高考数学圆锥曲线与方程总结题型详解
高考数学圆锥曲线与方程章总结题型详解
【答案】C
【解析】∵抛物线 的焦点坐标F(1,0),p=2,
抛物线的焦点和双曲线的焦点相同,
∴p=2c,即c=1,
设P(m,n),由抛物线定义知:
.
∴P点的坐标为 .
,解得: .
则渐近线方程为 .
故选:C.
1.(2019·天津高考模拟(理))己知点A是抛物线 与双曲线 的一条渐近线的交点,若点A到抛物线 的准线的距离为p,则双曲线的离心率为()
所以直线 的倾斜角为 ,
则 ,由抛物线的定义得 ,
所以 为等边三角形,又 ,
所以|AF|=4,
所以 到 的距离等于 ,
故选:A.
题型二 标准方程
1.(2019·天津市宁河区芦台第一中学高考模拟(理))已知双曲线 的离心率 ,点 是抛物线 上的一动点, 到双曲线 的上焦点 的距离与到直线 的距离之和的最小值为 ,则该双曲线的方程为()
所以直线和椭圆相交,即公共点有2个。
故选A.
2.(2019·河南高考模拟(理))已知椭圆 ,设过点 的直线 与椭圆 交于不同的 , 两点,且 为钝角(其中 为坐标原点),则直线 斜率的取值范围是()
A. B.
C. D.
【答案】B
【解析】设直线 ,代入 ,得 ,
因为直线 与椭圆交于不同的 , 两点,
所以 ,解得 且 .
又 ,得 ,
所以 , ,即椭圆方程为 .
(2)由 得 ,
由 ,
得 .
由 ,
设 的中点 为 ,
得 ,即 ,
∴ .
∴ 的中垂线方程为 .
即 ,故 的中垂线恒过点 .
2.(2019·安徽省泗县第一中学高考模拟(文))已知椭圆 : 的离心率为 ,且椭圆上一点 的坐标为 .
高考数学圆锥曲线大题所有题型解法
高考数学圆锥曲线大题所有题型解法
高考数学圆锥曲线大题的题型多种多样,以下是常见的几种题型和解法:
1.求圆锥曲线的方程:通过给定的条件,根据圆锥曲线的定义和性质,可以求出圆锥曲线的方程。
例如,已知圆锥曲线的焦点、准线或者过定点的直线方程,可以根据定义和性质求出圆锥曲线的方程。
2.求圆锥曲线的性质:通过已知的条件,可以利用圆锥曲线的性质来求解问题。
例如,已知圆锥曲线的焦点和准线,可以求出其焦距、离心率等性质。
3.求直线与圆锥曲线的交点:通过已知的直线方程和圆锥曲线的方程,可以求出它们的交点。
可以将直线方程代入圆锥曲线方程,解方程得到交点的坐标。
4.求切线和法线:通过已知的条件,可以求出圆锥曲线上某点的切线和法线方程。
例如,已知圆锥曲线上一点的坐标,可以求出该点处的切线和法线方程。
5.求曲线的参数方程:对于给定的圆锥曲线方程,可以通过变量替换的方法,将其转化为参数方程。
例如,对于抛物线,可以令y=xt^2,将方程转化为参数方程。
这些只是一些常见的题型和解法,实际上高考数学圆锥曲线大
题的题型和解法还有很多,需要根据具体的题目来进行分析和解决。
掌握圆锥曲线的基本定义、性质和常见的解题方法,能够更好地应对这类题目。
高考圆锥曲线知识点、题型全总结
圆锥曲线全总结及全题型解析1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常,且此常数一定要大于,当常数等时,轨迹是线段 F F ,当常数小时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数,且此常数一定要小于F |,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F |,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时(),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(A B C≠0,且A,B,C同号,A≠B)。
(2)双曲线:焦点在轴上=1,焦点在轴上=1()。
方表示双曲线的充要条件是什么?(ABC≠0,且A,B 异号)。
(3)抛物线:开口向右时,开口向左,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由, 分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由, 项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
提醒:在椭圆中,最大,在双曲线中,最大。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为,短轴长为;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2 ,虚轴长为,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线在椭圆外, 越小,开口越小, 越大,开口越大;⑥两条渐近线。
圆锥曲线与方程知识点及题型全集
《圆锥曲线与方程》(理)知识点串讲一、椭圆1.椭圆的定义文字叙述:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.数学语言:集合,其中,,,,为常数,则集合表示以,为焦点的椭圆.注意:(1)与圆的定义(平面内到一个定点的距离等于定长的点的轨迹)类比可知:二者的定义方式一致———都是通过对平面内与定点的距离满足某些条件的动点的轨迹研究得出的.(2)注意椭圆定义中的限制条件:当时,点的轨迹为线段;当时,点的轨迹不存在(或不表示任何图形).2.两种标准方程(1),焦点在轴上;(2),焦点在轴上.注意:(1)参数关系:,,中最大.(2)判断焦点位置的方法:①椭圆的焦点在轴上标准方程中项的分母较大;②椭圆的焦点在轴上标准方程中项的分母较大.3.椭圆方程的一般形式,其焦点位置有如下规律:当时,焦点在轴上;当时,焦点在轴上.注意:在求椭圆的标准方程时,有时不知焦点在哪一个坐标轴上时,一般可设所求椭圆的标准方程为,不必考虑焦点位置,用待定系数法求出的值即可.如:求焦点在坐标轴上,且经过和两点的椭圆的标准方程.4.理解椭圆应注意的几点(1)椭圆的两个焦点总在它的长轴上.(2)离心率的大小对椭圆形状的影响:∵.∴当趋近于1时,变小且越接近于,椭圆越扁平;当趋近于时,变大且越接近于1,椭圆越圆.二、双曲线1.双曲线的定义文字叙述:在平面内到两个定点,距离之差的绝对值等于常数(小于)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距.数学语言描述:集合,其中,,,为常数,则集合表示以,为焦点的双曲线.注意:(1)定义中的限制条件.当时,点的轨迹为以,为端点的两条射线;当时,轨迹不存在(或不表示任何图形);当时,点的轨迹是线段的垂直平分线.(2)定义中的“绝对值”必不可少.若有“绝对值”,点的轨迹表示双曲线的两支;若去掉“绝对值”,点的轨迹仅为双曲线的一支.2.两种标准方程(1),焦点在轴上;(2),焦点在轴上.注意:双曲线与椭圆标准方程的不同:(1)“+”、“-”号不同:椭圆标准方程中是“+”号,双曲线标准方程中是“-”号;(2)的大小关系不同:椭圆标准方程中,而双曲线中大小不确定;(3)关系不同:椭圆标准方程中,而双曲线中.3.双曲线方程的一般形式,其焦点位置有如下规律:当,时,焦点在轴上;当,时,焦点在轴上.注意:当不知焦点在哪个坐标轴上,求标准方程时常用此形式.如:求焦点在坐标轴上,且经过和的双曲线的标准方程.4.理解双曲线应注意的几点(1)椭圆的离心率是描述椭圆扁平程度的一个重要数据.同样,双曲线的离心率是描述双曲线“张口”大小的一个重要数据,由于,当从接近1逐渐增大时,的值就从接近于逐渐增大,双曲线的“张口”逐渐增大.(2)要掌握根据双曲线的标准方程求它的渐近线方程的求法.∵,∴把标准方程中的“1”用“”替换即可得出渐近线方程.(3)已知渐近线方程求双曲线的标准方程的方法:①渐近线方程为的双曲线的方程为:(且为常数).②与双曲线有共同渐近线的双曲线的方程可设为(且为常数).三、抛物线1.抛物线的定义平面内到一个定点和一条定直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,焦点到准线的距离(定长)叫做抛物线的焦参数.注意:(1)抛物线的定义还可叙述为“平面内与一个定点和一条定直线的距离的比等于1的点的轨迹叫做抛物线”.(2)定义的实质可归结为“一动三定”.一个动点,一个定点(抛物线的焦点),一条定直线(抛物线的准线),一个定值(点与点的距离和它到直线的距离之比等于1.) (3)定点,否则动点的轨迹不是抛物线,而是过点垂直于直线的一条直线.2.抛物线的标准方程顶点在原点,轴与坐标轴重合的抛物线的标准方程有4种形式: 分别为:(其中). 注意:(1)的几何意义:焦参数是焦点到准线的距离,故恒为正数.(2)焦点的横(纵)坐标是一次项系数的.(3)准线与坐标轴的交点与抛物线的焦点关于原点对称. 3.标准方程的求法 (1)在中,只含有一个参数,因此只要有一个独立的条件就可以求出其参数(常用待定系数法).(2)求抛物线的标准方程时,首先要确定标准方程的形式,这是解题的关键. 4.理解抛物线应注意的几点(1)抛物线的性质与椭圆、双曲线差别较大:抛物线的离心率等于1,它只有一个焦点、一个顶点、一条对称轴,它不是中心对称图形,因而没有对称中心. (2)抛物线的开口大小:由方程可知,对于同一个值,值越大也越大,不妨说抛物线开口越大,这样可以较好地理解不同的值与其开口大小的关系.(3)抛物线定义的妙用:常利用抛物线的定义将点到焦点的距离与到准线的距离进行相互转化.5.直线 l 经过抛物线 y2=2px (p>0)的焦点F ,且与抛物线相交于A 、B 两点,O 为坐标原点,点A 、B 在准线上的射影分别为A ’、B ’. (1)若l 的倾斜角为 α ,求证:|AB|=22sin pα;(2)设A(x1,y1),B(x2,y2),证明:221212,4p x x y y p ==-; (3)设|AF|=m ,|BF|=n ,证明:112m n p+= ; (4)求证:A ,O ,B ’三点共线;(5)设准线交x 轴于K ,求证:∠AKF=∠BKF ; (6)求证:以AB 为直径的圆与准线相切; (7)求证:∠A ’FB ’=90°.四、直线与圆锥曲线的关系1、设直线l:0Ax By C ++= 圆锥曲线C : 由(1)当0a = 时,若一次方程有解,则只有一解,即直线与圆锥曲线只有一个交点.此时,若圆锥曲线为双曲线,则直线与渐近线平行; 若圆锥曲线为抛物线,则直线与对称轴平行。
高考数学复习考点题型专题讲解 题型39 圆锥曲线方程(解析版)
高考数学复习考点题型专题讲解题型:之圆锥曲线方程【高考题型一】:圆锥曲线方程。
『解题策略』:椭圆:22221(0)x y a b a b +=>>表示焦点在x 轴的椭圆标准方程;22221(0)y x a b a b +=>>表 示焦点在y 轴的椭圆标准方程。
判断焦点所在轴解题方法:分母大的为焦点所在轴。
几何性质:①关于x 轴、y 轴成轴对称图形,关于原点成中心对称图形。
②222a b c =+,下图中对应的特征直角三角形.............22OF B 。
应用:作图法找椭圆的焦点:以短轴的两个端点为圆心,以半长轴为半径作圆,与.......................长轴的两个交点为椭圆..........的焦点。
....双曲线:22221(0,0)x y a b a b -=>>表示焦点在x 轴上双曲线的标准方程;22221(0,0)y x a b a b-=>>表示焦点在y 轴的双曲线标准方程。
判断焦点所在轴解题方法:系数为正的为焦点所在轴。
几何性质:①关于x 轴、y 轴成轴对称图形,关于原点成中心对称图形。
②222c a b =+,特征三角形:原点、虚轴端点、实轴端点构成的直角三角形; 抛物线:①焦点在x 轴上:22y px =±;②焦点在y 轴上:22x py =±(0)p >,p 表示焦点到准线的距离。
判断焦点所在轴解题方法:一次对应焦点所在轴。
③焦点坐标:,02p ⎛⎫± ⎪⎝⎭或0,2p ⎛⎫± ⎪⎝⎭。
④准线方程:2px =±或2p y =±。
【题型1】:确定圆锥曲线的形状。
1.(高考题)“0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】:椭圆方程可化为:11122=+ny m x ,如焦点在y 轴上,只需011>>m n ,即0>>n m ,所以是充要条件,选C 。
高中数学圆锥曲线常考题型(含解析)
(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,在高考中常常出现,并且是考察学生数学运算能力和理解能力的重要方面。
圆锥曲线问题在高考中的常见题型有:直线与圆锥曲线的交点问题、圆锥曲线的参数方程问题、圆锥曲线的性质和应用问题等。
下面我们来一一介绍这些常见题型的解题技巧。
一、直线与圆锥曲线的交点问题这是圆锥曲线问题中最常见的一个题型,题目通常要求求出直线与圆锥曲线的交点坐标。
解题技巧如下:1. 分析题目给出的直线和圆锥曲线,确定直线方程和圆锥曲线方程;2. 将直线方程代入圆锥曲线方程中,解方程得出交点坐标;3. 特别要注意,当圆锥曲线为椭圆或双曲线时,有两个交点,需要分别求解;4. 当圆锥曲线为抛物线时,还需要注意直线的位置与抛物线的开口方向。
二、圆锥曲线的参数方程问题圆锥曲线的参数方程问题通常考查学生对参数方程的理解和应用能力,解答这类问题的关键在于用参数代换替换变量。
解题技巧如下:1. 给出的圆锥曲线通常可以用参数方程表示,将已知的参数方程代入题目求解;2. 注意参数方程的参数范围,有时需要根据范围重新调整参数;3. 对于给出的参数方程,需要将参数代换替换变量,进而得出答案。
三、圆锥曲线的性质和应用问题圆锥曲线的性质和应用问题通常要求学生掌握圆锥曲线的基本性质,以及如何应用这些性质解决实际问题。
解题技巧如下:1. 需要牢记圆锥曲线的基本性质,例如椭圆的焦点、双曲线的渐近线等;2. 掌握各种类型圆锥曲线的标准方程和参数方程;3. 对于应用问题,需要在掌握了基本性质的前提下,将问题转化为数学模型,进而解决。
以上就是圆锥曲线问题在高考中的常见题型及解题技巧,希望对大家备战高考有所帮助。
在复习期间,建议大家多做练习题,加深对圆锥曲线知识的理解,提高解题能力。
多思考,灵活运用各种解题技巧,相信大家一定能在高考中取得好成绩!。
高考圆锥曲线题型归类总结
圆锥曲线的七种常考题型题型一:定义的应用 1、圆锥曲线的定义:(1)椭圆 (2)双曲线 (3)抛物线 2、定义的应用(1)寻找符合条件的等量关系 (2)等价转换,数形结合 3、定义的适用条件: 典型例题例1、动圆M 与圆C 1:()22136x y ++=内切,与圆C 2:()2214x y -+=外切,求圆心M 的轨迹方程。
例2、方程()()2222668x y x y -+-++=表示的曲线是题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 1、椭圆:由22x y 、分母的大小决定,焦点在分母大的坐标轴上。
2、双曲线:由22x y 、系数的正负决定,焦点在系数为正的坐标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
典型例题例1、已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是例2、k 为何值时,方程15922=---ky k x 表示的曲线: (1)是椭圆;(2)是双曲线.题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题 1、常利用定义和正弦、余弦定理求解2、12PF m PF n ==,,22m n m n mn m n +-+,,,四者的关系在圆锥曲线中的应用 典型例题例1、椭圆x a yba b 222210+=>>()上一点P 与两个焦点F F 12,的张角α=∠21PF F ,求21PF F ∆的面积。
例2、已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且6021=∠PF F ,31221=∆PF F S .求该双曲线的标准方程题型四:圆锥曲线中离心率,渐近线的求法1、a,b,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值;2、a,b,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围;3、注重数形结合思想不等式解法 典型例题例1、已知1F 、2F 是双曲线12222=-by a x (00>>b a ,)的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( )A. 324+B. 13-C.213+ D. 13+ 例2、双曲线)00(12222>>=-b a by a x ,的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A. (1,3) B.(]13,C.(3,+∞)D.[)3,+∞例3、椭圆G :22221(0)x y a b a b+=>>的两焦点为12(,0),(,0)F c F c -,椭圆上存在点M 使120FM F M ⋅=. 求椭圆离心率e 的取值范围;例4、已知双曲线22221(00)x y a b a b-=>>,的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 (A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞题型五:点、直线与圆锥的位置关系判断 1、点与椭圆的位置关系点在椭圆内⇔12222<+b y a x点在椭圆上⇔12222=+b y a x点在椭圆外⇔12222>+by a x2、直线与圆锥曲线有无公共点或有几个公共点的问题:∆>0⇔相交∆=0⇔相切 (需要注意二次项系数为0的情况) ∆<0⇔相离3、弦长公式: =AB )(11212212x x k x x k -+=-+ak ∆+=21 =AB )(1111212212y y k y y k -+=-+ak ∆+=2114、圆锥曲线的中点弦问题: 1、韦达定理: 2、点差法:(1)带点进圆锥曲线方程,做差化简 (2)得到中点坐标比值与直线斜率的等式关系典型例题例1、双曲线x 2-4y 2=4的弦AB -被点M (3,-1)平分,求直线AB 的方程.例2、已知中心在原点,对称轴在坐标轴上的椭圆与直线l :x+y=1交于A,B 两点,C 是AB 的中点,若|AB|=22,O 为坐标原点,OC 的斜率为22,求椭圆的方程。
高三高考数学总复习《圆锥曲线》题型归纳与汇总
高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。
圆锥曲线的七种常考题型详解【高考必备】
圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。
在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。
适用条件需要注意。
例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。
例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。
对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。
例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。
PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。
例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。
例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。
题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。
在解题时需要注重数形结合思想和不等式解法。
例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。
题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。
例1:求椭圆x^2/4+y^2/9=1的参数方程。
例2:求双曲线x^2/9-y^2/4=1的参数方程。
题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是数学中的重要概念,也是高中数学中的重要内容之一。
在高考中,圆锥曲线问题往往是考查学生分析能力、解题技巧和数学理论应用能力的重要内容。
圆锥曲线问题包括了圆、椭圆、双曲线和抛物线等内容,这些问题在高考中的常见题型有很多,下面我们就来总结一下圆锥曲线问题在高考中的常见题型及解题技巧。
一、圆锥曲线的常见题型1. 求解圆锥曲线的焦点、直径等坐标问题2. 求圆锥曲线与坐标轴的交点3. 求圆锥曲线的参数方程4. 求解圆锥曲线的切线方程5. 求解圆锥曲线的渐近线方程6. 判断点是否在圆锥曲线内部或外部等问题这些都是高考中经常出现的圆锥曲线的题型,考查学生的代数计算、几何推理、参数方程应用等多方面的数学能力。
二、解题技巧1. 确定圆锥曲线的类型在解题时首先要明确圆锥曲线的类型,包括圆、椭圆、双曲线和抛物线等。
这样可以根据具体的类型选择相应的解题方法,避免盲目求解导致错误。
2. 利用几何的方法辅助求解对于椭圆、双曲线等圆锥曲线,可以利用几何的方法来辅助求解,比如通过图形性质来确定焦点、直径等坐标,利用图形的对称性质来求解切线方程等。
3. 转换坐标系有些圆锥曲线问题在直角坐标系中比较复杂,但是如果将坐标系进行适当的旋转、平移或变换,可能会使问题更易于求解。
将坐标系转换成合适的坐标系是解决问题的有效方法之一。
4. 参数化求解对于一些复杂的圆锥曲线问题,可以尝试使用参数方程来进行求解,将问题转化成参数方程的形式,有时会使问题变得更加简单。
5. 利用数学工具软件辅助求解在解题过程中,可以利用数学软件来辅助求解,比如利用计算机绘制图形、求解方程等,可以帮助理清思路、验证结果,并避免繁琐的计算错误。
三、举例分析以下举一个常见的圆锥曲线问题作为例子进行分析:已知椭圆的方程为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]求椭圆的焦点坐标及渐近线方程。
圆锥曲线的定义、方程与性质(题型归纳)
圆锥曲线的定义、方程与性质【考情分析】1.考查特点:(1)圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题第(1)问的形式命题,难度中等;(2)直线与圆锥曲线的位置关系是命题的热点,尤其是有关弦长计算及存在性问题,运算量大,能力要求高,突出方程思想、转化化归与分类讨论思想方法的考查.2.关键能力:逻辑思维能力、运算求解能力以及创新能力.3.学科素养:逻辑推理、直观想象、数学运算.【题型一】圆锥曲线的定义及标准方程【典例分析】1(2021·山东省实验中学高三模拟)已知双曲线22525x y -=上一点P 到其左焦点F 的距离为8,则PF 的中点M 到坐标原点O 的距离为()A .9B .6C .5D .4【答案】A【解析】由22525x y -=,得221255x y -=,则2225,5a b ==,所以230c =,所以5,a b c ===,设双曲线的右焦点为1F ,因为P 到其左焦点F 的距离为85a c <+=+P 在双曲线的左支上,所以1210PF PF a -==,所以118PF =,因为M 为PF 的中点,O 为1FF 的中点,所以1192OM PF ==,故选:A 2.已知抛物线()220y px p =>的焦点为F ,准线为l ,若点A 在l 上,点B 在抛物线上,l 与x 轴的交点为C ,ABF是正三角形,且四边形ABFC 的面积是,则p =()A .1B .32C .2D .3【答案】C【解析】由抛物线的定义及ABF 为正三角形,可知//AB x 轴,所以60AFC ︒∠=,从而可知2AB p =,AC =,又因为四边形ABFC 的面积是,所以有22p p+=2p =.故选:C.【提分秘籍】【变式演练】1.(2021·江苏金陵中学高三模拟)以椭圆()2222:10x y C a b a b+=>>的短轴的一个端点和两焦点为顶点的三角形为等边三角形,且椭圆C 上的点到左焦点的最大距离为6,则椭圆C 的标准方程为()A .22143x y +=B .22184x y +=C .2211612x y +=D .2216448x y +=【答案】C【解析】由题意知:短轴端点与焦点形成等边三角形,则2a c =,椭圆上的点到左焦点最大距离为6,即6a c +=,则4a =,2c =,23b =则椭圆的标准方程为:2211612x y +=.故选:C.2.【多选】(2021·福建福州市·高三二模)在ABC 中,4AB =,M 为AB 的中点,且CA CB CM -=,则下列说法中正确的是()A .动点C 的轨迹是双曲线B .动点C 的轨迹关于点M 对称C .ABC 是钝角三角形D .ABC面积的最大值为【答案】BD【解析】以M 为原点,AB 为x 轴建立直角坐标系.设CM =r ,此时C 点在以M 为圆心,r为半径的动圆上.由CA CB r -=,知C 点在以AB 为焦点,2r a =的双曲线22221x y a b -=上且22242AB a b ⎛⎫+== ⎪⎝⎭.对点(),C x y 有222x y r +=,22221444x y r r-=-,从而2223(16)64y r r =-,当28r =时,2y最大,故yABC S ,故D 正确;2r =时,得到另一个C 点'C ,此时ABC 为直角三角形,故C 错误;∵CA CB -非定值,∴C 不以双曲线为轨迹,故A 错误;∵CM CA CB -=,∴一定有C 关于M 的对称点关于原点对称,故B 正确.故选:BD .3.已知抛物线C :x 2=4y 的焦点为F ,M 是抛物线C 上一点,若FM 的延长线交x 轴的正半轴于点N ,交抛物线C 的准线l 于点T ,且FM →=MN →,则|NT |=________.【答案】3【解析】由x 2=4y ,知F (0,1),准线l :y =-1.设点M (x0,y 0),且x 0>0,y 0>0.由FM →=MN →,知点M 是线段FN 的中点,N 是FT 中点,利用抛物线定义,|MF |=|MM ′|=y 0+1,且|FF ′|=2|NN ′|=2.又2(y 0+1)=|FF ′|+|NN ′|=3,知y 0=12.∴|MF |=12+1=32,从而|NT |=|FN |=2|MF |=3.【题型二】圆锥曲线的几何性质【典例分析】1.已知1F ,2F 分别为椭圆E :()222210y x a b a b +=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且2112sin 3sin PF F PF F ∠=∠,则椭圆E 的离心率为()A .102B .4C D .54【答案】B【解析】1F ,2F 分别为椭圆E :()222210y x a b a b+=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且2112sin 3sin PF F PF F Ð=Ð,由正弦定理可得213PF PF =,令1233PF PF n ==,则32n n a +=,22294n n c +=,可得22542a c =,所以椭圆的离心率为:104c e a===.故选:B .2.(2021·天津南开中学高三模拟)已知双曲线()222210,0x y a b a b-=>>的中心为O ,左焦点为F ,左顶点为A ,点P 为双曲线右支上一点,直线OP 交双曲线于另一点Q ,若直线AQ 恰好平分线段PF ,则该双曲线的离心率为__________.【答案】3【解析】设PF 的中点为M ,连接OM ,O 、M 分别为PQ 、PF 的中点,则//OM FQ 且12OM FQ =,所以,12OA OM AF FQ ==,即12a c a =-,3c a =∴,因此,该双曲线的离心率为3ce a ==.故答案为:3.【提分秘籍】【变式演练】1.(2021湖南长沙长郡中学高三模拟)已知抛物线28y x =的焦点为F ,经过点P (1,1)的直线l 与该曲线交于A 、B 两点,且点P 恰好为AB 的中点,则||||+=AF BF ()A .4B .6C .8D .12【答案】B【解析】抛物线28y x =中,4p =,其焦点()2,0F ,准线方程2x =-,如图过点,,A B P 作准线的垂线,垂足为,,M N R ,由抛物线定义可知,||||AF BF AM BN +=+,而P 恰好为AB 的中点,故PR 是梯形ABNM 的中位线,故2AM BN PR +=,又P (1,1),故132pPR =+=,所以||||236AF BF +=⨯=.故选:B.2.已知1F ,2F 分别为双曲线22221x ya b-=(0a >,0b >)的左、右焦点,过点2F 作圆222x y a +=的切线交双曲线左支于点M ,且1260F MF ∠︒=,则该双曲线的渐近线方程为__________.【答案】313y x ⎛⎫=±+⎪ ⎪⎝⎭.【解析】设切点为A ,过1F 作21F B MF ⊥,垂足为B ,由题意可得OA a =,2OF c =,222AF c a b =-=,由OA 为12BF F △的中位线,可得12BF a =,22BF b =,又1260F MF ∠=︒,可得114sin 603BF a MF ==︒,23aMB =,22223aMF MB BF b =+=+,又21242233a a MF MF b a -=+-=,所以313b a ⎛⎫=+ ⎪ ⎪⎝⎭,所以双曲线的渐近线方程为313y x ⎛⎫=±+ ⎪ ⎪⎝⎭.故答案为:313y x ⎛⎫=±+ ⎪ ⎪⎝⎭.3.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________.【答案】3-1.【解析】设椭圆的右焦点为F (c ,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A )23,2(c c,由点A 在椭圆M 上得,c 24a 2+3c 24b2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∵b 2=a 2-c 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),则4a 4-8a 2c 2+c 4=0,e 4-8e 2+4=0,∴e 2=4+23(舍),e 2=4-2 3.由0<e <1,得e =3-1.【题型三】直线与圆锥曲线【典例分析】1.(2021·浙江镇海中学高三模拟)已知直线1y x =-与抛物线24y x =交于A ,B 两点.若点(1,)C m -满足90ACB ∠= ,则m =()A .1-B .1C .2D .3【答案】C【解析】直线1y x =-与抛物线24y x =联立得:2216104y x x x y x=-⎧⇒-+=⎨=⎩,设1122(,),(,)A x y B x y ,所以12126,1x x x x +==,点(1,)C m -满足90ACB ∠= ,所以有:21121121212120(1,)(1,)01()0,CA CB x y m x y m x x x x y y m y y m ⋅=⇒+-+-=⇒++++-++=121212121212,24,(1)(1)()14y y x x y y x x x x x x +=+-==--=-++=-,所以2161440,m m ++--+=解得2m =,故选:C2.已知椭圆22221x y a b +=(0a b >>)的右焦点为F ,离心率为2,过点F 的直线l 交椭圆于A ,B 两点,若AB 的中点为()1,1,则直线l 的斜率为()A .14-B .34-C .12-D .1【答案】A【解析】设()11,A x y ,()22,B x y ,则AB 的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,由题意可得122x x +=,122y y +=,将A ,B 的坐标的代入椭圆的方程:22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,作差可得22221212220x x y y a b--+=,所以221212221212y y x x b b x x a y y a-+=-⋅=--+,又因为离心率2c e a ==,222c a b =-,所以22234a b a -=,所以2214b a -=-,即直线AB 的斜率为14-,故选:A.【提分秘籍】1.求解弦长的4种方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点间的距离公式求解.(3)联立直线与圆锥曲线方程,消元得到关于x 或y 的一元二次方程,利用根与系数的关系得到(x 1-x 2)2或(y 1-y 2)2,代入两点间的距离公式求解.(4)当弦过焦点时,可结合焦半径公式求解弦长.[提醒]利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在,可直接求交点坐标再求弦长.涉及焦点弦长时要注意圆锥曲线定义的应用.2.处理中点弦问题常用的2种方法(1)点差法:设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,2121x x y y --三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解.[提醒]中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.【变式演练】1.(2021·陕西高三模拟)已知抛物线22(0)x py p =>焦点为,F O 为坐标原点,直线l 过点F 与抛物线交于,A B 两点,与x 轴交于()2,0C p ,若17AB =,则OCF △的面积为___________.【答案】32【解析】抛物线22(0)x py p =>焦点(0,)2p F ,而直线l 过点(2,0)C p ,则直线l 的斜率为14k =-,其方程为124p y x -=-,即42x y p =-+,由2422x y px py=-+⎧⎨=⎩消去x 得228920y py p -+=,显然0∆>,设1122(,),(,)A x y B x y ,则1298py y +=,而17AB =,由抛物线定义知,1217||||()()17228p p p AB AF BF y y =+=+++==,解得8p =,即(0,4)F ,()16,0C ,而90FOC ∠= ,于是得1||||322OCF S OC OF =⋅⋅= ,所以OCF △的面积为32.故答案为:322.(2021·湖南长沙长郡中学高三模拟)已知椭圆C :2214x y +=.(1)椭圆C 是否存在以点11,2⎛⎫- ⎪⎝⎭为中点的弦?若存在,求出弦所在的直线l 的方程,若不存在,请说明理由;(2)已知椭圆C 的左、右顶点分别为A ,B ,点P 是椭圆C 上的点,若直线AP ,BP 分别与直线3y =交于G ,H 两点,求线段GH 的长度取得最小值时直线GP 的斜率.【解析】(1)因为22(1)111422-⎛⎫+=< ⎪⎝⎭,所以点11,2⎛⎫- ⎪⎝⎭在椭圆C 的内部,则椭圆C 存在以点11,2⎛⎫- ⎪⎝⎭为中点的弦.设弦所在的直线l 与椭圆C 相交于()11,M x y ,()22,N x y ,则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得22222121044x x y y -+-=,即()()()()2121212104x x x x y y y y -++-+=.又122x x +=-,121y y +=,()()2121(2)104x x y y --∴+-⨯=,整理得212112y y x x -=-.所以直线l 的方程为11(1)22y x =+-,即220x y -+=.(2)因为A ,P ,G 三点共线所以可知当线段GH 的长度取得最小值时,直线AP 的斜率k 显然存在,且0k >,()2,0A -,设直线AP 的方程为(2)y k x =+,从而点32,3G k ⎛⎫- ⎪⎝⎭.联立22(2)14y k x x y =+⎧⎪⎨+=⎪⎩,消y 整理得()222214161640k x k x k +++-=,0∆>设点()00,P x y ,则202164(2)14k x k--⋅=+.所以2022814k x k -=+,从而02414k y k =+,所以222284,1414k k P k k ⎛⎫- ⎪++⎝⎭.又点()2,0B ,则直线PB 的斜率为14k-.由1(2)43y x k y ⎧=--⎪⎨⎪=⎩,得1223x k y =-+⎧⎨=⎩,所以(122,3)H k -+.故332122124GH k k k k=-+-=+-.又0k >,则31212k k +≥=,当且仅当312k k =,即12k =时等号成立所以当12k =时,线段GH 的长度取得最小值.所以此时直线GP 的斜率为12.1.(2021山师大附中高三模拟)“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当0n <时,方程221x ny +=表示焦点在x 轴上的双曲线;当0n >时,221x ny +=可化为2211y x n+=,因为椭圆的焦点在x 轴上,所以11n>即1n >,故方程221x ny +=表示焦点在x 轴上的圆锥曲线时,0n <或1n >,故“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的充分不必要条件,故选:A.2.(2021·浙江镇海中学高三模拟)已知抛物线2y =的准线与双曲线()22210x y a a-=>相交于A ,B 两点,F 为抛物线的焦点,若FAB 为直角三角形,则实数a 的值为()A .19B .29C .13D.3【答案】D【解析】2y =的准线x =,焦点),不妨设A点坐标2a ⎛⎫⎪ ⎪⎝⎭,FAB 为直角三角形,∠AFB =90°,由对称性可知,FAB 为等腰直角三角形,由直角三角形的性质得a a=,解得23a =.故选:D 3.已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F 、2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF =()A .1B .1或9C .3或9D .9【答案】D【解析】由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点P 在双曲线C 的左支上,所以214PF PF -=,所以29PF =,故选:D.4.(2021·山东省淄博市实验中学高三模拟)2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2;③c 1a 2>a 1c 2.④1212c c a a <其中正确式子的序号是()A .①③B .②③C .①④D .②④【答案】B【解析】由图可得1212,a a c c >>,所以1122a c a c +>+,即①错误;因为1122,a c PF a c PF -=-=,所以1122a c a c -=-,即②正确,由1122a c a c -=-,得1221a c a c +=+,即22221212212122a c a c a c a c ++=++,即22221112222122a c a c a c a c -+=-+,即221221122()0b b a c a c -=->,可得2112a c a c >,即③正确,由2112a c a c >,可得1212c c a a >,即④错误;综上所述选项B 正确.故选:B.5.(2021·湖南长沙雅礼中学高三模拟)P 为双曲线2222:1x y C a b-=(0a >,0b >)上一点,1F ,2F 分别为其左、右焦点,O 为坐标原点.若OP b =,且2112sin 3sin PF F PF F ∠∠=,则C 的离心率为()ABC .2D【答案】B【解析】由2112sin 3sin PF F PF F ∠∠=,以及正弦定理可得213PF PF =,因为122PF PF a -=,所以13PF a =,2PF a =,因为2OF c =,OP b =,所以22OPF π∠=,所以2cos a OF P cÐ=,在12F F P 中,()()22212223cos cos 22a c a a F F P OF P a cc+-Ð==Ð=×.化简可得c =,所以C的离心率==ce a.故选:B 6.设1F ,2F 为椭圆1C 与双曲线2C 的公共焦点,1F ,2F 分别为左、右焦点,1C 与2C 在第一象限的交点为M .若12MF F △是以线段1MF 为底边的等腰三角形,且双曲线2C 的离心率72,2e ⎡⎤∈⎢⎥⎣⎦,则椭圆1C 离心率的取值范围是()A .45,99⎡⎤⎢⎥⎣⎦B .70,16⎡⎤⎢⎥⎣⎦C .27,516⎡⎤⎢⎥⎣⎦D .2,17⎡⎤⎢⎥⎣⎦【答案】C【解析】设椭圆长轴长为2a ,双曲线实轴长为2a ',焦点为2c ,2122MF F F c ==,则1MF =2222a c a c '+=-,又c e a =',所以c a e '=,即242c c a e +=,又7[2,2e ∈,所以椭圆的离心率为127,15162c e a e⎡⎤'==∈⎢⎥⎣⎦+.故选:C .7.(2021·重庆南开中学高三模拟)已知曲线C 的方程为()22113x y m R m m+=∈+-,则()A .当1m =时,曲线C 为圆B .当5m =时,曲线C 为双曲线,其渐近线方程为33y x =±C .当1m >时,曲线C 为焦点在x 轴上的椭圆D .存在实数m 使得曲线C【答案】AB【解析】对于A 选项:m =1时,方程为22122x y +=,即222x y +=,曲线C 是圆,A 正确;对于B 选项:m =5时,方程为22162x y -=,曲线C为双曲线,其渐近线方程为3y x =±,B 正确;对于C 选项:m >1时,不妨令m =5,由选项B 知,曲线C 为双曲线,C 不正确;对于D 选项:要曲线C 为双曲线,必有(1)(3)0m m +-<,即m <-1或m >3,m <-1时,曲线C :2213(1)y x m m -=--+,m >3时,曲线C :22113x y m m -=+-,时,它实半轴长与虚半轴长相等,而-(m +1)≠3-m ,m +1≠m -3,D 不正确.故选:AB11.(2021·湖南雅礼中学高三模拟)设抛物线2:4C y x =的焦点为F ,O 为坐标原点,过F 的直线与C 分别交于()1122(),,A x y B x y ,两点,则()A .12y y 为定值B .AOB ∠可能为直角C .以BF 为直径的圆与y 轴有两个交点D .对于确定的直线AB ,在C 的准线上存在三个不同的点P ,使得ABP △为直角三角形【答案】AD【解析】设:1AB l x ty =+,与24y x =联立可得:2124404y ty y y --==-,,故A 对;因为221212116y y x x ==,所以12121OA OBy y k k x x ⋅=≠-,∴2AOB π∠≠,故B 错;设BF 的中点11111,,2222BF x y x M ++⎛⎫=⎪⎝⎭,则以BF 为直径的圆与y 轴相切,故C 错;设AB 的中点1212,22x x y y N ++⎛⎫ ⎪⎝⎭,N 到C 准线的距离为当1212x x ++,因为12122AB x x +=+故有以AB 为直径的圆与C 的准线相切,对于确定的直线AB ,当P ∠为直角,此时P 为切点;当A ∠或B Ð为直角,此时P 为过A (或B )的AB 的垂线与准线的交点,故D 正确.故选:AD12.已知双曲线22:139x y C -=的左、右顶点分别为A ,B ,点P 是C 上的任意一点,则()A .双曲线C 的离心率为233B .焦点到渐近线的距离为3C .点P 到两条渐近线的距离之积为94D .当P 与A 、B 不重合时,直线PA ,PB 的斜率之积为3【答案】BCD【解析】对于A ,,3a b c ===2e ==,故A 错误;对于B ,双曲线的右焦点2F 到渐近线y x ==的距离为3d ==,故B 正确;对于C ,设()00,P x y ,满足2200139x y -=,即220039x y -=,则点P到两条渐近线的距离之积为2200123944x y d d -⋅==,故C 正确;对于D ,设()00,P x y ,由C 得2239x y -=,PAPB k k ==2200220039333PA PB y x k k x x -⋅===--,故D 正确;故选:BCD13.(2021·湖北襄阳五中高三模拟)已知椭圆G:2221(06x y b b+=<<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+,当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②OP 的最小值为2;③存在b 使得椭圆G 上满足条件的点P 仅有两个,其中,所有正确命题的序号是__________.【答案】①②【解析】椭圆(222:106x y G b b+=<<的两个焦点分别为)1F和()2F ,短轴的两个端点分别为()10,B b -和()20,B b ,设(),P x y ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+,由椭圆定义可得,1222PB PB a b +==,即有P 在椭圆222166y x b+=-上,对于①,将x 换为x -方程不变,则点P 的轨迹关于y 轴对称,故①正确.;对于②,由图象可得,当P 满足22x y =,即有226b b -=,即b =时,OP 取得最小值,可得222x y ==时,即有2OP ==取得最小值为2,故②正确;对于③,由图象可得轨迹关于,x y 轴对称,且0b <<,则椭圆G 上满足条件的点P 有4个,不存在b 使得椭圆G 上满足条件的点P 有2个,故③不正确.,故答案为①②.14.(2021·山东滕州一中高三模拟)某中学张燕同学不仅学习认真,而且酷爱体育运动,经过艰苦的训练,终于在校运会的投铅球比赛中创造佳绩.已知张燕所投铅球的轨迹是一段抛物线(人的身高不计,铅球看成一个质点),如图所示,设初速度为定值0v ,且与水平方向所成角为变量θ,已知张燕投铅球的最远距离为10m .当她投得最远距离时,铅球轨迹抛物线的焦点到准线的距离为____m .(空气阻力不计,重力加速度为210m /s )【答案】5【解析】设铅球运动时间为0t ,t 时刻的水平方向位移为x ,则0cos x v t θ=.由001sin 02v gt θ-=知002sin v t g θ=20sin 2v x g θ∴=故当4x π=时,20max 10v x g==,210m /s g =∴解得:0t =,010m /sv =201 2.5m22t h g ⎛⎫∴== ⎪⎝⎭如图建立平面直角坐标系,(5, 2.5)P --,设抛物线方程为22x py=-则抛物线的焦点到准线的距离22(5)5m 22 2.5x p y -===-⨯故答案为:515.(2021·山东枣庄一中高三模拟)已知双曲线2222:1x y C a b-=(0a >,0b >)的左、右焦点分别为1F 、2F ,O为坐标原点,P 是双曲线上在第一象限内的点,直线PO 、2PF 分别交双曲线C 左、右支于另一点M 、N ,213PF PF =,且260MF N ∠=︒,则双曲线C 的离心率为________;渐近线方程为________.【答案】22y x =±【解析】由213PF PF =,122PF PF a -=,解得13PF a =,2PF a =,由题意可得四边形12PF MF 为平行四边形,又260MF N ∠=︒,可得1260F PF ∠=︒,在12PF F △中,可得()22224323cos 607c a a a a a =+-⋅⋅⋅︒=,即有2c a =,则2c e a ==,所以2b a ===,则渐近线方程为2y x =±.故答案为:72;32y x =±.16.(2021•南充模拟)已知椭圆2222:1(0)x y C a b a b +=>>的左,右焦点分别为1(2,0)F -,2(2,0)F ,点15(1,)3P --在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为一1的直线l 与椭圆C 相交于M ,N 两点,使得11||||F M F N =?若存在,求出直线的方程;若不存在,说明理由.【解析】(1)由题意得,2c =,2211519a b +=,222a b c =+,解得:26a =,22b =,所以椭圆的标准方程:22162x y +=;(2)假设存在满足条件的直线l ,设直线l 的方程:y x t =-+,设(,)M x y ,(,)N x y ''与椭圆联立整理:2246360x tx t -+-=,△223644(36)0t t =-->,t -<<,32t x x '+=,2364t xx -'=,由于11||||F M F N =,设线段MN 的中点为E ,则1F E MN ⊥,所以111F E MN k k =-=又3(4t E ,)3t ,所以141324F E tk t ==+,解得4t =-,当4t =-时,不满足t -<<,所以不存在满足条件的直线l .17.(2021·湖南高三模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为72,双曲线上的点到焦点的最小距离为2.(1)求双曲线C 的方程;(2)四边形MNPQ 的四个顶点均在双曲线C 上,且//MQ NP ,MQ x ⊥轴,若直线MN 和直线QP 交于点()4,0S ,四边形MNPQ 的对角线交于点D ,求点D 到双曲线C 的渐近线的距离之和.【解析】(1)由题意,22222c a c a a b c ⎧-=⎪⎪=⎨⎪+=⎪⎩,解得24a =,23b =,所以双曲线C 的方程为22143x y -=;(2)由MQ x ⊥轴,//MQ NP ,可知四边形MNPQ 为等腰梯形,且关于x 轴对称,故四边形MNPQ 的对角线的交点D 在x轴上,如图所示:设点(,0)D t ,则对角线MP 的方程为(0)x my t m =+≠,设1122(,),(,)M x y P x y ,由对称性知1122(,),(,)Q x y N x y --,联立22143x y x my t ⎧-=⎪⎨⎪=+⎩,消去x 得222(34)63120m y mty t -++-=,所以22222(6)4(34)(312)48(34)0mt m t m t ∆=---=-+>,即2234m t +>,由韦达定理得21212226312,3434mt t y y y y m m --+==--,由,,M N S 三点共线知MS NS k k =,即121244y y x x -=--,所以1221(4)(4)0y my t y my t +-++-=,整理得12122(4)()0my y t y y +-+=,所以222(312)(4)(6)034m t t mt m -+--=-,所以224(1)034m t m -=-,即24(1)0,1m t t -==,所以直线MP 过定点()1,0,即D ()1,0,因为双曲线C 20y ±=20y -=时,由点到直线距离公式得217d ==,由对称性知点D 到双曲线C 的渐近线的距离之和为2217.。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是解析几何中的一个重要分支,涉及广泛且难度较大。
在高考中,经常出现各种关于圆锥曲线的问题,如求解方程、定位点、证明定理、计算面积等等。
本文将介绍圆锥曲线问题在高考中的常见题型及解题技巧,以供大家参考。
常见题型1. 判定方程类型判定方程 $Ax^2+Bxy+Cy^2+Dx+Ey+F=0$ 的类型。
同学们需要掌握二次型的知识,使用行列式和 $\Delta$ 判别法即可。
其中,行列式 $AC-B^2$ 确定了方程的类型:$AC-B^2>0$ 时,方程为椭圆方程;2. 求曲线方程通常给出几何条件,让同学们求出曲线方程。
此类问题需要根据情况选择不同的方法,在此介绍两种主要的解法:(1)通过几何条件确定曲线类型,再代入方程求解。
例如,已知一个抛物线上的顶点坐标和另外一点的坐标,可以用顶点公式和对称性解出对称轴和开口方向,进而确定方程。
(2)确定曲线焦点和准线,利用焦准式求解方程。
例如,已知一个双曲线的焦距和离心率,可以通过求出曲线的焦点和准线,利用焦准式求解方程。
3. 定位点通常给出一个几何条件,要求定位某个点的坐标。
此类问题有多种方法,例如利用坐标系的对称性、平移、伸缩等变化来确定点的位置,或者利用直线方程、曲线方程的关系求解点的坐标等。
4. 证明定理此类问题一般是让同学们证明某个定理或者结论。
需要掌握各种定理的证明方法,例如对偶证明、取对数证明、辅助线证明、画图论证等。
5. 计算面积此类问题一般要求同学们计算某个图形或者曲面的面积。
需要灵活运用面积公式、积分等方法,注意确定积分区间以及被积函数的形式。
解题技巧1. 建立坐标系建立坐标系是解决圆锥曲线问题的前提,可以帮助理清几何图形的关系和计算各种量的大小。
要注意选择坐标系的方向和起点,以便于计算和简化计算公式。
2. 利用几何条件圆锥曲线问题往往给出具体的几何条件,同学们需要认真理解并灵活运用。
常见的几何条件有点的坐标、直线的方程、曲线类型、焦准距等等。
圆锥曲线与方程高考分析详解
6 / 14
求坐标原点到 m, n 距离的比值。 【解析】(1)由对称性知: BFD 是等腰直角 ,斜边 BD 2p
点 A 到准线 l 的距离 d FA FB 2 p
SABD 4
(2012 课标全国Ⅰ,理 20)(本小题满分 12 分) 设抛物线 C : x2 2 py( p 0) 的焦点为 F ,准线为 l , AC ,已知以 F 为
圆心, FA 为半径的圆 F 交 l 于 B, D 两点;
(1)若 BFD 900 , ABD的面积为 4 2 ;求 p 的值及圆 F 的方程;
物线 y 2 16 x 的准线交于 A, B 两点, AB 4 3 ;则 C 的实轴长为(
)
( A) 2
(B) 2 2
(C)
(D)
【解析】选 C
设 C : x2 y2 a2 (a 0) 交 y 2 16 x 的准线 l : x 4 于 A(4, 2 3) B(4, 2 3)
得: a2 (4)2 (2 3)2 4 a 2 2a 4
x2 y2 =1 B. 36 27
x2 y2 =1 C. 27 18
x2 y2 =1 D. 18 9
答案:D
解析:设 A(x1,y1),B(x2,y2),∵A,B 在椭圆上,
∴
x12 a2
x22 a2
y12 b2
y22 b2
1, ① 1, ②
①-②,得
x1
x2 x1 a2
x2
y1
综上四边形mpnq面积的取值范围为三复习建议圆锥曲线部分内容多难度大综合性强为了提高学生的复习效率和复习质量首先应抓住解析几何的特点即熟悉平面几何的性质以坐标法为桥梁用代数法来研究处理集合问题复习时应重点突破以下内容
圆锥曲线基本题型总结
圆锥曲线基本题型总结Revised on November 25, 2020圆锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段【注:2a>|F1 F2|是椭圆,2a=|F1 F2|是线段】2.设B-4,0),C4,0),且△ABC的周长等于18,则动点A的轨迹方程为)+y29=1 y≠0) +x29=1 y≠0)+y216=1 y≠0) +x29=1 y≠0) 【注:检验去点】3.已知A0,-5)、B0,5),|P A|-|PB|=2a,当a=3或5时,P点的轨迹为)A.双曲线或一条直线B.双曲线或两条直线C.双曲线一支或一条直线D.双曲线一支或一条射线【注:2a<|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】4.已知两定点F1-3,0),F23,0),在满足下列条件的平面内动点P的轨迹中,是双曲线的是)A.||PF1|-|PF2||=5B.||PF1|-|PF2||=6C.||PF1|-|PF2||=7D.||PF1|-|PF2||=0 【注:2a<|F1 F2|是双曲线】5.平面内有两个定点F1-5,0)和F25,0),动点P满足|PF1|-|PF2|=6,则动点P的轨迹方程是)-y29=1x≤-4) -y216=1x≤-3)-y29=1x≥4) -y216=1x≥3) 【注:双曲线的一支】6.如图,P为圆B:x+2)2+y2=36上一动点,点A坐标为2,0),线段AP的垂直平分线交直线BP于点Q,求点Q的轨迹方程.7.已知点A(0,3)和圆O1:x2+(y+3)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.(2)涉及圆的相切问题中的圆锥曲线:8.已知圆A:x+3)2+y2=100,圆A内一定点B3,0),圆P过B且与圆A内切,求圆心P的轨迹方程.已知动圆M过定点B-4,0),且和定圆x-4)2+y2=16相切,则动圆圆心M的轨迹方程为)-y212=1 x>0) -y212=1 x<0)-y212=1 -x212=1 【注:由题目判断是双曲线的一支还是两支】9.若动圆P过点N-2,0),且与另一圆M:x-2)2+y2=8相外切,求动圆P的圆心的轨迹方程. 【注:双曲线的一支,注意与上题区分】10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.11.若动圆与圆x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是 )A.椭圆B.双曲线C.双曲线的一支D.抛物线12.已知动圆M 经过点A 3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程.【注:同上题做比较,说法不一样,本质相同】13.已知点A 3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12.(M 的横坐标非负) 1)求点M 的轨迹方程; 【注:体现抛物线定义的灵活应用】2)是否存在M ,使|MA |+|MF |取得最小值若存在,求此时点M 的坐标;若不存在,请说明理由.【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】(3)其他问题中的圆锥曲线:14.已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】2.15.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C . 双曲线D .抛物线【注:体现抛物线定义的灵活应用】2.涉及到曲线上的点到焦点距离的问题:16.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )17.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( ) A .32 B .16 C .8 D .418.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m19.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________.20.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形21.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.【注:椭圆上的点到焦点的距离,最小是a-c ,最大是a+c 】22.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________. 【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c-a 】23.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小O 为坐标原点). 【注:O 是两焦点的中点,注意中位线的体现】24.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF ·2PF =0,则|1PF +2PF |等于( ) A .3 B .6 C .1 D .225.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点0,2)的距离与点P 到该抛物线准线的距离之和的最小值是 )【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】26.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) C .2【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】27.设点A 为抛物线y2=4x 上一点,点B(1,0),且|AB|=1,则A 的横坐标的值为( )A .-2B .0C .-2或0D .-2或2【注:抛物线的焦半径,即定义的应用】3.焦点三角形问题: 椭圆的焦点三角形周长2c 2a 2C PF PF C 21F PF 21+∆=++=椭圆的焦点三角形面积:推导过程:2 tan sin cos 121sin 21 cos 1 -)cos (12 (1)-(2) (2) 2a (1) COS 2-2 1b 2b PF PF S 2b PF PF 4c 4a PF PF PF PF 4c PF PF PF PF 2221F PF 22122212212212221θθθθθθθ=+==+==+⎪⎩⎪⎨⎧=+=+∆得 双曲线的焦点三角形面积: 2tan b S 2F PF 21θ=∆28.设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积. 【注:小题中可以直接套用公式。
高考数学复习:圆锥曲线7大题型及解答技巧总结
学好圆锥曲线的几个关键点1核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
2计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
3拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。
老师建议:山重水复疑无路,没事你就算两步。
大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。
例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化。
总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
4圆锥曲线中常见题型总结1、直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
2、圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
3、圆锥曲线弦长问题弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:4、定点、定值问题(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,经常出现在高中数学的教学中,也是高考数学中的一个热点考点。
掌握圆锥曲线的相关知识和解题技巧对于学生来说非常重要。
本文将介绍圆锥曲线问题在高考中的常见题型及解题技巧,希望能够帮助广大学生更好地应对高考数学考试。
一、圆锥曲线问题的常见题型1. 椭圆的方程与特征:椭圆的标准方程为\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,其中a和b分别为椭圆在x轴和y轴上的半轴长。
在高考中,通常会出现给定椭圆的焦点、顶点等信息求椭圆的方程,或者反过来给定椭圆的方程求椭圆的相关信息的题目。
2. 抛物线的方程与性质:抛物线的标准方程为y=ax^2+bx+c,其中a不等于0。
高考中常见的题型包括给定抛物线的焦点、直径和顶点求抛物线的方程,或者求解抛物线与直线的交点等。
圆的标准方程为(x-a)^2+(y-b)^2=r^2,其中(a,b)为圆心坐标,r为半径。
高考中常见的题型包括求解圆与直线、圆与圆的交点、圆心坐标等。
1. 熟练掌握圆锥曲线的标准方程在解题时,首先要掌握圆锥曲线的标准方程,根据题目中给出的相关信息将其代入方程中,从而求出所需的未知数。
熟练掌握标准方程对于解题是非常重要的。
2. 注意利用圆锥曲线的性质在解题时,要善于利用圆锥曲线的性质,例如椭圆和双曲线的焦点、顶点等特征,抛物线的焦点、直径等特征,以及圆的半径、圆心坐标等特征。
通过这些性质,可以更快速地解题。
3. 结合几何思维进行分析在解题过程中,可以结合几何思维进行分析,画出相应的图形来辅助解题。
通过直观的几何图形,有时可以更好地理解题目要求,并且更容易找到解题的思路。
4. 熟练掌握相关公式和定理在解题过程中,要熟练掌握相关的公式和定理,例如椭圆和双曲线的离心率公式,抛物线的焦点、准线和方程性质,以及圆的切线和法线方程等。
熟练掌握这些公式和定理可以为解题提供更多的思路和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学圆锥曲线与方程章总结题型详解圆锥曲线与方程题型一 定义运用1..(2017·湖南高考模拟(理))已知抛物线22x y = 上一点P 到焦点F 的距离为1,,M N 是直线2y =上的两点,且2MN =,MNP ∆的周长是6,则sin MPN ∠=( ) A .45B .25C .23D .13【答案】A【解析】由题意,22p = ,则122p = ,故抛物线22x y = 的焦点坐标是10,2⎛⎫⎪⎝⎭,由抛物线的定义得,点P 到准线12y =-的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ⎛⎫=---= ⎪⎝⎭. 设 点P 在直线MN 上的射影为P' ,则3'2PP =. 当点,M N 在P'的同一侧(不与点P'重合)时,352=622PM PN MN ++>++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去,综上,M N 在两点中一定有一点与点P'重合,所以24552sin MPN <==,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A ,B 两点,F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( )A .6B .5C .4D .3【答案】A【解析】由题意得,设抛物线28y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-,如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB ,由2FA FB =,则2AM BN =,点B 为AP 的中点, 因为点O 是PF 的中点,则12OB AF =,所以OB BF =,所以点B 的横坐标为1,所以点B 的坐标为(,同理可得点(4,A ,所以点A 到抛物线准线的距离为426+= ,故选A.3.(2019·河南高考模拟(理))已知抛物线24y x =的焦点为F ,l 为准线,点P 为抛物线上一点,且在第一象限,PA l ⊥,垂足为A ,若直线AF 的斜率为A 到PF 的距离为( )A. D.2【答案】A【解析】因为直线AF 的斜率为 所以直线AF 的倾斜角为120︒,则60PAF ∠=︒,由抛物线的定义得PF PA =, 所以PAF ∆为等边三角形,又1OF =, 所以|AF|=4,所以A 到PF 的距离等于 故选:A.题型二 标准方程1.(2019·天津市宁河区芦台第一中学高考模拟(理))已知双曲线的离心率,点 是抛物线 上的一动点, 到双曲线 的上焦点 的距离与到直线 的距离之和的最小值为 ,则该双曲线的方程为( ) A.B.C.D.【答案】B【解析】因为双曲线的离心率,所以 ,设 为抛物线 焦点,则 ,抛物线 准线方程为 ,因此 到双曲线 的上焦点 的距离与到直线 的距离之和等于 , 因为 ,所以 ,即 , 即双曲线的方程为,选B.2.(2019·天津南开中学高考模拟)已知双曲线()222210,0x y a b a b-=>>的离心率为32,过右焦点F 作渐近线的垂线,垂足为M ,若FOM ∆O 为坐标原点,则双曲线的标准方程为( )A .22415y x -=B .222125x y -=C .22145x y -=D .2211620x y -=【答案】C【解析】由题意可得 32c e a ==①, 可得2b a == , 设 (),0Fc , 渐近线为by x a=, 可得 F 到渐近线的距离为MF b == ,由勾股定理可得 OM a === ,因为FOM ∆12ab =② ,又 222+=a b c ③,由①②③ 解得2,3b a c === ,所以双曲线的方程为22145x y -= ,故选C.3.(2019·山东高考模拟(文))若方程2244x ky k +=表示焦点在y 轴上的椭圆,则实数k 的取值范围为( ) A.4k > B.4k =C.4k <D.04k <<【答案】D【解析】由题得2214x y k +=,因为方程2244x ky k +=表示焦点在y 轴上的椭圆,所以04k <<. 故选:D4.(2019·河南高考模拟(理))“02m <<”是“方程2212x y m m+=-表示椭圆”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】】方程2212x ym m +=-表示椭圆,即020022m m m m m>⎧⎪->⇒<<⎨⎪≠-⎩且1m ≠所以“02m <<”是“方程2212x y m m+=-表示椭圆”的必要不充分条件故选C题型三 直线与曲线的位置关系1.(2019·山东高考模拟(文))已知12,x x 是关于x 的方程2(21)0x mx m +-+=的两个不等实根,则经过两点()()221122,,,A x x B x x 的直线与椭圆221164x y+=公共点的个数是( )A.2B.1C.0D.不确定【答案】A【解析】因为12,x x 是关于x 的方程2(21)0x mx m +-+=的两个不等实根所以12x x m +=-,()1221x x m =-+且211(21)0x mx m +-+=,222(21)0x mx m +-+=直线AB 的斜率()22212121ABx x k x x m x x -==+=-- 直线AB 的方程为()211y x m x x -=--即()11+(21)y mx m m x x -+=-- 整理得()()210x m y -+-=故直线AB 恒过()2,1点,而该点在椭圆内部, 所以直线和椭圆相交,即公共点有2个。
故选A.2.(2019·河南高考模拟(理))已知椭圆22:12x C y +=,设过点()2,0P 的直线l 与椭圆C 交于不同的A ,B 两点,且AOB ∠为钝角(其中O 为坐标原点),则直线l 斜率的取值范围是( )A .22⎛⎫-⎪ ⎪⎝⎭B .0,55⎛⎫⎛-⋃ ⎪ ⎪ ⎝⎭⎝⎭C .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .⎛⎫⎛⋃ ⎪ ⎪ ⎝⎭⎝⎭【答案】B【解析】设直线()():20l y k x k =-≠,代入2212x y +=,得()2222128820k x k x k +-+-=,因为直线l 与椭圆交于不同的A ,B 两点,所以()()22264412820k kk∆=-+->,解得22k -<<且0k ≠.设()11,A x y ,()22,B x y ,则2122812k x x k +=+,21228212k x x k-=+,()()22222121222282162224121212k k k y y k x x k k k k⎛⎫-=--=-+= ⎪+++⎝⎭,因为AOB ∠为钝角,所以2212122282201212k k x x y y k k-+=+<++,解得k <<0k ≠.综上所述:k ⎛⎫⎛∈⋃ ⎪ ⎪ ⎝⎭⎝⎭.故选:B3.(2019·安徽高考模拟(理))已知双曲线221169x y -=的左焦点为1F ,过1F 的直线l 交双曲线左支于A 、B 两点,则l 斜率的取值范围为( )A.44(,)33-B.33(,)(,)44-∞-+∞ C.33(,)44-D.44(,)(,)33-∞-+∞【答案】B【解析】双曲线的渐近线为34y x =?,当直线l 与渐近线平行时,与双曲线只有一个交点.当直线l 斜率大于零时,要与双曲线左支交于两点,则需直线斜率34k >;当直线l 斜率小于零时,要与双曲线左支交于两点,则需斜率34k <-.故选B.题型四 弦长1.(2019·湖南高考模拟(理))已知椭圆22:143x y C +=的左焦点为F ,过点F 作斜率为34的直线交椭圆C 于,A B 两点,则AB 的长度为( )A.217B.237C.257D.277【答案】C【解析】由22:143x y C +=可知()1,0F -,直线AB 为()314y x =+,联立()223412314x y y x ⎧+=⎪⎨=+⎪⎩,消元得276130x x +-=, 设()()1122,,,A x y B x y 则1267x x +=-,12137x x ⋅=- 根据弦长公式得257AB ===,故选C. 2.(2019·陕西高考模拟(文))双曲线221369x y -=的一条弦被点(4,2)P 平分,那么这条弦所在的直线方程是( ) A.20x y --= B.2100x y +-= C.20x y -= D.280x y +-=【答案】C【解析】设弦的两端点1(A x ,1)y ,2(B x ,2)y ,斜率为k ,则22111369x y -=,22221369x y -=, 两式相减得12121212()()()()369x x x x y y y y -+-+=,即121212129()98136()3642y y x x k x x y y -+⨯====-+⨯, ∴弦所在的直线方程12(4)2y x -=-,即20x y -=. 故选:C3.(2018·海南高考模拟(文))直线l 交双曲线()220x y a a -=>的右支于,A B 两点,设AB 的中点为C ,O 为坐标原点,直线,AB OC 的斜率存在,分别为,AB OC k k ,则AB OC k k ⋅=( )A.-1B.12C.1【答案】C【解析】双曲线的渐近线方程为y=±x . 设直线l 的方程为y=kx+b ,∵直线l 与双曲线有2个交点A ,B ,故而k≠±1.联立方程组22y kx b x y b=+⎧⎨-=⎩,消去y 得(1﹣k 2)x 2﹣2kbx ﹣b 2﹣a=0, 设A (x 1,y 1),B (x 2,y 2),C (x 0,y 0), 则x 1+x 2=221kb k -,∴x 0=122x x +=21kb k -,y 0=kx 0+b=21b k-. ∴直线OC 的斜率为OC k =00y x =1k. ∴AB OC k k ⋅==1. 故选:C题型五 定点1.(2019·内蒙古高考模拟(理))已知椭圆C :()222211x y a b a b +=>>1x =被椭圆(1)求椭圆方程;(2)设直线y kx m =+交椭圆C 于A ,B 两点,且线段AB 的中点M 在直线1x =上,求证:线段AB 的中垂线恒过定点.【答案】(1)2214x y +=(2)见解析【解析】(1)由直线1x =⎛ ⎝⎭,即221314a b +=,又c e a ===224a b =, 所以24a =,21b =,即椭圆方程为2214x y +=.(2)由2214x y y kx m ⎧+=⎪⎨⎪=+⎩得()222148440k x kmx m +++-=,由222222644(14)(44)1664160k m k m m k ∆=-+-=-++>, 得2214m k <+.由122814kmx x k+=-+, 设AB 的中点M 为()00,x y ,得024114kmx k=-=+,即2144k km +=-, ∴0021144m y kx m k k=+==-+. ∴AB 的中垂线方程为()1114y x k k+=--.即134y x k ⎛⎫=-- ⎪⎝⎭,故AB 的中垂线恒过点3,04N ⎛⎫⎪⎝⎭. 2.(2019·安徽省泗县第一中学高考模拟(文))已知椭圆M :22221(0)x y a b a b +=>>且椭圆上一点P的坐标为⎭. (1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求证:直线l 恒过x 轴上一定点.【答案】(1)2214x y +=;(2)详见解析.【解析】(1)由已知c e a ==222a b c =+,则2a b =. 椭圆方程为222214x y b b +=,将)2代入方程得1b =,2a =,故椭圆的方程为2214x y +=;(2)不妨设直线AB 的方程x ky m =+,联立2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x 得()2224240k y kmy m +++-=.设11(,)A x y ,22(,)B x y ,则有12224km y y k -+=+,212244m y y k -⋅=+①又以线段AB 为直径的圆过椭圆的右顶点C ,∴0CA CB ⋅=,由11(2,)CA x y =-,22(2,)CB x y =-得()()1212220x x y y --+=, 将11x ky m =+,22x ky m =+代入上式得()()2212121(2)(2)0ky y k m y y m ++-++-=,将①代入上式求得65m =或2m =(舍), 则直线l 恒过点6(,0)5.若直线斜率为0也符合条件,故直线恒过定点6(,0)5.题型六 定值1.(2019·江西师大附中高考模拟(文))已知离心率为()2222:10x y C a b a b +=>>过点⎭,,A B 分别为椭圆C 的右顶点和上顶点,点P 在椭圆C 上且不与四个顶点重合.(1)求椭圆C 的标准方程;(2)若直线PA 与y 轴交于N ,直线PB 与x 轴交于M ,试探究AM BN ⋅是否为定值?若是,请求出该定值;若不是,请说明理由.【答案】(1)2214x y +=;(2)AM BN ⋅是定值,定值为:4【解析】(1)由题意得:2222222112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2241a b ⎧=⎨=⎩ ∴椭圆C 的标准方程为:2214x y += (2)点P 不与四个顶点重合 ∴直线,PA PB 的斜率存在且不为0设()00,P x y ,且()2,0A ,()0,1B∴直线PA 的方程为:()0022y y x x =-- 0020,2y N x ⎛⎫∴- ⎪-⎝⎭直线PB 的方程为:0011y y x x -=+ 00,01xM y ⎛⎫∴- ⎪-⎝⎭2200000000000000244448211222x y x y x y x y AM BN y x x y x y +++--∴⋅=+⋅+=----+P 在椭圆上 220044x y ∴+=0000000000000000844822442222x y x y x y x y AM BN x y x y x y x y +----+∴⋅==⨯=--+--+4AM BN ∴⋅=,为定值题型七 最值1.(2017·山东高考模拟(文))已知椭圆C :()222210x y a b a b +=>>过点⎭,左右焦点为()()12,0,,0F c F c -,且椭圆C 关于直线x c =对称的图形过坐标原点。