中考数学专题(3)动态几何问题分析
中考数学“动态几何探究”题型解析
中考数学“动态几何探究”题型解析以三角形、四边形为背景的动态几何问题均以动态几何的形式来考查三角形、四边形的性质,判定,全等三角形、相似三角形的性质及判定,本节将对此类问题归类如下:一、在平面直角坐标系中探究【例题1】已知直线l 经过A(6,0)和B(0,12)两点,且与直线y = x 交于点C. (1)求直线l 的表达式;(2)若点P(x,0)在线段OA 上运动,过点P 作l 的平行线交直线y = x 于点D,①求△PCD 的面积S 与x 的函数关系式;②S 有最大值吗?若有,求出当S 最大时x 的值 .【解析】(1)设直线l 的表达式为y = kx + b , 用待定系数法求出k , b 的值即可;(2)①点C 是直线l 与y = x 的交点,从而可求得点C 的坐标 .根据三角形的面积公式及结合平行的性质,可求得S 与x 的函数关系式;②根据二次函数的性质,即可得到S 的最大值 .解:(1)设直线l 的表达式为y = kx + b ,由A(6,0)和B(0,12),得∴直线l 的表达式为y = -2x + 12 .(2)①∴点C 的坐标为(4,4),∴S△COP = 1/2 x ▪4 = 2x .∵PD∥直线l ,∴CD/OC = AP/OA .∵CD/OC = ( 1/2 h ×CD ) / ( 1/2 h ×OC ) = S / S△COP,∴S / S△COP = AP / OA , 即S / 2x = (6 - x)/ 6 ,∴△PCD 的面积S 与x 的函数关系式为S = -1/3 x^2 + 2x .②∵S = -1/3 (x - 3)^2 + 3 ,∴当S 最大时,x = 3 .【例题2】如图,在直角坐标系中,矩形OABC 的顶点A , C 均在坐标轴上,且OA = 4 ,OC = 3 , 动点M 从点A 出发,以每秒1 个单位长度的速度,沿AO 向终点O 移动;动点N 从点C 出发沿CB 向终点B 以同样的速度移动,当两个动点运动了x 秒(0 < x < 4)时,过点N 作NP⊥BC 交OB 于点P,连接MP .(1)直接写出点B 的坐标,并求出点P 的坐标(用含x 的式子表示);(2)当x 为何值时,△OMP 的面积最大?并求出最大值 .解:(1)在矩形OABC 中,OA = 4 , OC = 3 ,∴B 点的坐标为(4,3).如图,延长NP 交OA 于点G,则PG∥AB,OG = CN = x . ∵PG∥AB,∴△OPG∽△OBA .∴PG / BA = OG / OA , 即PG / 3 = x / 4 ,解得PG = 3/4 x .∴点P 的坐标为(x , 3/4 x).(2)设△OMP 的面积为S .在△OMP 中,OM = 4 - x , OM 边上的高为3/4 x,∴S 与x 之间的函数表达式为配方,得∴当x = 2 时,S 有最大值,最大值为3/2 .二、在几何图形中探究【例题3】如图,在矩形ABCD 中,AB = 3 米,BC = 4 米,动点P 以2 米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1 米/秒的速度从点C 出发,沿CB 向点B 移动,设P , Q 两点同时移动的时间为t 秒(0 < t < 2.5).(1)当t 为何值时,PQ∥AB;(2)设四边形ABQP 的面积为y , 当t 为何值时,y 的值最小?并求出这个最小值 .【解析】(1)首先由勾股定理求得AC = 5 米,然后根据AB∥PQ 可得到PC / AC = QC / BC , 从而得到关于t 的方程,从而可解得t 的值;(2)过点P 作PE⊥BC,由PE∥AB 可得到PC / AC = PE / AB ,从而可求得PE = 3 - 6/5 t , 然后根据y = S△ABC - S△PQC 列出t 与y 的函数关系式,最后利用配方法求得最小值即可 .解:(1)在Rt△ABC 中,由题意,得PC = AC - AP = 5 - 2t , QC = t .如图①,∵AB∥PQ , ∴△CPQ∽△CAB .∴PC / AC = QC / BC , 即(5 - 2t)/ 5 = t / 4 , 解得t = 20/13 .(2)如图②,过点P 作PE⊥BC 于点E .由(1)知,PC = 5 - 2t , QC = t ,∵PE∥AB,∴△CPE∽△CAB .∴PC / AC = PE / AB , 即(5 - 2t)/ 5 = PE / 3 . ∴PE = 3 - 6/5 t .∴当t = 5/4 时,y 的值最小,最小值为81/16 .【例题4】如图,在△ABC 中,∠C = 60°,BC = 4,AC = 2√3,点P 在BC 边上运动,PD∥AB,交AC 于D . 设BP 的长为x , △APD 的面积为y .(1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少?(3)是否存在这样的点P,使得△ADP 的面积是△ABP 面积的2/3 ?若存在,请求出BP 的长;若不存在,请说明理由 .解:(1)∵PD∥AB,∴AD / AC = BP / BC .∵BC = 4 , AC = 2√3 , BP = x ,∴AD / 2√3 = x / 4 ,∴AD = √3/2 x .(2)过点P 作PE⊥AC 于E .∵sin∠ACB = PE / PC , ∠C = 60°,∴PE = PC ×sin60°= √3/2(4 - x ).∴y 与x 之间的函数关系式为∴当x = 2 时,y 的值最大,最大值是3/2 . (3)存在这样的点P .∵△ADP 与△ABP 等高不等底,∴S△ADP / S△ABP = DP / AB .∵△ADP 的面积是△ABP 面积的2/3 , ∴S△ADP / S△ABP = 2/3 ,∴DP / AB = 2/3 .∵PD∥AB,∴△CDP∽△CAB .∴DP / AB = CP / CB ,∴CP / CB = 2/3 .∴(4 - x)/ 4 = 2/3 ,∴x = 4/3 ,∴BP = 4/3 .。
中考几何-动态试题解法(解析版)
中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
中考数学专题——动态问题(非常全面)
(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)A DC B P M Q 60图3图2图1FEABCDABC DEFGGFED C BA【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。
浅谈初中数学中的动态几何问题
三、动态几何问题的课堂教学
在日常教学中,总有部分学生感到几何难学, 在日常教学中,总有部分学生感到几何难学,老师也感 到几何难教。 到几何难教。“难”的原因之一就是图形关系复杂,变化多 的原因之一就是图形关系复杂, 样。而原先在几何教学中往往是以静态的居多,静态的亦已 而原先在几何教学中往往是以静态的居多, 如此,何况动态!几何难教、难学问题凸现。 如此,何况动态!几何难教、难学问题凸现。
二、动态几何的几点认识
动态几何问题,即随着图形中的某些元素的运动变化, 动态几何问题,即随着图形中的某些元素的运动变化, 导致问题的结论或者改变或者保持不变的几何问题。它是命 导致问题的结论或者改变或者保持不变的几何问题。 题的一种构造方法,同时也展示了一种数学的创造过程, 题的一种构造方法,同时也展示了一种数学的创造过程, 反 映了几何本身的实质。 映了几何本身的实质。 动态几何问题,是以几何知识和具体的几何图形为背景, 动态几何问题,是以几何知识和具体的几何图形为背景, 渗透运动变化的观点,通过点、 形的运动,图形的平移、 渗透运动变化的观点,通过点、线、形的运动,图形的平移、 翻折、 翻折、旋转等把图形的有关性质和图形之间的数量关系位置 关系看作是在变化的、相互依存的状态之中, 关系看作是在变化的、相互依存的状态之中,要求对运动变 化过程伴随的数量关系的图形的位置关系等进行探究。 化过程伴随的数量关系的图形的位置关系等进行探究。对学 生分析问题的能力,对图形的想象能力, 生分析问题的能力,对图形的想象能力,动态思维
能力的培养和提高有着积极的促进作用。 能力的培养和提高有着积极的促进作用。 动态几何问题, 动态几何问题,以运动中的几何图形为载体所构建成的综合 题,它能把几何、三角、函数、方程等知识集于一身,题型 它能把几何、三角、函数、方程等知识集于一身, 新颖、灵活性强、有区分度,受到了人们的高度关注, 新颖、灵活性强、有区分度,受到了人们的高度关注,同时 也得到了命题者的青睐,动态几何问题, 也得到了命题者的青睐,动态几何问题,常常出现在各地的 中考数学试卷中。但这类试题却对学生提出了较高的要求, 中考数学试卷中。但这类试题却对学生提出了较高的要求, 不少学生感到困惑。 不少学生感到困惑。
中考数学中的动态几何问题
中考数学中的动态几何问题近几年来,动态几何问题在中考中频繁出现,从题目上看,它涉及的知识层面深而广,并且蕴含着许多数学思想,目的是考查学生运用知识分析和解决问题的能力,更重要的是考查创新探究能力。
例1[2008·河北(26)]如图1,在rt△abc中,∠c=90°,ab=50,ac=30,d,e,f分别是ac,ab,bc的中点。
点p从点d出发沿折线de-ef-fc-cd以每秒7个单位长的速度匀速运动;点q从点b出发沿ba方向以每秒4个单位长的速度匀速运动,过点q作射线qk ⊥ab,交折线bc-ca于点g。
点p,q同时出发,当点p绕行一周回到点d时停止运动,点q也随之停止。
设点p,q运动的时间是t秒(t>0).(1)d,f两点间的距离是;(2)射线qk能否把四边形cdef分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点p运动到折线ef-fc上,且点p又恰好落在射线qk上时,求t的值;(4)连结 pg,当pg∥ab时,请直接写出t的值。
涉及到的知识及数学思想:勾股定理、三角形中位线的判定和性质、中心对称的性质、相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质、平行线的判定和性质、一元一次方程、一元一次不等式;数形结合思想、分类讨论思想、转化的数学思想。
可见,动态问题的综合性很强,要解答这类问题,一是要掌握涉及的基本知识,这是必要条件;二是要明确相关的数学思想,这样能够更全面、系统、灵活地解答问题;三是要掌握有效的解题手段,这是解决问题的关键。
一、明确几类动态问题1.动点问题:动点问题涉及单动点和双动点,是指动点沿着一定的路径运动,形成新的图形,解答该类问题通常是利用特殊图形的性质建立方程。
例2[2004·河北(25)]已知:如图2,等边三角形abc的边长为6,点d,e分别在边ab,ac上,且ad=ae=2。
若点f从点b开始以每秒1个单位长的速度沿射线bc方向运动,设点f运动的时间为t秒。
中考数学中动态几何题例析
上 ,且 DE=BF 。
D
以每 秒 1个单位 的速 度沿 射线 QC匀速 运动 ( 当点 与 点 C重合 时停 止运 动 ) ,设运 动 时 间为 t ,矩 形 秒
觉.
题被称 为 动态 几何 问题 .这 类题 型常 常 用来考 查 学
生对 图形 的想象 能 力和 分析 能力 .随着 全 1制义 3 务教 育 数 学课程 标 准 ( 验 ) ( 实 》 以下 简称 数 学课 程标 准》 )的不断贯彻 实施 ,在 全 国各地 的中考试题 中,“ 动态 几何 问题 ” 已经成 为了一大热 点题 型 .
的变换 方式 .解决 这种 问题 的关键 在认 清旋转 中心、 方 向和 角 度 .不 变 性 是 图形旋 转 的一 个 很 重要 的性
质 ,具 有很 强 的应 用性 .
FⅣ = M F = f.
・ . .
S=
w 0一L 形 Q—Sl ̄ 胛 e 1 =2 t. t …②
女图 3 当4 t 5 , U H , < 时 贝 ME=5 ,Q 一t C= 一 , 9 ,
1 .课标 要求
数 学课 程标 准 指 出 ,有效 的数 学 学 习过程 不能 单 纯地依 赖模 仿 与记 忆 ,教 师 应 引导 学 生主 动
地从 事观 察 、实 验、猜 测 、验 证 、推理 与 交流 等数
学活 动 ,从而 使 学生形 成 自己对 数 学知 识 的理解 和 有效 的学 习策 略 . 注 重数 学知 识之 间的联 系 ,提 高解决 问题 的能 力 .关注 数学 知识 之 间的联 系 ,这包 括 同一领 域 内 容 之 间的相 互连 接 ,也包 括选 择若 干 具体 内容 ,体 现 数与代 数 、空 间与 图形 、统 计与 概率 之 间 的实质
2023年九年级中考数学频考点突破--反比例函数动态几何问题
2023年中考数学频考点突破--反比例函数动态几何问题1.如图,在第一象限内有一点A(4,1),过点A作AB⊥x轴于B点,作AC⊥y轴于C点,点N为线段AB上的一动点,过点N的反比例函数y=nx交线段AC于M点,连接OM,ON,MN.(1)若点N为AB的中点,则n的值为;(2)求线段AN的长(用含n的代数式表示);(3)求⊥AMN的面积等于14时n的值.2.如图,一次函数y=2x−2的图与y轴分别交于点A,且反比例函数y=4x的图象在第一象限内的交点为M.(1)求点M的坐标.(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由。
3.如图,在矩形ABCD中,已知点A(2,1),且AB=4,AD=3,把矩形ABCD的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=kx(x>0)的图象为曲线L.(1)若曲线L过AB的中点.①求k的值.②求该曲线L下方(包括边界)的靓点坐标.(2)若分布在曲线L上方与下方的靓点个数相同,求k的取值范围.4.如图,点A,B在x轴上,以AB为边的正方形ABCD在x轴上方,点C的坐标为(1,4),反比例函数y=kx(k≠0)的图象经过CD的中点E,F是AD上的一个动点,将△DEF沿EF所在直线折叠得到△GEF.(1)求反比例函数y=k x(k≠0)的表达式;(2)若点G落在y轴上,求线段OG的长及点F的坐标.5.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=k x(k≠0)的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(− 2,n).(1)求反比例函数的解析式;(2)求△AOB的面积;(3)在x轴上是否存在一点P,使△AOP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(√3,1)在反比例函数y=k x 的图象上.(1)求反比例函数y=kx的表达式;(2)在x轴上是否存在一点P,使得S⊥AOP=12S⊥AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.7.如图,Rt△ABC中,∠ACB=90∘,顶点A,B都在反比例函数y=k x(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA 时,点E恰为AB的中点,若∠AOD=45∘,OA=2√2.(1)求反比例函数的解析式;(2)求∠EOD的度数.8.如图,直线y=2x+6与反比例函数y=kx(k>0)的图象交于点A(1,m),与x轴交于点B.平行于x轴的直线y=n(0<n<8)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)当n为何值时,△BMN的面积最大?9.如图,在平面直角坐标系xOy中,双曲线y1=k x与直线y2=mx+n交于点A,E,AE交x轴于点C,交y轴于点D,AB⊥x轴于点B,C为OB中点.若D点坐标为(0,﹣2),且S⊥AOD=4(1)求双曲线与直线AE的解析式;(2)写出E点的坐标;(3)观察图象,直接写出y1≥y2时x的取值范围.10.如图,将一张Rt△ABC纸板的直角顶点放在C(2,1)处,两直角边BC,AC分别与x,y轴平行( BC>AC),纸板的另两个定点A,B恰好是直线y1=kx+5与双曲线y2=m x(m> 0)的交点.(1)求m和k的值;(2)将此Rt△ABC纸板向下平移,当双曲线y2=mx(m>0)与Rt△ABC纸板的斜边所在直线只有一个公共点时,求Rt△ABC纸板向下平移的距离.11.如图,在平面直角坐标系中,正六边ABCDEF的对称中心P在反比例函数y=k x(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上.已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q.求点Q的横坐标.12.如图1,在平面直角坐标系中,直线AB与反比例函数y=k x(x>0)的图象交于点A (1,3)和点B (3,n),与x轴交于点C,与y轴交于点D.(1)求反比例函数的表达式及n的值;(2)将⊥OCD沿直线AB翻折,点O落在第一象限内的点E处,EC与反比例函数的图象交于点F.①请求出点F的坐标;②在x轴上是否存在点P,使得⊥DPF是以DF为斜边的直角三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.13.如图,已知直线OA与反比例函数y=mx(m≠0)的图像在第一象限交于点A.若OA=4,直线OA与x轴的夹角为60°.(1)求点A的坐标;(2)求反比例函数的解析式;(3)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.14.已知正比例函数y1=ax的图象与反比例函数y2=6−ax的图象交于A,B两点,且A点的横坐标为﹣1.(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答,当x取何值时,反比例函数的值大于正比例函数的值.(3)点M(m,n)是反比例函数图象上一动点,其中0<n<3,过点M作MD⊥y轴交x轴于点D,过点B作BC⊥x轴交y轴于点C,交直线MD于点E,当四边形OMEB面积为3时,请判断DM 与EM大小关系并给予证明.15.如图,在平面直角坐标系中,一次函数y1=−x+2与反比例函数y2=k x(x<0)相交于点B,与x轴相交于点A,点B的横坐标为-2.(1)求k的值;(2)直接写出当x<0且y1<y2时,x的取值范围;=k x(x<0)的(3)设点M是直线AB上的一点,过点M作MN//x轴,交反比例函数y2图象于点N.若以A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.16.如图,一次函数y=﹣x+4的图象与反比例y=k x(k为常数,且k≠0)的图象交于A(1,a),B 两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.答案解析部分1.【答案】(1)2(2)解:由(1)可知:x A=x B=x N=4,∵点N在y=nx上,∴y N=nx N=n4,∴AN=AB-BN= 1−n 4,故线段AN的长为1−n 4(3)解:由(2)可知:AN= 1−n 4,∵点A(4,1),AC⊥y轴,交y=nx于点M,∴y A=y M=1,AC=x N=4,则x M=ny M=n,即CM=x M=n,∴AM=AC-CM=4-n,∵AC⊥y轴,AB⊥x轴,∴四边形OBAC为矩形,∴⊥A=90°,∴S⊥AMN= 12×AN×AM = 12(1−n4)×(4−n)= 18n2−n+2,又⊥AMN的面积等于1 4,∴18n2−n+2=14,解得:n=4±√2,又AN= 1−n4>0,∴n<4,∴n=4−√2,故n的值为4−√2【知识点】反比例函数图象上点的坐标特征;反比例函数-动态几何问题【解析】【解答】解:(1)∵A(4,1),AB⊥x轴于点B,交y=nx于点N,∴x A=x B=x N=4,AB=1,又∵点N为AB中点,∴BN= 12AB=12,即y N=12,∴n=x N×y N=4× 12=2,故n=2;【分析】(1)根据题意求出x A=x B=x N=4,AB=1,再求出y N= 12,最后计算求解即可;(2)根据题意求出y N=nx N=n4,再求出AN=AB-BN= 1−n4,即可作答;(3)根据题意求出y A=y M=1,AC=x N=4,再求出四边形OBAC为矩形,最后利用三角形的面积公式计算求解即可。
中考数学专题:动态几何与函数问题
中考数学专题:动态几何与函数问题中考数学专题:动态几何与函数问题以下是查字典数学网为您推荐的中考数学专题:动态几何与函数问题,希望本篇文章对您学习有所帮助。
中考数学专题:动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中减少复杂性增大灵活性的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
【例1】如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线 .将直线平移,平移后的直线与轴交于点D,与轴交于点E.(2)当时,阴影部分的面积=直角梯形的面积的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)【例2】已知:在矩形中,, .分别以所在直线为轴和轴,建立如图所示的平面直角坐标系. 是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点 .(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE和△FOB 这两个直角三角形的底边和高恰好就是E,F点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K。
中考数学复习:专题三:动点或最值问题
点拨:在 Rt△AOB 中,∵∠ABO=30°,AO=1,∴AB=2,BO = 22-12= 3,①当点 P 从 O→B 时,如图 1、图 2 所示,点 Q 运动的 路程为 3;②当点 P 从 B→C 时,如图 3 所示,这时 QC⊥AB,则∠ACQ =90°,∵∠ABO=30°,∴∠BAO=60°,∴∠OQD=90°-60°= 30°,∴cos30°=ACQQ,∴AQ=cosC3Q0°=2,∴OQ=2-1=1,则点 Q 运动的路程为 QO=1;③当点 P 从 C→A 时,如图 3 所示,点 Q 运动的 路程为 QQ′=2- 3;④当点 P 从 A→O 时,点 Q 运动的路程为 AO=1, ∴点 Q 运动的总路程为 3+1+2- 3+1=4,故答案为 4
【点评】 本题主要考查轴对称的应用,利用最小值的常规解法确定 出点A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利 用条件证明△AA′D是等边三角形,借助几何图形的性质可以减少复杂的 计算.
[对应训练] 2.(1)(2016·贵港)如图,抛物线 y=-112x2+32x+53与 x 轴交于 A,B 两点,与 y 轴交于点 C.若点 P 是线段 AC 上方的抛物线上一动点,当 △ACP 的面积取得最大值时,点 P 的坐标是( B ) A.(4,3) B.(5,3152) C.(4,3152) D.(5,3)
解决最值问题的两种方法: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连接直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆的所有弦中,直径最长. (2)运用代数证法: ①运用配方法求二次三项式的最值; ② 运用一元二次方程根的判别式.
【例 2】 (2016·雅安)如图,在矩形 ABCD 中,AD=6,AE⊥BD, 垂足为 E,ED=3BE,点 P,Q 分别在 BD,AD 上,则 AP+PQ 的最小 值为( D )
中考数学复习:专题三:动点或最值问题
(2)(2016·泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1-a ,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动 ,且始终满足∠BPC=90°,则a的最大值是___6_.
专题三 动点或最值问题
动点问题是指以几何知识和图形为背景,渗入运动变化观点的一类问 题,常见的形式是:点在线段、射线或弧线上运动等.此类题的解题方 法:
1.利用动点(图形)位置进行分类,把运动问题分割成几个静态问题, 然后运用转化的思想和方法将几何问题转化为函数和方程问题.
2.利用函数与方程的思想和方法将要解决图形的性质(或所求图形面 积)直接转化为函数或方程.
点拨:∵点 A,B 的坐标分别为(8,0),(0,2 3),∴BO=2 3,AO =8,由 CD⊥BO,C 是 AB 的中点,可得 BD=DO=12BO= 3=PE, CD=21AO=4,设 DP=a,则 CP=4-a,
延长 BP 交 CE 于 F,当 BP 所在直线与 EC 所在直线第一次垂直时, ∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴ △EPC∽△PDB,∴DPEP=DPCB,即 a3=4-3a,解得 a1=1,a2=3(舍去), ∴DP=1,又∵PE= 3,∴P(1, 3)
【点评】 本题主要考查轴对称的应用,利用最小值的常规解法确定 出点A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利 用条件证明△AA′D是等边三角形,借助几何图形的性质可以减少复杂的 计算.
[对应训练] 2.(1)(2016·贵港)如图,抛物线 y=-112x2+32x+53与 x 轴交于 A,B 两点,与 y 轴交于点 C.若点 P 是线段 AC 上方的抛物线上一动点,当 △ACP 的面积取得最大值时,点 P 的坐标是( B ) A.(4,3) B.(5,3152) C.(4,3152) D.(5,3)
(全国通用)中考数学难点攻克:动态题型分类解析(动点、动线、动面)
中考数学重难考点突破—动态题型分类解析解决动态几何间题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变从结论入手,分析结论要成立需具备的典型特征条件是什么?然后利用函数与方程的思想和方法将这个需具备的典型特征条件(或所求图形面积)直接转化为函数或方程。
类型一点动型动态题1.如图1,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过___3__秒,四边形APQC的面积最小.图1解:设经过x秒四边形APQCD面积最小由题意得:AP=2x,BQ=4x,则PB=12—2x,△PBQ的面积=1/2×BQ×PB=1/2×4x×(12—2x)=—4(x—3)2+36当x=3时,△PBQ的面积的最大值是36mm2,此时四边形APQC的面积最小。
点评:本题中由于四边形APQC在动点运动中,无法确定其形态,也就无法应用面积公式。
而P、B、Q三点,根据题意始终组成一个直角三角形△PBQ,故从求直角三角形面积入手便可解决问题。
2.如图2,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在哪条边上相遇?图2解:(1)①∵t=1秒,∴BP=CQ=3×1=3(厘米).∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5(厘米),∴PC=BD.又∵AB =AC ,∴∠B =∠C ,∴△BPD ≌△CQP . ②∵v P ≠v Q ,∴BP ≠CQ .又∵△BPD 与△CQP 全等,∠B =∠C ,则BP =PC =4,CQ =BD =5, ∴点P ,点Q 运动的时间t =BP 3=43(秒), ∴v Q =CQ t =543=154(厘米/秒).(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得154x =3x +2×10,解得x =803(秒). ∴点P 共运动了803×3=80(厘米).∵80=2×28+24,∴点P 、Q 在AB 边上相遇, ∴经过803 秒点P 与点Q 第一次在边AB 上相遇. 类型二 线动型动态题3.已知二次函数y =x 2-(2m +2)x +(m 2+4m -3)中,m 为不小于0的整数,它的图象与x 轴交于点A 和点B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)点C 是抛物线与y 轴的交点,已知AD =AC (D 在线段AB 上),有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度移动,同时,另一动点Q 从点C 出发,以某一速度沿线段CB 移动,经过t 秒的移动,线段PQ 被CD 垂直平分,求t 的值.图3解:(1)∵二次函数的图象与x轴有两个交点,∴Δ=[]-2m+22-4(m2+4m-3)=-8m+16>0,∴m<2.∵m为不小于0的整数,∴m取0、1.当m=1时,y=x2-4x+2,图象与x轴的两个交点在原点的同侧,不合题意,舍去;当m=0时,y=x2-2x-3,符合题意.∴二次函数的解析式为y=x2-2x-3.(2)∵AC=AD,∴∠ADC=∠ACD.∵CD垂直平分PQ,∴DP=DQ,∴∠ADC=∠CDQ.∴∠ACD=∠CDQ,∴DQ∥AC,∴△BDQ∽△BAC,∴DQAC=BDAB.∵AC=10,BD=4-10,AB=4.∴DQ=10-52,∴PD=10-52.∴AP=AD-PD=52,∴t=52÷1=52.类型三面动型动态题4.如图4,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D 与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H 重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是( B)图4解析:正方形ABCD与正方形EFGH重叠部分主要分为3个部分,是个分段函数,分别对应三种情况中的对应函数求出来即可得到正确答案。
中考一轮复习--专题三 动点(面)问题
1
2
3
4
5
6
1.(2019·江苏苏州)如图,菱形ABCD的对角线AC,BD交于点
O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当
点A'与点C重合时,点A与点B'之间的距离为( C )
A.6
B.8
C.10
D.12
由折叠知△A1DE≌△ADE,
所以A1D=AD=1.
由 A1B+A1D≥BD,得 A1B≥BD-A1D= 5-1.
故 A1B 长的最小值是 5-1.
类型一
类型二
类型三
类型二 图形中的动点问题
例2如图(1),已知正方形ABCD,E是线段BC上一点,N是线段BC延
长线上一点,以AE为边在直线BC的上方作正方形AEFG.
∴在线段 BC 上点 H 的左右两边各有一个点 P 使 PE+PF=9,同理在
线段 AB,AD,CD 上都存在两个点使 PE+PF=9.即共有 8 个点 P 满足
PE+PF=9.
1
2
3
4
5
6
5.(2019·辽宁锦州)如图,在矩形ABCD中,AB=3,BC=2,M是AD边的中
点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△A'MN,连
AC的中点,连接BD,点F是BC边上的动点(不与点B、C重合),过点B
作BE⊥BD交DF延长线于点E,连接CE,下列结论:
①若BF=CF,则CE2+AD2=DE2;
15
②若∠BDE=∠BAC,AB=4,则CE= 8 ;
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
中考数学中的动态几何综合题例析
矩形 A C B D的长和宽分别为 8m和 2m, c c C点和 M 点重合 ,C和 B MN在一条直线上。令 △P MN不动, 矩形 A C B D沿 MN所在直 线 向右 以每秒 l c m的速度移动如 图② , 直到 c点与 Ⅳ点重合为 止 。设移动 秒 后 , 形 A C 与 AP 矩 BD MN重 叠部 分 的面 积为 y m2 c 求 )与 之间的关系式。( , 河南省中考题 )
—
④ 若点 P在 C 上运 动 , 点 P在 点 Q的右 侧 。当 c D 且 q C 4时 , P= oP与09外 切。
‘
.
.
t 4 2 )= , < )
示 , C 交 P 于 点 设 D N Q 则重 叠 部 分 图 形是 , 五边 形 C H MC q。’ MC B . M 2FxC ’
中考 数 学 中 的动 态 几 何 综 合 题 例 析
江 苏省 东 台 市三 仓 镇 新 农 e 学 l , 黄 杰
近几年来 , 动态几何综合题成为全国各地在中考命题中多次 出现的热门考点.也是中考复习最后阶段的重点和难点 , , 它所考 查的内容涉及初中代数 J 何中若干不同的知识点, . UL 需要学生扎 实地掌握好数学基础知识 , 又具备灵活综合运用数学知识解决问 题的能力。在解决此类问题时, 首先要弄清几何图形在运动过程 中各部分的位置变化情况 , 特别是关键的点、 线段和角的位置变 化规律 , 从而探 索到解决 问题 的突破 口。下面以几道 中考题为 例, 来寻求解答这类题型的 些规律。
1
=
分析与解答 : (当 A D 1 ) P= p时 , 四边形 A Q P D为矩形 .4 = 0一t ’ t2 . 解得
#中考数学压轴题动态几何题型精选解析
2018中考数学压轴题动态几何题型精选解读<三)例题如图1,在直角坐标系中,已知点A<0,2)、点B<﹣2,0),过点B和线段OA地中点C作直线BC,以线段BC为边向上作正方形BCDE.<1)填空:点D地坐标为,点E地坐标为.<2)若抛物线y=ax2+bx+c<a≠0)经过A、D、E三点,求该抛物线地解读式.<3)若正方形和抛物线均以每秒个单位长度地速度沿射线BC同时向上平移,直至正方形地顶点E落在y轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y轴右侧部分地面积为s,求s关于平移时间t<秒)地函数关系式,并写出相应自变量t地取值范围.②运动停止时,求抛物线地顶点坐标.思路分析:<1)构造全等三角形,由全等三角形对应线段之间地相等关系,求出点D、点E地坐标;<2)利用待定系数法求出抛物线地解读式;<3)本问非常复杂,须小心思考与计算:①为求s地表达式,需要识别正方形<与抛物线)地运动过程.正方形地平移,从开始到结束,总共历时秒,期间可以划分成三个阶段:当0<t≤时,对应图<3)a;当<t≤1时,对应图<3)b;当1<t≤时,对应图<3)c.每个阶段地表达式不同,请对照图形认真思考;②当运动停止时,点E到达y轴,点E<﹣3,2)运动到点E′<0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.由此得到平移之后地抛物线解读式,进而求出其顶点坐标.解:<1)由题意可知:OB=2,OC=1.如图<1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G.易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D<﹣1,3);同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E<﹣3,2).∴D<﹣1,3)、E<﹣3,2).<2)抛物线经过<0,2)、<﹣1,3)、<﹣3,2),则解得∴.<3)①当点D运动到y轴上时,t=.当0<t≤时,如图<3)a所示.设D′C′交y轴于点F∵tan∠BCO==2,又∵∠BCO=∠FCC′∴tan∠FCC′=2,即=2∵CC′=5t,∴FC′=25t.∴S△CC′F=CC′•FC′=t×t=5t2当点B运动到点C时,t=1.当<t≤1时,如图<3)b所示.设D′E′交y轴于点G,过G作GH⊥B′C′于H.在Rt△BOC中,BC=∴GH=,∴CH=GH=∵CC′=t,∴HC′=t﹣,∴GD′=t﹣∴S梯形CC′D′G=<t﹣+t)=5t﹣当点E运动到y轴上时,t=.当1<t≤时,如图<3)c所示设D′E′、E′B′分别交y轴于点M、N∵CC′=t,B′C′=,∴CB′=t﹣,B′N=2CB′=t﹣∵B′E′=,∴E′N=B′E′﹣B′N=﹣t∴E′M=E′N=<﹣t)∴S△MNE′=<﹣t)•<﹣t)=5t2﹣15t+∴S 五边形B′C′D′MN=S正方形B′C′D′E′﹣S△MNE′=<5t2﹣15t+)=﹣5t2+15t﹣综上所述,S与x地函数关系式为:当0<t≤时,S=5t2当<t≤1时,S=5t当1<t≤时,S=﹣5t2+15t②当点E运动到点E′时,运动停止.如图<3)d所示∵∠CB′E′=∠BOC=90°,∠BCO=∠B′CE′∴△BOC∽△E′B′C∴∵OB=2,B′E′=BC=∴∴CE′=∴OE′=OC+CE′=1+=∴E′<0,)由点E<﹣3,2)运动到点E′<0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.∵=∴原抛物线顶点坐标为<,)∴运动停止时,抛物线地顶点坐标为<,).点评:本题是非常典型地动面型综合题,全面考查了初中数学代数几何地多个重要知识点,包括:二次函数地图象与性质、待定系数法求解读式、抛物线与几何变换<平移)、相似三角形地判定与性质、全等三角形地判定与性质、正方形地性质等.难点在于第<3)问,识别正方形和抛物线平移过程地不同阶段是关键所在.作为中考压轴题,本题涉及考点众多,计算复杂,因而难度很大,对考生综合能力要求很高,具有很好地区分度.。
中考必考--数学动点经典例题分析
中考必考——数学动点经典例题分析动态几何问题已经成为中考试题的一大热点题型.这类试题以运动的点、线段、变化的角、图形的面积为基本条件,给出一个或多个变量,要求确定变量与其他量之间的关系,或变量在一定条件为定值时,进行相关的几何计算和综合解答。
下面是几个例题及分析(2000年·上海)如图1在半径为6,圆心角为90的扇形OAB 的弧AB上有一个动点P,PH⊥OA垂足为⊥OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO、GP、GH中有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH= x,G=y求y关于x的函数解析式,并写出函数的定义域(即自变量x 的取值范围)(3)如果⊥PGH是等腰三角形试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=2/3 M=2/3.120P=2.(2)在Rt⊥POH中,OH=√OP2−PH2=√36−x2⊥MH=12OH=12√36−x2在Rt⊥POH中MP=√PH2+MH2=12√36+3x21.分析:此题为点动题,因此,1)搞清动点所走的路线及速度,这样就能求出相应线段的长;2)分析在运动中点的几种特殊位置由题意知,点P 为动点,所走的路线为: ABC 速度为1cm/s。
而t=2s,故可求出AP 的值,进而求出⊥APE 的面积2.分析:两点同时运动,点P 在前,点Q在后,速度相等,因此两点距出发点A的距离相差总是2cm.P在AB边上运动后,又到BC边上运动因此PM、N 截平行四边形ABCD 所得图形不同.故分两种情况:(1)⊥当P、Q 都在AB 上运动时,PM、N 截平行四边形ABCD 所得的图形永远为直角梯形.此时0≤t≤6.⊥当P在BC上运动,而Q在A 边上运动时,画出相应图形,所成图形为六边形DFOBPG,不规则图形面积用割补法.此时6<t≤8.可以尝试自己解答一下吆!以上是数学动点例题及解析,你学会如何解答此类问题了么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题3 动态几何问题第一部分 真题精讲【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。
但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。
对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。
但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。
所以当题中设定MN//AB 时,就变成了一个静止问题。
由此,从这些条件出发,列出方程,自然得出结果。
【解析】解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形.AB M CNE D∵AB DE ∥,AB MN ∥.∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t =. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。
在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。
具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】(2)分三种情况讨论:① 当MN NC =时,如图②作NF BC ⊥交BC 于F ,则有2MC FC =即.(利用等腰三角形底边高也是底边中线的性质)∵4sin 5DF C CD ∠==,∴3cos 5C ∠=,∴310225tt -=⨯,解得258t =.AB M CNF D② 当MN MC =时,如图③,过M 作MH CD ⊥于H .则2CN CH =,∴()321025t t =-⨯.∴6017t =.AB M CN HD③ 当MC CN =时, 则102t t -=. 103t =.综上所述,当258t =、6017或103时,MNC △为等腰三角形.【例2】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么? (3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC=3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。
由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。
【解析】:(1)结论:CF 与BD 位置关系是垂直;证明如下: AB=AC ,∠ACB=45º,∴∠ABC=45º. 由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º, ∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD . ∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC 的垂线,就可以变成第一问的条件,然后一样求解。
(2)CF ⊥BD .(1)中结论成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG 可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD 【思路分析3】这一问有点棘手,D 在BC 之间运动和它在BC 延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X 还是4-X 。
分类讨论之后利用相似三角形的比例关系即可求出CP .(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q , ①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴ DQ=4-x , 易证△AQD ∽△DCP ,∴CP CD DQAQ= , ∴44CP xx =-, 24x CP x ∴=-+.②点D 在线段BC 延长线上运动时,∵∠BCA=45º,可求出AQ= CQ=4,∴ DQ=4+x .过A 作AC AG ⊥交CB 延长线于点G ,则ACF AGD ∆≅∆.∴ CF ⊥BD ,∴△AQD ∽△DCP ,∴CP CD DQAQ= , ∴44CP xx =+, 24x CP x ∴=+.【例3】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.G A B C D EF(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。
第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。
第二问和例1一样是双动点问题,所以就需要研究在P ,Q 运动过程中什么东西是不变的。
题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢? 当然是利用角度咯.于是就有了思路. 【解析】(1)证明:∵MBC △是等边三角形 ∴60MB MC MBC MCB ===︒,∠∠ ∵M 是AD 中点 ∴AM MD = ∵AD BC ∥∴60AMB MBC ==︒∠∠, 60DMC MCB ==︒∠∠ ∴AMB DMC △≌△ ∴AB DC =∴梯形ABCD 是等腰梯形.(2)解:在等边MBC △中,4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠∴120BMP BPM BPM QPC +=+=︒∠∠∠∠ (这个角度传递非常重要,大家要仔细揣摩)∴BMP QPC =∠∠ ∴BMP CQP △∽△ ∴PC CQBM BP= ∵PC x MQ y ==, ∴44BP x QC y =-=-, ∴444x y x -=- ∴2144y x x =-+ (设元以后得出比例关系,轻松化成二次函数的样子)【思路分析2】第三问的条件又回归了当动点静止时的问题。
由第二问所得的二次函数,很A DC B P M Q 60轻易就可以求出当X 取对称轴的值时Y 有最小值。
接下来就变成了“给定PC=2,求△PQC 形状”的问题了。
由已知的BC=4,自然看出P 是中点,于是问题轻松求解。
(3)解: PQC △为直角三角形 ∵()21234y x =-+ ∴当y 取最小值时,2x PC ==∴P 是BC 的中点,MP BC ⊥,而60MPQ =︒∠, ∴30CPQ =︒∠, ∴90PQC =︒∠以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。
如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。
当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.【例4】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)图3图2图1FEABCDABCDEFGGFED CBA【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。
从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。
第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。
第二问将△BEF 旋转45°之后,很多考生就想不到思路了。
事实上,本题的核心条件就是G 是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。
连接AG 之后,抛开其他条件,单看G 点所在的四边形ADFE ,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G 点做AD,EF 的垂线。
于是两个全等的三角形出现了。
(1)CG EG =(2)(1)中结论没有发生变化,即CG EG =.证明:连接AG ,过G 点作MN AD ⊥于M ,与EF 的延长线交于N 点. 在DAG ∆与DCG ∆中,∵AD CD ADG CDG DG DG =∠=∠=,,, ∴DAG DCG ∆∆≌. ∴AG CG =. 在DMG ∆与FNG ∆中,∵DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,, ∴DMG FNG ∆∆≌. ∴MG NG =在矩形AENM 中,AM EN =在Rt AMG ∆与Rt ENG ∆中, ∵AM EN MG NG ==,, ∴AMG ENG ∆∆≌. ∴AG EG =. ∴EG CG =M N图2ABCDEFG【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。
但是我们不应该止步于此。