线性系统的能控性和能观测性

合集下载

第三章 线性系统的能控性与能观测性

第三章 线性系统的能控性与能观测性



。 显见第二、三行元素相同。 rank Qk 2 3 故不能控。
例6 桥式电路图中,若取电感L的电流 i及电容 L C的电压 v 为状态变量,取 为输出变量,则系 iL c 统方程为:
R R 1 R R iL ( 1 2 3 4 ) d L R1 R2 R3 R4 1 dt ( R2 R4 ) vC C R1 R2 R3 R4 1 R3 1 R1 ( ) iL L R1 R2 R3 R4 L u 1 1 1 ( ) vC 0 C R1 R2 R3 R4
1 0 ~ 2 A n 0 中,输入矩阵
~ b11 ~ ~ b21 , B ~ bn1
~ b12 ~ b21 ~ bn 2

~ b1r ~ b2r ~ bnr
(3.4)
.
表明: 状态变量 , x1 都可通过选择输入u而 x2 由始点 终点完全能控。 输出y只能反映状态变量 ,所以 不能观测。 x x
2
1
完全能控,不完全能观系统!
例3: 桥式电路如图所示, 选取电感L的电流为 为 状态变量, i (t ) x(t )
u (t ) 为电桥输 入,输出
量为 y (t ) 。 解: 从电路可以直观看出,如果 x(t 0 ) 0 u (t ,则不论 如何 ) 选取,对于所有 ,有 t 0 ,即ut(t)不能控制x(t)的变化, x( ) 0 t 故系统状态为不能控。 若u(t)=0,则不论电感L上的 x(t 0 ) 初始电流 取为多少, 对所有时刻 t 都恒有y(t)=0,即状态x(t)不能由输出y(t)反映,故 t0 系统是状态不能观测的。 该电路为状态既不能控,也不能观测系统。

能控性与能观性

能控性与能观性
c11 c12 c c22 21 y (t ) c m1 cm 2 c1n e1t x10 c2 n e2t x20 nt cmn e xn 0
假使输出矩阵C中有某一列全为零,譬如说第2列中c12, c22, …, cm2均为零,则在 t y(t)中将不包含 e 2 x20这个自由分量,亦即不包含 x2(t)这个状态变量,很明显,这 个x2(t)不可能从y(t)的测量值中推算出来,即x2(t)是不能观的状态。
系统是状态完全能控的
x 2 1 x2 b2u y c1 c2 x
1 1 b1 x x u; 0 0 1
对于式(3-5)的系统
x 1 1 x1 x2 b1u x 2 1 x2
x2不受u(t)的控制,而为不能控的系统。
对式(3-3)的系统,系统矩阵A为对角线型,其标量微分方程形式为
x 1 1 x1
x 2 2 x2 b2u
x 2
x 1
1 1 0 x x u; 0 1 b2
对于式(3-4)的系统
y c1 c2 x
x 1 1 x1 x2
c13 c23 c33
1 2 1t 1t 1t e x10 te x20 t e x30 2! x1 (t ) 1t 1t e x20 te x30 这时,状态方程的解为 x(t ) x2 (t ) x ( t ) 3 1t e x 30
从而
y1 (t ) c11 c12 y (t ) y2 (t ) c21 c22 y3 (t ) c31 c32

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。

能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。

能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。

但是⼀般没有特别指明时,指的都是状态的可控性。

所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。

4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。

反之,只要有⼀个状态不可控,我们就称系统不可控。

对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。

4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。

现代控制理论(12-17讲:第4章知识点)

现代控制理论(12-17讲:第4章知识点)

0 1 1 0 0 1 1 1 0 1 0 1 0 0 x y x 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0
MIMO系统,n=5,r=5,独立特征向量为2, C阵对应列 (1、4列),线性无关, 故系统状态完全能观。
4-4 线性定常离散系统的能控性和能观性
故系统是不能观测的。
y 3 2 0 x
18
例2:判定如下系统的能观性。
1 0 3 x x 7 u 0 3

0 0 1 y x 0 u 1 1
故系统是能观测的。
特别要注意特征值互异的条件,否则会影 响判定结论的正确性。
解: n=3、 r=1 有

0 2 8 Q c B AB A 2 B 0 0 0 1 3 11
显然:
rankQc 2( n)
4
故系统是不能控的。
3、能控性判据之二 (1)、系统特征值互异的情况:
若线性定常系统: Ax + Bu , 具有n个互不相同的 x 特征值,则其状态完全能控的充分必要条件是,系统经非 奇异变换后的状态方程式:
C 1 1 rankQo rank 1 n CA 5 5
故系统是不能观测的.(detQo=0)
16
例2:判定如下系统的能观性。
2 1 1 x x 1 u 1 3

1 0 y x 1 0
b1 0
故系统状态不可控。
特别要注意特征值互异的条件,否则会影 响判定结论的正确性。
(2)、系统具有重特征值的情况: 若线性定常系统: Ax + Bu , 具有重特征值,且 x 每一个重特征值只对应一个独立特征向量,则其状态完全能 控的充分必要条件是,系统经非奇异变换后的Jordan规范形:

能控性和能观测性

能控性和能观测性

0 0
0 0
−1 0
0 2
0 1
0 0
0⎥⎥ 0⎥
x
+
⎢⎢0 ⎢0
0 0
04⎥⎥⎥u

⎥⎢

⎢ 0 0 0 0 0 2 0 0⎥ ⎢1 2 0⎥
⎢ ⎢
0
0
0
0 0 0 2 0⎥⎥
⎢⎢0 3 3⎥⎥
⎢⎣ 0 0 0 0 0 0 0 5⎥⎦ ⎣⎢3 0 0⎥⎦
解:此为8阶系统,n=8
19
S=
⎡0 0 0 1 0 0 −2 0 0 3 0 0 −4 0 0 5 0 0 −6 0 0 7 0 0 ⎤
再证必要性,即已知系统能控,证明rankS=n。
同样采用反证法假设rankS<n,表明S的各行线性相关,那么一
定存在一个非零的向量α使
α T [B AB L An−1B] = 0,
α T Ai B = 0,i = 1,2,Ln −1
12
α T Ai B = 0, i = 1,2,Ln −1
根据凯莱-哈密尔顿定理 α T Ai B = 0, i = n, n +1,L
α T e−At B = α T [I − At + 1 A2t 2 − 1 A3t3 + L]B
2!
3!
= α T B −α T ABt + 1 α T A2Bt 2 − 1 α T A3Bt 3 + L = 0
2!
3!
∫t1 [α T e−Aτ B][α T e−Aτ B]T dτ = 0
0
∫ ∫ t1 α T e−Aτ BBT e−ATταdτ = α T t1 e−Aτ BBT e−ATτ dτα

现代控制理论能控性和能观测性

现代控制理论能控性和能观测性

I A1
B
I A
B f
(3-21)
式中B 为元素埏是I A的伴随矩阵。方程(3-21)两端右 乘 I A得:
BI A f I
(3-22)
由于 B 的元素 I A代数余子式,均为 n 1 次多项式,
故据矩阵加法运算规则,可将其分解为n个矩阵之和:
B
B n1 n1
B n2 n2
Bn1 I
Bn2 Bn1A an1I
Bn3 Bn2A an2I
M
B0 B1A a1I
B0A a0I
Bn1An An
Bn2An1 Bn1An an1An1
Bn3An2 Bn2An1 an2An2 M
0 1 M 1 -2 M 2 3
S2 G2 G2 L 2G2 0 0 M 0 1 0 M 0
0 M 0 0 1 M 1 -2
显见出现全零行,rankS2 2 3 ,故不能控。
多输入系统能控阵 S2,其行数小于列数,在计算列写能控阵时, 若有显时见可通过矩计S阵2算的秩为Sn的2,秩S便T2 是不否必为把n来判矩断S阵2多的输所入有系列统都的写能出控。性。 这只是需因计为算,一当次n阶非行奇列S异式2 时即,可确定能必S控非2 性奇ST2,异但,在而计算 为S方2 S阵T2 ,
系统矩阵 的阶数,或系统特征方程的阶次数。
以上研究假定了终态 x 0 0。若令终态为任意给定状态xn
则方程(3-2)变为:
n 1
nx 0 x n n1igu i
i0
(3-9)
方程两端左乘 n ,有
x 0-nx n 1g 2g L
u0
ng
u 1
M
u n 1
(3-10)

线性系统能控性能控性与能观性

线性系统能控性能控性与能观性

时变系统
能达性定义及判据 能观性定义及判据
①Gram 判据 ①Gram 矩阵非奇异
离散时间线性
能控性判据 ①Gram 判据②秩判据
rank H GH G n 1 H n
时不变系统
能达性判据 能观性判据 ①Gram 判据②秩判据 ①Gram 判据②秩判据


三、连续时间线性时不变系统的结构分解
* * 于物理构成,问题的提法;取输出反馈控制律 u Fy v ,对任意给定期望极点组 1 , * 2 , n ,确定
一个反馈矩阵 F ,使导出的输出反馈闭环系统
x A BFC x Bv y Cx

的所有特征值实现期望的配置,即有 i A BFC * i , i 1,2, , n 。 输出反馈局限性: (1)对完全能控连续时间线性时不变受控系统,输出反馈一般不能任意配置系 统全部极点。 (2)对完全能控 n 维 SISO-LTIC 受控系统,输出反馈只能使闭环极点配置到根轨迹上。 扩大输出反馈配置功能的一个途径是采用动态输出反馈, 即在采用输出反馈同时附加引入补偿器。 可以证明,通过合理选取补偿器机构和特性,可对带补偿器输出反馈系统的全部极点进行任意配置。 4.2 状态反馈镇定问题 4.2.1 所谓的镇定问题就是,对给定的线性时不变受控系统,确定状态反馈控制律 u Kx v ,使 导出的状态反馈闭环系统 x A BK x Bv 为渐进稳定,即闭环系统特征值均具有负实部。 镇定问题实质上属于极点区域配置问题,对于镇定问题,系统闭环极点的综合目标,并不要求配 置于任意指定期望位置,而只要求配置于复平面的左半开平面上。 4.2.2 可镇定条件
4.1.2 极点配置问题的算法 [极点配置定理] 对 n 维连续时间线性时不变系统,系统可通过状态反馈任意配置全部 n 个极点 即特征值的充分必要条件是 A, B完全能控。 [多输入状态反馈阵算法] 给定 n 维多输入连续时间时不变受控系统 A, B 和一组任意的期望闭

4 线性系统的能控性与能观性

4 线性系统的能控性与能观性

4 线性系统的能控性与能观性内容提要能观性与能控性是现代控制理论中的两个重要问题。

比如在设计最优控制系统时,目的在于通过控制变量的作用,使系统的状态按预期的轨迹运行,如果状态变量不受控制,当然无法实现最优控制。

另外,一个系统的状态变量往往难以测取,需要由输出量来估计状态,不能观测的系统就无法实现此目的。

本章主要介绍线性系统的能控能观方面的基本知识,内容包括:1) 能控性与能观性两个基础性概念,它们的判别准则以及对偶关系;2) 分析系统的内在结构,按能控性与能观性进行的标准分解;3) 系统能控性、能观性和传递函数矩阵间的关系,即系统状态空间描述法与输入输出描述法的关系;4) 能控标准形和能观标准形;5) 系统的实现和传递函数矩阵的最小实现问题。

习题与解答4.1 判断下列系统的能控性。

1) u x x x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡10 01112121 2) ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡21321321111001 342100010u u x x x x x x3) ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡21321321020011 100030013u u x x x x x x4) u x x x x x x x x⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1110 000000000001432111114321λλλλ 5) u x x x x x x⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡031 2025016200340321321解:1) 由于该系统控制矩阵⎥⎦⎤⎢⎣⎡=01b ,系统矩阵⎥⎦⎤⎢⎣⎡=0111A ,所以⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=1101 0111Ab 从而系统的能控性矩阵为[]⎥⎦⎤⎢⎣⎡==1011Ab bU C 显然有[]n Ab b U C ===2rank rank满足能控性的充要条件,所以该系统能控。

线性系统理论(第四章)线性系统的能控性和能观测性

线性系统理论(第四章)线性系统的能控性和能观测性

An1B] T S 0
rankS n 系统状态不能控,与已知矛盾。
同理可证充分性。
例 线性定常连续系统的状态方程如下,判断其能控性。
0 1 0 0 0 1
0 0 1 0 1 0
x
x u0 0 0 1 Nhomakorabea0
1
0 0 5 0 2 0
系统的特征值: 1 2 0 ,3 5 ,4 5
当 1 2 0 时:
② 系统能控:如果状态空间中的所有非零状态都是在 t0 时 刻可控的,则称系统在 t0 时刻是完全可控,简称系统在 时刻 t0 可控。如果系统对任意初始时刻 t0 完全可控, 则称系统一致可控。
③系统不完全能控:如果对给定得初始时刻 t0 Tt ,如果状
态空间中存在一个或一些非零状态在 t0 时刻是不可控的,则 称系统在 t0 时刻是不完全可控的,也称系统是不可控的。
x0TWC (0, t1)x0
t1 0
x0T
eAt
BBT
eAT t
x0
dt
t1 0
BT
eAT t
x0
2
dt
0,
BT eATt x0 0
x(t1) eAt1 x0
t1 eA(t1t) Bu(t) d t 0
0
x0
et1 -At1
0
Bu(t) d t
x0
2
x0T x0
[
et1 -At1
An1B] T S 0
T Ai B 0; i 0,1,2, ,n 1 应用凯-哈定理 An , An1 均可表示为A 的 n-1 阶多项式
T Ai B 0; i 0,1,2,3,
对 t1 0
(1)i T
Ai t i i!

现代控制理论基础_周军_第三章能控性和能观测性

现代控制理论基础_周军_第三章能控性和能观测性

3.1 线性定常系统的能控性线性系统的能控性和能观测性概念是卡尔曼在1960年首先提出来的。

当系统用状态空间描述以后,能控性、能观测性成为线性系统的一个重要结构特性。

这是由于系统需用状态方程和输出方程两个方程来描述输入-输出关系,状态作为被控量,输出量仅是状态的线性组合,于是有“能否找到使任意初态转移到任意终态的控制量”的问题,即能控性问题。

并非所有状态都受输入量的控制,有时只存在使任意初态转移到确定终态而不是任意终态的控制。

还有“能否由测量到的由状态分量线性组合起来的输出量来确定出各状态分量”的问题,即能观测性问题。

并非所有状态分量都可由其线性组合起来的输出测量值来确定。

能控性、能观测性在现代控制系统的分析综合中占有很重要的地位,也是许多最优控制、最优估计问题的解的存在条件,本章主要介绍能控性、能观测性与状态空间结构的关系。

第一节线性定常系统的能控性能控性分为状态能控性、输出能控性(如不特别指明便泛指状态能控性)。

状态能控性问题只与状态方程有关,下面对定常离散系统、定常连续系统分别进行研究(各自又包含单输入与多输入两种情况):一、离散系统的状态可控性引例设单输入离散状态方程为:初始状态为:用递推法可解得状态序列:可看出状态变量只能在+1或-1之间周期变化,不受的控制,不能从初态转移到任意给定的状态,以致影响状态向量也不能在作用下转移成任意给定的状态向量。

系统中只要有一个状态变量不受控制,便称作状态不完全可控,简称不可控。

可控性与系统矩阵及输入矩阵密切相关,是系统的一种固有特性。

下面来进行一般分析。

设单输入离散系统状态方程为:(3-1)式中,为维状态向量;为纯量,且在区间是常数,其幅值不受约束;为维非奇异矩阵,为系统矩阵;为维输入矩阵:表示离散瞬时,为采样周期。

初始状态任意给定,设为;终端状态任意给定,设为,为研究方便,且不失一般性地假定。

单输入离散系统状态可控性定义如下:在有限时间间隔内,存在无约束的阶梯控制信号,,,能使系统从任意初态转移到任意终态,则称系统是状态完全可控的,简称是可控的。

线性系统的能控性与能观测性

线性系统的能控性与能观测性

线性系统的能控性与能观测性摘要:本文主要介绍线性系统的能控性与能观测性的几种基本判定方法,以及如何用MATLAB 软件判定。

也简要介绍了能控能观的对偶定理。

一、引言状态空间法---由状态变化引起输出变化---状态的反馈---状态是否可以控制,是否可以观测。

实际的控制系统有线性系统也有非线性系统。

严格地讲,任何控制系统都或多或少地带有非线性的成份。

但有不少系统,非线性的影响不是很大,可以近似地看作线性系统;有的可以经过线性化处理,按线性系统对待。

线性控制系统理论是现代控制理论中最基础、最成熟的一部分。

能控性与能观性是线性控制系统理论中最基本、最重要的两个概念。

[1]二、能控性与能观测性的判定能控性和能观测性是线性系统的两个结构特性,揭示了系统内部的状态变量与系统输入输出之间的关系。

直观地说,能控性问题是研究系统的内部状态变量可否由控制输入完全影响的问题。

如果系统的每一个状态的运动都可以通过输入来影响和控制,由任意的起始点到达状态空间的原点,则称系统是完全能控的。

能观测性是研究系统的输入输出是否完全反映系统状态的问题。

如果系统的所有状态变量的任意形式的运动均可通过输出完全反映出来,则称系统是状态能观测的,简称为能观测。

[2]系统的状态方程为 BU AX X +=.CX Y =能控性研究的是系统的输人变量u 对系统状态变量x 的控制作用。

能控性的判断准则主要有三种:1、利用能控性的判定矩阵来判断。

可控性矩阵Q k =[B AB A 2B … A n-1B]满秩。

如果B 的秩为r ,可控性矩阵Q k =[B AB A 2B … A n-r B]。

2、利用对角约当规范型来判断。

此状态可确定哪个状态不可控。

3、利用传递函数来判断。

状态---输入传递函数:(SI-A )-1B 没有零极点相消的现象,则完全可控。

这个判定准则不能够单独使用。

能观性研究的是系统的输出变量y 对系统状态变量x 的观测能力。

对应的,能观测性也有三种判定准则:1、利用能观测性的判定矩阵来判断。

线性系统理论第4章 线性系统的能控性和能观测性

线性系统理论第4章  线性系统的能控性和能观测性
解??33112201112?????????????????kckcrankqhgghhq系统是能控的2u1011u1210u3214122223xhugx??????????????????????????????????????????????????582145令03x?????????????11?????????????????????????????????????????????????852u1u0u41222u1u0u101121321若令02x????????????????????????????????0621u0u101121无解
满秩,即rankQ o=n
结论5
n 维连续时间线性时不变系统完全能观测的充分必要条件为:
SI A rank n S C C

i I A 为系统特征值 rank n , 1 , 2 ,n C
Wc [0, t1 ] e At BBe A t dt
T

t1
0
为非奇异。
结论3:n 维连续时间线性时变系统 x A(t ) x B(t )u x(t 0 ) x0
设A(t),B(t)对t为n-1阶连续可微,定义
t, t0 J
M 0 (t ) B (t ) d M 0 (t ) dt d M 2 (t ) A(t ) M 1 (t ) M 1 (t ) dt d M n 1 (t ) A(t ) M n 2 (t ) M n 2 (t ) dt M 1 (t ) A(t ) M 0 (t )
6/8,9/45
1 L QC [b, Ab] 0
R3 R4 1 R1 R2 2 L R1 R2 R3 R4 1 R2 R4 LC R1 R2 R3 R4

线性控制系统的能控性和能观性

线性控制系统的能控性和能观性

C 1, C 2 Cn 满足G = C ? = C 3性无关。

,则把向量 X 「X 2 X n 叫做线11 1 0L 1X i 二 01 1X 2 二 1X 3_0 _0第三章 线性控制系统的能控性和能观性在现代控制理论中,能控性和能观性是卡尔曼(Kalma n )在I960年首先提出来的,它是最优控制和最优估值的设计基 础。

能控性和能观性是分别分析 u(t)对状态x(t)的控制能力 以及输出y(t)对状态x(t )的反映能力。

§3—1能控性的定义能控性所研究的只是系统在控制作用 u(t)的作用下,状态 矢量x(t)的转移情况,而与输出y(t)无关。

矢量的线性无关与线性相关:如果G xi * C 2x2 C 3X 3C n xn= 0式中的常数无关。

若向量X i ,x 2…x n 中有一个向量Xi 为其余向量的线性组 合,□便是线性例如向量C nX i不全为零。

故为线性相关。

具有约旦标准型系统的能控性判据 1 •单输入系统先将线性定常系统进行状态变换, 又例如在式中X 3X 2, X i3X ^ 0式中系数并把状态方程的A 阵和B相关。

阵化为约旦标准型(A, E?),再根据B 阵确定系统的能控性。

具有约旦标准型系统矩阵的单输入系统,状态方程为即:Xi、C j X j j=i j-i则称向量X i ,X 2 x n 为线性相关。

例如向量X iX3二 2_4便是线性x 八 x bu 或 x 二 Jx bu2,各根互异。

其中:(特征值有重根的)10 11 0111 Jnb 2bX11C2c 1xc 2x 2y cy(t)u(t)b1X1C2_b n卜面列举两个二阶系统,对其能控性加以剖析。

「0 例:1)厂匕x 2 二 2X 2 pu 0 0X u 2 巾2m 2故为状态不完全能控的,11X_b 2例:2)y约旦型)c 2 ]xX 厂'1x 1 x 2X 2= 2X 2 b ?u (为y = GN c 2x 2lL (t )从上式看出X 1与u 无关,即不受u 控制,因而只有一个特— 01 殊状态。

第6章 线性系统的能控性和能观性(第四章)

第6章 线性系统的能控性和能观性(第四章)
ˆ y = [ 0 L 0 1] x
1 α n −1 L α1 CAn −1 O O M M Q= O α n −1 CA 1 A
给定完全能观测单输入单输出连续时间线性时不变系统: 例 4.21 给定完全能观测单输入单输出连续时间线性时不变系统:
ϕ T = BT (t )ψ T
对偶原理: 对偶原理:
Σ 完全能控 ⇔ Σ d完全能观测 Σ 完全能观测 ⇔Σ d完全能控
4.8 能控规范形和能观测规范形
单输入单输出情形 能控规范形
Σ:
& x = Ax + Bu,
y = Cx
线性非奇异变换下,能控性、能观测性, 线性非奇异变换下,能控性、能观测性, 可控指数、可控指数集,能观测指数和能观测 可控指数、可控指数集, 指数集保持不变。 指数集保持不变。
4.2 连续时间线性时不变系统的能控性判据
& x = Ax + Bu, x (0) = x0 ,
t≥0
系统完全能控的充分必要条件为: 系统完全能控的充分必要条件为:
rankQC = rank B
例:
AB L An −1 B = n
4 0 1 & x = x + u 0 −5 2
t∈J
说明: 说明:
表征系统状态可到达任意目标的定性属性, (1) 表征系统状态可到达任意目标的定性属性, 不关注运动的轨迹形态; 不关注运动的轨迹形态; 对控制无限制; (2) 对控制无限制; (3) 线性时不变系统与 t0 无关; 无关; 线性时不变系统能控性与能达性等价。 (4) 线性时不变系统能控性与能达性等价。 系统完全能控/能达: 系统完全能控/能达:指所有非零状态 系统不完全能控/能达: 系统不完全能控/能达:

线性系统理论4能控性和能观性

线性系统理论4能控性和能观性

如果存在某个时刻 t1 t0,使得rankQ O (t1 ) n
t0 为不能观测的。
定义 4.1.6 对于线性时变系统
x A(t)x
, x(t0 ) x0 , t0 , t J
y C(t)x
如果状态空间中所有状态都是时刻 t0(t0 J )
的能观测状态,则称系统在时刻 t0 是完全能
观测的。如果对于任何 t0 [T1,T2] 系统均是在
t0 时刻为能观测的,则称系统在 [T1,T2 ]
在 t0 , t1 上行线性独立,即对任意 n
维非零向量 z 都有
zT (t1 , )B( ) 0, t0 t1
4.2.3 基于系统参数矩阵的判据
定理 4.2.3 假设系统
x A(t)x B(t)u, t J
中的 A(t) 和 B(t) 的每个元分别是 n 2和
n 1 一次连续可微函数,记 B1(t) B(t)
那么它能控的充分必要条件是:
det b Ab An1b 0
4.3.3 PBH判据
定理4.3.2 定常线性系统
x Ax Bu, x(t0 ) x0 , t t0
能控的充分必要条件是,对每个 (A)
都有 rank A In B n 其中, ( A)
表示 A 的特征值集合。
推论 4.3.3 定常线性系统
2
dt
x0T T
(t1 , t0 )Wc1(t1 , t0 )(t1 , t0
)x0
4.2.2 基于状态转移矩阵的判据
定理 4.2.2 假设 A(t) 和 B(t) 都是 t
的连续函数矩阵,则系统
x A(t)x B(t)u, t J
在t0 时刻能控的充分必要条件是存在某

线性系统的能控性和能观性

线性系统的能控性和能观性

例3.4 判断下列系统的能控性
(1)、A
2
0
0 1 1, B 0
(2)、A
2
0
0 1 1, B 1
(3)、A
1
0
01B
1 1
3 1 0 0 0
(4)、A
0
3 0, B 2 1
0 0 1 0 3
4 1 0 0
(5)、A
0
4
0 , B 1
0 0 4 2
所以A为约旦阵,但有两个相同特征值的约旦块 对应b虽为最后一行全为0的元素行,仍不能控, 可算出rank[M]<3.
,t0)
tf t0
(
t
f
, )B()u()d
x(t0 )
tf t0
(
t
0
,
)B()u
()d
意义:系统状态x(t0)能控,即[t0,tf]区间上受 u(t)控制。
(三)能控性判据 [定理3.1]系统∑(A(t),B(t),C(t))在t0时刻或[t0,tf]
完全能控的充要条件是矩阵Φ(t0,t)*B(t)是行 线性无关的(满秩的、非奇异的)
例:x
1
0
-
-
02x 10u, y 1 1x
分析: 1、x1与输入u无关,不能 控,x2能控, x1, x2不完 全能控。 2、y= x1+ x2 , x1或x2 都能对y产生影响,通 过y能确定x1或x2 ,能 观测。
3、能控能观是最优制和 最优估计的设计基础。
3.1 线性连续系统的能控性
)d
x(t f ) (t f )x(0) 0t f (t f )B( )u( )d x(0) 0t f ( )Bu( )d

现代控制理论-4-线性系统的能控性和能观测性-第7讲

现代控制理论-4-线性系统的能控性和能观测性-第7讲

能控性的定义
能控性是指对于一个线性系统,如果 存在一个控制输入,使得系统状态能 够在有限的时间内从任意初始状态转 移到任意目标状态,则称该系统为能 控的。
能控性的判断依据是系统的能控性矩 阵,如果该矩阵满秩,则系统能控。
能观测性的定义
能观测性是指对于一个线性系统,如果存在一个观测器,能够通过系统的输出测量并估计出系统的所有状态,则称该系统为 能观测的。
传递函数判据
对于线性时不变系统,如果传递 函数的零点和极点个数满足一定 条件,则系统能观测;否则系统 不能观测。
03
能控性和能观测性的应用
在控制系统设计中的应用
系统性能分析
通过分析系统的能控性和能观测性,可以评估系统的稳定 性和动态性能,从而优化系统设计。
控制器设计
在控制器设计中,需要考虑系统的能控性和能观测性,以 确保控制器能够有效地控制系统的状态并观测系统的状态。
初始状态和目标状态
系统初始和目标状态的定义,以及它们对最优控 制策略的影响。
最优控制问题的求解方法
动态规划
将最优控制问题分解为一系列子问题, 通过求解子问题的最优解逐步逼近原问
题的最优解。
极大值原理
通过求解极值条件来找到最优控制输 入,适用于具有特定性能指标的最优
控制问题。
线性二次调节器
通过最小化状态和控制输入的二次范 数来求解最优控制问题,适用于线性 二次最优控制问题。
现代控制理论-4-线性系统 的能控性和能观测性-第7讲
目录
• 线性系统的能控性和能观测性的 定义
• 能控性和能观测性的判定方法 • 能控性和能观测性的应用 • 线性系统的状态反馈和状态观测
器设计
目录
• 线性系统的最优控制问题 • 现代控制理论的发展趋势和前沿
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

w eA B 2d
wT eAt B 0(0 t t1)矛盾
定理5.2、秩判据 线性定常系统(5.2)为完全能控
其中n为矩阵A的维数.
rank B AB
An1B n
能控性判别阵 : Qc B AB An1B
证明:充分性:已知rankQc=n,欲证系统为完全能控
反证法:假设系统不完全能控,则由Gram矩阵判据知
t 0
e
(t
)
u(
)d
]11
即x1(t)= x2(t),存在u(t)和T, 使x(T)=0.
显然当x1(0)≠x2(0),令h= x2(0)-x1(0)≠0,则
x(t) [et x1(0)
t 0
e
(t
)u(
)]11
1/
2h
et e t
e 3t e 3t
不存在u(t),使x(T)=0,即 u(t),T 0, x(T ) 0
例5.3 考虑如下系统
x
2 1
12x 11u Ax bu
y (0 1)x
Q
e At
et
1
/
2
et
e3t e3t
et e3t
et
e3t
x(t) eAt x0
t e A(
(t
)
11u(
)d
若 x1(0)= x2(0)=h,则
x(t) [et h
t1 0,均有wc (0,t1)为奇异的,即 0 Rn,使
wc (0,t1 ) 0
t1 ( eAt B)( eAt B) dt
0
eAt B 0,t [0,t1]
对t求导且取t=0得
B 0, AB 0, , An1B 0
B AB An1B Qc 0
rank[B, AB,L , An1B] n 矛盾!
充分性(不讲):反证不完全能控, 则:rank[B, AB,L , An1B] n
h Rn (h 0) 使得:hT [B, AB,L , An1B] 0
h Ak (k 0,1, 2,L , n 1) 均是B的左零空间的元,则 存在一个最小的整数 k (0 k n 1)
控的,则称系统(5.1)在t0时刻是完全能控的。
定义5.3、对于系统(5.1),取定初始时刻 t0∈J,若状态空间中存在一个或
一些非零状态在t0时刻是不能控的,则称系统(5.1)在t0时刻是不完全能控的。 注:1、转移时状态轨迹不限制 2、允许控制表示输入的所有分量在J上是平方可积的无约束是 指对输入的所有分量的幅值不限制,可以取无穷大值。 3、能控是由非0状态转移到0状态 ;能达是由0状态转移到非0状态
rank(i I A, B) n,i 1,2, n
或:rank(sI A, B) n,i 1, 2,L n,s
或:(sI-A)和B为左互质。
证明:必要性:反设存在A的一个特征值λ0使得 hT (0 I A, B) 0
hT [B, AB,L , An1B] hT [B, 0B,L , 0n1B] 0
∴Qc为线性相关 ∴rankQc<n
必要性:已知系统完全能控 ,要证rankQc=n 反证法:设Qc不是行满秩矩阵(rankQc<n),则Qc为行线性相关 :
0 Rn ,使 Qc 0 B AB L An1B
由Hamilton.Keylay定理易证 Ai B 0, i 0,1, 2,L , n 1,L
t1
0有
A(i t)i B i!
0,t [0,t1],i 0,1, 2,L
e At B 0, t [0, t1]
wc (0,t1)
t1 ( eAt B)( eAt B) dt 0
0
wc (0, t1)奇异
定理5.3、(PBH秩判据)
线性定常系统(5.2)为完全能控 对A的所有特征值i (i 1, 2L , n)
三、能控性判别准则 定理5.1、(Gram判据)线性定常系统(理论分析用)
x Ax Bu,t 0
(5.2)
的状态x能控 t1 T使x属于(象)空间R[wc (0,t1)]
其中:wc (0,t1)
t1 e At BBT e A t dt
0
系统完全能控 wc (0,t1)为非奇异矩阵
证明:充分性: 设x R[wc (0, t1)]
x(t1) 0 eAt1 x
t1 e A(t1 ) Bu( )d
0
两边同乘w eAt1得0 w x w t1 eA Bu( )d 0
t1 w e A Bu( )d 0 0
又Q w N (wc ) , wcw (0 核)
即:w wcw
t1 w eA BB eAT wd
0
t1 0
e At1 x e At1 x 0”)
x 必要性: 设存在一个控制u(t),将状态
推向于0(在t1时刻)
用反证法: 假设x R[wc (0, t1)]
则状态x不正交于N (wc (0, t1)() 核)
wcT wc 存在向量w N (wc )使wT x 0
Q x能控的,存在( u t)及t1使
则有z Rn,使wc (0,t1)z x成立
取u(t) B eAt z (0 t t1)
则:x(t1) eAt1 x
t1 e A(t1 ) Bu ( )d
0
e At1 x t1 e A(t1 ) B(Be A )zd 0
e At1 x e At1 t1 e A B(Be A )zd 0
∴在该二维状态空间中,只有子空间 {x: x1=x2}中状态才是能控的,把 {x: x1=x2}称为能控状态的空间. 二、定义
考虑线性时变系统: x A(t)x B(t)u,t J
(5.1)
其中:x(t) Rn , u(t) R p J为时间定义区间,
A(t),B(t)为适当维数的元为t的连续函数的矩阵(或绝对可积)
定义5.1、对于系统(5.1),若取定初始时刻 t0 J 的一个非零初始状态x0
存在一个时刻 t1 J ,t1 t0 和一个无约束的允许控制 u(t), t [t0 , t1 ]
使状态由 x0转移到t1时x(t1)=0,则称此x0是在t0时刻为能控的。
定义5.2、对于系统(5.1),若状态空间中所有非0状态都是在t0时刻( t0∈J)为能
使得h , h A, h A2 ,L , h Ak行线性无关
相关文档
最新文档