基于二叉树模型的期权定价

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

摘要 (1)

ABSTRACT (2)

第一章绪论 (3)

1.1 背景介绍 (3)

1.2 本文的主题 (4)

第二章预备知识 (5)

2.1 期权 (5)

2.2二叉树方法 (6)

2.2.1 方法概述 (6)

2.2.2 二叉树方法的优点和缺点 (9)

2.2.3 风险中性定价 (9)

2.3 Black-Scholes 期权定价模型 (11)

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

第三章本论 (14)

3.1期权定价的二叉树模型 (14)

................................................ 错误!未定义书签。

................................................ 错误!未定义书签。

................................................ 错误!未定义书签。

................................................ 错误!未定义书签。

3.2 例子模拟计算和结果分析 (18)

3.3 模型改进——三叉树 (19)

第四章结论...................................... 错误!未定义书签。谢辞及参考文献 (23)

谢辞 (23)

参考文献 (23)

附录 (25)

计算过程中涉及算法 (25)

摘要

Black-Scholes 期权定价模型为期权定价尤其是欧式期权定价提供了良好的解析结果,而Black-Scholes 公式是此模型的核心,但是此公式并不能很好地求解出在很多衍生模型例如亚式期权以及美式期权中的解析解。二叉树方法作为一种数值方法,同时也是图论中一种重要方法,应用于期权定价问题中,它有了更特别的演变。本文利用二叉树方法计算期权定价的数值解,用二叉树方法迭代多次,求出较为准确的期权价格。通过B-S公式得出的结果与二叉树方法得到的结论对比,分析二叉树方法模拟的优点和缺点。同时,我们还要研究二叉树模拟的步数与预测结果和精度间的关系,从而更加深入了解二叉树方法。然而,我们在模型中设立了许多条件,这些都使模型离真实情况越来越远,我们必须不断发展模型,完善模型。三叉树方法正是二叉树方法的合适补充。

关键词:二叉树方法,Black-Scholes 模型,风险中性定价

ABSTRACT

Black-Scholes Formula is the core of Black-Scholes Option Pricing Model which provides a practical method for option pricing. It has analytical solutions with good properties in some special situations, for instance, European options. However, the analytical solution is difficult to find in many derivative models like Asian options and American option. As a sort of typical statistical simulation method,Binomial tree plays very important roles in Graph Theory and other significant academic fields. W h e n i t a p p l i e s t o t h e o p t i o n p r i c e,b i n o m i a l

t r e e m e t h o d h a s m u c h m o r e s p e c i a l u s e.The main idea is that we put the binomial tree into effect,reapply this method and get numerical results of option price.By comparing the results of Black-Scholes formula with the results of binomial tree method,we come to the advantages and disadvantages of both method. Meanwhile,the study of the steps of binomial tree method is also included to get its relationship with the method’s results and accuracy,which leads us to understand this method deeply and rightly.However,we set many extra conditions,which pushes the situation further away from the real situation.The simple binomial tree method is supposed to be improved constantly in case the finance market changes ceaselessly.

Ternary tree is a good supplement for the binomial tree.

Key words: B i n o m i a l t r e e method, Black-Scholes option

pricing model,Risk-neutral valuation

第一章绪论

1.1 背景介绍

金融数学这门学科是随着金融市场崛起后产生的一门衍生学科,作为为金融学和数学的交叉学科,它的主要想法就是收集大量金融市场中的实际数据,建立适当的数学模型并不断进行优化,利用一系列的现代数学工具(例如概率论、随机分析以及程序辅助)研究风险资产如金融衍生产品的定价,同时尽可能规避投资风险以及选择最优的消费投资策略。期权交易作为金融衍生品中的重要部分,18世纪后期在美国与欧洲市场有了初步的雏形,发展初期交易制

度以及人们对这种新兴金融产品的认识还十分有限。那时的期权主要由商业自营者自己提出报价然后由出资人选择购买,因此商业自营者的报价一定会偏向于对自己有利的价格,正是由于这种不完备性期权交易的发展在当时一直受到各种因素的限制。到了1973年,横空出世的芝加哥交易所规范了期权合约标准了后期交易流程,使这种情况得到改善。

期权相关的研究从这种金融衍生品诞生起就开始了,金融从业者和投资者们想要依靠各种不同数学以及计算机工具来分析期权,想要从供求机制引导的市场波动中找出期权变化发展的隐藏规律,从而使自己获得最大的利润。1973 年,Black和Scholes得出的期权定价模型的出现是对于金融数学研究有重大

相关文档
最新文档