=kx的图象经过二、四象限,y随x的增大而减小. 7.C【解析】【分析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:延长BC′交AB′于D,连接BB',如图,在Rt△AC′B′中,2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴∴BC′=BD -. 故本题选择C. 【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键. 8.D 【解析】 【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y 1<0<y 2<y 3判断出三点所在的象限,故可得出结论. 【详解】解:∵反比例函数y =﹣1x中k =﹣1<0, ∴此函数的图象在二、四象限,且在每一象限内y 随x 的增大而增大, ∵y 1<0<y 2<y 3,∴点(x 1,y 1)在第四象限,(x 2,y 2)、(x 3,y 3)两点均在第二象限, ∴x 2<x 3<x 1. 故选:D . 【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键. 9.D 【解析】 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论. 【详解】解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1. 故选:D .本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.10.B【解析】【分析】先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.【详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28所以解这个方程组,得所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【点睛】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.11.C【解析】试题分析:本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.解:连接AB,如图所示:根据题意得:∠ACB=90°,由勾股定理得:AB==;故选C.考点:1.勾股定理;2.展开图折叠成几何体.12.B【解析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣1.【解析】【分析】由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解.【详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1.【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.14.1【解析】【分析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.15.①②④【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【详解】∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP=,∴DP2=PH•PC,故④正确;故答案是:①②④.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.16.(1)x<1;(2)x≥﹣2;(1)见解析;(4)﹣2≤x<1;【解析】【分析】(1)先移项,再合并同类项,求出不等式1的解集即可;(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;(1)把两不等式的解集在数轴上表示出来即可;(4)根据数轴上不等式的解集,求出其公共部分即可.【详解】(1)解不等式①,得:x<1;(2)解不等式②,得:x≥﹣2;(1)把不等式①和②的解集在数轴上表示出来如下:(4)原不等式组的解集为:﹣2≤x<1,故答案为:x<1、x≥﹣2、﹣2≤x<1.【点睛】本题主要考查一元一次不等式组的解法及在数轴上的表示。

河北省唐山市2019-2020学年中考数学三模考试卷含解析

河北省唐山市2019-2020学年中考数学三模考试卷含解析

河北省唐山市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( )A .3块B .4块C .6块D .9块2.如图,若数轴上的点A ,B 分别与实数﹣1,1对应,用圆规在数轴上画点C ,则与点C 对应的实数是( )A .2B .3C .4D .53.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为( ) A .3 B .4C .6D .84.计算25()77-+-的正确结果是( ) A .37B .-37C .1D .﹣15.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).A .B .C .D .6.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒7.如图,在Rt ABC ∆中,90C =o ∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .438.甲、乙两辆汽车沿同一路线从A 地前往B 地,甲车以a 千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a 千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B 地,比甲车早30分钟到达.到达B 地后,乙车按原速度返回A 地,甲车以2a 千米/时的速度返回A 地.设甲、乙两车与A 地相距s (千米),甲车离开A 地的时间为t (小时),s 与t 之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t 的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为( )A .0个B .1个C .2个D .3个9.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图310.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根11.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )A .B .C .D .12.如图,在△ABC 中,∠ACB=90°,∠A=30°,BC=4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .8二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:x 2y ﹣2xy 2+y 3=_____.14.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在圆O 上,BD =CD ,AB =10,AC =6,连接OD 交BC 于点E ,DE =______.15.如图,正方形ABCD 的边长为2,点B 与原点O 重合,与反比例函数y=kx的图像交于E 、F 两点,若△DEF 的面积为98,则k 的值_______ .16.已知一个多边形的每一个外角都等于,则这个多边形的边数是.17.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为_____.18.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,……按此作法进行去,点B n的纵坐标为(n为正整数).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.20.(6分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).21.(6分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古(参考数据:tan55°≈1.4,镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)tan35°≈0.7,sin55°≈0.8)22.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)23.(8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数x为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.24.(10分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.25.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.26.(12分)如图,在Rt ⊿ABC 中,90ACB ∠=o ,CD AB ⊥于D ,,AC 20BC 15== . ⑴.求AB 的长; ⑵.求CD 的长.27.(12分)先化简,再求值:(2x x x +﹣1)÷22121x x x -++,其中x=1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体. 故选B . 2.B 【解析】 【分析】由数轴上的点A 、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C 对应的实数. 【详解】∵数轴上的点 A ,B 分别与实数﹣1,1 对应, ∴AB=|1﹣(﹣1)|=2, ∴BC=AB=2,∴与点C 对应的实数是:1+2=3.故选B.【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.3.C【解析】【分析】根据题意可以求出这个正n边形的中心角是60°,即可求出边数.【详解】⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60°,360606÷︒=on的值为6,故选:C【点睛】考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.4.D【解析】【分析】根据有理数加法的运算方法,求出算式2577⎛⎫-+-⎪⎝⎭的正确结果是多少即可.【详解】原式251.77⎛⎫=-+=-⎪⎝⎭故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同1相加,仍得这个数.5.D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选D.6.A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.7.A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴,∴sinA=63105 BCAB==.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.8.A【解析】解:①由函数图象,得a=120÷3=40,故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确, ③如图:∵甲车维修的时间是1小时, ∴B (4,120).∵乙在甲出发2小时后匀速前往B 地,比甲早30分钟到达. ∴E (5,240).∴乙行驶的速度为:240÷3=80, ∴乙返回的时间为:240÷80=3, ∴F (8,0).设BC 的解析式为y 1=k 1t+b 1,EF 的解析式为y 2=k 2t+b 2,由图象得,11111204240 5.5k b k b =+⎧⎨=+⎩,2222240508k b k b =+⎧⎨=+⎩, 解得1180200k b =⎧⎨=-⎩,2280640k b =-⎧⎨=⎩,∴y 1=80t ﹣200,y 2=﹣80t+640, 当y 1=y 2时,80t ﹣200=﹣80t+640, t=5.2.∴两车在途中第二次相遇时t 的值为5.2小时, 故弄③正确,④当t=3时,甲车行的路程为:120km ,乙车行的路程为:80×(3﹣2)=80km , ∴两车相距的路程为:120﹣80=40千米, 故④正确, 故选A . 9.C 【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D 为BC 中点,不是角平分线,。

河北省唐山市2019-2020学年中考数学仿真第二次备考试题含解析

河北省唐山市2019-2020学年中考数学仿真第二次备考试题含解析

河北省唐山市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,与∠1是内错角的是( )A .∠2B .∠3C .∠4D .∠52.若分式有意义,则x 的取值范围是( ) A .x >3 B .x <3 C .x≠3 D .x=33.下列各数中,最小的数是( )A .3-B .()2--C .0D .14- 4.数据”1,2,1,3,1”的众数是( )A .1B .1.5C .1.6D .35.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差6.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是( ) A .中位数不变,方差不变B .中位数变大,方差不变C .中位数变小,方差变小D .中位数不变,方差变小7.如图,在等边三角形ABC 中,点P 是BC 边上一动点(不与点B 、C 重合),连接AP ,作射线PD ,使∠APD=60°,PD 交AC 于点D ,已知AB=a ,设CD=y ,BP=x ,则y 与x 函数关系的大致图象是( )A .B .C .D .8.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A .平均数是9B .中位数是9C .众数是5D .极差是59.如图,半⊙O 的半径为2,点P 是⊙O 直径AB 延长线上的一点,PT 切⊙O 于点T ,M 是OP 的中点,射线TM 与半⊙O 交于点C .若∠P =20°,则图中阴影部分的面积为( )A .1+3πB .1+6π C .2sin20°+29π D .23π 10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°11.下列图形中,是中心对称但不是轴对称图形的为( )A .B .C .D .12.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:34()2b a b--=r r r________.14.肥皂泡的泡壁厚度大约是0.0007mm,0.0007mm用科学记数法表示为_______mm.15.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.16.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b____c(用“>”或“<”号填空)17.当a=3时,代数式22121()222a a aa a a-+-÷---的值是______.18.函数的自变量的取值范围是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?20.(6分)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.21.(6分)问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB∠ACB(填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD 之间的距离.22.(8分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE 的两边DE ,DC 长分别为1.6m ,1.2m .旗杆DB 的长度为2m ,DB 与墙面AB 的夹角∠DBG 为35°.当会旗展开时,如图所示,(1)求DF 的长;(2)求点E 到墙壁AB 所在直线的距离.(结果精确到0.1m .参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)23.(8分)如图,已知AB 为⊙O 的直径,AC 是⊙O 的弦,D 是弧BC 的中点,过点D 作⊙O 的切线,分别交AC 、AB 的延长线于点E 和点F ,连接CD 、BD .(1)求证:∠A =2∠BDF ;(2)若AC =3,AB =5,求CE 的长.24.(10分)如图,在平面直角坐标系中,点1O 的坐标为()4,0-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60o 的角,且交y 轴于C 点,以点()213,5O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O e 以每秒1个单位的速度沿x 轴向左平移,当2O e 第一次与1O e 外切时,求2O e 平移的时间. 25.(10分) 如图,在平面直角坐标系中,直线y 1=2x+b 与坐标轴交于A 、B 两点,与双曲线2k y x = (x >0)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA =AD ,点B 的坐标为(0,﹣2). (1)求直线y 1=2x+b 及双曲线2k y x =(x >0)的表达式; (2)当x >0时,直接写出不等式2k x b x>+的解集; (3)直线x =3交直线y 1=2x+b 于点E ,交双曲线2k y x =(x >0)于点F ,求△CEF 的面积.26.(12分)(1)计算:20(2)(3)12sin 60π︒-++-; (2)化简:2121()a a a a a--÷-. 27.(12分)如图,AB 为⊙O 的直径,点D 、E 位于AB 两侧的半圆上,射线DC 切⊙O 于点D ,已知点E 是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°.(1)求证:CD ∥AB ;(2)填空:①当∠DAE = 时,四边形ADFP 是菱形;②当∠DAE = 时,四边形BFDP 是正方形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】由内错角定义选B.2.C【解析】【详解】试题分析:∵分式13x有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.3.A【解析】【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A.【点睛】此题考负数的大小比较,应理解数字大的负数反而小.4.A【解析】【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【详解】在这一组数据中1是出现次数最多的,故众数是1.故选:A.【点睛】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

河北省唐山市2019-2020学年第四次中考模拟考试数学试卷含解析

河北省唐山市2019-2020学年第四次中考模拟考试数学试卷含解析

河北省唐山市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )A .∠1=50°,∠1=40°B .∠1=40°,∠1=50°C .∠1=30°,∠1=60°D .∠1=∠1=45°2.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥3.如图,在平面直角坐标系中,以A (-1,0),B (2,0),C (0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )A .(3,1)B .(-4,1)C .(1,-1)D .(-3,1)4.如图,O e 是ABC V 的外接圆,已知ABO 50o ∠=,则ACB ∠的大小为( )A .40oB .30oC .45oD .50o5.如图,点D 、E 分别为△ABC 的边AB 、AC 上的中点,则△ADE 的面积与四边形BCED 的面积的比为( )A .1:2B .1:3C .1:4D .1:16.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2018的坐标是( )A .(1,4)B .(4,3)C .(2,4)D .(4,1)7.如图的平面图形绕直线l 旋转一周,可以得到的立体图形是( )A .B .C .D .8.若a+|a|=0()222a a - ) A .2﹣2a B .2a ﹣2C .﹣2D .2 9.若顺次连接四边形ABCD 各边中点所得的四边形是菱形,则四边形ABCD 一定是( ) A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形 10.要使分式337x x -有意义,则x 的取值范围是( ) A .x=73 B .x>73 C .x<73 D .x≠7311.如图,在圆O 中,直径AB 平分弦CD 于点E ,且3,连接AC ,OD,若∠A 与∠DOB 互余,则EB 的长是( )A.23B.4 C.3D.212.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.米B.米C.米D.米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b、的等式为________.14.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).15.因式分解:-2x2y+8xy-6y=__________.16.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过顶点B,则k的值为_____.17.方程21x -=1的解是_____. 18.若代数式33x -有意义,则x 的取值范围是__. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?20.(6分) 已知AC ,EC 分别是四边形ABCD 和EFCG 的对角线,直线AE 与直线BF 交于点H (1)观察猜想如图1,当四边形ABCD 和EFCG 均为正方形时,线段AE 和BF 的数量关系是 ;∠AHB = . (2)探究证明如图2,当四边形ABCD 和FFCG 均为矩形,且∠ACB =∠ECF =30°时,(1)中的结论是否仍然成立,并说明理由.(3)拓展延伸在(2)的条件下,若BC =9,FC =6,将矩形EFCG 绕点C 旋转,在整个旋转过程中,当A 、E 、F 三点共线时,请直接写出点B 到直线AE 的距离.21.(6分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.22.(8分)如图,二次函数23y x x m =-++的图象与x 轴的一个交点为()4,0B ,另一个交点为A ,且与y 轴相交于C 点()1求m 的值及C 点坐标;()2在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由()3P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t 为何值时,四边形PBQC 的面积最大,请说明理由. 23.(8分)如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC 与△DEF 是否相似,并证明你的结论.24.(10分)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .求证:BG=FG ;若AD=DC=2,求AB 的长.25.(10分)计算:(﹣2018)0﹣4sin45°+8﹣2﹣1. 26.(12分)平面直角坐标系xOy 中(如图),已知抛物线2y x bx c ++=经过点10(,)A 和30B (,),与y 轴相交于点C ,顶点为P.(1)求这条抛物线的表达式和顶点P 的坐标;(2)点E 在抛物线的对称轴上,且EA EC =,求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN ,点Q 在直线MN 右侧的抛物线上,MEQ NEB ∠∠=,求点Q 的坐标.27.(12分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D .【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.2.D【解析】【分析】根据a≤c≤b ,可得c 的最小值是﹣1,根据有理数的加法,可得答案.【详解】由a≤c≤b ,得:c 最小值是﹣1,当c=﹣1时,c+d=﹣1+d ,﹣1+d≥0,解得:d≥1,∴d≥b .故选D .【点睛】本题考查了实数与数轴,利用a≤c≤b 得出c 的最小值是﹣1是解题的关键.3.B【解析】【分析】作出图形,结合图形进行分析可得.【详解】如图所示:①以AC 为对角线,可以画出▱AFCB ,F (-3,1);②以AB 为对角线,可以画出▱ACBE ,E (1,-1);③以BC 为对角线,可以画出▱ACDB ,D (3,1),故选B.4.A【解析】解:△AOB 中,OA=OB ,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A . 5.B【解析】【分析】根据中位线定理得到DE ∥BC ,DE=12BC ,从而判定△ADE ∽△ABC ,然后利用相似三角形的性质求解. 【详解】解:∵D 、E 分别为△ABC 的边AB 、AC 上的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∴△ADE 的面积:△ABC 的面积=21()2=1:4,∴△ADE 的面积:四边形BCED 的面积=1:3;故选B .【点睛】本题考查三角形中位线定理及相似三角形的判定与性质.6.D【解析】【分析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、1(2,0)p 、)(24,1p 、)(30,3p 、()42,4p 、)(54,3p 、)(60,1p 等,故该坐标的循环周期为7则有则有2018128837+L =,故是第2018次碰到正方形的点的坐标为(4,1). 【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.7.B【解析】【分析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.8.A【解析】【分析】直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a ,则a≤0,故原式=2-a-a=2-2a .故选A .【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.9.C【解析】【分析】如图,根据三角形的中位线定理得到EH ∥FG ,EH=FG ,EF=12BD ,则可得四边形EFGH 是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.10.D【解析】【分析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【详解】∵3x−7≠0,∴x≠73.故选D.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.11.D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=23∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理. 12.D【解析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.故选D二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S 阴影=4S 长方形=4ab ①,S 阴影=S 大正方形﹣S 空白小正方形=(a+b )2﹣(b ﹣a )2②,由①②得:(a+b )2﹣(a ﹣b )2=4ab .故答案为(a+b )2﹣(a ﹣b )2=4ab .【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.14.甲【解析】【分析】根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从2014~2018年甲公司增长了500辆; 乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从2014~2018年,乙公司中销售量增长了300辆.所以这两家公司中销售量增长较快的是甲公司,故答案为:甲.【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;15.-2 y (x -1)( x -3)【解析】分析:提取公因式法和十字相乘法相结合因式分解即可.详解:原式()2243,y x x =--+ ()()213.y x x =---故答案为()()213.y x x ---点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底. 16.﹣1【解析】【分析】根据点C 的坐标以及菱形的性质求出点B 的坐标,然后利用待定系数法求出k 的值即可.解:∵A(﹣3,4),∴,∴CB=OC=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=kx得,4=8k-,解得:k=﹣1.故答案为:﹣1.17.x=3【解析】去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.18.x≠3【解析】【详解】由代数式3x3-有意义,得x-3≠0,解得x≠3,故答案为: x≠3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)一副乒乓球拍28 元,一副羽毛球拍60元(2)共320 元.【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍解:(1)设购买一副乒乓球拍x 元,一副羽毛球拍y 元,由题意得,211632204x y x y +=⎧⎨+=⎩, 解得:2860x y =⎧⎨=⎩ 答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元 答:购买5副乒乓球拍和3副羽毛球拍共320元.20.(1)BF AE 2=,45°;(2)不成立,理由见解析;(3)32 . 【解析】【分析】(1)由正方形的性质,可得AC CE BC CF == ,∠ACB =∠GEC =45°,求得△CAE ∽△CBF ,由相似三角形的性质得到BF AE =,∠CAB ==45°,又因为∠CBA =90°,所以∠AHB =45°. (2)由矩形的性质,及∠ACB =∠ECF =30°,得到△CAE ∽△CBF ,由相似三角形的性质可得∠CAE=∠CBF ,BF BC AE AC ==,则∠CAB =60°,又因为∠CBA =90°, 求得∠AHB =30°,故不成立.(3)分两种情况讨论:①作BM ⊥AE 于M ,因为A 、E 、F 三点共线,及∠AFB =30°,∠AFC =90°,进而求得AC 和EF ,根据勾股定理求得AF ,则AE =AF ﹣EF ,再由(2)得:BF AE = ,所以BF =﹣3,故BM .②如图3所示:作BM ⊥AE 于M ,由A 、E 、F 三点共线,得:AE =BF =+3,则BM【详解】解:(1)如图1所示:∵四边形ABCD 和EFCG 均为正方形,∴AC CE BC CF==,∠ACB =∠GEC =45°, ∴∠ACE =∠BCF ,∴△CAE ∽△CBF ,∴∠CAE =∠CBF ,AE AC BF BC ==,∴BF AE =,∠CAB =∠CAE+∠EAB =∠CBF+∠EAB =45°,∵∠CBA =90°,∴∠AHB =180°﹣90°﹣45°=45°,故答案为BF AE =,45°; (2)不成立;理由如下:∵四边形ABCD 和EFCG 均为矩形,且∠ACB =∠ECF =30°,∴BC CF AC CE ==,∠ACE =∠BCF , ∴△CAE ∽△CBF ,∴∠CAE =∠CBF ,BF BC AE AC ==, ∴∠CAB =∠CAE+∠EAB =∠CBF+∠EAB =60°,∵∠CBA =90°,∴∠AHB =180°﹣90°﹣60°=30°;(3)分两种情况:①如图2所示:作BM ⊥AE 于M ,当A 、E 、F 三点共线时,由(2)得:∠AFB =30°,∠AFC =90°,在Rt △ABC 和Rt △CEF 中,∵∠ACB =∠ECF =30°,∴AC =cos30BC ︒EF =CF×tan30°=6×3= ,在Rt △ACF 中,AF ===,∴AE =AF ﹣EF = ﹣由(2)得:BF AE = ,∴BF (﹣)=﹣3, 在△BFM 中,∵∠AFB =30°,∴BM =12BF ; ②如图3所示:作BM ⊥AE 于M ,当A 、E 、F 三点共线时,同(2)得:AE =BF =+3,则BM =12BF综上所述,当A 、E 、F 三点共线时,点B 到直线AE 的距离为32.【点睛】本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.21.开口方向:向上;点坐标:(-1,-3);称轴:直线1x =-.【解析】【分析】将二次函数一般式化为顶点式,再根据a 的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【详解】解:()2221y x x =+-, ()222121y x x =++--,()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-.【点睛】熟练掌握将一般式化为顶点式是解题关键.22.()14m =,()0,4C ;()2存在,()2,6M ;()(315,15P +①或(15,15P -;②当2t =时,16PBQC S =四边形最大.【解析】【分析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC 的直线和抛物线只有一个交点,从而求出点M 坐标;(3)①先判断出四边形PBQC 时菱形时,点P 是线段BC 的垂直平分线,利用该特殊性建立方程求解; ②先求出四边形PBCQ 的面积与t 的函数关系式,从而确定出它的最大值.【详解】解:(1)将B (4,0)代入23y x x m =-++,解得,m=4,∴二次函数解析式为234y x x =-++,令x=0,得y=4,∴C (0,4);(2)存在,理由:∵B (4,0),C (0,4),∴直线BC 解析式为y=﹣x+4,当直线BC 向上平移b 单位后和抛物线只有一个公共点时,△MBC 面积最大,∴24{34y x b y x x =-++=-++, ∴24(2)16t --+,∴△=1﹣4b=0,∴b=4,∴26x y =⎧⎨=⎩,∴M (2,6); (3)①如图,∵点P 在抛物线上,∴设P (m ,234m m -++),当四边形PBQC 是菱形时,点P 在线段BC 的垂直平分线上,∵B (4,0),C (0,4),∴线段BC 的垂直平分线的解析式为y=x ,∴m=234m m -++,∴m=15±, ∴P (15+,15+)或P (15-,15-);②如图,设点P (t ,234t t -++),过点P 作y 轴的平行线l ,过点C 作l 的垂线,∵点D 在直线BC 上,∴D (t ,﹣t+4), ∵PD=234t t -++﹣(﹣t+4)=24t t -+,BE+CF=4,∴S 四边形PBQC =2S △PDC =2(S △PCD +S △BD )=2(12PD×CF+12PD×BE )=4PD=224164(2)16t t t -+--+ ∵0<t <4,∴当t=2时,S 四边形PBQC 最大=1.考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.23. (1) 2. (2)△ABC ∽△DEF.【解析】【分析】(1)根据已知条件,结合网格可以求出∠ABC 的度数,根据,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC 的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC 与△DEF 相似.【详解】(1)9045135ABC ∠=+=o o o ,2222822BC +==;故答案为 2.(2)△ABC ∽△DEF.证明:∵在4×4的正方形方格中, 135,9045135ABC DEF ∠=∠=+=o o o o ,∴∠ABC=∠DEF. ∵2,22,2,2,AB BC FE DE ==== ∴222, 2.22AB BC DE FE ==== ∴△ABC ∽△DEF.【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.24.(1)证明见解析;(2)3【解析】【详解】(1)证明:∵90ABC ∠=o ,DE ⊥AC 于点F ,∴∠ABC=∠AFE .∵AC=AE,∠EAF=∠CAB ,∴△ABC ≌△AFE∴AB=AF .连接AG ,∵AG=AG ,AB=AF∴Rt △ABG ≌Rt △AFG∴BG=FG(2)解:∵AD=DC ,DF ⊥AC ∴1122AF AC AE == ∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=325.12. 【解析】【分析】根据零指数幂和特殊角的三角函数值进行计算【详解】解:原式=1﹣4×22+22﹣12 =1﹣2+2﹣ =12【点睛】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.26.(1)243y x x +=﹣,顶点P 的坐标为21(,﹣);(2)E 点坐标为22(,);(3)Q 点的坐标为58(,). 【解析】【分析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P 的坐标;(2)设2E t (,),根据两点间的距离公式,利用EA EC =得到22222123t t ++(﹣)=(﹣),然后解方程求出t 即可得到E 点坐标;(3)直线2x =交x 轴于F ,作2MH x ⊥直线=于H ,如图,利用12tan NEB ∠=得到12tan MEQ ∠=,设243Q m m m +(,﹣),则2412HE m m QH m +=﹣,=﹣,再在Rt QHE V 中利用正切的定义得到H 1tan HE 2Q HEQ ∠==,即24122m m m +﹣=(﹣),然后解方程求出m 即可得到Q 点坐标. 【详解】 解:(1)抛物线解析式为13y x x =(﹣)(﹣), 即243y x x +=﹣, 221y x Q =(﹣)﹣,∴顶点P 的坐标为21(,﹣); (2)抛物线的对称轴为直线2x =,设2E t (,), EA EC Q =,22222123t t ∴++(﹣)=(﹣),解得2t =,∴E 点坐标为22(,); (3)直线2x =交x 轴于F ,作MN ⊥直线x=2于H ,如图,MEQ NEB ∠∠Q =, 而BF 1tan EF 2NEB ∠==, 1tan 2MEQ ∴∠=, 设243Q m m m +(,﹣),则22432412HE m m m m QH m ++=﹣﹣=﹣,=﹣, 在Rt QHE V 中,H 1tan HE 2Q HEQ ∠==, 24122m m m ∴+﹣=(﹣),整理得2650m m +﹣=,解得11m =(舍去),25m =, ∴Q 点的坐标为58(,).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.27.(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m+9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.。

河北省唐山市2019-2020学年中考数学考前模拟卷(4)含解析

河北省唐山市2019-2020学年中考数学考前模拟卷(4)含解析

河北省唐山市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( ) A .1074310⨯B .1174.310⨯C .107.4310⨯D .127.4310⨯2.若m ,n 是一元二次方程x 2﹣2x ﹣1=0的两个不同实数根,则代数式m 2﹣m+n 的值是( ) A .﹣1B .3C .﹣3D .13.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα4.下列图形中,是轴对称图形的是( )A .B .C .D .5.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为( ) A .1.23×106B .1.23×107C .0.123×107D .12.3×1056.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A .B .C .D .7.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A .125B .95C .65D .1658.设x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两根,则x 12+x 22=( ) A .6 B .8 C .10 D .129.关于x 的一元二次方程x 2-2x-(m-1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .0m >且1m ≠B .0m >C .0m ≥且1m ≠D .0m ≥10.如下图所示,该几何体的俯视图是 ( )A .B .C .D .11.下列事件中是必然事件的是( ) A .早晨的太阳一定从东方升起 B .中秋节的晚上一定能看到月亮 C .打开电视机,正在播少儿节目 D .小红今年14岁,她一定是初中学生12.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.点A (a ,b )与点B (﹣3,4)关于y 轴对称,则a+b 的值为_____.14.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________.15.一个正多边形的每个内角等于150o ,则它的边数是____.16.如图,已知P 是线段AB 的黄金分割点,且PA >PB .若S 1表示以PA 为一边的正方形的面积,S 2表示长是AB 、宽是PB 的矩形的面积,则S 1_______S 2.(填“>”“="”“" <”)17.81的算术平方根是_______.18.分解因式:x2-9=_ ▲ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD的外侧,作等边三角形ADE,连结BE,CE,求证:BE=CE.20.(6分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.21.(6分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.22.(8分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?23.(8分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.24.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?25.(10分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.26.(12分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:类型价格进价(元/盏)售价(元/盏)A型30 45B型50 70(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.(3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.27.(12分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:74300亿=7.43×1012, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2.B 【解析】 【分析】把m 代入一元二次方程2210x x --=,可得2210m m --=,再利用两根之和2m n +=,将式子变形后,整理代入,即可求值. 【详解】解:∵若m ,n 是一元二次方程2210x x --=的两个不同实数根, ∴22102m m m n ,--=+=, ∴21m m m -=+∴213m m n m n -+=++= 故选B . 【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式. 3.B 【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD ,然后在Rt △BCD 中 cos ∠BCD=CD BC ,可得BC=cos cos CD hBCD α=∠. 故选B .点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键. 4.B 【解析】分析:根据轴对称图形的概念求解.详解:A 、不是轴对称图形,故此选项不合题意; B 、是轴对称图形,故此选项符合题意; C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意; 故选B .点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形. 5.A 【解析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1230000这个数用科学记数法可以表示为61.2310.⨯ 故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 6.A 【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A 选项符合题意, 故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键. 7.A 【解析】 【分析】连接AM ,根据等腰三角形三线合一的性质得到AM ⊥BC ,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN 的长. 【详解】 解:连接AM ,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=12MN•AC=12AM•MC,∴MN=·AM CM AC= 125.故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.8.C【解析】试题分析:根据根与系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,∴x1+x2=2,x1•x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=1.故选C.9.A【解析】【分析】根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m >1,∴m>1.故选B.本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.10.B【解析】【分析】根据俯视图是从上面看到的图形解答即可.【详解】从上面看是三个长方形,故B是该几何体的俯视图.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 11.A【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【详解】解:B、C、D选项为不确定事件,即随机事件.故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.故选A.【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.12.C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.解:∵点(,)A a b 与点()3,4B - 关于y 轴对称, ∴3,4a b ==7a b +=故答案为1. 【点睛】考查关于y 轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数. 14.9.2×10﹣1. 【解析】 【分析】根据科学记数法的正确表示为()10110na a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1. 【详解】根据科学记数法的正确表示形式可得: 0.00092用科学记数法表示是9.2×10﹣1. 故答案为: 9.2×10﹣1. 【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式. 15.十二 【解析】 【分析】首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可. 【详解】∵一个正多边形的每个内角为150°, ∴它的外角为30°, 360°÷30°=12, 故答案为十二. 【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角. 16.=. 【解析】 【分析】黄金分割点,二次根式化简.【详解】设AB=1,由P 是线段AB 的黄金分割点,且PA >PB ,根据黄金分割点的,,BP=1=∴2111333S S 12222⎛⎫-===⨯= ⎪ ⎪⎝⎭S1=S1. 17.3【解析】【分析】.【详解】3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.18. (x +3)(x -3)【解析】【详解】x 2-9=(x+3)(x-3),故答案为(x+3)(x-3).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析.【解析】【分析】要证明BE=CE ,只要证明△EAB ≌△EDC 即可,根据题意目中的条件,利用矩形的性质和等边三角形的性质可以得到两个三角形全等的条件,从而可以解答本题.【详解】证明:∵四边形ABCD 是矩形,∴AB=CD ,∠BAD=∠CDA=90°,∵△ADE 是等边三角形,∴AE=DE ,∠EAD=∠EDA=60°,在△EAB和△EDC中,∴△EAB≌△EDC(SAS),∴BE=CE.【点睛】本题考查矩形的性质、等边三角形的性质、全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.21.(1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k的取值范围是16≤k≤12或k=﹣1.【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+k x(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.22.每件衬衫应降价1元.【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1.∵“扩大销售量,减少库存”,∴x1=10应舍去,∴x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.23.(1)证明见解析;(2)tan∠CBG=7 24.【解析】【分析】(1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【详解】解:(1)证明:连接OD,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴OD⊥DF,(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,∵S△ABC=11··22AB CDAC BG=,即6×4=5BG,∴BG=245,由勾股定理得:CG=222475()55-=,∴tan∠CBG=tan∠E=77524245CGBG==.【点睛】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点.24.(1)x=1,y=12;(2)小华的打车总费用为18元.【解析】试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组.(2)根据里程数和时间来计算总费用.试题解析:(1)由题意得8812101216x yx y+=⎧⎨+=⎩,解得11x=⎧⎪⎨;(2)小华的里程数是11km,时间为14min.则总费用是:11x+14y=11+7=18(元).答:总费用是18元.25.(1)证明见解析;(2)25 8.【解析】试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.考点:切线的性质.26.(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B 型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【解析】【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)根据题意列出方程即可;(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利P元,则P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+2000,即P=﹣5m+2000,(3)∵B型台灯的进货数量不超过A型台灯数量的4倍,∴100﹣m≤4m,∵k=﹣5<0,P随m的增大而减小,∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【点睛】本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用. 27.2.【解析】试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省唐山市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米2.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A 、B 、C 、D ,则图中的相似三角形有( )A .4 对B .5 对C .6 对D .7 对3.如图,平面直角坐标中,点A (1,2),将AO 绕点A 逆时针旋转90°,点O 的对应点B 恰好落在双曲线y=(x>0)上,则k 的值为( )A .2B .3C .4D .64.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下: 选手 1 2 3 4 5 6 7 8 9 10 时间(min)129136140145146148154158165175由此所得的以下推断不正确...的是( ) A .这组样本数据的平均数超过130 B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好5.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A.95B.185C.165D.1256.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+57.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19988.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-109.﹣3的相反数是()A.13-B.13C.3-D.310.下列事件是必然事件的是()A.任意作一个平行四边形其对角线互相垂直B.任意作一个矩形其对角线相等C.任意作一个三角形其内角和为360︒D.任意作一个菱形其对角线相等且互相垂直平分11.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<012.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x的一元二次方程ax2﹣x﹣14=0有实数根,则a的取值范围为________.14.如图,已知直线y=x+4与双曲线y=kx(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=22,则k=_____.15.化简:+3=_____.16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.17.若代数式211x--的值为零,则x=_____.18.分式方程2154x=-的解是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.20.(6分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.21.(6分)如图,在Y ABCD中,点E是AB边的中点,DE与CB的延长线交于点F(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE,试判断CE和DF的位置关系,并说明理由.22.(8分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?23.(8分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6 m 96.9B班80.8 n 153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).24.(10分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.成绩分组组中值频数25≤x<30 27.5 430≤x<35 32.5 m35≤x<40 37.5 2440≤x<45 a 3645≤x<50 47.5 n50≤x<55 52.5 4(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?25.(10分)先化简,再求值:()()()2111x x x x+-+-,其中2x=-.26.(12分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;(2)若25PC ,求⊙O的半径.27.(12分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=mx的图象在第一象限的交点为C,CD⊥x轴于D,若OB=1,OD=6,△AOB的面积为1.求一次函数与反比例函数的表达式;当x>0时,比较kx+b与mx的大小.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.C【解析】由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.故选C.3.B【解析】【分析】作AC⊥y轴于C,ADx轴,BD⊥y轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A 逆时针旋转90°,点O的对应B点,所以相当是把△AOC绕点A逆时针旋转90°得到△ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,1),∴AC=1,OC=1.∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B点坐标为(2,1),∴k=2×1=2.故选B.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了坐标与图形变化﹣旋转.4.C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位. 5.B 【解析】 【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185.【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点, ∴BE=3, 又∵AB=4, ∴222243AB BE +=+=5,∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245,∵FE=BE=EC , ∴∠BFC=90°, ∴2222246()5BC BF -=-185 .故选B . 【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键. 6.B 【解析】 【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.7.B【解析】【分析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1.故选B.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.C【解析】【分析】根据多项式乘以多项式的法则进行计算即可.【详解】故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.9.D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.10.B【解析】【分析】必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.【详解】解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;C、三角形的内角和为180°,所以任意作一个三角形其内角和为360 是不可能事件,故本选项错误;D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.11.A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.12.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a≥﹣1且a≠1【解析】【分析】利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣14)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得a≠1且△=(﹣1)2﹣4a•(﹣14)≥1,解得:a≥﹣1且a≠1.故答案为a≥﹣1且a≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.14.-3【解析】设A(a,a+4),B(c,c+4),则4 y xkyx=+⎧⎪⎨=⎪⎩解得:x+4=kx,即x2+4x−k=0,∵直线y=x+4与双曲线y=kx相交于A、B两点,∴a+c=−4,ac=-k,∴(c−a)2=(c+a)2−4ac=16+4k,∵AB=22,∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=(22)2,2 (c−a)2=8,(c−a)2=4,∴16+4k =4,解得:k=−3,故答案为−3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.15.【解析】试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3.16.1︒【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.17.3【解析】 由题意得,21x 1--=0,解得:x=3,经检验的x=3是原方程的根. 18.x=13【解析】【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【详解】 2154x =-, 去分母,可得x ﹣5=8,解得x=13,经检验:x=13是原方程的解.【点睛】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)CH=AB .;(2)成立,证明见解析;(3)【解析】【分析】(1)首先根据全等三角形判定的方法,判断出△ABF ≌△CBE ,即可判断出∠1=∠2;然后根据EH ⊥BF ,∠BCE=90°,可得C 、H 两点都在以BE 为直径的圆上,判断出∠4=∠HBC ,即可判断出CH=BC ,最后根据AB=BC ,判断出CH=AB 即可.(2)首先根据全等三角形判定的方法,判断出△ABF ≌△CBE ,即可判断出∠1=∠2;然后根据EH ⊥BF ,∠BCE=90°,可得C 、H 两点都在以BE 为直径的圆上,判断出∠4=∠HBC ,即可判断出CH=BC ,最后根据AB=BC ,判断出CH=AB 即可.(3)首先根据三角形三边的关系,可得CK <AC+AK ,据此判断出当C 、A 、K 三点共线时,CK 的长最大;然后根据全等三角形判定的方法,判断出△DFK ≌△DEH ,即可判断出DK=DH ,再根据全等三角形判定的方法,判断出△DAK ≌△DCH ,即可判断出AK=CH=AB ;最后根据CK=AC+AK=AC+AB ,求出线段CK 长的最大值是多少即可.【详解】解:(1)如图1,连接BE ,,在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°,∵点E 是DC 的中点,DE=EC ,∴点F 是AD 的中点,∴AF=FD ,∴EC=AF ,在△ABF 和△CBE 中,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△CBE ,∴∠1=∠2,∵EH ⊥BF ,∠BCE=90°,∴C 、H 两点都在以BE 为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC ,∴CH=BC ,又∵AB=BC ,∴CH=AB .(2)当点E 在DC 边上且不是DC 的中点时,(1)中的结论CH=AB 仍然成立.如图2,连接BE ,,在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°,∵AD=CD ,DE=DF ,∴AF=CE ,在△ABF 和△CBE 中,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△CBE ,∴∠1=∠2,∵EH ⊥BF ,∠BCE=90°,∴C 、H 两点都在以BE 为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC ,∴CH=BC ,又∵AB=BC ,∴CH=AB .(3)如图3,,∵CK≤AC+AK ,∴当C 、A 、K 三点共线时,CK 的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE ,∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH ,在△DFK 和△DEH 中,KDF HDE DF DEDFK DEH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DFK ≌△DEH ,∴DK=DH ,在△DAK 和△DCH 中,DA DC KDA HDC DK DH =⎧⎪∠=∠⎨⎪=⎩∴△DAK ≌△DCH ,∴AK=CH又∵CH=AB ,∴AK=CH=AB ,∵AB=3,∴AK=3,AC=32,∴CK=AC+AK=AC+AB=323+,即线段CK 长的最大值是323+.考点:四边形综合题.20.(1)y =x +1. (2)点C 为线段AP 的中点. (3)存在点D ,使四边形BCPD 为菱形,点D (8,1)即为所求.【解析】试题分析:(1)由点A 与点B 关于y 轴对称,可得AO =BO ,再由A 的坐标求得B 点的坐标,从而求得点P 的坐标,将P 坐标代入反比例解析式求出m 的值,即可确定出反比例解析式,将A 与P 坐标代入一次函数解析式求出k 与b 的值,确定出一次函数解析式;(2)由AO =BO ,PB ∥CO ,即可证得结论 ;(3)假设存在这样的D 点,使四边形BCPD 为菱形,过点C 作CD 平行于x 轴,交PB 于点E ,交反比例函数y = 的图象于点D ,分别连结PD 、BD ,如图所示,即可得点D (8,1), BP ⊥CD ,易证PB 与CD 互相垂直平分,即可得四边形BCPD 为菱形,从而得点D 的坐标.试题解析:(1)∵点A 与点B 关于y 轴对称,∴AO =BO ,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1.(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB与CD互相垂直平分,∴四边形BCPD为菱形.∴点D(8,1)即为所求.21.(1)见解析;(1)见解析.【解析】【分析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEB AE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.22.周瑜去世的年龄为16岁.【解析】【分析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.根据题意建立方程求出其值就可以求出其结论.【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.由题意得;10(x﹣1)+x=x2,解得:x1=5,x2=6当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为16岁,完全符合题意.答:周瑜去世的年龄为16岁.【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.23.(1)见解析;(2)m=81,n=85;(3)略.【解析】【分析】(1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;(2)根据中位数的定义求解即可;(3)可以从中位数和方差的角度分析,合理即可.【详解】解:(1)A、B两班学生人数=5+2+3+22+8=40人,A班70≤x<80组的人数=40-1-7-13-9=10人,A、B两班学生数学成绩频数分布直方图如下:(2)根据中位数的定义可得:m=80822+=81,n=85852+=85;(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.【点睛】本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.24.(1)详见解析(2)2400【解析】【分析】(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【详解】解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=100﹣4﹣12﹣24﹣36﹣4=1.补全频数分布直方图如下:(2)∵优秀的人数所占的比例是:=0.6,∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)25.3x -1, -9.【解析】【分析】先去括号,再合并同类项;最后把x=-2代入即可.【详解】原式=323211x x x x --=-+,当x=-2时,原式=-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.26.(1)证明见解析;(2)1.【解析】【分析】(1)由同圆半径相等和对顶角相等得∠OBP=∠APC ,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB ,根据等角对等边得AB=AC ;(2)设⊙O 的半径为r ,分别在Rt △AOB 和Rt △ACP 中根据勾股定理列等式,并根据AB=AC 得52﹣r 2=(25)2﹣(5﹣r )2,求出r 的值即可.【详解】解:(1)连接OB ,∵OB=OP ,∴∠OPB=∠OBP ,∵∠OPB=∠APC ,∴∠OBP=∠APC ,∵AB 与⊙O 相切于点B ,∴OB ⊥AB ,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA ⊥AC ,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB , ∴AB=AC ;(2)设⊙O 的半径为r ,在Rt △AOB 中,AB 2=OA 2﹣OB 2=52﹣r 2,在Rt △ACP 中,AC 2=PC 2﹣PA 2,AC 2=(25)2﹣(5﹣r )2,∵AB=AC ,∴52﹣r 2=(25)2﹣(5﹣r )2,解得:r=1,则⊙O 的半径为1.【点睛】本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.27.(1)223y x=-,12yx=;(2) 当0<x<6时,kx+b<mx,当x>6时,kx+b>mx【解析】【分析】(1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2),利用待定系数法求解即可求出解析式(2)由C(6,2)分析图形可知,当0<x<6时,kx+b<mx,当x>6时,kx+b>mx【详解】(1)S△AOB=12OA•OB=1,∴OA=2,∴点A的坐标是(0,﹣2),∵B(1,0)∴2 30 bk b=-⎧⎨+=⎩∴232 kb⎧=⎪⎨⎪=-⎩∴y=23x﹣2.当x=6时,y=23×6﹣2=2,∴C(6,2)∴m=2×6=3.∴y=12x.(2)由C(6,2),观察图象可知:当0<x<6时,kx+b<mx,当x>6时,kx+b>mx.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标。

相关文档
最新文档