2018-2019学年高一上学期期中数学试卷含答案
2018-2019学年河南省天一大联考高一(上)期中数学试卷
![2018-2019学年河南省天一大联考高一(上)期中数学试卷](https://img.taocdn.com/s3/m/300078a50242a8956bece48f.png)
一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A ={x|y =1x },B ={y|y =1x },C ={(x ,y)|y =1x },下列结论正确的是( ) A .A =BB .A =CC .B =CD .A =B =C【解答】解:A ={x |x ≠0},B ={y |y ≠0},C 表示曲线y =1x 上的点形成的集合; ∴A =B . 故选:A .2.(5分)已知集合A ={1,2},B ={2,2k },若B ⊆A ,则实数k 的值为( ) A .1或2B .12C .1D .2【解答】解:∵集合A ={1,2},B ={2,2k},B ⊆A , ∴由集合元素的互异性及子集的概念可知2k =1,解得实数k =2. 故选:D .3.(5分)下列各组函数中,表示同一函数的是( ) A .f (x )=2lgx ,g (x )=lgx 2 B .f(x)=1(x ≠0),g(x)=x|x| C .f (x )=x ,g (x )=10lgxD .f(x)=2x ,g(x)=√22x【解答】解:A .f (x )=2lgx ,g (x )=lgx 2=2lg |x |,解析式不同,不是同一函数; B .f (x )=1(x ≠0},g(x)=x|x|={1x >0−1x <0,解析式不同,不是同一函数;C .f (x )=x 的定义域为R ,g (x )=10lgx 的定义域为(0,+∞),定义域不同,不是同一函数;D .f (x )=2x 的定义域为R ,g(x)=√22x =2x 的定义域为R ,定义域和解析式都相同,是同一函数. 故选:D .4.(5分)某班共50名同学都选择了课外兴趣小组,其中选择音乐的有25人,选择体育的有20人,音乐、体育两个小组都没有选的有18人,则这个班同时选择音乐和体育的人数为( )A.15B.14C.13D.8【解答】解:如图,设音乐和体育小组都选的人数为x人则只选择音乐的有(25﹣x)人,只选择体育小组的有(20﹣x)人,由此得(25﹣x)+x+(20﹣x)+18=50,解得x=13,∴音乐和体育都选的学生有13人,故选:C.5.(5分)定于集合A,B的一种运算“*”:A*B={x|x=x1﹣x2,x1∈A,x2∈B}.若P={1,2,3,4},Q={1,2},则P*Q中的所有元素之和为()A.5B.4C.3D.2【解答】解:P*Q={x|x=x1﹣x2,x1∈P,x2∈Q}={﹣1,0,1,2,3},P*Q中的所有元素之和为5.故选:A.6.(5分)若2a=0.5,b=2.70.3,c=0.32.7,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b【解答】解:∵由2a=0.5可得a=log20.5=﹣1,b=2.70.3>2.70=1,0.30=1>c=0.32.7>0,∴a<c<b.故选:D.7.(5分)已知2x=3y=a,且1x+1y=2,则a的值为()A.√6B.6C.±√6D.36【解答】解:∵2x=3y=a,∴xlg2=ylg3=lga,∴1x=lg2lga,1y =lg3lga,∴2=1x +1y =lg2lga +lg3lga =lg6lga , ∴lga =12lg 6=lg √6, 解得a =√6. 故选:A .8.(5分)函数f(x)=2x −1x 的零点所在的区间是( ) A .(0,12)B .(34,1)C .(12,34)D .(1,2)【解答】解:由函数f(x)=2x −1x的在R 上是增函数,f (12)=1√2−2<0,f (34)=234−43>212−34>0,且f (12)f (34)<0,可得函数在区间(12,34)上有唯一零点.故选:C .9.(5分)已知函数f(x)={x 2,x <0−x 2,x ≥0,则不等式f (x +1)+f (3﹣2x )<0的解集为( )A .(4,+∞)B .(﹣∞,4)C .(−∞,23) D .(23,+∞)【解答】解:函数f(x)={x 2,x <0−x 2,x ≥0,是奇函数,在R 上是减函数,不等式f (x +1)+f (3﹣2x )<0,可得f (x +1)<﹣f (3﹣2x )=f (2x ﹣3), 解得:x +1>2x ﹣3,可得x <4,所以不等式f (x +1)+f (3﹣2x )<0的解集{x |x <4}. 故选:B .10.(5分)已知f (x )是定义在R 上的单调函数,若f [f (x )﹣e x ]=1,则f (e )=( ) A .e eB .eC .1D .0【解答】解:根据题意,f (x )是定义在R 上的单调函数,若f [f (x )﹣e x ]=1, 则f (x )﹣e x 为常数,设f (x )﹣e x =t ,则f (x )=e x +t , 又由f [f (x )﹣e x ]=1,即f (t )=1,则有e t +t =1, 分析可得:t =0, 则f (x )=e x ,则f (e )=e e , 故选:A .11.(5分)已知幂函数f (x )=(m ﹣1)x n 的图象过点(2,2√2),设a =f (m ),b =f (n ),c =f (lnn ),则( ) A .c <b <aB .c <a <bC .b <c <aD .a <b <c【解答】解:∵幂函数f (x )=(m ﹣1)x n 的图象过点(2,2√2), ∴{m −1=12n =2√2,解得m =2,n =32, ∴f (x )=x 32, ∴f (x )=x 32在(0,+∞)是增函数, 0<ln 32<1,∴f (2)>f (32)>f (ln 32),∴a >b >c .即c <b <a . 故选:A .12.(5分)已知函数f(x)={|log 2(x +1)|,−1<x ≤2−x 2+4x −3,x >2,若关于x 的方程f (x )﹣t =0有3个不同的实数根,则实数t 的取值范围是( ) A .[0,1]B .(0,1)C .[0,log 23]D .(0,log 23)【解答】解:方程f (x )﹣t =0有3个不同的实数根,画出y =f (x )的函数图象以及y =t 中的图象,|log 23|>|log 22|=1, t ∈(0,1), 故选:B .二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)设集合A ={x |x <1},B ={x |x <5},那么(∁R A )∩B = [1,5) . 【解答】解:∵∁R A ={x |x ≥1},∴(∁R A )∩B ={x |1≤x <5}. 故答案为:[1,5). 14.(5分)函数y =1ln(4−x)+√3x −9的定义域是 [2,3)∪(3,4) .【解答】解:要使函数y =1ln(4−x)+√3x −9有意义,则{4−x >04−x ≠13x −9≥0;解得2≤x <4,且x ≠3;∴该函数定义域为[2,3)∪(3,4). 故答案为:[2,3)∪(3,4).15.(5分)函数f(x)=log 12(x 2−x −6)在定义域(﹣∞,﹣2)∪(3,+∞)上的增区间是 (﹣∞,﹣2) .【解答】解:根据题意,设t =x 2﹣x ﹣6,则y =log 12t ,函数t =x 2﹣x ﹣6在(﹣∞,﹣2)上为减函数,在(3,+∞)上为增函数, 而y =log 12t 为减函数,则函数f (x )的递增区间为(﹣∞,﹣2); 故答案为:(﹣∞,﹣2).16.(5分)函数f (x )是定义在R 上的偶函数,且在(0,+∞)上递增,若f (1)=0,f (0)<0,则不等式xf (x ﹣1)<0的解集是 (﹣∞,0)∪(0,2) . 【解答】解:根据题意,f (x )在(0,+∞)上递增,且f (1)=0,f (0)<0, 则在[0,1)上,f (x )<0,在(1,+∞)上,f (x )>0, 又由函数f (x )为偶函数,则在区间(﹣1,0]上,f (x )<0,在区间(﹣∞,﹣1)上,f (x )>0, xf (x ﹣1)<0⇔{x <0f(x −1)>0或{x >0f(x −1)<0,分析可得:x <0或0<x <2,即不等式的解集为(﹣∞,0)∪(0,2); 故答案为:(﹣∞,0)∪(0,2).三、解答题:本大题共6个小题,共70分.17.(10分)计算:(1)(338)−19+(√2×√33)6−(−0.9)0−√(23)23; (2)13lg125+2lg √2+log 5(log 28)×log 35.【解答】解:(1)(338)−19+(√2×√33)6−(−0.9)0−√(23)23 =(32)−13+(212+313)6﹣1﹣(23)13=(23)13+72﹣1﹣(23)13=71.(2)13lg125+2lg √2+log 5(log 28)×log 35=lg 5+lg 2+log 53×log 35 =lg 10+lg3lg5×lg5lg3 =1+1=2.18.(12分)已知函数f(x)=√log 12(1−12x)的定义域为集合A ,函数g(x)=(12)x−1(−1≤x ≤1)的值域为集合B . (1)求A ∩B ;(2)设集合C ={x |a ≤x ≤3a ﹣2},若C ∩A =C ,求实数a 的取值范围. 【解答】解:(1)由log 12(1−12x)≥0得,0<1−12x ≤1;解得0≤x <2; ∴A =[0,2); ∵﹣1≤x ≤1; ∴﹣2≤x ﹣1≤0; ∴1≤(12)x−1≤4; ∴B =[1,4]; ∴A ∩B =[1,2); (2)∵C ∩A =C ; ∴C ⊆A ;∴①C =∅时,a >3a ﹣2;∴a <1;②C ≠∅时,则{a ≥13a −2<2;解得1≤a <43;综上,实数a 的取值范围是(−∞,43).19.(12分)已知函数f (x )=x +ln (1+x )﹣ln (1﹣x ). (1)求f (x )的定义域,并直接写出f (x )的单调性; (2)用定义证明函数f (x )的单调性. 【解答】解:(1)由题意得1+x >0且1﹣x >0, 解得:﹣1<x <1,故函数的定义域是(﹣1,1), 函数f (x )在(﹣1,1)递增;(2)证明:在定义域(﹣1,1)内任取x 1,x 2,且x 1<x 2, 则f (x 1)﹣f (x 2)=x 1﹣x 2+ln(1+x 1)(1−x 2)(1−x 1)(1+x 2),由于﹣1<x 1<x 2<1,故0<1+x 1<1+x 2, 故0<1+x 11+x 2<1,同理0<1−x21−x 1<1,故0<1+x11+x 2•1−x 21−x 1<1, 故ln(1+x 1)(1−x 2)(1−x 1)(1+x 2)<0,由于x 1﹣x 2<0,故f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), 故函数f (x )为(﹣1,1)上的增函数.20.(12分)已知二次函数f (x )=x 2+(2a ﹣1)x +1﹣a .(1)证明:对于任意的a ∈R ,g (x )=f (x )﹣1必有两个不同的零点;(2)是否存在实数a 的值,使得y =f (x )在区间(﹣1,0)及(0,2)内各有一个零点?若存在,求出实数a 的取值范围;若不存在,请说明理由. 【解答】解:(1)令g (x )=0,则f (x )=1, 即x 2+(2a ﹣1)x ﹣a =0,∵△=(2a ﹣1)2+4a =4a 2+1>0对任意的a ∈R 恒成立, 故x 2+(2a ﹣1)x ﹣a =0必有2个不相等的实数根,从而方程f (x )=1必有2个不相等的实数根,故对于任意的a ∈R ,g (x )=f (x )﹣1必有2个不同的零点; (2)不存在,理由如下:由题意,要使y =f (x )在区间(﹣1,0)以及(0,2)内各有1个零点,只需{f(−1)>0f(0)<0f(2)>0即{3−3a >01−a <03a +3>0,故{a <1a >1a >−1,无解,故不存在实数a 的值,使得y =f (x )在区间(﹣1,0)及(0,2)内各有一个零点. 21.(12分)某工厂生产甲、乙两种产品所得的利润分别为P 和Q (万元),它们与投入资金m (万元)的关系为:P =320m +30,Q =40+3√m .今将300万资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于75万元. (1)设对乙种产品投入资金x (万元),求总利润y (万元)关于x 的函数; (2)如何分配投入资金,才能使总利润最大?并求出最大总利润.【解答】解:(1)根据题意,对乙种产品投资x (万元),对甲种产品投资(300﹣x )(万元), 那么总利润y =320(300﹣x )+30+40+3√x =−320x +3√x +115, 由{x ≥75300−x ≥75,解得75≤x ≤225, 所以y =−320x +3√x +1154,其定义域为[75,225], (2)令t =√x ,因为x ∈[75,225],故t ∈[5√3,15], 则y =−320t 2+3t +115=−320(t ﹣10)2+130, 所以当t =10时,即x =100时,y max =130,答:当甲产品投入200万元,乙产品投入100万元时,总利润最大为130万元 22.(12分)已知函数f(x)=1−22x +1. (1)判断函数奇偶性; (2)求函数f (x )的值域;(3)当x ∈(0,2]时,mf (x )+2+2x ≥0恒成立,求实数m 的取值范围. 注:函数y =x +ax (a >0)在(0,a ]上单调递减,在(√a ,+∞)上单调递增.【解答】解:函数f(x)=1−22x +1.其定义域为R ;f (﹣x )=1−22−x +1=1−212x+1=1−2⋅2x 1+2x =1+2x −2⋅2x 1+2x =−(2x+1)+21+2x=﹣(1−2x)=﹣f (x ), ∴f (x )是奇函数; (2)由函数f (x )=y =1−22x+1, 可得21−y=2x +1,即2x =21−y −1 ∵2x >0, ∴21−y −1>0,即1+y 1−y>0解得:﹣1<y <1∴f (x )的值域(﹣1,1).(3)当x ∈(0,2]时,mf (x )+2+2x ≥0恒成立, 即(1−22x+1)m +2+2x ≥0恒成立, 可得(2x ﹣1)m +(2+2x )(2x +1)≥0; ∵x ∈(0,2]; ∴2x ﹣1>0则m ≥−(2+2x)(2x+1)2x −1,即﹣m ≤(2+2x)(22+1)2x+1; 令2x ﹣1=t ,(0,3];那么y =(2+2x)(2x+1)2x −1=(3+t)(t+2)t =t +6t +5≥2√6+5;当且仅当t =√6时取等号. ∴﹣m ≤2√6+5;可得实数m 的取值范围[−2√6−5,+∞).。
福建省福安市第一中学2018-2019学年高一上学期期中考试数学(含答案)
![福建省福安市第一中学2018-2019学年高一上学期期中考试数学(含答案)](https://img.taocdn.com/s3/m/b8bf8c6487c24028915fc39c.png)
2018—2019学年福安一中第一学期期中考高一数学试卷(满分:150分; 时间:120分钟)注意事项:1.答卷前,考生务必将班级、姓名、座号填写清楚。
2.每小题选出答案后,填入答案卷中。
3.考试结束,考生只将答案卷交回,试卷自己保留。
第I 卷(选择题 共60分)一、选择题:本小题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}.6,5,4,3,2,1=I {}6,2,1=M ,{}4,3,2=N . 则集合{}6,1= A .MNB .M NC .()I MN ðD .()I NM ð2.函数()lg(1)f x x =+的定义域是 A .),1(+∞- B .(1,1)- C. (]-11,D .)1,(--∞3.下列各组函数中,表示同一函数的是A. 2(),f x x =3()g x x =B. 2(),f x x =2()()g x x =C. 2(),x f x x =()g x x = D .,0(),(),0x x f x x g x x x ≥⎧==⎨-<⎩4.已知函数21,0(),0xx f x x x ⎧+≥⎪=⎨<⎪⎩, 若()3,f x = 则实数x 的值为A .3-B .1C .3-或1D . 3-或1或35.下列函数是奇函数且在(0,)+∞上单调递减的是A.2y x =- B.y x = C.12log y x = D. 1y x=6.函数()327x f x x =+-的零点所在的区间为A. (0,1)B. (1,2)C. (2,3)D. (3,4) 7.三个数0.63,a = 3log 0.6,b = 30.6c =的大小顺序是A .a >c >bB .a >b >cC .b >a >cD .c >a >b 8.函数()x f x a =与1g()log ax x =(01a a >≠且)在同一坐标系中的图象可以是9.已知定义在R上的函数()f x满足:()()()1f x y f x f y+=++,若(8)7f=, 则(2)f=A. 7B. 3C. 2D. 110.双“十一”要到了,某商品原价为a元,商家在节前先连续5次对该商品进行提价且每次提价10%.然后在双“十一”期间连续5次对该商品进行降价且每次降价10%.则最后该商品的价格与原来的价格相比A.相等B.略有提高C.略有降低D.无法确定11.已知()f x是定义域为[]3,3-的奇函数, 当30x-≤≤时, 2()2f x x x=-,那么不等式(1)(32)f x f x+>-的解集是A. []0,2 B.20,3⎡⎫⎪⎢⎣⎭ C.2(,)3-∞ D.2(,)3+∞12.已知方程1ln0xxe⎛⎫-=⎪⎝⎭的两根为12,x x,且12x x>,则A.11211xx x<< B.21211xx x<< C.11211xx x<< D.21211xx x<<第II卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.13.幂函数()fx xα=的图像过点(2,,则(16)f= .14.函数213()log(9)f x x=-的单调递减区间为.15.设实数,yx满足:1832==yx,则=+yx21_________.16.给出下列说法①函数()11f x x x=++-为偶函数;②函数13xy⎛⎫= ⎪⎝⎭与3logy x=-是互为反函数;③函数lgy x=在(,0)-∞上单调递减;A. B. C. D.④函数1()(0)12xf x x =≠-的值域为(1,)+∞. 其中所有正确的序号是___________ .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)求下列各式的值:(Ⅰ)+10221)-+;(Ⅱ)2l o g 32l g 12.5l g 8g 82++- . 18.(本小题满分12分)已知全集U =R ,集合}31|{≤≤=x x A ,集合}42|{>=x x B . (Ⅰ)求 ()U B A ð;(Ⅱ)若集合{}1C x a x a =<<+,且C A C =, 求实数a 的取值范围.19. (本小题满分12分)已知()f x 是定义在R 上的偶函数,当0x ≥时,21,02()515,2x x f x x x ⎧+≤<=⎨-+≥⎩(Ⅰ)在给定的坐标系中画出函数()f x 在R上的图像(不用列表);(Ⅱ)直接写出当0x <时()f x 的解析式; (Ⅲ)讨论直线()y m m =∈R 与()y f x =的图象 的交点个数. 20.(本小题满分12分)已知定义在R 上的函数3()13xxb f x a -=+⋅是奇函数.(Ⅰ)求实数,a b 的值;(Ⅱ)判断()f x 的单调性,并用定义证明.21.(本小题满分12分)水葫芦原产于巴西,1901年作为观赏植物引入中国. 现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长. 某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过2个月其覆盖面积为218m ,经过3个月其覆盖面积为227m . 现水葫芦覆盖面积y (单位2m )与经过时间(x x ∈N)个月的关系有两个函数模型(0,1)x y ka k a =>>与12(0)y px q p =+>可供选择.1.732,lg 20.3010,lg 30.4771≈≈≈≈ )(Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;(Ⅱ)求原先投放的水葫芦的面积并求约经过几个月该水域中水葫芦面积是当初投放的1000倍. 22.(本小题满分12分) 已知函数2()log (21)xf x kx =+-的图象过点25(2,log )2. (Ⅰ)求实数k 的值; (Ⅱ)若不等式1()02f x x a +->恒成立,求实数a 的取值范围; (Ⅲ)若函数1()2()241f x xx h x m +=+⋅-,2[0,log 3]x ∈,是否存在实数0m <使得()h x 的最小值为12,若存在请求出m 的值;若不存在,请说明理由.高一数学试卷答案与评分标准一.选择题:13. 4 14.3+∞(,)15.1 16. ①②③ 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:(Ⅰ)原式=-············································· 4分=-1+1=··············································································· 5分(Ⅱ)原式=322lg12.58log 23⨯+- ································································ 8分=3lg10032+- =2-32··························································································· 9分=12 ····························································································· 10分18.(本小题满分12分)解:(Ⅰ)24x > 2x ∴>()2,B ∴=+∞··············································································· 2分 (],2u B ∴=-∞ð ············································································· 4分 ()(],3u B A ∴=-∞ð ··················································································· 6分(Ⅱ)C A C = C A ∴⊆ ······························································································ 7分 113a a ≥⎧∴⎨+≤⎩······························································································11分 12a ∴≤≤······························································································· 12分 (有讨论C=∅的情况,过程正确,不扣分) 19. (本小题满分12分) 1(Ⅰ)解:函数图象如图:·············································································································· 4分(Ⅱ)21,20()515,2x x f x x x ⎧+-<<=⎨+≤-⎩ ···························································· 6分(Ⅲ)设交点个数为()g m 当5m >时,()0g m =; 当5m =时,()2g m =; 当15m <<时,()4g m =; 当1m =时,()3g m =; 当1m <时,()2g m =;……………………………………………………..12分综上所述,0,52,1()3,14.15m m g m m m >⎧⎪<⎪=⎨=⎪⎪<<⎩或m=5(没有写出分段形式答案不扣分) 20.(I )3()13x xb f x a -=+⋅是定义在R 上的奇函数(0)0f ∴=即003013b a -=+⋅ ············································································ 1分 得1b = ··································································································· 2分1121323(1)113313f a aa ----===+⋅++⋅11132(1)1313f a a --==+⋅+ 由(1)(1)f f -=-得1a = ················································································ 3分经检验:1,1a b ∴==时,13()13x xf x -=+是定义在R 上的奇函数 ····························· 4分1,1a b ∴== ····························································································· 5分 解法二:3()13x xb f x a -=+⋅331()133x x xxb b f x a a---⋅-∴-==+⋅+ ···································· 1分由()()f x f x -=-得313313x x xxb b aa ⋅--=-++⋅ ························································· 3分1a ∴=, 1b = ···························································································· 5分 (II )()f x 在R 上单调递减. ······································································· 6分证明如下: 由(I )知13()13x xf x -=+设12,x x 是R 上的任意两个实数,且12x x <, ···················································· 7分 则1212122112121313()()1313(13)(13)(13)(13)(13)(13)x x x x x x x x x x f x f x ---=-++-+--+=++21122(33)(13)(13)x x x x -=++ ······················································································ 10分 21121212330,(13)(13)0()()0x x x x x x f x f x <∴->++>∴->即12()()f x f x >()f x ∴在R 上单调递减. ······················································· 12分解法二:132()11313x x xf x -==-+++ ································································· 6分 ()f x 在R 上单调递减. ··············································································· 7分 设12,x x 是R 上的任意两个实数,且12x x <,则 ················································· 8分 12121222()()(1)(1)1313221313x x x x f x f x -=-+--+++=-++21122(33)(13)(13)x x x x -=++ ···················································································· 10分 21121212330,(13)(13)0()()0x x x x x x f x f x <∴->++>∴->即12()()f x f x >()f x ∴在R 上单调递减. ······················································· 12分 21.(本小题满分12分) 解:(0,1)xy k a k a =>>的增长速度越来越快,12(0)y px q p =+>的增长速度越来越慢.(0,1)x y ka k a ∴=>>依题意应选函数 ······················································· 2分则有23=18=27ka ka ⎧⎪⎨⎪⎩, ·················································································· 4分解得3=2=8a k ⎧⎪⎨⎪⎩38()()2x y x N ∴=∈, ················································································ 6分 (Ⅱ)当0x =时,8y = ············································································ 7分 该经过x 个月该水域中水葫芦面积是当初投放的1000倍. 有38()810002x ⋅=⨯ ······················································································ 9分 32log 1000x ∴=lg10003lg 2=······························································································ 10分 3lg3lg 2=-17.03≈ ··································································································11分 答:原先投放的水葫芦的面积为8m 2, 约经过17个月该水域中水葫芦面积是当初投放的1000倍.12分22.(本小题满分12分)(I )函数2()log (21)x f x kx =+-的图象过点25(2,log )22225log (21)2log 2k ∴+-= 12k ∴=···································································································· 2分 (II )由(I )知21()log (21)2x f x x =+-1()()02g x f x x a ∴=+->恒成立即2log (21)0x a +->恒成立令2()log (21)x u x =+,则命题等价于min ()a u x < 而2()log (21)x u x =+单调递增 2()log 1u x ∴>即()0u x >0a ∴≤ ··································································································· 6分 (III )21()log (21)2x f x x =+-,21()log (21)2()2412412141xf x xx x x x h x m m m ++∴=+⋅-=+⋅-=++⋅-2(2)2x x m =+ ························································································· 7分 令22,[0,log 3],[1,3]x t x t =∈∴∈2,[1,3]y m t t t ∴=⋅+∈ 当0m <时,对称轴12t m=- ①当122t m =->,即104m -<<时 min 1(1)12y y m ==+=12m ∴=-,不符舍去. ················································································ 9分 ②当122t m =-≤时,即14m ≤-时 min 1(3)932y y m ==+= 51184m ∴=-<- 符合题意. ·········································································11分综上所述:518m =- ·················································································· 12分。
高一上学期期中考考试数学试卷含答案
![高一上学期期中考考试数学试卷含答案](https://img.taocdn.com/s3/m/80e36a0c443610661ed9ad51f01dc281e53a56b2.png)
高一上学期数学期中考试题考试时间100分钟 满分120分一、 单选题(每小题5分,共40分)1.已知集合{}1A x x =≥-,{}11B x x =-≤≤,则( )A .AB = B .A B ⊆C .B A ⊆D .A B =∅ 2.已知p :“2340x x --=”,q :“1x =-”,则q 是p 的( )A .充要条件B .既不充分也不必要C .充分不必要D .必要不充分3.已知命题p :1x ∃>,210x ->,那么p ⌝是( )A .1x ∀>,210x ->B .1x ∀>,210x -≤C .1x ∃>,210x -≤D .1x ∃≤,210x -≤4.函数1()13f x x x =++-的定义域是( )A .[)31,-B .[)∞+-,1C .[)()+∞-,331 ,D .(3,)+∞ 5.已知2x >,则函数42y x x =+-的最小值是( )A .8B .6C .4D .26.如果函数在区间上是减函数,那么实数a 的取值范围是A. B. C. D.7.函数()y f x =是定义域为R 的偶函数,且在()0,∞+上单调递减,则( ) A .()(1)(2)f f f π->-> B .(1)()(2)f f f π->-> C .()(2)(1)f f f π->>- D .(1)(2)()f f f π->>-8.已知函数y =,若f (a )=10,则a 的值是( )A .3或﹣3B .﹣3或5C .﹣3D .3或﹣3或5二、 多选题(每小题5分,共20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( ) A .{}2 B .{}2,3 C .{}1,8 D .{}1 10.下列说法中,正确的是( )A .若0a b >>,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b >>且0c <,则22c c a b >D .若a b >且11a b>,则0ab > 11.已知函数2y x =,[)1,2x ∈-,下列说法正确的是( )A .函数是偶函数B .函数是非奇非偶函数C .函数有最大值是4D .函数的单调增区间是为()0,212.如果幂函数()f x m x α=⋅的图象过1(2,)4,下列说法正确的有( ) A .1m =且2α=-B .()f x 是偶函数C .()f x 在定义域上是减函数D .()f x 的值域为(0,)+∞三、填空题(每小题5分,共20分)13.已知()21,021,0,x x f x x x ⎧+≥=⎨--<⎩,则()1f -=____________.14. 已知,且,则的值为15. 已知幂函数m x m m x f 12)1()(--=在),0(+∞上单调递增,则实数m 的值__________.16.已知定义在R 上的偶函数()f x 在(],0-∞上是减函数,若()()1320f m f m +--<,则实数m 的取值范围是___________.三、 解答题(共40分)17.(8分)已知全集U =R ,{}|32A x x =-<<,{}|13B x a x a =-<<+.(1)当0a =时,求A B ,A B ;(2)若()U B C A ⊆,求实数a 的取值范围。
上海高一上学期期中考试数学试卷含答案(共3套)
![上海高一上学期期中考试数学试卷含答案(共3套)](https://img.taocdn.com/s3/m/7ac4bc2b5acfa1c7aa00ccda.png)
上海市高一第一学期数学期中考试试卷满分:100分 考试时间:90分钟一、 填空题(每小题3分,满分36分)1.已知集合{}1,A x =,则x 的取值范围是___________________.2.命题“若0>a 且0>b ,则0ab >”的否命题为__ _ ____ . 3.已知集合M ⊂≠{4,7,8},则这样的集合M 共有 个.4.用描述法表示“平面直角坐标系内第四象限的点组成的集合”:______________ ___. 5.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,() .U A C B ⋂= 6.11 .x<不等式的解集是 7.不等式|2x -1|< 2的解集是 . 8. 已知0x >,当2x x+取到最小值时,x 的值为_____ _. 9.已知集合}1|{≤=x x M ,}|{t x x P >=,若M P ⋂=∅,则实数t 的取值范围是 .10. 关于x 的不等式22210x kx k k -++->的解集为{},x x a x R ≠∈,则实数a =___________.11. 已知24120x x +->是8x a -≤≤的必要非充分条件,则实数a 的取值范围是______________________。
12.若不等式210 kx kx k A A -+-<≠∅的解集为,且,则实数k 的范围为 .二、选择题(本大题共4小题,每小题3分,满分12分)13. 设U 为全集,()U BB C A =,则AB 为 ( )A. AB. BC. U C BD. ∅14. 若不等式b x a >的解集是()0,∞-,则必有 ( ) A 00=>b a , B 00=<b a , C 00<=b a , D 00>=b a ,15、下列结论正确的是 ( ) A. xx y 1+=有最小值2; B. 21222+++=x x y 有最小值2;C. 0<ab 时,b aa b y +=有最大值-2; D. 2>x 时,21-+=x x y 有最小值2; 16.“1a >”是“对任意的正数x ,21ax x+>”的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件三、解答题(本大题共5小题,满分52分)17.(10分)设集合{}2560A x x x =-+=,{}10B x ax =-=,若B A B =,求实数a 的值。
北京市高一上学期数学期中考试试卷含答案(共5套)
![北京市高一上学期数学期中考试试卷含答案(共5套)](https://img.taocdn.com/s3/m/68980f435022aaea998f0fc2.png)
北京师大附中2018-2019学年上学期高中一年级期中考试数学试卷说明:本试卷共150分,考试时间120分钟。
一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合}2,1,0{},01|{2=≤-=B x x A ,则A ∩B = A. {0}B. {0,1}C. {1,2}D. {0,1,2}2. 已知d c b a >>>,0,下列不等式中必成立的一个是( ) A.dbc a > B. bc ad <C. d b c a +>+D. d b c a ->-3. “1-=a ”是“函数12)(2-+=x ax x f 只有一个零点”的( ) A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件 4. 在下列区间中,函数x xx f 2log 6)(-=的零点所在的区间为( ) A. )1,21(B. (1,2)C. (3,4)D. (4,5)5. 已知函数xx x f ⎪⎭⎫⎝⎛-=313)(,则)(x f ( )A. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数 6. 已知313232,31⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=b a ,3232⎪⎭⎫ ⎝⎛=c ,则 A. b c a << B. c b a <<C. a c b <<D. c a b <<7. 若函数⎩⎨⎧>≤--=-7,7,3)3()(6x ax x a x f x 在R 上单调递增,则实数a 的取值范围是( )A. )3,49(B. )3,49[C. (1,3)D. (2,3)8. 函数||ln 1)(x xx f +=的图象大致为9. 已知函数f (x )是定义在R 上的偶函数,且在区问[0,+∞)上单调递增,若实数a 满足)1(2log )(log 212f a f a f ≤⎪⎪⎭⎫ ⎝⎛+,则a 的取值范围是 A. ]2,1[B. ]21,0(C. ]2,21[D. ]2,0(10. 设D 是函数)(x f y =定义域内的一个区间,若存在D x ∈0,使00)(kx x f =)0(≠k ,则称0x 是)(x f y =在区间D 上的一个“k 阶不动点”,若函数25)(2+-+=a x ax x f 在区间]4,1[上存在“3阶不动点”,则实数a 的取值范围是A. ]21,(-∞ B. )21,0(C. ),21[+∞D. ]0,(-∞二、填空题:共6小题,每小题5分,共30分。
北京市101中学2018-2019学年高一(上)期中考试数学试题(解析版)
![北京市101中学2018-2019学年高一(上)期中考试数学试题(解析版)](https://img.taocdn.com/s3/m/519943230b4e767f5bcfce0f.png)
2018-2019学年北京市101中学高一(上)期中数学试卷一、选择题(本大题共8小题,共40.0分)1.设集合M={x|x<1},N={x|0<x≤1},则M∪N=( )A. B. C. D.【答案】C【解析】【分析】对集合M和N取并集即可得到答案.【详解】∵M={x|x<1},N={x|0<x≤1};∴M∪N={x|x≤1}.故选:C.【点睛】本题考查集合的并集运算.2.下列函数中,在(-1,+∞)上为减函数的是( )A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的单调性,即可得答案.【详解】根据题意,依次分析选项:对于A,y=3x,为指数函数,在R上为增函数,不符合题意;对于B,y=x2-2x+3=(x-1)2+2,在(1,+∞)上为增函数,不符合题意;对于C,y=x,为正比例函数,在R上为增函数,不符合题意;对于D,y=-x2-4x+3=-(x+2)2+7,在(-2,+∞)上为减函数,符合题意;故选:D.【点睛】本题考查指数函数和二次函数的单调性,关键是掌握常见函数的单调性,属于基础题.3.计算log416+等于( )A. B. 5 C. D. 7【答案】B【解析】【分析】利用指数与对数运算性质即可得出.【详解】log416+=2+3=5.【点睛】本题考查指数与对数运算性质,属于基础题.4.函数=+的定义域为().A.B.C.D.【答案】A【解析】试题分析:由题,故选考点:函数的定义域。
5.函数y=的单调增区间是( )A. B. C. D.【答案】D【解析】【分析】利用复合函数的单调性进行求解即可.【详解】令t=-x2+4x+5,其对称轴方程为x=2,内层二次函数在[2,+∞)上为减函数,而外层函数y=为减函数,∴函数y=的单调增区是[2,+∞).故选:D.【点睛】本题考查指数型复合函数的单调性,复合函数的单调性满足同增异减,是基础题.6.已知偶函数f(x)在区间[0,+∞)上是减函数,则满足f(2x-1)>f()的x的取值范围是( )A. B.C. D.【答案】C【解析】【分析】由函数为偶函数得f(|2x-1|)>f(),由函数的单调性可得|2x-1|<,解不等式即可得答案.【详解】根据题意,偶函数f(x)在区间[0,+∞)上是减函数,则f(2x-1)>f()⇒f(|2x-1|)>f()⇒|2x-1|<,解可得:<x<,即x的取值范围为;故选:C.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于基础题.7.若函数f(x)=a|x+1|(a>0.a≠1)的值域为[1,+∞),则f(-4)与f(0)的关系是( )A. B. C. D. 不能确定【答案】A【解析】【分析】由函数f(x)的值域可得a>1,然后利用单调性即可得到答案.【详解】∵|x+1|≥0,且f(x)的值域为[1,+∞);∴a>1;又f(-4)=a3,f(0)=a;∴f(-4)>f(0).故选:A.【点睛】本题考查指数函数的单调性,并且会根据单调性比较函数值的大小.8.对于实数a和b定义运算“*”:a•b=,设f(x)=(2x-1)•(x-2),如果关于x的方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则m的取值范是( )【答案】C【解析】【分析】画出函数f(x)的图象,由题知y=f(x)与y=m恰有3个交点,观察图像即可得到答案.【详解】由已知a•b=得f(x)=(2x-1)•(x-2)= ,其图象如下:因为f(x)=m恰有三个互不相等实根,则y=m与y=f(x)图像恰有三个不同的交点,所以0<m<,故选:C.【点睛】本题考查函数与方程的综合运用,属中档题.二、填空题(本大题共6小题,共30.0分)9.已知全集U=R,集合A={x|x2-4x+3>0},则∁U A=___.【答案】{x|1≤x≤3}【解析】【分析】求出集合A,然后取补集即可得到答案.【详解】A={x|x<1或x>3};∴∁U A={x|1≤x≤3}.故答案为:{x|1≤x≤3}.【点睛】本题考查集合的补集的运算,属基础题.10.若0<a<1,b<-1,则函数f(x)=a x+b的图象不经过第___象限.【答案】一【解析】利用指数函数的单调性和恒过定点,再结合图像的平移变换即可得到答案.【详解】函数y=a x(0<a<1)是减函数,图象过定点(0,1),在x轴上方,过一、二象限,函数f(x)=a x+b的图象由函数y=a x的图象向下平移|b|个单位得到,∵b<-1,∴|b|>1,∴函数f(x)=a x+b的图象与y轴交于负半轴,如图,函数f(x)=a x+b的图象过二、三、四象限.故答案为:一.【点睛】本题考查指数函数的图象和性质,考查图象的平移变换.11.已知log25=a,log56=b,则用a,b表示1g6=______.【答案】【解析】【分析】先由lg2+lg5=1结合log25=a,解出lg5,然后利用换底公式log56=进行计算整理即可得到答案.【详解】∵log25=a=,解得lg5=.log56=b=,∴lg6=blg5=.故答案为:.【点睛】本题考查了对数运算性质,重点考查对数换底公式的应用,考查推理能力与计算能力,属于基础题.12.函数y=(x≤0)的值域是______.【答案】(-∞,2]∪(3,+∞)【解析】【分析】先对函数进行分离常数,然后利用函数单调性即可求出值域.【详解】y=∴该函数在(-2,0],(-∞,-2)上单调递增;∴x∈(-2,0]时,y≤2;x∈(-∞,-2)时,y>3;∴原函数的值域为(-∞,2]∪(3,+∞).故答案为:(-∞,2]∪(3,+∞).【点睛】考查函数值域的概念及求法,分离常数法的运用,反比例函数值域的求法,属基础题.13.已知a>0且a≠1,函数f(x)=满足对任意不相等的实数x1,x2,都有(x1-x2)[f(x1)-f(x2)]>0,成立,则实数a的取值范围______.【答案】(2,3]【解析】【分析】根据已知条件(x1-x2)[f(x1)-f(x2)]>0得到函数f(x)的单调性,然后利用分段函数的单调性列不等式组即可得到答案.【详解】对任意实数x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,可得f(x)在R上为单调递增,则即解得a的取值范围为:2<a≤3.故答案为:(2,3].【点睛】已知函数的单调性确定参数的值或范围要注意以下几点:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围. 14.设函数f(x)=a x+b x-c x,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是______(写出所有正确结论的序号)①对任意的x∈(-∞,1),都有f(x)>0;②存在x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC是顶角为120°的等腰三角形,则存在x∈(1,2),使f(x)=0.【答案】①②③【解析】【分析】在①中,利用不等式的性质分析即可,在②中,举例a=2,b=3,c=4进行说明,在③中,利用零点存在性定理分析即可.【详解】在①中,∵a,b,c是△ABC的三条边长,∴a+b>c,∵c>a>0,c>b>0,∴0<<1,0<<1,当x∈(-∞,1)时,f(x)=a x+b x-c x=c x[()x+()x-1]>c x(+-1)=c x•>0,故①正确;在②中,令a=2,b=3,c=4,则a,b,c可以构成三角形,但a2=4,b2=9,c2=16不能构成三角形,故②正确;在③中,∵c>a>0,c>b>0,若△ABC顶角为120°的等腰三角形,∴a2+b2-c2<0,∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,根据函数零点存在性定理可知在区间(1,2)上存在零点,即∃x∈(1,2),使f(x)=0,故③正确.故答案为:①②③.【点睛】本题考查命题真假的判断,考查指数函数单调性、零点存在性定理和不等式性质的运用.三、解答题(本大题共5小题,共50.0分)15.已知函数f(x)=a x-1(x≥0).其中a>0,a≠1.(1)若f(x)的图象经过点(,2),求a的值;(2)求函数y=f(x)(x≥0)的值域.【答案】(1)4 ;(2)见解析.【解析】【分析】(1)将点(,2)代入函数解析式,即可得到a值;(2)按指数函数的单调性分a>1和0<a<1两种情况,分类讨论,求得f(x)的值域.【详解】(1)∵函数f(x)=a x-1(x≥0)的图象经过点(,2),∴=2,∴a=4.(2)对于函数y=f(x)=a x-1,当a>1时,单调递增,∵x≥0,x-1≥-1,∴f(x)≥a-1=,故函数的值域为[,+∞).对于函数y=f(x)=a x-1,当0<a<1时,单调递减,∵x≥0,x-1≥-1,∴f(x)≤a-1=,又f(x)>0,故函数的值域为.综上:当a>1时,值域为[,+∞).当0<a<1时,值域为.【点睛】本题考查指数函数图像和性质的应用,主要考查函数的单调性和函数值域问题.16.设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】(1)a=-3或a=1;(2){a|a≤-3或a>或a=-2或a=-}.【解析】【分析】(1)根据A∩B={2},可知B中有元素2,带入求解a即可;(2)根据A∪B=A得B⊆A,然后分B=∅和B≠∅两种情况进行分析可得实数a的取值范围.【详解】(1)集合A={x|x2-3x+2=0}={x|x=1或x=2}={1,2},若A∩B={2},则x=2是方程x2+(a-1)x+a2-5=0的实数根,可得:a2+2a-3=0,解得a=-3或a=1;(2)∵A∪B=A,∴B⊆A,当B=∅时,方程x2+(a-1)x+a2-5=0无实数根,即(a-1)2-4(a2-5)<0解得:a<-3或a>;当B≠∅时,方程x2+(a-1)x+a2-5=0有实数根,若只有一个实数根,x=1或x=2,则△=(a-1)2-4(a2-5)=0解得:a=-3或a=,∴a=-3.若只有两个实数根,x=1、x=2,△>0,则-3<a<;则(a-1)=-3,可得a=-2,a2-5=2,可得a=综上可得实数a的取值范围是{a|a≤-3或a>或a=-2或a=-}【点睛】本题考查并,交集及其运算,考查数学分类讨论思想.17.函数f(x)=是定义在R上的奇函数,且f(1)=1.(1)求a,b的值;(2)判断并用定义证明f(x)在(+∞)的单调性.【答案】(1)a=5,b=0;(2)见解析.【解析】【分析】(1)根据函数为奇函数,可利用f(1)=1和f(-1)=-1,解方程组可得a、b值,然后进行验证即可;(2)根据函数单调性定义利用作差法进行证明.【详解】(1)根据题意,f(x)=是定义在R上的奇函数,且f(1)=1,则f(-1)=-f(1)=-1,则有,解可得a=5,b=0;经检验,满足题意.(2)由(1)的结论,f(x)=,设<x1<x2,f(x1)-f(x2)=-=,又由<x1<x2,则(1-4x1x2)<0,(x1-x2)<0,则f(x1)-f(x2)>0,则函数f(x)在(,+∞)上单调递减.【点睛】本题考查函数的奇偶性与单调性的综合应用,属于基础题.18.已知二次函数满足,.求函数的解析式;若关于x的不等式在上恒成立,求实数t的取值范围;若函数在区间内至少有一个零点,求实数m的取值范围【答案】(1)f(x)=2x2-6x+2;(2)t>10;(3)m<-10或m≥-2.【解析】【分析】(1)用待定系数法设二次函数表达式,再代入已知函数方程化简即可得答案;(2)分离参数后求f(x)的最大值即可;(3)先求无零点时m的范围,再求补集.【详解】(1)设二次函数f(x)=ax2+bx+2,(a≠0)∴a(x+1)2+b(x+1)+2-ax2-bx-2=4x-4∴2ax+a+b=4x-4,∴a=2,b=-6∴f(x)=2x2-6x+2;(2)依题意t>f(x)=2x2-6x+2在x∈[-1,2]上恒成立,而2x2-6x+2的对称轴为x=∈[-1,2],所以x=-1时,取最大值10,t>10;(3)∵g(x)=f(x)-mx=2x2-6x+2-mx=2x2-(6+m)x+2在区间(-1,2)内至少有一个零点,当g(x)在(-1,2)内无零点时,△=(6+m)2-16<0或或,解得:-10≤m<-2,因此g(x)在(-1,2)内至少有一个零点时,m<-10或m≥-2.【点睛】本题考查利用待定系数法求函数解析式,考查恒成立问题的解法以及二次函数的零点问题,属于基础题.19.设a为实数,函数f(x)=+a+a.(1)设t=,求t的取值范图;(2)把f(x)表示为t的函数h(t);(3)设f (x)的最大值为M(a),最小值为m(a),记g(a)=M(a)-m(a)求g(a)的表达式.【答案】(1)[,2];(2)h(t)=at+,≤t≤2;(3)g(a)=..【解析】【分析】(1)将t=两边平方,结合二次函数的性质可得t的范围;(2)由(1)可得=,可得h(t)的解析式;(3)求得h(t)=(t+a)2-1-a2,对称轴为t=-a,讨论对称轴与区间[,2]的关系,结合单调性可得h(t)的最值,即可得到所求g(a)的解析式.【详解】(1)t=,可得t2=2+2,由0≤1-x2≤1,可得2≤t2≤4,又t≥0可得≤t≤2,即t的取值范围是[,2];(2)由(1)可得=,即有h(t)=at+,≤t≤2;(3)由h(t)=(t+a)2-1-a2,对称轴为t=-a,当-a≥2即a≤-2时,h(t)在[,2]递减,可得最大值M(a)=h()=a;最小值m(a)=h(2)=1+2a,则g(a)=(-2)a-1;当-a≤即a≥-时,h(t)在[,2]递增,可得最大值M(a)=h(2)=1+2a;最小值m(a)=h()=a,则g(a)=(2-)a+1;当<-a<2即-2<a<-时,h(t)的最小值为m(a)=h(-a)=-1-a2,若-1-≤a<-,则h(2)≥h(),可得h(t)的最大值为M(a)=h(2)=1+2a,可得g(a)=2+2a+a2;若-2<a<-1-,则h(2)<h(),可得h(t)的最大值为M(a)=h()=a,可得g(a)=a+1+a2;综上可得g(a)=.【点睛】本题考查函数的最值求法,注意运用换元法和二次函数在闭区间上的最值求法,考查分类讨论思想方法和化简整理运算能力,属于中档题.。
2018-2019学年山东省潍坊市高一(上)期中数学试卷(解析版)
![2018-2019学年山东省潍坊市高一(上)期中数学试卷(解析版)](https://img.taocdn.com/s3/m/f1d70c73964bcf84b8d57b03.png)
2018-2019学年山东省潍坊市高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.设集合A={x∈N|-2<x<2}的真子集的个数是()A. 8B. 7C. 4D. 32.下列函数中,既是奇函数又是增函数的是()A. B. C. D.3.已知f(x)=,则f[f(2)]=()A. 5B.C.D. 24.a=40.9、b=80.48、c=()-1.5的大小关系是()A. B. C. D.5.已知函数f(x+1)=2x-3,若f(m)=4,则m的值为()A. B. C. D.6.函数f(x)=a x-(a>0,a≠1)的图象可能是()A. B.C. D.7.设f(x)是(-∞,+∞)上的减函数,则()A. B. C. D.8.下列变化过程中,变量之间不是函数关系的为()A. 地球绕太阳公转的过程中,二者间的距离与时间的关系B. 在银行,给定本金和利率后,活期存款的利息与存款天数的关系C. 某地区玉米的亩产量与灌溉次数的关系D. 近年来,中国高速铁路迅猛发展,中国高铁年运营里程与年份的关系9.已知实数a,b满足等式2017a=2018b,下列关系式不可能成立的是()A. B. C. D.10.一次社会实践活动中,数学应用调研小组在某厂办公室看到该厂5年来某种产品的总产量y与时间x(年)的函数图象(如图),以下给出了关于该产品生产状况的几点判断:①前三年的年产量逐步增加;②前三年的年产量逐步减少;③后两年的年产量与第三年的年产量相同;④后两年均没有生产.其中正确判断的序号是()A. B. C. D.11.已知函数f(x)=,若函数g(x)=f(x)-m恰有一个零点,则实数m的取值范围是()A. B.C. ,D. ,12.已知f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(4)=()A. 10B. 2C. 0D. 4二、填空题(本大题共4小题,共20.0分)13.计算(2)×(3)=______.14.如图所示,图中的阴影部分可用集合U,A,B,C表示为______.15.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=______.16.已知函数f(x)=(t>0)的最大值为M,最小值为N,且M+N=4,则实数t的值为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=+的定义域为集合M.(1)求集合M;(2)若集合N={x|2a-1≤x≤a+1},且M∩N={2},求N.18.已知函数f(x)=(a∈R).(1)若f(x)为奇函数,求实数a的值;(2)当a=0时,判断函数f(x)的单调性,并用定义证明.19.已知四个函数f(x)=2x,g(x)=()x,h(x)=3x,p(x)=()x,若y=f(x),y=g(x)的图象如图所示.(1)请在如图坐标系中画出y=h(x),y=p(x)的图象,并根据这四个函数的图象抽象出指数函数具有哪些性质?(2)举出在实际情境能够抽象出指数函数的一个实例并说明理由.20.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图①;投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图②.(注:收益与投资额单位:万元)(Ⅰ)分别写出两种产品的一年收益与投资额的函数关系;(Ⅱ)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?21.已知函数f(x)是定义在R上的增函数,且满足f(x+y)=f(x)•f(y),且f(2)=.(1)求f(4)的值;(2)当x∈[,]时,f(kx2)<2f(2x-5)恒成立,求实数k的取值范围.22.对于区间[a,b](a<b),若函数y=f(x)同时满足:①f(x)在[a,b]上是单调函数;②函数y=f(x),x∈[a,b]的值域是[a,b],则称区间[a,b]为函数f(x)的“保值”区间.(1)求函数y=x2的所有“保值”区间;(2)函数y=x2+m(m≠0)是否存在“保值”区间?若存在,求出m的取值范围;若不存在,说明理由.答案和解析1.【答案】D【解析】解:∵集合A={x∈N|-2<x<2}={0,1},∴集合A的真子集的个数是:22-1=3.故选:D.先求出集合A={0,1},由此能求出集合A的真子集的个数.本题考查集合的真子集的个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:根据题意,依次分析选项:对于A,y=是奇函数但不是增函数,不符合题意;对于B,y=x-1,不是奇函数,不符合题意;对于C,y=-x2,为偶函数不是奇函数,不符合题意;对于D,y=2x是正比例函数,既是奇函数又是增函数,符合题意;故选:D.根据题意,依次分析选项中函数的奇偶性以及单调性,综合即可得答案.本题考查函数奇偶性、单调性的判定,关键是掌握常见函数的奇偶性、单调性,属于基础题.3.【答案】D【解析】解:f(2)=-2×2+3=-1,所以f[f(2)]=f(-1)=(-1)2+1=2.故选D.根据所给解析式先求f(2),再求f[f(2)].本题考查分段函数求值问题,属基础题,关键看清所给自变量的值所在范围.4.【答案】D【解析】解:∵a=40.9=21.8,b=80.48=21.44,c==21.5,∵y=2x为单调增函数,而1.8>1.5>1.44,∴a>c>b.故选:D.利用有理指数幂的运算性质将a,b,c均化为2x的形式,利用y=2x的单调性即可得答案.本题考查不等关系与不等式,考查有理数指数幂的化简求值,属于中档题.5.【答案】B【解析】解:∵函数f(x+1)=2x-3,f(m)=4由2x-3=4,得x=,∴m=x+1=.故选:B.由2x-3=4,得x=,再由m=x+1,能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.6.【答案】D【解析】解:当0<a<1时,函数f(x)=a x-,为减函数,当a>1时,函数f(x)=a x-,为增函数,且当x=-1时f(-1)=0,即函数恒经过点(-1,0),故选:D.先判断函数的单调性,再判断函数恒经过点(-1,0),问题得以解决.本题主要考查了函数的图象和性质,求出函数恒经过点是关键,属于基础题.7.【答案】D【解析】解:f(x)是(-∞,+∞)上的减函数,当a>0时,a<2a,f(a)>f(2a),当a≤0时,a≥2a,f(a)≤f(2a),故A错误;当a=0,则a2=a,则f(a2)=f(a),故B错误;当a=0,a2+a=a,则f(a2+a)=f(a),故C错误;由a2+1>a,则f(a2+1)<f(a).故选:D.采用排除法,根据a的取值范围,根据导数与函数单调性的关系,即可求得答案.本题考查导数与函数的单调性的关系,属于基础题.8.【答案】C【解析】解:根据函数的定义得:某地区玉米的亩产量与灌溉次数的关系不是函数关系,故选:C.根据函数的定义对各个选项分别判断即可.本题考查了函数的定义,考查对应关系,是一道基础题.9.【答案】A【解析】解:分别画出y=2017x,y=2018x,实数a,b满足等式2017a=2018b,可得:a>b>0,a<b<0,a=b=1.而0<a<b成立.故选:A.分别画出y=2017x,y=2018x,根据实数a,b满足等式2017a=2018b,即可得出.本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.10.【答案】B【解析】解:由该厂5年来某种产品的总产量y与时间x(年)的函数图象,得:前三年的年产量逐步减少,故错误,正确;后两年均没有生产,故错误,正确.故选:B.利用该厂5年来某种产品的总产量y与时间x(年)的函数图象直接求解.本题考查命题真假的判断,考查该厂5年来某种产品的总产量y与时间x(年)的函数图象的性质等基础知识,考查数形结合思想,是基础题.11.【答案】D【解析】解:令g(x)=0得f(x)=m,作出y=f(x)的函数图象如图所示:由图象可知当m<0或m≥1时,f(x)=m只有一解.故选:D.作出f(x)的函数图象,根据图象判断m的值.本题考查了函数的零点与函数图象的关系,属于中档题.12.【答案】C【解析】解:∵f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),∴f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),∵f(1)=2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(0)+f(-1)+f(0)=0.故选:C.推导出f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),从而f(1)+f(2)+f(3)+f(4)=f(1)+f(0)+f (-1)+f(0),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.13.【答案】1【解析】解:(2)×(3)===.故答案为:1.化带分数为假分数,再由有理指数幂的运算性质化简求值.本题考查有理指数幂的运算性质,是基础的计算题.14.【答案】(A∩B)∩(∁U C)【解析】解:如图所示,图中的阴影部分可用集合U,A,B,C表示为:(A∩B)∩(∁U C).故答案为:(A∩B)∩(∁U C).利用维恩图直接求解.本题考查集合的交集的求法,考查维恩图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.15.【答案】1【解析】解:由f(x)-g(x)=x3+x2+1,将所有x替换成-x,得f(-x)-g(-x)=-x3+x2+1,∵f(x),g(x)分别是定义在R上的偶函数和奇函数,∴f(x)=f(-x),g(-x)=-g(x),即f(x)+g(x)=-x3+x2+1,再令x=1,得f(1)+g(1)=1.故答案为:1.将原代数式中的x替换成-x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x=1即可.本题考查利用函数奇偶性求值,本题中也可以将原代数式中的x直接令其等于-1也可以得到计算结果,属于基础题.16.【答案】2【解析】解:由题意,f(x)==+t,显然函数g(x)=是奇函数,∵函数f(x)最大值为M,最小值为N,且M+N=4,∴M-t=-(N-t),即2t=M+N=4,∴t=2,故答案为:2.由题意f(x)=t+g(x),其中g(x)是奇函数,从而2t=4,即可求出实数t的值.本题考查函数的最大值、最小值,考查函数是奇偶性,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)要使函数f(x)=有意义,则需;解得-3<x≤2;∴函数f(x)的定义域M=(-3,2];(2)∵M∩N={2},且M=(-3,2];∴2∈N;∴ ;解得;∴ ,.【解析】(1)要使得函数f(x)有意义,则需满足,从而求出M=(-3,2];(2)根据M∩N={2},便可得出2∈N,从而得出2a-1=2,求出a即可得出集合N.考查函数定义域的概念及求法,指数函数的单调性,交集的概念,元素与集合的关系.18.【答案】解:(1)函数f(x)的定义域是R,且f(-x)==,由y=f(x)是奇函数,得对任意的x都有f(x)=-f(-x),故=-,得2x(a-1)=1-a,解得:a=1;(2)由a=0得:f(x)=1-,任取x1,x2∈R,设x1<x2,则f(x2)-f(x1)=-=,∵y=2x在R递增且x1<x2,∴ ->0,又(+1)(+1)>0,故f(x2)-f(x1)>0即f(x2)>f(x1),故f(x)在R递增.【解析】(1)根据函数的奇偶性的定义求出a的值即可;(2)根据函数的单调性的定义证明即可.本题考查了函数的奇偶性和函数的单调性问题,考查单调性的证明,是一道中档题.19.【答案】解:(1)画出y=h(x),y=p(x)的图象如图所示:4个函数都是y=a x(a>0,a≠1)的形式,它们的性质有:①定义域为R;②值域为(0,+∞);③都过定点(0,1);④当a>1时,函数在定义域内单调递增,0<a<1时,函数在定义域内单调递减;⑤a>1时,若x<0,则0<y<1,若x>0,则y>1.0<a<1时,若x>0,则0<y<1,若x<0,则y>1;⑥对于函数y=a x(a>0,a≠1),y=b x(b>0,b≠1),当a>b>1时,若x<0,则0<a x<b x<1;若x=0,则a x=b x=1;若x>0,则a x>b x>1.当0<a<b<1时,若x<0,则a x>b x>1;若x=0,则a x=b x=1;若x>0,则0<a x<b x<1.(2)举例:原来有一个细胞,细胞分裂的规则是细胞由一个分裂成2个,则经过x次分裂,细胞个数y,则y=2x,是一个指数函数.【解析】(1)根据指数函数的图象性质,得出结论.(2)举细胞分裂的例子,抽象出指数函数的一个实例.本题主要考查指数函数的性质,指数函数的应用,属于中档题.20.【答案】解:(Ⅰ)f(x)=k1x,g(x)=k2,∴f(1)==k1,g(1)=k2=,∴f(x)=x(x≥0),g(x)=(x≥0)(Ⅱ)设:投资债券类产品x万元,则股票类投资为20-x万元.y=f(x)+g(20-x)=+(0≤x≤20)令t=,则y==-(t-2)2+3所以当t=2,即x=16万元时,收益最大,y max=3万元.【解析】(Ⅰ)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(Ⅱ)由(Ⅰ)的结论,我们设设投资债券类产品x万元,则股票类投资为20-x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.21.【答案】解:(1)令x=y=2,得:f(2+2)=f(2)•f(2),即f(4)═2(2)2f(2x-5)=f(4),f(2x-5)=f(2x-1)所以f(kx2)<2f(2x-5)化为:f(kx2)<f(2x-1),因为函数f(x)是定义在R上的增函数,所以kx2<2x-1在x∈[,]时恒成立,即k<在x∈[,]时恒成立,令y===-()2+1,x∈[,],∈[,],y有最小值为0.所以,k<0.【解析】(1)利用赋值法,x=y=2求解即可.(2)利用已知条件化简不等式为f(kx2)<f(2x-1),利用函数的单调性,分离变量,通过二次函数的性质求解闭区间上的最值即可.本题考查函数与方程的应用,函数的单调性以及二次函数的性质的应用,考查转化思想以及计算能力.22.【答案】解:(1)因为函数y=x2的值域是[0,+∞),且y=x2在[a,b]的值域是[a,b],所以[a,b]⊆[0,+∞),所以a≥0,从而函数y=x2在区间[a,b]上单调递增,或故有解得或又a<b,所以所以函数y=x2的“保值”区间为[0,1].…(3分)(2)若函数y=x2+m(m≠0)存在“保值”区间,则有:①若a<b≤0,此时函数y=x2+m在区间[a,b]上单调递减,所以消去m得a2-b2=b-a,整理得(a-b)(a+b+1)=0.因为a<b,所以a+b+1=0,即a=-b-1.又所以<.因为<,所以<.…(6分)②若b>a≥0,此时函数y=x2+m在区间[a,b]上单调递增,所以消去m得a2-b2=a-b,整理得(a-b)(a+b-1)=0.因为a<b,所以a+b-1=0,即b=1-a.又所以<.因为<,所以<.因为m≠0,所以<<.…(9分)综合①、②得,函数y=x2+m(m≠0)存在“保值”区间,此时m的取值范围是,,.…(10分)【解析】(1)由已知中保值”区间的定义,结合函数y=x2的值域是[0,+∞),我们可得[a,b]⊆[0,+∞),从而函数y=x2在区间[a,b]上单调递增,则,结合a<b即可得到函数y=x2的“保值”区间.(2)根据已知中保值”区间的定义,我们分函数y=x2+m在区间[a,b]上单调递减,和函数y=x2+m在区间[a,b]上单调递增,两种情况分类讨论,最后综合讨论结果,即可得到答案.本题考查的知识点是函数单调性,函数的值,其中正确理解新定义的含义,并根据新定义构造出满足条件的方程(组)或不等式(组)将新定义转化为数学熟悉的数学模型是解答本题的关键.。
上海市卢湾高级中学2018-2019学年上学期高三期中数学模拟题.docx
![上海市卢湾高级中学2018-2019学年上学期高三期中数学模拟题.docx](https://img.taocdn.com/s3/m/a141c2cb5a8102d277a22f1a.png)
上海市卢湾高级中学2018-2019学年上学期高三期中数学模拟题班级_________ 座号_______ 姓名__________ 分数 ___________一、选择题(本大题共12小题,每小题5分,共60分•每小题给岀的四个选项中,只有一项是符合题目要求的•)_ 7T ] 711. 已知cos(o --- )= —,贝(J COSQ + COS(Q)=()6 2 31丄1 巧、怎2 2 2 22.已知A, B是球0的球面上两点,ZAOB = 60° , C为该球面上的动点,若三棱锥O - ABC体积的最大值为18內,则球。
的体积为()A . 81KB . 128兀C . 144KD . 288兀【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、求解能力•3.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为(A.| 谒4.设函数/S) = log」x—1|在(-8,1)上单调递增,则/(a+ 2)与/•⑶的( )A . /(a + 2) > /⑶B . /(a + 2) < /(3) C./(« + 2) = /(3) D.不能确定函数/«) = ln(严- x)的定义域为()BE〕方程思想、运算r 20D T5・A®)正视图侧视图俯视图大小关系是C(-°°,0)U(l,+oo)D (-oo,0]U[l,+oo)6 .《九章算术》是我国古代的数学巨著,其卷第五“商功” ”今有刍養,下广三丈,袤四丈,上袤二丈,无广,高一丈。
思为:"今有底面为矩形的屋脊形状的多面体(如图)",下 丈,长= 4丈,上棱EF=2丈,EFW 平面ABCD.EF 与平面 1丈,问它的体积是()7 .已知 a > —2,右■圆 0] : x~ + y~ + 2x - 2ay - 8a —15 = 0,圆 O? : + 2ax —2ay+a~ - 4a - 4 = 0恒有公共点,则a 的取值范围为( ).A • (―2,—l]U[3,+8)B .(弓―1)U(3,炖)C . [-|-1]U[3,^)D . (-2-1)U(3,+<x ))8 .已知圆M 过定点(0,1)且圆心M 在抛物线%2= 2y 上运动,若x 轴截圆M 所得的弦为\ PQ\ ,则弦长 IP0等于( )A . 2B . 3C . 4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高, 难度较大. 9 .已知=(其中为虚数单位),B = {*2<i},则 A B=()1+z22 110 .如图,在正方体4BCD —ABCQ 中,P 是侧面BBQC 内一动点,若P 到直线BC 与直线GD 的距离 相等,贝!J 动点P 的轨迹所在的曲线是()A.直线B.圆C.双曲线D.抛物线[命题意图]本题考査立体几何中的动态问题等基础知识知识,意在考査空间想象能力.有如下的问题: 问积几何?"意 底面宽AD = 3ABCD 的距离为sin 15°11•——-2sin 80°的值为( )sin 5A . 1B . - 1C . 2D .・ 212. 一个几何体的三个视图如下,每个小格表示一个单位,则该几何体的侧面积为( )A.4nB.2A/5KC. 5nD. 2K +2A/5K[命题意图】本题考査空间几何体的三视图,几何体的侧面积等基础知识,意在考査学生空间想象能力和计算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.曲线y = A-2 + 3x在点(-1 , - 2 )处的切线与曲线y = ax + In .v相切,则a = _____________ .14.若复数z「z,在复平面内对应的点关于V轴对称,且z, =2-1 ,则复数一—在复平面内对应的点在「IZ] r +Z?( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考査复数的几何意义、模与代数运算等基础知识,意在考査转化思想与计算能力•1JT15.已知函数f(x) = a sin xcos A- sin2 x + -的一条对称轴方程为x ,则函数/(x)的最大值为( )26A . 1B . ±1C . A/2D . ±A/2[命题意图]本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想■16.三角形ABC中,AB = 2A/3, BC = 2, ZC = 60,则三角形ABC的面积为_________________ .三、解答题(本大共6小题,共70分。
高一上学期期中考试数学试卷含答案(共5套)
![高一上学期期中考试数学试卷含答案(共5套)](https://img.taocdn.com/s3/m/7ac853a8f111f18582d05a15.png)
高一年级第一学期期中考试数学试卷考试时间120分钟,满分150分。
卷Ⅰ(选择题共60分)一.选择题(共12小题,每小题5 分,计60分。
在每小题给出的四个选项中,只有1个选项符合题意)1.已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则C B A= ()A. B. C. D.2.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A. B. C. D.3.函数y=的图象是()A. B. C. D.4.幂函数在时是减函数,则实数m的值为A. 2或B.C. 2D. 或15.若函数y=f(x)的定义域是(0,4],则函数g(x)=f(x)+f(x2)的定义域是()A. B. C. D.6.在下列区间中,函数的零点所在的区间为()A. B. C. D.7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)表达式是()A. B. C. D.8.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A. B. C. D.9.已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A. B. C. D.10.若函数f(x)=,且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A. B. C. D.11.若在区间上递减,则a的取值范围为()A. B. C. D.12.已知函数f(x)=则函数g(x)=f[f(x)]-1的零点个数为()A. 1B. 3C. 4D. 6卷Ⅱ(非选择题共90分)二、填空题(本大题共4小题,共20分)13.方程的一根在内,另一根在内,则实数m的取值范围是______.14.若函数的图象与x轴有公共点,则m的取值范围是______ .15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是______ .16.已知函数的定义域为D,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是______三、解答题(本大题共6小题,共70分,其中17题10分,18-22题12分)17.计算下列各式的值:(1)(2).18.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.19.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.20.已知定义域为R的函数是奇函数.(1)求b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.21.“绿水青山就是金山银山”,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量千克/升与时间小时间的关系为,如果在前个小时消除了的污染物,(1)小时后还剩百分之几的污染物(2)污染物减少需要花多少时间(精确到小时)参考数据:22.设函数是增函数,对于任意x,都有.求;证明奇函数;解不等式.第一学期期中考试高一年级数学试卷答案1.【答案】A解:因为A={x|x2-2x-3<0}={x|-1<x<3},B={x|2x+1>1}={x|x>-1},则C B A=[3,+∞) ,故选A.2.【答案】C解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.3.【答案】B解:函数y=是奇函数,排除A,C;当x=时,y=ln<0,对应点在第四象限,排除D.故选B.4.【答案】B解:由于幂函数在(0,+∞)时是减函数,故有,解得m =-1,故选B.5.【答案】A解:∵函数f(x)的定义域为(0,4],∴由,得,即0<x≤2,则函数g(x)的定义域为(0,2],故选:A.6.【答案】C解:∵函数f(x)=e x+4x-3在R上连续,且f(0)=e0-3=-2<0,f()=+2-3=-1=-e0>0,∴f(0)f()<0,∴函数f(x)=e x+4x-3的零点所在的区间为(0,).故选C.7.【答案】D解:设x<0,则-x>0,∵当x≥0时,,∴f(-x)=-x(1+)=-x(1-),∵函数y=f(x)是定义在R上的奇函数,∴f(x)=-f(-x),∴f(x)=x(1-),故选D.8.【答案】D解:∵函数f(x)为奇函数,若f(1)=-1,则f(-1)=-f(1)=1,又∵函数f(x)在(-∞,+∞)上单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:1≤x≤3,所以x的取值范围是[1,3].故选D.9.【答案】C解:因为f(a)=f(b),所以|lg a|=|lg b|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b的取值范围是(3,+∞).故选C.10.【答案】D解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得a∈[4,8),故选D.11.【答案】A解:令u=x2-2ax+1+a,则f(u)=lg u,配方得u=x2-2ax+1+a=(x-a)2 -a2+a+1,故对称轴为x=a,如图所示:由图象可知,当对称轴a≥1时,u=x2-2ax+1+a在区间(-∞,1]上单调递减,又真数x2-2ax+1+a>0,二次函数u=x2-2ax+1+a在(-∞,1]上单调递减,故只需当x=1时,若x2-2ax+1+a>0,则x∈(-∞,1]时,真数x2-2ax+1+a>0,代入x=1解得a<2,所以a的取值范围是[1,2)故选:A.由题意,在区间(-∞,1]上,a的取值需令真数x2-2ax+1+a>0,且函数u=x2-2ax+1+a在区间(-∞,1]上应单调递减,这样复合函数才能单调递减.本题考查复合函数的单调性,考查学生分析解决问题的能力,复合函数单调性遵从同增异减的原则.12.【答案】C解:令f(x)=1,当时,,解得x1=-,x2=1,当时,,解得x3=5,综上f(x)=1解得x1=-,x2=1,x3=5,令g(x)=f[f(x)]-1=0,作出f(x)图象如图所示:由图象可得当f(x)=-无解,f(x)=1有3个解,f(x)=5有1个解,综上所述函数g(x)=f[f(x)]-1的零点个数为4,故选C.13.【答案】(1,2)解:设f(x)=x2-2mx+m2-1,则f(x)=0的一个零点在(0,1)内,另一零点在(2,3)内.∴,即,解得1<m<2.故答案为(1,2).14.【答案】[-1,0)解:作出函数的图象如下图所示,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得-1≤m<0.故答15.案为[-1,0).【答案】.解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m-5.∴m的取值范围是.故答案为:..利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.【答案】[5,+∞)解:函数的定义域为:x≤2,当x∈D时,f(x)≤m恒成立,令t=≥0,可得2x=4-t2,所以f(t)=5-t2-t,是开口向下的二次函数,t≥0,f(t)≤5,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是:m≥5.故答案为:[5,+∞).求出函数的定义域,利用换元法结合函数的性质,求解实数m的取值范围.本题考查函数的最值的求法,换元法的应用,函数恒成立体积的应用,是基本知识的考查.17.【答案】解:(1)原式===;-----------(5分)(2)原式===log39-9=2-9=-7.----(10分)18.【答案】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|-2<x<4},----(1分)则A∪B={x|-2<x≤7},----(3分)又∁R A={x|x<1或x>7},则(∁R A)∩B={x|-2<x<1};----(5分)(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①当A=∅时,有m-1>2m+3,解可得m<-4,----(7分)②当A≠∅时,若有A⊆B,必有,解可得-1<m<,----(11分)综上可得:m的取值范围是:(-∞,-4)∪(-1,).----(12分)19.【答案】解:(1),若要式子有意义,则,即,所以定义域为. ----(4分)(2)f(x)的定义域为,且所以f(x)是奇函数. ----(8分)(3)又f(x)>0,即,有.当时,上述不等式,解得. ----(12分)20.【答案】解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即,则b=1,经检验,当b=1时,是奇函数,所以b=1;----(3分)(2),f(x)在R上是减函数,证明如下:在R上任取,,且,则,因为在R上单调递增,且,则,又因为,所以,即,所以f(x)在R上是减函数; ----(7分)(3)因为,所以,而f(x)是奇函数,则,又f(x)在R上是减函数,所以,即在上恒成立,令,,,,因为,则k<-1.所以k的取值范围为. ----(12分)21.【答案】解:(1)由已知,∴,当时,,故小时后还剩的污染物. ----(5分)(2)由已知,即两边取自然对数得:,∴,∴污染物减少需要花32小时. ----(12分)22.【答案】解:(1)由题设,令x=y=0,恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0;----(3分)(2)证明:令y=-x,则由f(x+y)=f(x)+f(y)得f(0)=0=f(x)+f(-x),即f(-x)=-f(x),故f(x)是奇函数;----(7分)(3)∵,,即,又由已知f(x+y)=f(x)+f(y)得:f(x+x)=2f(x),∴f(x2-3x)>f(2x),由函数f(x)是增函数,不等式转化为x2-3x>2x,即x2-5x>0,∴不等式的解集{x|x<0或x>5}.----(12分)2019-2020学年第一学期期中考试高一数学试题说明:本试卷分为第I 卷和第Ⅱ卷两部分,共三个大题,22个小题。
山东省烟台市2018-2019学年高一上学期期中考试数学试题 Word版含答案
![山东省烟台市2018-2019学年高一上学期期中考试数学试题 Word版含答案](https://img.taocdn.com/s3/m/57f9b908eefdc8d377ee321f.png)
2018-2019学年山东省烟台市高一(上)期中数学试卷一、选择题(本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合如题目要求的)1.设全集U={x|x是小于5的非负整数},A={2,4},则∁U A=()A.{1,3} B.{1,3,5} C.{0,1,3} D.{0,1,3,5}2.已知集合,B={x|y=log2(3﹣2x)},则有()A.A∩B={x|x<32} B.A∩B={x|x≤2} C.A∪B═{x|x<32} D.A∪B={x|x<2}3.中文“函数(function)一词,最早由近代数学家李善兰翻译之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,下列选项中两个函数相等的是()A.y=10lgx,y=x B.,y=|x|C.D.y=x,y=ln e x4.已知函数y=f(x),部分x与y的对应关系如表:则f(f(4))=()A.﹣1 B.﹣2 C.﹣3 D.35.若a=(),b=3,c=log4,则下列关系成立的是()A.a>b>c B.b>a>c C.b>c>a D..c>b>a6.已知函数f(x)=,且f(m)=1,则f(4﹣m)=()A.﹣2 B.﹣1 C.1 D.﹣2或17.下列函数既是奇函数,在定义域内又是增函数的是()A.f(x)=x+1 B.f(x)=2x﹣2﹣xC.f(x)=ln|x| D.f(x)=﹣8.函数f(x)=2的大致图象为()a+2(a>0,且a≠1)的图象必经过的点是()9.函数y=log a(x+2)+x+1A.(0,2)B.(2,2)C.(﹣1,2)D.(﹣1,3)10.已知函数f(x)=,x∈[0,1],若f(x )的最小值为,则实数m的值为()A .B .C.3 D .或311.设函数f(x)=mx+1,若f(x)>m﹣1对任意m∈[1,2]恒成立,则实数x的取值范围是()A.(﹣2,+∞)B.(0,+∞)C.[0,+∞)D.(﹣1,+∞)12.已知函数f(x)=log2x+x2+3,若f(x+1)≤8,则x的取值范围是()A.(﹣1,1] B.(0,1] C.(﹣∞,2] D.(﹣∞,1]二、填空题(本题共4小题,每小题5分,共20分,)13.已知xlog23=1,则3x= .14.已知函数f(x)=ax2+(b﹣2)x+3,x∈[a﹣3,2a]是偶函数,则实数a= ,b= 15.某市居民用自来水实行阶梯水价,其标准为:将居民家庭全年用水量划分为三档,水价分档递增.具体价格见表:则某居民家庭全年用水量x(x≥0,单位:立方米)与全年所交水费y(单位:元)之间的函数解析式为16.已知函数f(x)的定义域为[a,b],对任意x1,x2∈[a,b],且x1≠x2,下列条件中能推出f(x)在定义域内为增函数的有(写出所有正确的序号)①>1;②(x1﹣x2)[f(x1)﹣f(x2)]>0;③若x1<x2时,都有f(x1)﹣f(x2)<0;④若x1<x2时,都有.三、解答题(共70分解答应写出文字说明证明过程或演算步骤)17.(10分)已知集合A={x|<2x<8},B={x|﹣m+1≤x<2m﹣3},(1)当x∈Z时,写出A的所有非空真子集;(2)若A∪B=B,求m的取值范围.18.(12分)计算下列各式的值:(1)(2a3b)•(﹣5a b)÷(4);(2)(lg5)2+lg5•lg20+.19.(12分)已知函数f(x)=2x,g(x)=x+1.设h(x)=,B=(﹣∞,1](1)求出h(x)的解析式,并在给定的平面直角坐标系上画出它的图象;(2)根据图象写出h(x)的值域和单调区间.20.(12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH值正常范围为[6,9).某化工企业对本单位污水出水口的pH值进行全天24小时检测,根据统计资料发现pH 值的大小与检测时间点x之间的函数图象如图所示,AB,CD为两条直线段,曲线BC为函数y=图象的一部分,其中A(0,8),B(4,6),C(20,10),D(24,8).(1)请求出pH值的大小y与检测时间点x之间的函数解析式,(2)试求该化工企业在一天内排放污水中pH值超标排放几个小时.21.(12分)已知函数f(x)=x2﹣2mx+m2+1,x∈[﹣1,2].(1)当x=2时,f(x)取得最大值,求实数m的取值范围;(2)求函数f(x)的最大值和最小值.22.(12分)已知函数f(x)=,a∈R,b∈R.(1)当a,b满足什么关系时,f(x)是奇函数?(2)探索函数f(x)的单调性.。
高一上学期期中数学试卷(基础篇)(解析版)
![高一上学期期中数学试卷(基础篇)(解析版)](https://img.taocdn.com/s3/m/ec482b36ae1ffc4ffe4733687e21af45b307fe9c.png)
+,-./tu A)jk'(`¤É4ÊËÌmnztu B)jkKÍ[È® 4XËÌmnz
tu C)jkÎÏ ±41fËÌ1,ztu D)jkÐÑ`Ò¤1,Àq89.
+,:;</tu A)§Ó4KÔ½ ')Õ½-5 NKÔ½ )C A xyz
tu B)Ö½® 4±×)}K = 2 = ||)Ç = 4t«ÊNÈ)@ØNKÈ® )
?()[2, + ∞))*(−π) > (5))C B xyz
C.v ≥ 0w)() = 4−2 = −(−2)2 +4)()ÞT[ 4)
1
D = −
+,:;</ AБайду номын сангаас
S1 > 2 > 0)*1−2 = (−31 + 2)−(−32 + 2) = 3(2−1))
?2−1 < 0)AB1−2 < 0)81 < 2)AB = −3 + 2(0, + ∞)[ )C A ghz
B
S1 > 2 > 0)*1−2 = 31−32 = (1−2) 21 + 12 + 22 )
*() = 2−2) ∈ (−∞,−2] ∪ [2, + ∞))
∴ () = 2−2) ∈ (−∞,−2] ∪ [2, + ∞))C D ghz
C
BCD.
11(5 分)23-24 ·"Âû·#$cdÅ®Ù$)gh4K
Ai2 > 2)* >
+
+
Bi > > 0, < < 0,|| > ||)*(−)2 ≥ (−)2
四川省宜宾市2018-2019学年高一上学期期末考试数学试题(解析版)
![四川省宜宾市2018-2019学年高一上学期期末考试数学试题(解析版)](https://img.taocdn.com/s3/m/55920d0e48d7c1c709a1455b.png)
四川省宜宾市2018-2019学年高一上学期期末考试数学试题一、选择题。
1.已知集合,,则A. B.C. D.【答案】C【解析】【分析】求解一元一次不等式化简集合B,然后直接利用交集运算得答案.【详解】,.故选:C.【点睛】本题考查了交集及其运算,考查了一元一次不等式的解法,是基础题.2.下列函数中与表示同一函数的是A. B. C. D.【答案】B【解析】【分析】逐一检验各个选项中的函数与已知的函数是否具有相同的定义域、值域、对应关系,只有这三者完全相同时,两个函数才是同一个函数.【详解】A项中的函数与已知函数的值域不同,所以不是同一个函数;B项中的函数与已知函数具有相同的定义域、值域和对应关系,所以是同一个函数;C项中的函数与已知函数的定义域不同,所以不是同一个函数;D项中的函数与已知函数的定义域不同,所以不是同一函数;故选B.【点睛】该题考查的是有关同一函数的判断问题,注意必须保证三要素完全相同才是同一函数,注意对概念的正确理解.3.已知角的顶点在坐标原点,始边与x轴的非负半轴重合,为其终边上一点,则( )A. B. C. D.【答案】A【解析】【分析】首先根据题中所给的角的终边上的一点P的坐标,利用三角函数的定义,求得其余弦值,用诱导公式将式子进行化简,求得最后的结果.【详解】因为在角的终边上,所以,从而求得,所以,而,故选A.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有三角函数的定义,诱导公式,正确使用公式是解题的关键.4.函数的定义域是A. B. C. D.【答案】B【解析】试题分析:由得:,所以函数的定义域为(。
考点:函数的定义域;对数不等式的解法。
点评:求函数的定义域需要从以下几个方面入手:(1)分母不为零;(2)偶次根式的被开方数非负;(3)对数中的真数部分大于0;(4)指数、对数的底数大于0,且不等于1 ;(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等;( 6 )中。
专题01 集合 高一数学上学期期中考试好题汇编(人教A版2019)
![专题01 集合 高一数学上学期期中考试好题汇编(人教A版2019)](https://img.taocdn.com/s3/m/d25aad2db14e852459fb5784.png)
专题01 集合知识点一:相等集合一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A =B.显然若两个集合相等,则它们的元素完全相同1.(安徽省安庆市五校联盟2018-2019学年高一上学期期中)下列集合中表示同一集合的是( )A .{(3,2)}M =,{(2,3)}N =B .{4,5}M =,{5,4}N =C .{}(,)1M x y x y =+=,{}1N y x y =+=D .{1,2}M =,{(1,2)}N =【答案】B 【分析】根据集合的元素是否相同判断即可. 【详解】解:A 两个集合的元素不相同,点的坐标不同, B 两个集合的元素相同,C 中M 的元素为点,N 的元素为数,D 中M 的元素为点,N 的元素为数, 故A ,C ,D 都不对. 故选:B . 2.(多选题)(广东省佛山市南海区第一中学2020-2021学年高一上学期)下列各组中的两个集合相等的有__________.A 、{}2,P x x n n Z ==∈,(){}21,Q x x n n Z ==-∈;B 、{}21,P x x n n N *==-∈,{}21,Q x x n n N *==+∈;C 、{}20P x x x =-=,()11,2nQ x x n Z ⎧⎫+-⎪⎪==∈⎨⎬⎪⎪⎩⎭. 【答案】AC 【分析】判断出A 选项中两个集合均为偶数集,可得出结论;分析出B 选项中的集合P 为正奇数集,集合Q 是从3开始的正奇数构成的集合,可得出结论;求出C 选项中的两个集合,可得出结论.【详解】对于A ,集合{}2,P x x n n Z ==∈为偶数集,集合(){}21,Q x x n n Z ==-∈也为偶数集,则P Q =;对于B ,集合{}21,P x x n n N *==-∈为正奇数集,集合{}21,Q x x n n N *==+∈是从3开始的正奇数构成的集合,则P Q ≠;对于C ,{}{}200,1P x x x =-==,对于()()112nx n Z +-=∈,若n 为奇数,则0x =;若n 为偶数,则1x =,即{}0,1Q =.P Q ∴=.故答案为:AC.3.(福建省龙岩市高级中学2020-2021学年高一上学期期中考试)已知集合{}20,1,A a =,{1,0,23}=+B a ,若A B =,则a 等于 A .1-或3 B .0或1- C .3 D .1- 【答案】C 【分析】根据两个集合相等的知识列方程,结合集合元素的互异性求得a 的值. 【详解】 由于A B =,故223a a =+,解得1a =-或3a =.当1a =-时,21a =,与集合元素互异性矛盾,故1a =-不正确.经检验可知3a =符合. 故选:C4..(多选题)(广东省广州市(广附、广外、铁一)三校2020年高一上学期期中)下列各组中M ,P 表示不同集合的是( ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x 2+1,x ∈R},P ={x |x =t 2+1,t ∈R}D .M ={y |y =x 2-1,x ∈R},P ={(x ,y )|y =x 2-1,x ∈R} 【答案】ABD 【分析】选项A 中,M 和P 的代表元素不同,是不同的集合; 选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ; 选项C 中,解出集合M 和P .选项D 中,M 和P 的代表元素不同,是不同的集合. 【详解】选项A 中,M 是由3,-1两个元素构成的集合,而集合P 是由点(3,-1)构成的集合; 选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,P ={x |x =t 2+1,t ∈R}=[)1,+∞,故M =P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有因变量组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合. 故选ABD .5.(山西省太原市2018-2019学年高一上学期期中)已知集合{,,2}A a b =,2{2,,2}B b a =,若A B =,求实数a ,b 的值.【答案】01a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】利用集合相等的定义列出方程组,再结合集合中元素的互异性质能求出实数a ,b 的值. 【详解】解:由已知A B =,得22a ab b =⎧⎨=⎩(1)或22a b b a ⎧=⎨=⎩.(2) 解(1)得00a b =⎧⎨=⎩或01a b =⎧⎨=⎩,解(2)得00a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩,又由集合中元素的互异性 得01a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩.知识点二:元素与集合关系1、集合中元素的三个特性 (1)确定性;(2)互异性;(3)无序性2、(1)“属于”:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A.(2)“不属于”:如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A.1、(福建省莆田第一中学2020-2021学年高一上学期期中)设集合{}22,,A x x =,若1A ∈,则x 的值为 A .1- B .±1 C .1 D .0 【答案】A 【详解】2111A x orx ∈∴== ,若211x x =⇒= ,不满足集合元素的互异性, 故21x =, 1.x =- 故结果选A .2.(内蒙古集宁一中2018-2019学年高一上学期期中)已知集合 {}1,2,3,4,5A =,{}1,2,3B =,{}|,C z z xy x A y B ==∈∈且,则集合C 中的元素个数为A .15B .13C .11D .12 【答案】C 【分析】根据题意,确定,x y 的可能取值;再确定z xy =能取的所有值,即可得出结果. 【详解】因为{}1,2,3,4,5A =,{}1,2,3B =,{}|,C z z xy x A y B ==∈∈且, 所以x 能取的值为1,2,3,4,5;y 能取的值为1,2,3,因此z xy =能取的值为1,2,3,4,5,6,8,9,10,12,15,共11个, 所以集合C 中的元素个数为11. 故选C3.(河南省开封市2020-2021学年高一上学期五县联考期中)已知集合{}230A x x ax a =-+≤,若1A -∉,则实数a 的取值范围为______.【答案】14a >-【分析】利用元素与集合的关系知1x =-满足不等式230x ax a -+>,代入计算即得结果. 【详解】若1A -∉,则1x =-不满足不等式230x ax a -+≤,即1x =-满足不等式230x ax a -+>,故代入1x =-,有130++>a a ,得14a >-.故答案为:14a >-.4.(湖北省武汉市问津联盟2020-2021学年高一上学期期中联考)设集合2{|8150}A x x x =-+=,{|10}B x ax =-=.(1)若15a =,试判定集合A 与B 的关系;(2)若B A ⊆,求实数a 的取值集合.【答案】(1)B 是A 的真子集;(2)11{0,,}35.【分析】(1)算出A 、B 后可判断B 是A 真子集. (2)就B φ=、B φ≠分类讨论即可.(1){}{}3,5,5A B ==,∴B 是A 真子集 (2)当B φ=时,满足B A ⊆,此时0a =;当B φ≠时,集合1B a ⎧⎫=⎨⎬⎩⎭,又B A ⊆,得13a =或5,解得13a =或15综上,实数a 的取值集合为110,,35⎧⎫⎨⎬⎩⎭.知识点三:空集的特殊应用(1)空集:只有一个子集,即它本身; (2)空集是任何非空集合的真子集. ∅{0}∅{∅}或 ∅∈{∅}1.( )A .{}0B .{8xx >∣,且}5x < C .{}210x x ∈-=N∣ D .{}4x x >【答案】B【分析】根据空集的定义判断. 【详解】A 中有元素0,B 中集合没有任何元素,为空集,C 中有元素1,D 中集合,大于4的实数都是其中的元素. 故选:B .2.(河北省张家口市崇礼区第一中学2020-2021学年高一上学期期中)下列五个写法:①{0}{1,2,3}∈;②{0}∅⊆;③{0,1,2}{1,2,0}⊆;④0∈∅;⑤0∅=∅,其中错误写法的个数为 A .1 B .2 C .3 D .4 【答案】C 【分析】利用元素与集合的关系以及集合与集合之间的关系,便可得出答案. 【详解】对①:{0}是集合,{1,2,3}也是集合,所以不能用∈这个符号,故①错误. 对②:∅是空集,{0}也是集合,由于空集是任何集合的子集,故②正确.对③:{0,1,2}是集合,{1,2,0}也是集合,由于一个集合的本身也是该集合的子集,故③正确.对④:0是元素,∅是不含任何元素的空集,所以0∉∅,故④错误.对⑤:0是元素,∅是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.3.(青海省西宁市大通县第一中学2019-2020学年高一上学期期中)关于以下集合关系表示不正确的是( ) A .∅∈{∅} B .∅∈{∅} C .∅∈N* D .∅∈N* 【答案】C 【分析】空集是任何集合的子集.根据元素与集合的关系、集合与集合的关系对选项逐一进行判断,由此得出正确选项. 【详解】对于A 选项,集合中含有一个元素空集,故空集是这个集合的元素,故A 选项正确. 空集是任何集合的子集,故B,D 两个选项正确.对于C 选项,空集不是正整数集合的元素,C 选项错误.故选C.4.(青海省西宁市海湖中学2020-2021学年高一上学期)下列关系正确的是 A .{0}∅⊆ B .{0}∅∈ C .0∈∅ D .{0}⊆∅ 【答案】A 【分析】根据空集是任何集合的子集即可判断出选项A 正确. 【详解】空集是任何集合的子集; {}0∴∅⊆正确 本题正确选项:A知识点四:子集的应用子集有下列两个性质:①自反性:任何一个集合都是它本身的子集,即A ⊆A ;②传递性:对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么A ⊆C.1.(吉林省长春市十一高中2020-2021学年高一上学期)已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为( )A .{1}B .C .{1,1}-D .{【答案】C 【分析】根据子集关系列式可求得结果. 【详解】因为B A ⊆,所以21m =,得1m =±, 所以实数m 的取值集合为{1,1}-. 故选:C2.(江苏省淮安市淮安区2020-2021学年高一上学期期中)满足{}{}1,21,2,3,4,5A ⊆⊆的集合A 的个数为( ) A .8 B .7 C .4 D .16 【答案】A 【分析】根据已知条件可知集合A 中必有1,2,集合A 还可以有元素3,4,5,写出集合A 的所有情况即可求解. 【详解】因为集合A 满足{}{}1,21,2,3,4,5A ⊆⊆,所以集合A 中必有1,2,集合A 还可以有元素3,4,5,满足条件的集合A 有:{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5共有8个,故选:A.3.(湖北省孝感市汉川市第二中学2020-2021学年高一上学期期中)若集合M N ⊆,则下列结论正确的是 A .M N M ⋂= B .M N N ⋃=C .M M N ⊆⋂()D .()M N N ⋃⊆【答案】ABCD 【分析】根据子集的概念,结合交集、并集的知识,对选项逐一分析,由此得出正确选项. 【详解】由于M N ⊆,即M 是N 的子集,故M N M ⋂=,M N N ⋃=,从而M M N ⊆⋂(),()M N N ⋃⊆. 故选ABCD.4.(湖南省怀化市洪江市黔阳二中2020-2021学年高一上学期期中)已知集合M ,N ,P 为全集U 的子集,且满足M ∈P ∈N ,则下列结论正确的是 ( )A .U N ∈U PB .N P ∈N MC .(U P )∩M =∈D .(U M )∩N =∈ 【答案】ABC 【分析】由已知条件画出Venn 图,如图所示,然后根据图形逐个分析判断即可 【详解】因为集合M ,N ,P 为全集U 的子集,且满足M ∈P ∈N ,所以作出Venn 图,如图所示,由Venn 图,得U N ∈U P ,故A 正确; N P ∈N M ,故B 正确; (U P )∩M =∈,故C 正确; (U M )∩N ≠∈,故D 错误. 故选:ABC知识点五:交集、并集、补集的运算(1)交集的运算性质:A ∩B =B ∩A ,A ∩B ⊆A ,A ∩A =A ,A ∩∅=∅,A ∩B =A ⇔A ⊆B . (2)并集的运算性质:A ∪B =B ∪A ,A ⊆A ∪B ,A ∪A =A ,A ∪∅=A ,A ∪B =B ⇔A ⊆B .(3)全集与补集的性质∁U A ⊆U ,∁U U =∅,∁U ∅=U ,A ∪(∁U A )=U ,A ∩(∁U A )=∅,∁U (∁U A )=A .1.(陕西省商洛市商丹高新学校2019-2020学年高一上学期期中)设集合{}{}{}1,0,3,3,21,3A B a a A B =-=++=,则实数a 的值为________. 【答案】0或1 【分析】由于{}3A B ⋂=,所以可得33a +=或213a +=,从而可出a 的值【详解】解:因为{}{}{}1,0,3,3,21,3A B a a A B =-=++=所以33a +=或213a +=,所以0a =或经检验,0a =或1a =都满足题目要求,所以0a =或1a =,故答案为:0或1, 2.(浙江省杭州市高级中学2020-2021学年高一上学期期中)已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x << 【答案】C 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则 {}22M N x x ⋂=-<<.故选C .3.(广西桂林市第十八中学2020-2021学年高一上学期期中)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=( ) A .{−2,3} B .{−2,2,3} C .{−2,−1,0,3} D .{−2,−1,0,2,3} 【答案】A 【分析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =-. 故选:A.4.(江西省南昌大学附中2020-2021年高一上学期期中)设A 、B 、U 均为非空集合,且满足A B U ⊆⊆,则下列各式中错误的是( ) A .()U C A B U = B .()()U U U C A C B C B = C .()U A C B ⋂=∅ D .()()U U C A C B U = 【答案】D 【分析】做出韦恩图,根据图形结合交集、并集、补集定义,逐项判断,即可得出结论. 【详解】A B U ⊆⊆,如下图所示,则U U C B C A ⊆, ()U C A B U =,选项A 正确,()()U U U C A C B C B =,选项B 正确, ()U A C B ⋂=∅,选项C 正确,()()U U U C A C B C A U =≠,所以选项D 错误.故选:D.5.(黑龙江省齐齐哈尔市克东一中、克山一中等五校2019-2020学年高一上学期期中联考)已知集合{}|3A x a x a =≤≤+,24{|}120B x x x =--> (1)若A B =∅,求实数a 的取值范围; (2)若A B B ⋃=,求实数a 的取值范围.【答案】(1)[]2,3-;(2){5|a a -<或6}a >.(1)求出集合{}32|{|A x a x a B x x =≤≤+=<-,或6}x >,由A B =∅,列出不等式组,能求出实数a 的取值范围.(2)由A B B ⋃=,得到A B ⊆,由此能求出实数a 的取值范围. 【详解】 解:(1)∈集合{}|3A x a x a =≤≤+,24120{|}2{|B x x x x x =-->=<-或6}x >,A B =∅,∈236a a ≥-⎧⎨+≤⎩,解得23a -≤≤∈实数a 的取值范围是[]2,3-(2)A B B A B =∴⊆,32a ∴+-<或6a >,解得5a -<或6a >. ∈实数a 的取值范围是{5|a a <-或6}a >6.(广东省华南师范大学附属中学南海实验高级中学2020-2021学年高一上学期期中)已知集合{}{}121215{}A xx B x x C x x m =-≤≤=≤-≤=>∣,∣,∣ (1)求(),R A B A B ⋃⋂;(2)若()A B C ⋃⋂≠∅,求实数m 的取值范围.【答案】(1){}13A B x x ⋃=-≤≤,(){}11R A B x x ⋂=-≤<,(2)(,3)-∞ 【分析】(1)先求出集合B ,再求B R ,然后求(),R A B A B ⋃⋂, (2)由()A B C ⋃⋂≠∅,可得答案 【详解】 解:(1)由1215x ≤-≤,得13x ≤≤,所以{}13B x x =≤≤, 所以{1R B x x =<或}3x >,因为{}12A x x =-≤≤,所以{}13A B x x ⋃=-≤≤,(){}11R A B x x ⋂=-≤< (2)因为()A B C ⋃⋂≠∅,{}C x x m =>,{}13A B x x ⋃=-≤≤, 所以3m <,所以实数m 的取值范围为(,3)-∞,1.(江苏省无锡市江阴四校2018-2019学年高二下学期期中)设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ≠⊂N B .N ≠⊂M C .M ∈N D .N ∈M 【答案】A 【分析】根据集合,M N 元素的特征确定正确选项. 【详解】对于集合N ,当n =2k 时,x =4k +1(k ∈Z );当n =2k -1时,x =4k -1(k ∈Z ).所以N ={x |x=4k +1或x =4k -1,k ∈Z },所以M ≠⊂N . 故选:A2、(重庆市涪陵高级中学2019-2020学年高一上学期)已知集合{}260A x x x =+-≤,{}212B x m x m =-≤≤+,若B A ⊆,则实数m 的取值范围( )A .(][),10,-∞-+∞B .[]()1,03,-+∞ C .()3,+∞D .[)1,3-【答案】B 【分析】求出集合A ,然后分B =∅和B ≠∅两种情况讨论,结合条件B A ⊆得出关于实数m 的不等式组,解出即可. 【详解】{}{}26032A x x x x x =+-≤=-≤≤.当B =∅时,则212m m ->+,得3m >,此时B A ⊆成立;当B ≠∅时,则212m m -≤+,得3m ≤,由B A ⊆,得21322m m -≥-⎧⎨+≤⎩,解得10m -≤≤,此时10m -≤≤.综上所述,实数m 的取值范围是[]()1,03,-+∞.故选:B.3.(广东省佛山市第三中学2018-2019学年高一上学期期中数学试题)已知集合{}21,A x y x y Z==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( )A .AB = B .A BC .BAD .A B =∅【答案】C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C.4.(四川省成都市双流区棠湖中学2019-2020学年高一上学期期中)已知集合{|20}A x x =-<,{|}B x x a =<,若A B B ⋃=,则实数a 的取值范围是 A .(,2]-∞- B .[2,)-+∞ C .(,2]-∞ D .[2,)+∞ 【答案】D 【分析】先根据A B B ⋃=得到A B 、之间的关系,然后利用不等式确定a 的范围. 【详解】因为A B B ⋃=,所以A B ⊆,又因为{}{|20}|2A x x x x =-<=<,{|}B x x a =<,所以2a ≥,即[)2,a ∈+∞,故选:D.5.(上海市华东师范大学第二附属中学2016-2017年高一上学期)已知集合{}2263A x k x k =-+<<-,{}B x k x k =-<<,若AB ,则实数k 的取值范围为________.【答案】10,2⎛+ ⎝⎦【分析】由题意知B ≠∅,可得出0k >,分A =∅和A ≠∅,结合条件A B ,列出关于实数k 的不等式组,解出即可. 【详解】AB ,B ∴≠∅,则k k -<,解得0k >.当A =∅时,2326k k -≤-+,即2290k k +-≤,解得11k -≤≤-+,此时01k <≤;当A ≠∅时,2326k k ->-+,即2290k k +->,解得1k <-或1k >-此时1k >.AB ,则2263k k k k -+≥-⎧⎨-≤⎩,即2630k k k ≤⎧⎨--≤⎩,解得1122k +≤≤,1k <≤经检验,当12k +=时,A B ≠.综上所述,实数k 的取值范围是10,2⎛ ⎝⎦.故答案为:⎛ ⎝⎦.6.(重庆市第八中学2018-2019学年度高一上学期期中考试)已知集合A={x|x 2-(a -1)x -a<0,a∈R},集合B={x|2x 12x+-<0}.(1)当a=3时,求A∩B ;(2)若A∈B=R ,求实数a 的取值范围.【答案】(1)A ∩B ={x |-1<x 12-<或2<x <3};(2)()2,+∞.【分析】(1)结合不等式的解法,求出集合的等价条件,结合集合交集的定义进行求解即可.(2)结合A∈B=R ,建立不等式关系进行求解即可. 【详解】 解:(1)当a =3时,A ={x |x 2-2x -3<0}={x |-1<x <3}, B ={x |212x x+-<0}={x |x >2或x <-12}. 则A ∩B ={x |-1<x 12-<或2<x <3}.(2)A ={x |x 2-(a -1)x -a <0}={x |(x +1)(x -a )<0},B ={x |x >2或x <-12}. 若A ∈B =R ,则2a >,即实数a 的取值范围是()2,+∞.7.(北京市第十三中学2019-2020学年高一上学期期中)已知函数()f x 的定义城为A ,集合{}11B x a x a =-<<+(1)求集合A ;(2)若全集{}5U x x =≤,2a =,求u A B ;(3)若x B ∈是x A ∈的充分条件,求a 的取值范围. 【答案】(1)|34x xA;(2){}|3134UAB x x x =-<≤-≤≤或;(3)|3a a .11 【分析】(1)分母不能为0,偶次方根式的被开方数不能负值.(2)一个集合的补集是在全集而不在这个集合中的元素组成的集合,两个集合的交集是两个集合的公共元素组成的集合;(3)依题意得B 是A 的子集,即集合B 的元素都在集合A 中,由此确定a 的范围.【详解】解: (1)要使函数()f x 有意义,则4030x x -≥⎧⎨+>⎩,即34x 所以函数的定义域为|34x x .所以集合|34x x A(2)因为全集{}5U x x =≤,2a =, ,{}{}1113B x a x a x x ∴=-<<+=-<<{}|135U B x x x ∴=≤-≤≤或,{}|3134U A B x x x =-<≤-≤≤或;(3)由(1)得|34x x A ,若x B ∈是x A ∈的充分条件,即B A ⊆,①当B =∅时, B A ⊆,即11,a a -≥+0a ∴≤②当B ≠∅时, B A ⊆,11013403143a a a a a a a a -<+>⎧⎧⎪⎪-≥-⇒≤⇒<≤⎨⎨⎪⎪+≤≤⎩⎩, 综上所述: a 的取值范围为{}|3a a ≤.8.(安徽省合肥市第六中学2019-2020学年高一上学期期中)已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭;(3){}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【分析】(1)方程ax 2﹣3x +2=0无解,则0a ≠,根据判别式即可求解;(2)分a =0和a ≠0讨论即可;(3)综合(1)(2)即可得出结论.【详解】(1)若A 是空集,则方程ax 2﹣3x +2=0无解此时0,a ≠ ∆=9-8a <0即a 98> 所以a 的取值范围为9,8⎛⎫+∞ ⎪⎝⎭(2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根当a =0时方程为一元一次方程,满足条件当a ≠0,此时∆=9﹣8a =0,解得:a 98= ∈a =0或a 98= 当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素由(1),(2)得满足条件的a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.。
湖南省怀化三中2018-2019学年高一上学期期中考试数学试卷Word版含答案
![湖南省怀化三中2018-2019学年高一上学期期中考试数学试卷Word版含答案](https://img.taocdn.com/s3/m/26954dfdbe1e650e53ea9951.png)
2018年下期期中考试高一年级数学试题命题人:邓蓉蓉审题人:龙英爵 时量:120分钟 总分:150分每小题5分,满分60分•在每小题给出的四个选项中,只有一项是符合题目要求的错误的个数是4.下列四组函数中,表示相等函数的一组是(、选择题:本大题共 12小题, 1.已知集合A { 2, 1},B3, 1,0},则 A B 为( ) A. {1} 3, 2, 1,0}C • {3,0} D • { 3}2.下列各式:① 1 {0,1,2}; {0,1,2} :③{1}{0,1,2};④{0,1,2}{2,0,1},其中3.函数f(x)lOg 2(X 1)的定义域为A • (1,• [1,1, • [ 1,)A. f(x)X 2 , g(x) ( . x)B.f(x)x 2,g(x)C. f (x)g(x)x 2D.f(x)g(x) x 2 15.设 f (x)(x(x (x) 0),)h(x)(X 是有理数),则 f(h( . 2))(A. 1B.C.D.6.已知a0.3,blog 2 0.6,lOg 3 ,则a )bDc a b)c7.函数B • b ca C 2&函数y ax bx 3在 ,1上是增函数,在1,上是减函数,则(A b 0且 a 0B . b 2a0 C.b 2a 0D .a, b 的符号不确定9.设f(x)是定义在R 上的 奇函数,当x 0时,f (x)2X 2x b ( b 为常数),则 f( 1)( )A . 3B.3C.1 D .110.卜列说法正确的是()A .对于任何实数a , 2 1a 4|a |2都成立B•对于任何实数a , n a n |a|都成\立C .对于任何实数a,b ,总有 ln(a b)ln a ln bD .对于任何正数 a , b ,总有In(a b) In a In b11.关于下列命题:① 若函数y 2x 的定义域是{ x | x1② 若函数y —的定义域是{x|xx2③ 若函数y x 的值域是{ y |0 y④若函数y log 2 x 的值域是{y|y 3},则它的定义域是{x|0 x 8}. 其中正确的命题的序号是( )A.①④B. ②④C.②③ D. ④12.定义在[2018,2018]上的函数f(x)满足:对任意的x n x 2 [ 2018,2018],有f(X i X 2) f(X 1) f(X 2)2018,且(X 1 X 2)[f(X 1) f(X 2)] 0 .若 f (x)的最大值和 最小值分别为 M,N ,则M N 的值为()A.2017B.2018C.4034D.4036二.填空题(每小题5分,共计20分.请把答案填在答题卡上的相应横线上 .)13. 化简: \ (4) += ____________ .0},则它的值域是{ y | y 1}; 12},则它的值域是{y | y -}; 4},则它的定义域一定是{x| 2 x 2};14. 函数y log a (x 1) 2的图象过定点_______________15. 若函数f(x) a x(a 0,a 1)在[2,1]上的最大值是4,最小值是m,则实数m的值是.16. 设偶函数f (x)满足f (x) x38(x 0),则满足f (x 2) 0的x的取值范围是.三.解答题:本大题共6个小题,共70分. 解答应写出文字说明、证明过程或演算步骤•17. (本小题满分10分)计算下列各式的值:22.2 o 3\32lg 4 lg9(1) (-) + (1- .2) - (3-)3; (2) —1 1—.3 8 1 -lg 0.36 -lg82 318. (本小题满分10分)已知集合A x|3 x 6 , B x 12 x 5 .(1 )求(C R B) A;(2)已知C x| a x a 1 ,若C B,求实数a的取值的集合.19. (本小题满分12分)已知函数f (x)是定义在R上的偶函数,且当x < 0时,f(x) x22x. (1)现已画出函数f (x)在y轴左侧的图像,女口图所示,请补出完整函数f (x)的图像,并根据图像写出函数f(x) 的增区间;(2)写出函数f (x)的解析式和值域.20. (本小题满分12分) 已知幕函数f(x) x (m m) 1(m N *)的图象经过点(2,、.2).(1)试求m 的值并写出该幕函数的解析式; (2 )试求满足f(1 a) f (3 a)的实数a 的取值范围.21. (本小题满分13分) 已知函数f(x) X 2 bx 2.(1)试判断f (x)的奇偶性;(2) 当b 2时,求f (x)在[0,3]上的值域;(3) 设函数y f(x)在区间[1,2]上的最小值为g(b),求g(b)的解析式•22. (本小题满分13分)1 x已知函数f(x) log 3(m 1)是奇函数.1 mx(1)求函数y f (x)的解析式;1 x(2)设g(x) 丄』,用函数单调性的定义证明:函数y g(x)在区间(1,1)上单调递1 mx减;(3) 解不等式:f(t 3) 0.2018年下期期中考试高一年级数学试题答案题号 1 2 3456 78910 11 12 答案AACCBACBBADD二.填空题:(5分4=20分)•解答题:(共70分)18. (本小题满分10分) 解:(1)由已知得C R B X |X••• C R B A X |X 2或 x 3故实数a 的取值的集合为 a 12 a 419. (本小题满分12分) 解:1)函数图像如右图所示:1I 沖— l\\r;i■・■・%…■■VL*■13. 4 ;14.(2,2);15.------ ?1616. X <0 或 X >417.(本小题满分 10分)9(1)原式=—41 [3 27 ]2(2)原式=2lg 4 lg 92lg12 2lg12 1 lg . 0.36 lg 3 81 lg 0.6 lg 2lg10 lg 0.6 lg 22lg122lg12(2)v C X | a X a 1 ,且 CB ,二2,解得21 56 解:(1)当 b 0时,f (x) x 2 2因为f( x)f(x)恒成立,所以f (x)是偶函数; 当b 0时,因为f( 1)3f(x) 3f( 1) 3 b f(x) b 3 所以f (x)是非奇非偶函数.(3) f(x) x 2 bx 2(b 、2(x -)2 L2 4①当-2即b 2时,f (x)ming(b) f (1) 3 b②当1 K-即2 b24时, f (x)ming(b)③当b 2即b 4时,f (x)ming(b)f(2) 6 2b二 g(b)b,4 2b,,应 b b 44bb 坷22.(本小题满分13分)解:(1)由题意知f( x) f (x)对定义域内的x 都成立f(x)的递增区间是(1,0) , (1,).20. (本小题满分12分)解: (1)由题可得2(m m) 1 ,所以(m 2 m) 1 -,所以 m 2 m 2,21 解得 m 1 或m 2,又 m N *,所以 m1, f (x) x 2 .1 a 0⑵f(x)的定义域为[0,),且在[0,)上单调递增,则有 3 a 0,解得1 a 31 a 3 a21. (本小题满分13分)(2)解析式为:f (x)x 2 2x, x 2x 2x, x,值域为:y|y 1所以a 的取值范围为1 a3.⑵值域为23. 1 •log s’Xlog 1X | 1 mx °g 3• 1 X1 mx31 X 1 mx1 mx 1 X 1mx-1 x 2 2 1 m 2 X 对定义域内的 X 都成立,••2 • m 1 ••• m 1 • m11 X-f(x) |°g 3 彳1 X1 (2) g(x),,设 X 1,X 2 ( 1,1)且 X 1 X 2,则 X 1 1 0, X 2 1 0, X 2X 1 01 X■ g(x 1 g X 2) 1 x 1 1 x 2 2(X 2 xj• -g(x 1g X 2) 1 x 1 1 x 2 (1 X 1)(1 X 2)•••函数g(x)在区间(1,1)上单调递减所以不等式解集为{t 3 t 2}.(3)函数 y f (x)的定义域为(1,1),设 x-i , x 2 ( 1,1)且 x-iX 2,由(2)知 g(X 1g X 2)• g g(xj log s g(X 2)即 f (xf X 2) • y f (x)在区间(1,1)上单调递减f(t 3)0 f(0),解得。
江西省南昌市第二中学2018-2019学年高一上学期期中考试数学试题
![江西省南昌市第二中学2018-2019学年高一上学期期中考试数学试题](https://img.taocdn.com/s3/m/5a0f4b057275a417866fb84ae45c3b3567ecdd33.png)
南昌二中2018—2019学年度上学期期中考试高一数学试卷命题人:曹玉璋 审题人:黄洁琼一、选择题(每小题5分,共60分.)1.若集合M ={x|1≤x },N ={y|y =x 2,1≤x },则( ) A .M∩N =]10(, B .M ⊆N C .N ⊆M D .M =N2.已知集合A ={1<x x },B ={x |13<x },则( )A .A∩B ={x|x<0} B .A ∪B =RC .A ∪B ={x|x>1}D .A∩B =φ 3.若全集U =R ,集合A ={x |x y 2020log =},集合B ={y |1+=x y },则A∩(∁U B) =( )A .φB .(0,1)C . (0,1]D .(1,+∞) 4.已知函数f (x )=⎩⎨⎧2x +1,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45C .9D .2 5.已知函数)(x f y =的定义域]1,8[-,则函数2)12()(++=x x f x g 的定义域是( )A. ]3,15[-B.]0,29[-C.]0,2(2,29[--- )D ]3,2(2,15[--- )6.已知函数x x x f )1()(γγ-=(其中欧拉常数0.577≈γ),则)(x f ( )A .是奇函数,且在R 上是减函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是增函数D .是偶函数,且在R 上是减函数 7.方程x x 8201log )92011(=的解的个数是A. 3个B. 2个C. 1`个D. 0个8.方程03lg =-+x x 根所在的区间是( )9.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-310.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( )A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]11.已知定义在R 上的偶函数)(x f ,且x≥0时,1,35310,1{)(3>+≤≤+=-x x x x f x 方程m x f =)( 恰好有4个实数根,则实数m 的取值范围是( )A .),(20B .),(21 C .),(235 D .),235[ 12.已知)(x f 是定义在R 上的奇函数,对任意两个不相等的正数21,x x 都有0)()(212112>--x x x f x x f x ,记:1.4log )1.4(log ,4.0)4.0(,1.4)1.4(2.02.01.21.22.02.0f c f b f a ===,则( ) 二、填空题(每小题5分,共20分.)13.函数12+=+x a y )10(≠>a a 且的图象恒过的定点是 . 14.幂函数m x m m x f )2()(2+=在),0[+∞上为单调递增的,则=m ___________. 15.若函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上是单调减函数.如果实数t 满足()()1ln ln 21f t f f t ⎛⎫+< ⎪⎝⎭时,那么t 的取值范围是 .16. 函数2012)(x x x x x x f ++++=--的值域是 . 三、解答题(共70分)17.(本小题共10分)已知A ={x |0<log 2(x +1)<2},B ={x |ax 2-ax -4<0}.(1)当a =2时,求A ∩B ;(2)若B=R ,求实数a 的取值范围. 18.(本小题共12分)化简与求值(1)(2)19. (本小题共12分)求下列函数的值域(1))1,(,432)(2-∞∈⨯-=+x x f x x ; (2)]4,1[,2log 4log )(22∈⋅=x x xx f ; (3)R x x e x f x∈+=,)(.20. (本小题共12分)已知函数为偶函数,且.(1)求m 的值,并确定的解析式;(2)若])([log )(ax x f x g a -=(a >0且1≠a ) 在]3,2(上为增函数,求实数a 的取值范围.21. .(本小题共12分)如果函数在其定义域D 内,存在实数使得成立,则称函数为“可拆分函数”.(1)判断函数x x f x x f x x f x x f x x f 2)(,ln )(,)(,1)(,)(543221=====是否为“可拆分函数”?(需说明理由)(2)设函数12lg)(+=xax f 为“可拆分函数”,求实数a 的取值范围。
2018-2019学年上海市华东师范大学第二附属中学高一上学期期中考试数学试卷含详解
![2018-2019学年上海市华东师范大学第二附属中学高一上学期期中考试数学试卷含详解](https://img.taocdn.com/s3/m/20e3bdd3846a561252d380eb6294dd88d0d23daf.png)
华二附中高一期中数学试卷一、填空题1.若集合{}2|20A x x x =+-=,{}|1B x =<,则A B ⋃=______.2.若全集{}|26,U x x x Z =-≤≤∈,集合{}|2,3,A x x n n n N ==≤∈,则U C A =______.(用列举法表示)3.在如图中用阴影部分表示集合()U U U C C A C B _____.4.命题“设,,a b R ∈若0,ab =则0a =或0b =”的逆否命题是:________.5.已知集合{}|A x x a =<,{}2|540B x x x =-+≥,若P :“x A ∈”是Q :“x B ∈”的充分不必要条件,则实数a 的取值范围为______.6.已知,x y R +∈,且41x y +=,则x y ⋅的最大值为________________7.函数y =______.8.若关于x 的不等式210mx mx +->的解集为∅,则实数m 的取值范围为_______.9.对定义域是f D 、g D 的函数()y f x =、()y g x =,规定函数()()()()(),,,,,,f gf gf g f x g x x D x D h x f x x D x D g x x D x D ⎧∈∈⎪=∈∉⎨⎪∉∈⎩,设函数()()2f x x x R =-∈,()()231g x x x =-+≥,则函数()h x 的值域是______.10.设2019a b +=,0b >,则当=a ______时,12019a a b+取得最小值.二、选择题11.已知集合{}|1,M y x y x R =+=∈,{}|1,N y x y x R =-=∈,则M N ⋂=()A.()1,0 B.(){}1,0 C.{}0 D.R12.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件13.若110a b <<,则下列不等式中,①2ab b <;②22a b >;③2a b +<④2a b b a +>.成立的个数是()A.1B.2C.3D.414.定义区间(),c d 、[),c d 、(],c d 、[],c d 的长度均为()d c d c ->,已知实数a b >,则满足111x a x b+≥--的x 构成的区间的长度之和为()A.a b- B.a b+ C.4D.2三、解答题15.若0a >,0b >,求证:22b a a b a b +≥+.16.解不等式组:9721212x x x ⎧≥⎪-+⎨⎪+≥⎩.17.缴纳个人所得税是收入达到缴纳标准的公民应尽的义务.①个人所得税率是个人所得税额与应纳税收入额之间的比例;②应纳税收入额=月度收入-起征点金额-专项扣除金额(三险一金等);③2018年8月31日,第十三届全国人民代表大会常务委员会第五次会议《关于修改中华人民共和国个人所得税法的决定》,将个税免征额(起征点金额)由3500元提高到5000元.下面两张表格分别是2012年和2018年的个人所得税税率表:2012年1月1日实行:级数应纳税收入额(含税)税率(%)速算扣除数一不超过1500元的部分30二超过1500元至4500元的部分10105三超过4500元至9000元的部分20555四超过9000元至35000元的部分251005五超过35000元至55000元的部分302755六超过55000元至80000元的部分355505七超过80000元的部分45135052018年10月1日试行:级数应纳税收入额(含税)税率(%)速算扣除数一不超过3000元的部分30二超过3000元至12000元的部分10210三超过12000元至25000元的部分201410四超过25000元至35000元的部分252660五超过35000元至55000元的部分304410六超过55000元至80000元的部分357160七超过80000元的部分4515160(1)何老师每月工资收入均为13404元,专项扣除金额3710元,请问何老师10月份应缴纳多少元个人所得税?若与9月份相比,何老师增加收入多少元?(2)对于财务人员来说,他们计算个人所得税的方法如下:应纳个人所得税税额=应纳税收入额×适用税率-速算扣除数,请解释这种计算方法的依据?18.已知集合{}22|190D x x ax a =-+-=,{}2|22,B y y x x y Z+==-++∈,集合|C x y x Z ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭,且集合D 满足D B ≠∅ ,D C =∅.(1)求实数a 的值;(2)对集合{}()12,,,2k A a a a k =⋅⋅⋅≥,其中()1,2,,i a Z i k ∈=⋅⋅⋅,定义由A 中的元素构成两个相应的集合:(){},|,,S a b a A b A a b A =∈∈+∈,(){},|,,T a b a A b A a b A =∈∈-∈,其中(),a b 是有序数对,集合S 和T 中的元素个数分别为m 和n ,若对任意的a A ∈,总有a A -∉,则称集合A 具有性质P .①请检验集合B C ⋃与B D 是否具有性质P ,并对其中具有性质P 的集合,写出相应的集合S 和T ;②试判断m 和n 的大小关系,并证明你的结论.华二附中高一期中数学试卷一、填空题1.若集合{}2|20A x x x =+-=,{}|1B x =<,则A B ⋃=______.【答案】{}[]20,1- 【分析】解一元二次方程求得集合A ,解不等式求得集合B ,由此求得两个集合的并集.【详解】由()()22210xx x x +-=+-=解得2x =-或1x =,故{}2,1A =-.由1<得01x ≤<,故[)0,1B =.所以A B ⋃={}[]20,1- .故答案为{}[]20,1- .【点睛】本小题主要考查集合并集的概念和运算,考查一元二次方程的解法,考查不等式的解法,属于基础题.2.若全集{}|26,U x x x Z =-≤≤∈,集合{}|2,3,A x x n n n N ==≤∈,则U C A =______.(用列举法表示)【答案】{}2,1,1,3,5--【分析】分别求得集合,U A 的元素,由此求得U C A .【详解】依题意{}2,1,0,1,2,3,4,5,6U=--,{}0,2,4,6A =,所以{}2,1,1,3,5U C A =--.故答案为{}2,1,1,3,5--.【点睛】本小题主要考查集合补集的概念和运算,属于基础题.3.在如图中用阴影部分表示集合()U U U C C A C B _____.【答案】详见解析【分析】先用阴影部分表示U U C A B C ,再用阴影部分表示()U U U C C A C B .【详解】依题意可知U U C A B C 表示为:故()U U U C C A C B 表示为:故答案为【点睛】本小题主要考查利用文氏图表示集合的并集和补集的运算,属于基础题.4.命题“设,,a b R ∈若0,ab =则0a =或0b =”的逆否命题是:________.【答案】设,a b R ∈,若0a ≠且0b ≠,则0ab ≠.【分析】直接利用逆否命题的定义求解即可.【详解】 逆否命题是将原命题的条件与结论都否定,然后将条件当结论,结论当条件,所以“,,a b R ∈若0,ab =则0a =或0b =”的否命题是“,,a b R ∈若0b ≠且0b ≠,则0ab ≠”,故答案为“,,a b R ∈若0b ≠且0b ≠,则0ab ≠”.【点睛】本题主要考查逆否命题的定义,属于简单题.逆否命题是将原命题的条件与结论都否定,然后将条件当结论,结论当条件求得.5.已知集合{}|A x x a =<,{}2|540B x x x =-+≥,若P :“x A ∈”是Q :“x B ∈”的充分不必要条件,则实数a 的取值范围为______.【答案】1a ≤【分析】解一元二次不等式求得集合B ,根据P :“x A ∈”是Q :“x B ∈”的充分不必要条件,判断出A 是B 的真子集,由此列不等式,解不等式求得a 的取值范围.【详解】依题意()()254140xx x x -+=--≥,解得1x ≤或4x ≥.由于P :“x A ∈”是Q :“x B ∈”的充分不必要条件,所以集合A 是集合B 的真子集,故1a ≤.即a 的取值范围为1a ≤.故答案为1a ≤【点睛】本小题主要考查根据充分不必要条件求参数的取值范围,考查一元二次不等式的解法,属于基础题.6.已知,x y R +∈,且41x y +=,则x y ⋅的最大值为________________【答案】116【详解】211414()44216x y xy x y +=⋅≤=,当且仅当x=4y=12时取等号.7.函数y =______.【答案】[)[]1,00,2- 【分析】根据偶次方根被开方数为非负数,分式分母不为零列不等式组,解不等式组求得函数的定义域.【详解】依题意2401010x x ⎧-≥⎪+≥⎨⎪-≠⎩,2210x x x -≤≤⎧⎪≥-⎨⎪≠⎩,解得[)[]1,00,2x ∈- .故答案为[)[]1,00,2- .【点睛】本小题主要考查函数定义域的求法,考查不等式的解法,属于基础题.8.若关于x 的不等式210mx mx +->的解集为∅,则实数m 的取值范围为_______.【答案】[4,0]-【详解】试卷分析:当0m =时,不等式变形为10->,解集为∅,符合题意;当0m ≠时,依题意可得20{4040m m m m <⇒-≤<∆=+≤,综上可得40m -≤≤.考点:一元二次不等式.【易错点睛】本题主要考查不等式中的一元二次不等式问题,难度一般.有很多同学做此题时直接考虑为一元二次不等式,其二次函数应开口向下且与x 轴至多有一个交点,而忽略二次项系数为0时的情况导致出现错误.当二次项系数含参数时一定要讨论是否为0,否则极易出错.9.对定义域是f D 、g D 的函数()y f x =、()y g x =,规定函数()()()()(),,,,,,f g f gf g f x g x x D x D h x f x x D x D g x x D x D⎧∈∈⎪=∈∉⎨⎪∉∈⎩,设函数()()2f x x x R =-∈,()()231g x x x =-+≥,则函数()h x 的值域是______.【答案】1,8⎛⎤-∞ ⎥⎝⎦【分析】先根据()h x 函数的定义求得()h x 的解析式,由此求得()h x 的值域.【详解】根据()h x 函数的定义可知()()()223,12,1x x x h x x x ⎧--+≥=⎨-<⎩,即()2276,12,1x x x h x x x ⎧-+-≥=⎨-<⎩,对于()22761y x x x =-+-≥,其图像开口向下,对称轴为74x =,所以当74x =时有最大值为2771276448⎛⎫-+⨯-= ⎪⎝⎭,没有最小值,即18y ≤.对于()21y x x =-<,21y x =-<-.故函数()h x 的值域是1,8⎛⎤-∞ ⎥⎝⎦.故答案为1,8⎛⎤-∞ ⎥⎝⎦.【点睛】本小题主要考查新定义函数的理解和运用,考查分段函数解析式和值域的求法,属于基础题.10.设2019a b +=,0b >,则当=a ______时,12019a a b+取得最小值.【答案】20192018-【分析】利用已知条件,将12019a a b+转化为2220192019a a ba ab ++,然后利用绝对值的性质结合基本不等式,求得最小值,并求得此时a 的值.【详解】2120192019a a a b a b a b ++=+222122019201920192019a a b a a b =++≥-+,当且仅当22019a ba b=且a<0时等号成立,即20192018a =-.故答案为20192018-【点睛】本小题主要考查利用基本不等式求最小值,考查绝对值的性质,考查化归与转化的数学思想方法,属于中档题.二、选择题11.已知集合{}|1,M y x y x R =+=∈,{}|1,N y x y x R =-=∈,则M N ⋂=()A.()1,0B.(){}1,0 C.{}0 D.R【答案】D【分析】根据y 的取值范围,求得M N R ==,由此求得两个集合的交集.【详解】对于集合,M N ,两个集合的研究对象都是y ,且R y ∈,故M N R ==,所以M N R = .故选D.【点睛】本小题主要考查集合交集的概念和运算,属于基础题.12.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件【答案】B【详解】根据等价命题,便宜Þ没好货,等价于,好货Þ不便宜,故选B .【考点定位】考查充分必要性的判断以及逻辑思维能力,属中档题.13.若11a b <<,则下列不等式中,①2ab b <;②22a b >;③2a b +<④2a b b a +>.成立的个数是()A.1B.2C.3D.4【答案】C 【分析】根据110a b<<得到0b a <<,结合不等式的性质、基本不等式,对四个不等式逐一分析,由此判断出成立的个数.【详解】由110a b<<可知0b a <<.由b a <两边乘以负数b 得2b ab >,故①正确.由0b a <<得()()22220,b a b a b a b a -=+->>,故②错误.由0b a <<,结合基本不等式有()()22a b a b -+-+=-<,故③正确.由0b a <<,结合基本不等式有2a b b a +>=,故④正确.综上所述,正确的个数为3个.故选C.【点睛】本小题主要考查不等式的性质,考查基本不等式的运用,属于基础题.14.定义区间(),c d 、[),c d 、(],c d 、[],c d 的长度均为()d c d c ->,已知实数a b >,则满足111x a x b+≥--的x 构成的区间的长度之和为()A.a b -B.a b+ C.4D.2【答案】D 【分析】将不等式111x a x b+≥--转化为高次分式不等式,求得不等式的解集,由此求得x 构成的区间的长度和.【详解】原不等式111x a x b +≥--可转化为()()()220x a b x ab a b x a x b -+++++≤--①,对于()220x a b x ab a b -+++++=,其判别式()220a b ∆=-+>,故其必有两不相等的实数根,设为12,x x ,由求根公式得1x =,2x =下证12b x a x <<<:构造函数()()22f x x a b x ab a b =-+++++,其两个零点为12,x x ,且12x x <.而()()220f a a a b a ab a b b a =-++⋅+++=-<,所以12x a x <<,由于b a <,且()()220f b b a b b ab a b a b =-++⋅+++=->,由二次函数的性质可知12b x a x <<<.故不等式①的解集为(](]12,,b x a x ⋃,其长度之和为()1212x b x a x x a b -+-=+-+()22a b a b =++-+=.故选D.【点睛】本小题主要考查高次分式不等式的解法,考查一元二次方程、一元二次不等式的关系,考查新定义的理解和运用,考查化归与转化的数学思想方法,综合性较强,属于难题.三、解答题15.若0a >,0b >,求证:22b a a b a b+≥+.【答案】证明见解析.【分析】将不等式两边做差,变形为多个因式的积或商的形式,判断每个因式的正负即可.【详解】2233()()b a a b a b aba b a b ab ⎛⎫+-++-+= ⎪⎝⎭()222()()()a b a ab b ab a b a b abab+-+-+-==.0a > ,0b >,0a b +>2()()0a b a b ab +-∴≥,22()0b a a b a b ⎛⎫∴+-+≥ ⎪⎝⎭∴原式得证.16.解不等式组:9721212x x x ⎧≥⎪-+⎨⎪+≥⎩.【答案】(][],31,5-∞- 【分析】分别求得分式不等式和绝对值不等式的解集,求两者的交集得到不等式组的解集.【详解】由97212x x ≥-+得970212x x -≥-+,()()50212x x x -≤-+,解得()1,2,52x ⎛⎤∈-∞-⋃ ⎥⎝⎦.由12x +≥得12x +≤-或12x +≥,解得3x ≤-或1x ≥.所以不等式9721212x x x ⎧≥⎪-+⎨⎪+≥⎩的解集即()(][)(][]1,2,52,31,5,31,x x x ⎧⎛⎤=-∞-⋃⎪ ⎥⇒∈-∞-⋃⎝⎦⎨⎪∈-∞-⋃+∞⎩.故答案为(][],31,5-∞- .【点睛】本小题主要考查分式不等式的解法,考查绝对值不等式的解法,考查不等式组的求解,属于基础题.17.缴纳个人所得税是收入达到缴纳标准的公民应尽的义务.①个人所得税率是个人所得税额与应纳税收入额之间的比例;②应纳税收入额=月度收入-起征点金额-专项扣除金额(三险一金等);③2018年8月31日,第十三届全国人民代表大会常务委员会第五次会议《关于修改中华人民共和国个人所得税法的决定》,将个税免征额(起征点金额)由3500元提高到5000元.下面两张表格分别是2012年和2018年的个人所得税税率表:2012年1月1日实行:级数应纳税收入额(含税)税率(%)速算扣除数一不超过1500元的部分30二超过1500元至4500元的部分10105三超过4500元至9000元的部分20555四超过9000元至35000元的部分251005五超过35000元至55000元的部分302755六超过55000元至80000元的部分355505七超过80000元的部分45135052018年10月1日试行:级数应纳税收入额(含税)税率(%)速算扣除数一不超过3000元的部分3二超过3000元至12000元的部分10210三超过12000元至25000元的部分201410四超过25000元至35000元的部分252660五超过35000元至55000元的部分304410六超过55000元至80000元的部分357160七超过80000元的部分4515160(1)何老师每月工资收入均为13404元,专项扣除金额3710元,请问何老师10月份应缴纳多少元个人所得税?若与9月份相比,何老师增加收入多少元?(2)对于财务人员来说,他们计算个人所得税的方法如下:应纳个人所得税税额=应纳税收入额×适用税率-速算扣除数,请解释这种计算方法的依据?【答案】(1)何老师10月份应缴纳683.8元个人所得税,增加收入424.4元(2)详见解析【分析】(1)先计算出10月份的扣税,再计算出9月份的扣税,两者作差,计算出何老师增加的收入.(2)直接按当前级数税率计算,则多算了前面级数的金额,所以要扣除.这样计算可以减少运算量,能使财务人员迅速计算出个人所得税.【详解】(1)10月份,13404371050004694--=,∴30003%169410%259.4⨯+⨯=;9月份,13404371035006194--=,∴15003%300010%169420%683.8⨯+⨯+⨯=;增加收入683.8259.4424.4-=元;(2)速算扣除数等于按当前级数税率计算后,前面级数多算的金额,所以扣除,如2018年10月的表中,21030007%=⨯,1410900010%300017%=⨯+⨯,2660130005%900015%300022%=⨯+⨯+⨯,依此类推.【点睛】本小题主要考查实际生活中的数学应用,属于基础题.18.已知集合{}22|190D x x ax a =-+-=,{}2|22,B y y x x y Z +==-++∈,集合|C x y x Z ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭,且集合D 满足D B ≠∅ ,D C =∅ .(1)求实数a 的值;(2)对集合{}()12,,,2k A a a a k =⋅⋅⋅≥,其中()1,2,,i a Z i k ∈=⋅⋅⋅,定义由A 中的元素构成两个相应的集合:(){},|,,S a b a A b A a b A =∈∈+∈,(){},|,,T a b a A b A a b A =∈∈-∈,其中(),a b 是有序数对,集合S 和T 中的元素个数分别为m 和n ,若对任意的a A ∈,总有a A -∉,则称集合A 具有性质P .①请检验集合B C ⋃与B D 是否具有性质P ,并对其中具有性质P 的集合,写出相应的集合S 和T ;②试判断m 和n 的大小关系,并证明你的结论.【答案】(1)2a =-(2)①B C ⋃不具有性质P ,B D 具有性质P ;()(){}1,2,2,1S =,()()(){}2,1,3,1,3,2T =②m n <,证明见解析【分析】(1)先求得集合,B C 所包含的元素,根据D B ≠∅ ,D C =∅ ,求得a 的值.(2)根据(1)求得,,B C D ,由此求得,B C B D ⋃⋃.①根据性质P 的定义,判断出B C ⋃不具有性质P ,B D 具有性质P .根据集合,S T 的定义求得,S T .②根据①所求,S T ,求得,m n ,由此比较出两者的大小关系.【详解】(1)对于集合B ,222y x x =-++开口向下,对称轴为1x =,当1x =时3y =,故{}1,2,3B =对于集合C ,由201x x -≥+,解得()12x x Z -<≤∈,所以{}0,1,2C =.根据题意D B ≠∅ ,D C =∅ ,所以3D ∈,解得5a =或2a =-,经检验,5a =不符合D C =∅ ,故舍去,2a =-满足题意,即2a =-.(2)由(1)得{}3,5D =-,{}1,2,3B =,{}0,1,2C =,{}0,1,2,3B C ⋃=,{}5,1,2,3B D =- .①B C ⋃中,00B C B C ⋃-∈⋃∈,故B C ⋃不具有性质P ;B D 中任意元素,a B D a B D ∈-∉ ,故B D 具有性质P ;根据集合,S T 的定义,求得()(){}1,2,2,1S =,()()(){}2,1,3,1,3,2T =;②由①知,2,3m n ==,故m n <.【点睛】本小题主要考查二次函数函数值、一元二次不等式的解法,函数的定义域,考查新定义概念的理解和运用,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019第一学期高一期中考试数学科试题时间120分钟 满分150分一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.若全集{1,2,3,4,5,6}U =,{2,3}M =,{1,4}N =,则集合{5,6}= ( )A. M NB. M NC. ()()U U C M C ND.()()U U C M C N 2.函数221()f x x x=-的图象关于( ) A.坐标原点对称 B. x 轴对称 C. y 轴对称 D.直线y x =对称3.设()f x 是定义在R 上的一个函数,则函数()()()F x f x f x =--在R 上一定是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数。
4. 若全集2{|1090}U x x x =-+≤,{1,9}M =,{|12}N x x =-≤,则()U C M N =( )A. [)1,3B. [)1,9-C. (1,3)D.(]1,35.设函数2,0(),0x x f x x x -≤⎧=⎨>⎩,若()4f a =,则实数a =( ) A .4,2,2-- B .4,2-- C. 4,2-D. 2,2-6.若偶函数()f x 在(],1-∞-上是增函数,则下列关系式中成立的是( )A .(1.5)(1)(2)f f f -<-<B .(1)( 1.5)(2)f f f -<-<C. (2)(1)(1.5)f f f <-<-D. (2)( 1.5)(1)f f f <-<- 7.已知0.70.90.70.8,0.8, 1.2a b c ===,则a 、b 、c 的关系为:A.c a b >>B. c b a >>C. a c b >>D. a b c >>8.若,m n 满足313log log m n =,则,m n 的关系是( )A.m n =B. 1mn =C. 0m n +=D. 0mn =9.已知函数1()22x x f x ⎛⎫=- ⎪⎝⎭,则()f x ( ) A .在R 上是增函数,图像关于原点对称. B .在R 上是增函数, 图像关于y 轴对称.C .在R 上是减函数, 图像关于原点对称.D .在R 上是减函数, 图像关于y 轴对称.10.下列各组函数表示同一函数的是( )A.2()()f x g x ==,B. 2()()f x g x ==C.0()1,()f x g x x == D. 21()1,()1x f x x g x x -=+=- 11.函数lg(53)y x =-的定义域是( ) A .[0,53) B .[0,53] C .[1,53) D .[1,53] 12.当01a <<时,在同一坐标系中,函数x y a y a x log ==-与的图象是( )A .B .C . D二.填空题:本大题共4小题,每小题5分。
13. 已知集合{}12P x Z x =∈-<,{}12Q x Z x =∈-≤≤, 则P Q =__________.14.若543log (log (log ))0x =,则12x -= ____.15.函数y =的定义域为____________.16.若函数2()1f x ax x =--与x 轴只有一个交点,则实数a = ___________.三.解答题:解答应写出文字说明,证明过程或演算步骤,不能只写一个结果。
17.(本题满分12分):(I)计算:(÷ (II)计算:3322(log 4log 8)(log 3log 9)++18.(本题满分12分):已知()y f x =是一次函数,且(2)4,(1)5f f =-=-,(I)求函数()f x 的解析式.(II)若()()22f x x =,求实数x 的值.19.(本题满分12分)已知函数()f x =(I)求()()16f f 的值.(II)用单调性的定义证明:函数()f x =[0,)+∞上是增函数.20.(本题满分12分)已知函数2()f x x x a =+-(I)若2a =,求不等式()0f x >的解集.(II)若对任意的[1,2]x ∈-,()0f x >恒成立,求实数a 的取值范围.21.(本题满分12分):已知函数3f x x x=+()(I)判断函数()f x的奇偶性,并证明你的结论.(II)若()++-<f m f mf x是R上的增函数,解关于m的不等式(1)(23)022.(本题满分10分)(I)若函数2=-+的定义域为R,求实数k的取值范围.f x x kx k()lg()(II)已知函数2=--在[5,20]上单调,求实数k的取值范围.()48f x x kx2018-2019第一学期高一期中考试数学参考答案及评分标准一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
二.填空题:本大题共4小题,每小题5分。
13.{0,1,2}; 14. 19; 15. (],0-∞ 16. 1,04- 三.解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本题满分12分):解:(1)原式=12111334424(3)(6)x x yy x ----÷-……………… 2分 =12111()()334424(3)6x y ---+--⨯-- ………………5分 =132xy ……………… 6分=2 …………… 6分(2)原式=3322(2log 23log 2)(log 32log 3)++ …………… 7分=32(5log 2)(3log 3)……………… 9分=5lg 23lg 3lg 3lg 2⨯ ……………… 11分 =15 ………………1 2分18.(本题满分12分):解:(1)依条件设()(0)f x kx b k =+≠……………… 1分∵(2)4,(1)5f f =-=-∴245k b k b +=⎧⎨-+=-⎩, ……………… 3分∴32k b =⎧⎨=-⎩ ……………… 5分∴ ()32f x x =- ……………… 6分 (2)∵()()22f x x =,∴()(32)22x x -=, ……………… 7分 ∴()2(32)22x x -=, ……………… 8分∴2321x x -=.即23210x x --= ……………… 9分 解得:1211,3x x ==- ……………… 11分 ∴x 的值为1或13-. ……………… 12分19.(本题满分12分):(1)解:()()16f f f = ……………… 2分 (4)f =2= ……………… 4分(2)证明:设任意1212,[0,),x x x x ∈+∞<, ……………… 5分 则12()()f x f x -……………… 6分9分……………… 10分 ∵120x x ≤<∴120x x -<0>∴12()()0f x f x -< ……………11分即12()()f x f x <∴()f x =[)0,+∞上是增函数……………… 12分20.(本题满分12分)解:(1)∵2a =时,2()2f x x x =+- ……… 1分∴()0f x >,即为220x x +->……… 2分解得:2x <-或1x > ……… 4分∴不等式()0f x >的解集为{}2 1 x x x <->或 ……… 5分(2)∵对任意的[1,2]x ∈-,()0f x >恒成立∴()0f x >最小值([1,2]x ∈-) ……… 6分 ∵()y f x =图像抛物线开口朝上,对称轴为12x =-……… 7分∴()y f x =在区间1[1,]2--上单调递减,在区间1[,2]2-上单调递增,8 ∴11()()24f x f a =-=--最小值 ………10分 由104a -->,得14a <- …… 11分 ∴a 的取值范围. 1(,)4-∞- …… 12分21.(本题满分12分):解:(1)()f x 是奇函数, ………1分证明如下: ∵()f x 是定义域为R ,………2分且3()()()f x x x -=-+- ………3分3x x =--()f x =- ………4分∴()f x 是奇函数 ………5分(2)(1)(23)0f m f m ++-<化为(1)(23)f m f m +<--………6分∵()f x 是奇函数∴(23)(23)f m f x --=-+ ………8分 ∴不等式化为(1)(23)f m f m +<-+又∵()f x 是R 上的增函数∴123m m +<-+ ………10分 ∴23m <………11分 ∴不等式的解集为23m m ⎧⎫<⎨⎬⎩⎭ ………12分22. 解关于x 的不等式2(1)0x a x a +--<.(本题满分10分): 解:(1)∵函数2()lg()f x x kx k =-+的定义域为R∴ 20x kx k -+>对任意x R ∈恒成立,………1分 ∴2()0x kx k -+>最小,即2404k k -> ………2分 解得:04k <<∴k 的取值范围是(0,4). ………5分(2)∵()y f x =图像抛物线开口朝上,对称轴为8k x =,………6分 ∴()y f x =的单调减区间为(,]8k -∞,单调增区间为[,)8k +∞………7分 ∵()y f x =在[5,20]上单调 ∴58k ≤,或208k ≥ ………8分 ∴40k ≤或160k ≥ ………9分 ∴k 的取值范围是(,40][160,)-∞+∞。
………10分。