基于二叉树模型的期权定价
期权的定价
期权的定价期权定价是金融学中重要的一部分,它可以帮助投资者确定期权的合理价值,并基于此做出相应的投资决策。
期权定价模型主要有两种,即BSM模型(Black-Scholes-Merton 模型)和二叉树模型。
BSM模型是最早也是最经典的期权定价模型之一。
该模型是由Fisher Black、Myron Scholes 和 Robert C. Merton于1973年提出的。
该模型的核心思想是建立一个无风险投资组合,其和期权组合有相同的收益率。
通过对组合进行数学推导,可以得到期权价格的解析公式。
BSM模型的前提假设包括:市场不存在摩擦成本、资产价格符合几何布朗运动、市场无风险利率恒定、无红利支付、市场不存在套利机会等。
有了这些假设,可以通过标的资产价格、行权价格、剩余期限、无风险利率、标的资产波动率和期权类型等因素来计算期权的市场价值。
与BSM模型不同,二叉树模型采用离散化的方法进行期权定价。
该模型将剩余期限分为若干个时间步长,并在每个时间步长内考虑标的资产价格的上涨和下跌情况。
通过逐步计算,可以得到期权价格的近似值。
二叉树模型的优点在于它可以应用于各种类型的期权,并且容易理解和计算。
无论是BSM模型还是二叉树模型,期权定价都是基于一定的假设和参数。
其中,最关键的参数是标的资产的波动率。
波动率代表了市场对标的资产未来价格变动的预期。
根据波动率的不同,期权的价格也会有所变化。
其他参数如标的资产价格、行权价格、剩余期限和无风险利率等也会对期权定价产生影响。
需要注意的是,期权定价模型只是对期权价格的估计,并不保证期权的实际市场价格与估计值完全相同。
实际市场存在许多因素都会导致期权价格的变动,例如市场情绪、供需关系、经济指标等。
因此,在进行期权交易时,投资者需要结合市场情况和自身风险偏好做出相应的决策。
总之,期权定价是金融学中的重要内容,通过定价模型可以帮助投资者确定期权的合理价格。
BSM模型和二叉树模型是常用的定价方法,但投资者需要注意,这些模型只是对期权价格的估计,实际市场价格可能有所变动。
基于二叉树模型期权定价的矩阵形式算法
作者简介: 覃思乾(91 , 广西桂平人 , 17 一)男, 讲师, 研究生学历 , 主要从事金融数学方面的研究
维普资讯
第1 期
覃思乾 : 于二 叉树模 型期权 定价 的矩 阵形式算法 基
・ 7- 2
) 的概率为 1 . 一 假设不提前实施 , 由风险中性估价公式得出 则
身就有多种形式 , 即使建立了数学模型 , 也不一定有显式解 。 只能进行数值解 .
二叉树模型的期权定价方法是最著名的使用范围最 广的方法之一 , 其理论要点主要来 自 Jh . o nC C xS A R s 以及 Ma ui tn 17 年所发表的文[ ] 18 o 。 . . os r R b s i于 99 k ne 1 中,95年 Jh . o 和 Mak ui on C x C r b— R
Ma .0 6 r2 0
V 12 o 1 o.3 N .
第2卷 第1 3 期
文章编号:02 84 {0 60 —02 — 5 10 — 7 320 }1 0 6 0
基 于二 叉树 模 型期 权 定价 的矩 阵 形式 算 法
覃 思 乾
( 玉林师范学院 数学与计算机科学系, 广西 玉林 57 0 ) 3 00
研究期权定价的数值解.
1 二叉树 图的基本方法
假设股票价格变动只有两种可能的结果 : 上升和下跌 , 上升的倍数为 “ 。 >1下跌的倍数为 d<1 相 。 应地在期末期权的价值就有两种可能. 我们考虑一个不付红利的欧式看跌期权 , 把其有效期分成时间长
度为 △ 的m 个小 时段 , f i t £ 为 A 时刻第 J 个结点的欧式期权价值 , 中,≤ m,≤ i在结点 其 0 ≤ 0 ≤ . ( ,) iJ 处的股价 S为 S J卜 。 u j则欧式看跌期权为 d
基于二叉树模型的期权定价
精品文档目录摘要 (1)ABSTRACT (2)第一章绪论 (3)1.1 背景介绍 (3)1.2 本文的主题 (4)第二章预备知识 (5)2.1 期权 (5)2.2二叉树方法 (6)2.2.1 方法概述 (6)2.2.2 二叉树方法的优点和缺点 (8)2.2.3 风险中性定价 (9)2.3 Black-Scholes 期权定价模型 (10)2.3.1模型来源 (10)2.3.2风险中性定价 (11)2.3.3模型假设 (11)可编辑精品文档2.3.4Black-Scholes期权定价公式 (12)第三章本论 (14)3.1期权定价的二叉树模型 (14)3.1.1参数确定 (14)3.1.2资产价格树形 (16)3.1.3通过树形倒推 (17)3.1.4代数表达式 (18)3.2 例子模拟计算和结果分析 (18)3.3 模型改进——三叉树 (22)第四章结论 (25)谢辞及参考文献 (28)谢辞 (28)参考文献 (29)附录 (32)计算过程中涉及算法 (32)可编辑精品文档摘要Black-Scholes 期权定价模型为期权定价尤其是欧式期权定价提供了良好的解析结果,而Black-Scholes 公式是此模型的核心,但是此公式并不能很好地求解出在很多衍生模型例如亚式期权以及美式期权中的解析解。
二叉树方法作为一种数值方法,同时也是图论中一种重要方法,应用于期权定价问题中,它有了更特别的演变。
本文利用二叉树方法计算期权定价的数值解,用二叉树方法迭代多次,求出较为准确的期权价格。
通过B-S公式得出的结果与二叉树方法得到的结论对比,分析二叉树方法模拟的优点和缺点。
同时,我们还要研究二叉树模拟的步数与预测结果和精度间的关系,从而更加深入了解二叉树方法。
然而,我们在模型中设立了许多条件,这些都使模型离真实情况越来越远,我们必须不断发展模型,完善模型。
三叉树方法正是二叉树方法的合适补充。
关键词:二叉树方法,Black-Scholes 模型,风险中性定价可编辑精品文档ABSTRACTBlack-Scholes Formula is the core of Black-Scholes Option Pricing Model which provides a practical method for option pricing. It has analytical solutions with good properties in some special situations, for instance, European options. However, the analytical solution is difficult to find in many derivative models like Asian options and American option. As a sort of typical statistical simulation method,Binomial tree plays very important roles in Graph Theory and other significant academic fields. W h e n i t a p p l i e s t o t h e o p t i o n p r i c e,b i n o m i a l t r e e m e t h o d h a s m u c h m o r e s p e c i a l u s e.The main idea is that we put the binomial tree into effect,reapply this method and get numerical results of option price.By comparing the results of Black-Scholes formula with the results of binomial tree method,we come to the advantages and disadvantages of both method. Meanwhile,the study of the steps of binomial tree method is also included to get its relationship with the method’s results and accuracy,which leads us to understand this method deeply and rightly.However,we set many extra conditions,which pushes the situation further away from the real situation.The simple binomial tree method is supposed to be improved constantly in case the可编辑精品文档finance market changes ceaselessly. Ternary tree is a good supplement for the binomial tree.Key words: B i n o m i a l t r e e method, Black-Scholes option pricing model,Risk-neutral valuation第一章绪论1.1 背景介绍金融数学这门学科是随着金融市场崛起后产生的一门衍生学科,作为为金融学和数学的交叉学科,它的主要想法就是收集大量金融市场中的实际数据,建立适当的数学模型并不断进行优化,利用一系列的现代数学工具(例如概率论、随机分析以及程序辅助)研究风险资产如金融衍生产品的定价,同时尽可能规避投资风险以及选择最优的消费投资策略。
期权定价公式的二叉树推导与分析
期权定价公式的二叉树推导与分析期权作为金融衍生品的重要组成部分,对于投资者和风险管理师来说具有重要意义。
期权的价值取决于多种因素,包括标的资产的价格、行权价格、剩余到期时间、无风险利率、波动率等。
期权的定价是金融领域的一个重要问题,准确的期权定价可以帮助投资者更好地进行投资决策和风险管理。
本文将介绍期权的定价公式,并通过二叉树的方法推导期权的价格,最后对各种情况下期权定价的计算方法与特点进行分析。
期权的定价公式是由费雪·布莱克、迈伦·斯科尔斯和罗伯特·默顿提出的布莱克-斯科尔斯模型。
该模型基于一些假设,例如无摩擦市场、无套利机会等,通过 Black-Scholes方程求解期权的定价。
具体公式如下:C = SₐN(d1) - XₐN(d2)其中, C为期权的公允价值; Sₐ为标的资产当前的价格; Xₐ为期权的行权价格; N(d1)和 N(d2)分别为正态分布变量的累积分布函数;d1和 d2分别为: d1 = (ln(Sₐ/Xₐ) + (r + σ²/2)T) / (σ√T) d2 = d1 - σ√T T为期权的剩余到期时间,以年为单位; r为无风险利率;σ为标的资产的年波动率。
二叉树方法是一种常用的期权定价模型,它可以用来推导期权的预期价格。
二叉树方法的思路是将期权的到期时间划分为若干个时间段,并假设标的资产在每个时间段内只有两种可能的价格,即上涨或下跌。
基于这个假设,我们可以构建一个二叉树来描述标的资产的价格变动情况。
假设初始时刻为 t0,标的资产的价格为 S0,行权价格为 X。
在每个时间段Δt内,标的资产的价格有两种可能的变化:上涨到 Su = S0 × u,或者下跌到 Sd = S0 × d,其中 u > 1,d < 1,u和 d分别为标的资产的上涨和下跌因子。
假设该期权的剩余到期时间为 T,共分为 n个时间段。
那么在 t0时,该期权的预期价格为:C0 = ∑CN(d1, d2, u, d) × (u × S0 - X)^+ ×Δt其中, N(d1, d2, u, d)为风险中性概率; (u × S0 - X)^+表示当标的资产价格上涨时,取 u × S0 - X,否则取 0;Δt为每个时间段的时间长度。
随机二叉树期权定价模型及模拟分析
随机二叉树期权定价模型及模拟分析随机二叉树期权定价模型及模拟分析一、引言期权是金融市场上常见的衍生品工具之一,它为投资者提供了在未来某一时间点以预定价格购买或出售一定数量的资产的权利。
期权定价是投资者进行期权交易的重要环节,如果能够准确地估算期权的价值,就能在投资中获得更大的收益。
本文将介绍一种基于随机二叉树模型的期权定价方法,并通过模拟分析来验证该模型的有效性和准确性。
二、期权定价基础知识回顾在介绍随机二叉树期权定价模型之前,我们需要回顾一些期权定价的基础知识。
1. 期权定价理论期权定价理论主要包括两种主要模型:布莱克-斯科尔斯期权定价模型和随机波动率模型。
布莱克-斯科尔斯期权定价模型假设资产价格服从几何布朗运动,即价格变动服从正态分布。
而随机波动率模型则考虑了波动率的随机性,更加贴近于实际市场情况。
2. 随机二叉树模型随机二叉树模型是一种离散的期权定价模型,它将期权价格的变动分解为两种可能的结果,即上涨或下跌,并使用概率来描述这两种结果的发生概率。
随机二叉树模型具有较强的灵活性和计算简单性,因此在实际应用中被广泛采用。
三、随机二叉树期权定价模型随机二叉树期权定价模型基于二叉树的结构,其中每个节点代表资产价格在某个时间点的取值。
模型的构建需要考虑以下几个要素:1. 基础资产价格期权的价格与基础资产的价格相关,因此需要确定资产价格在每个时间点的取值。
2. 上涨和下跌的概率基于市场预期和历史数据,可以计算资产价格上涨和下跌的概率。
3. 资产价格上涨和下跌的幅度根据市场波动性和历史数据,可以计算资产价格上涨和下跌的幅度。
4. 期权收益计算根据期权类型和行权价格,可以计算在每个时间点期权的收益。
通过将这些要素结合起来,可以构建出一颗随机二叉树,该树的叶子节点代表期权到期时的收益,通过回溯法可以计算出每个节点的期权价格。
四、模拟分析为了验证随机二叉树期权定价模型的有效性和准确性,我们将进行一次模拟分析。
二叉树期权定价模型
二叉树期权定价模型
二叉树期权定价模型是指基于二叉树构建的期权定价模型,该模型结合了终值定理(Binomial Option Pricing Model;BOPM)和二叉树的理论。
该模型的精确性比一般的期权定价模型(即欧式期权定价模型)要高,为投资者提供了更多的信息和选择。
二叉树期权定价模型以股票价格移动变量来构建定价模型,而欧式期权定价模型只考虑股票价格固定。
该模型使用二叉树,其中每个分支都对应一定的定价模型,以确定期权价格。
该方法有三个基本步骤:1)构建二叉树;2)确定期权执行价值;3)通过使用backward卷积,利用当前价格和当前的期权价值,来决定每个分支的期权价格。
二叉树期权定价模型具有不同的算法变种,它们能够捕获市场(股价)的单向和双向变化,以及波动性。
它比欧式期权模型更精确,也更灵活,可以捕获一系列特殊事件,比如空头期权,复合期权,多元期权,多档次期权。
此外,二叉树期权定价模型还能够用来估算期权的损失或收益,并对复杂的期权进行定价。
总的来说,二叉树期权定价模型是一种简单的,有效的,能够捕获市场变化的定价模型,为投资者提供了更多的信息和选择。
该模型比较早出现于二十世纪九十年代,自此后逐渐普及,并得到广泛应用。
期权二叉树定价模型
期权二叉树定价模型期权二叉树定价模型是一种常用的金融衍生品定价模型,用于计算期权合约的公平价格。
该模型基于二叉树的数据结构,将时间分为离散的步长,在每个步长上模拟期权的价格变化。
在期权二叉树定价模型中,二叉树的每个节点表示期权的一个可能价格,树的每一层表示时间的一个步长。
从根节点开始,根据期权的流动性和到期前可执行的次数,构建二叉树模型。
在每个节点上,计算期权的价值,以确定其合理价格。
在构建二叉树模型时,需要考虑期权的标的价格、波动率、到期时间和无风险利率等因素。
这些因素将被用来计算每个节点上的期权价格。
在每个步长上,通过向上或向下移动树的节点,模拟标的价格的波动,从而更新节点上的期权价格。
在二叉树的叶子节点上,期权的价值是已知的,可以直接计算。
在其他节点上,通过对未来价格的概率分布进行加权,计算期权的合理价格。
树的最后一层即为到期时间,即期权到期时的状态。
根据到期状态计算出期权的现值,并通过向根节点回溯,确定期权的公平价格。
期权二叉树定价模型的优点在于能够在离散时间步长上快速确定期权的价格,并且可以灵活地应用于不同类型的期权合约。
此外,该模型对于包含多个期权合约的复杂结构,如欧洲期权、美式期权和亚洲期权等,也具有较高的适用性。
然而,期权二叉树定价模型也存在一些局限性。
首先,该模型假设标的价格的波动服从几何布朗运动,这在实际市场中并不成立,因此模型的有效性有一定的限制。
其次,通过选择适当的步长数和树的深度来平衡精确度和计算效率是一个挑战。
总的来说,期权二叉树定价模型是一个常用且有效的金融工具,可以用于估计期权合约的公平价格。
该模型基于二叉树的数据结构,通过离散时间步长模拟期权的价格变化,并通过回溯计算确定期权的公平价格。
虽然该模型存在一定的局限性,但在实际应用中仍被广泛应用。
期权二叉树定价模型是一种基于离散时间步长和二叉树结构的金融衍生品定价模型。
它是Black-Scholes模型的一种改进方法,通过模拟期权价格的变化来计算期权的公平价格。
期权定价的二叉树模型
期权定价的二叉树模型Cox、Ross和Rubinstein提出了期权定价的另一种常用方法二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。
本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。
8.1 一步二叉树模型我们首先通过一个简单的例子介绍二叉树模型。
例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。
在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。
由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。
这是最简单的二叉树模型。
一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。
经过一个时间步(至到期日T)后该股票价格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。
我们的问题是根据这个二叉树对该欧式股票期权定价。
为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。
构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。
如果该股票价格上升到,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。
根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有由此可得(8.1)上式意味着是两个节点之间的期权价格增量与股价增量之比率。
在这种情况下,该组合是无风险的。
以表示无风险利率,则该组合的现值(the present value)为,又注意到该组合的当前价值是,故有即将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为(8.2)(8.3)需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: .现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。
期权定价的二叉树模型
03
二叉树模型在期权定价中 的应用
二叉树模型在欧式期权定价中的应用
欧式期权定义
二叉树模型原理
欧式期权是一种只能在到期日行权的期权。
二叉树模型是一种离散时间模型,通过构造 一个二叉树来模拟股票价格的演变过程。
模型参数
定价过程
包括无风险利率、股票波动率、期权行权价 等。
从到期日逆推至起始时间,考虑各种可能的 价格路径,计算期权的预期收益,并使用无 风险利率折现至起始时间。
与其他理论的结合
二叉树模型与其它金融理论的结合也是理论研究的一个重要方向,如将二叉 树模型与随机过程理论、博弈论等相结合,以提供更深入、更全面的分析框 架。
二叉树模型的应用研究进展
扩展到其他金融衍生品
二叉树模型在期权定价方面的应用已经非常成熟,研究者们正在将其应用于其他金融衍生品的定价,如期货、 掉期等。
案例一:某公司股票期权定价
背景介绍
某上市公司股票期权激励计划需要为期权定价,以确定向员工发 放的期权数量和行权价格。
模型应用
根据二叉树模型,预测股票价格的上涨和下跌幅度,并计算期权 的内在价值和时间价值。
结论分析
根据计算结果,确定期权的行权价格和数量,实现了员工激励与公 司发展的双赢。
案例二:某交易所债券期权定价
调整利率和波动率
根据市场数据和实际情况,调整利率和波动率的参数,可以提 高模型的拟合度。
模型的选择与比较
1 2
基于误差
比较不同模型的预测误差,选择误差最小的模 型。
基于风险
比较不同模型的风险指标,选择风险最小的模 型。
3
基于解释性
选择更具有解释性的模型,以便更好地理解市 场行为和风险。
05
第八讲期权二叉树定价模型
22Δ—1=18Δ 得
Δ=0.25
是否一定为正?
因此,一个无风险的组合由0.25股股票和一个期权空头 构成。通过计算可知,无论股票价格是上升还是下降,在期
权有效期的末尾,该组合的价值总是$4.5。 第八讲期权二叉树定价模型
在无套利假设下,无风险证券组合的盈利必定为无风险 利率。
假设无风险利率为年率12%。则该组合的现值应为:
第八讲期权二叉树定价模型
第八讲期权二叉树定价模型
最后股票的可能价格为$72、$48和$32。在这种情况下, fuu=0,fud=4,fdd=20,Δt=1,利用公式(9.8),得到看跌期权的 价格
f=e-2×0.05×1(0.62822×0+ 2×0.6282×0.3718×4+0.37182×20)=4.1923
构造一个证券组合,该组合包含一个Δ股股票多头头寸 和一个看涨期权的空头头寸。是否可有多种构造方法?
第八讲期权二叉树定价模型
第八讲期权二叉树定价模型
由图8-1可知,当股票价格从$20上升到$22时,该证券组 合的总价值为22Δ-1;当股票价格从$20下降到$18时,该证 券组合的总价值为18Δ。
完全可以选取某个Δ值,使得该组合的终值对在上述两 种情况下是相等的。这样,该组合就是一个无风险组合。 由
¡ 式(9.4)说明,当设定上升运动的概率为p时,我们就在假设一个风险 中性世界 。
¡ 式(9.2)说明,衍生证券的价值是其预期收益在风险中性世界中按无 风险利率贴现的值。
¡ 以上过程表明,当为期权和其它衍生证券估值时,完全可以假设世界 是风险中性的。这就是所谓风险中性(risk-neutral valuation)原理。 在风险中性世界中得到的价格,在现实世界中也是正确的。
期权定价的二叉树模型介绍
计算期权的价值
计算期权的现值
根据预期收益和折现率,我们可以计算出期权的现值。 看涨期权的现值是每个节点的股票价格与执行价格的差 值与风险中性概率的乘积之和;看跌期权的现值是每个 节点的执行价格与股票价格的差值与风险中性概率的乘 积之和。
校准二叉树模型参数
为了使模型的预测结果与实际期权价格一致,我们需要 校准模型参数。通常,我们使用历史数据来估计参数, 例如股票价格的波动率和无风险利率。
建立二叉树
以时间步长为单位,从最后一个时间步长开始,依 次向前建立二叉树,每个节点代表一个时间步长。
确定初始股票价格
确定股票的当前价格
通常以市场价格为基础确定初始股票价格 。
考虑股息
如果股票在期权有效期内发放股息,需要 在每个时间步长上调整股票价格。
确定无风险利率与时间步长
要点一
确定无风险利率
无风险利率是投资者在相同风险水平下可以获得的最低 回报率。
05
二叉树模型的结果分析
模拟结果展示
假设一个股票价格变动模型,通过二叉树模型模拟股 票价格的涨跌情况,并计算期权的价值。
根据不同的利率和波动率等参数设置,模拟不同的股 票价格路径,从而得到期权价格的模拟结果。
结果分析与比较
将模拟结果与实际期权价格进行比较,分析二叉树模型 定价的准确性。
对比不同参数设置下的模拟结果,分析利率和波动率等 因素对期权价格的影响。
期权定价的二叉树模型介绍
2023-11-06
目 录
• 引言 • 二叉树模型基本原理 • 构建二叉树模型 • 计算期权价值 • 二叉树模型的结果分析 • 二叉树模型在金融实践中的应用 • 结论与展望
01
引言
研究背景与意义
二叉树期权定价模型概述
二叉树期权定价模型概述二叉树期权定价模型是一种基于二叉树结构的金融衍生品定价模型。
它是由美国学者Cox、Ross和Rubinstein在1979年提出的,也被称为CRR模型。
二叉树期权定价模型的核心思想是将时间分割成若干个小时间段,然后在每个时间段内构建一个二叉树,即"向上"和"向下"的可能价格路径。
通过从期权到期时的终点开始,逆向计算每个节点的价值,最终计算出期权的定价。
模型中的二叉树由两个重要的参数组成:上涨幅度(u)和下跌幅度(d)。
这两个参数反映了标的资产价格在不同时间段内上涨或下跌的可能性。
根据这两个参数的取值,可以构建出一棵二叉树,每个节点表示标的资产在相应时间段内的价格。
在每个节点上,可以计算出无风险利率下的期权价格。
对于看涨期权而言,其在节点上的价格由其未来收益和风险中性概率相乘得到。
而看跌期权的价格则是在节点上的看涨期权价格减去标的资产价格与期权的行权价格差值。
通过从终点开始逆向计算每个节点的期权价格,最终可以得到期权在初始节点上的定价。
需要注意的是,为了确保模型的有效性和稳定性,构建二叉树需要满足一些条件,如无套利机会、欧式期权等。
二叉树期权定价模型很好地解决了离散时间下的期权定价问题,并且计算简单、直观。
然而,在实际应用中,它可能存在一些局限,如对标的资产价格的预测不准确、二叉树节点数较多导致计算过于复杂等。
因此,二叉树期权定价模型通常用于简单的期权合约和教学研究中。
在复杂的市场环境下,一般会采用更精细的定价模型,如Black-Scholes模型。
二叉树期权定价模型的应用广泛,特别适用于离散时间下的期权定价问题。
它可以用于定价欧式期权、美式期权、亚式期权等各种类型的期权合约。
同时,由于其简单直观的计算方式,二叉树模型也常被用作其他复杂期权定价模型的验证工具。
在二叉树期权定价模型中,最关键的是确定二叉树的参数,即上涨幅度(u)和下跌幅度(d)。
期权定价的二叉树模型学习笔记(I)
期权定价的二叉树模型学习笔记(I)编者按:二叉树模型是金融衍生产品期权定价的离散模型.人们可以借助二叉树模型分别对欧式看涨看跌期权、美式看涨看跌期权进行期权金定价.抛开金融意义不谈,单从数学角度出发,这部分运用的数学知识仅是微积分的基本知识点.额外需要注意的是,在二叉树章节中反向归纳法(倒向归纳法)是特别重要的一种方法,其在涉及到有关期权问题的证明中显得尤为重要.之所以运用反向归纳法,是因为期权定价中我们已知未来某一时刻的期权状态,由此出发逐步倒向递推在时刻的价格.本系列是笔者学习二叉树模型所做的课堂笔记一部分,仅供参考!Hedging Concept(套期保值概念)Firstly,we should learn the definition of One-Period & Two-State.Definition1.1(One-Period): Assets are traded at & only, hence the term one period.Definition1.2(Two-State): At the risky asset has two possible values(states):& ,with their probabilities satisfying Question:If risky asset and risk free asset ,known ,when two possibilities,.(for strike price ,expired time .) If known at ,how to find out whenDefinition1.3(Hedging Definition):For a given option ,trade shares of the underlying asset in the opposite direction so that the portfoliois risk-free.We can solve Meanwhile,we can getDefine a new Probability MeasureNotice that期权价的期望表示和风险中性测度Notice that denotes that the expectation of the random variable under the probability measure .Let be a certain risky asset, and is a risk-free asset, then iscalled the discounted price(also known as the relative price) of the risky asset at time .Theorem2.1:Under the probability measure ,an option's discounted price is its expectation on the expiration date.i.e Remark:In order to examine the meaning of the probability measure ,consider is an underlying risky asset.It is easy to calculateRisk-Neutral World(风险中性世界)Definition3.1(Risk-Neutral World):Under the probability measure ,the expected return of a risky asset at is the same as the return of a risk-free bond.A financial market possessing this property is called a Risk-Neutral World.Definition3.2(Risk-neutral measure):The probability measure defined byis called by risk-neutral measure.Definiton3.3(The risk-neutral price):The option price given under the risk-neutral measure is called the risk-neural price. Replication(复制),等价性定理In a market consisted of a risky asset and a risk-free asset ,if there exists a portfoliosuch that the value of the portfolio is equal to the value of the option at ,then is called a replicating portfolio of the option ,then option priceTheorem4.1:In a market consisted of•a risky asset ;•a risk-free asset .Then is true if and only if the market is arbitrage-free.In fact, if the market is arbitrage-free, then there exists a risk-neutral measure defined bysuch that二叉树的构造This means that if at the initial time the price of the underlying asset is , then at , will have possible values Denote未完待续......。
期权定价的二叉树模型
期权定价的二叉树模型期权定价是金融领域中的重要问题之一,而二叉树模型是一种经典的期权定价工具。
二叉树模型的主要思想是将期权到期日之间的时间划分为多个等长的时间段,并根据每个时间段内的股价变动情况来计算期权的价值。
下面将介绍二叉树模型的构建过程以及期权定价的基本原理。
首先,我们需要确定二叉树模型的参数。
主要包括股票价格的初始值、期权到期日、无风险利率、每个时间段的长度等。
其中,股票价格的初始值可以通过市场价格获取,期权到期日通常由合约确定,无风险利率可以参考国债收益率,而每个时间段的长度可以根据需要自行设置。
接下来,根据二叉树模型的思想,我们构建一个二叉树。
树的每个节点表示一个时间段,而每个节点下方的两个子节点分别表示股票价格在该时间段内上涨和下跌的情况。
具体构建二叉树的方式有很多种,常见的有Cox-Ross-Rubinstein模型和Jarrow-Rudd模型。
其中,Cox-Ross-Rubinstein模型是一种离散时间模型,每个时间段内股价上涨或下跌的幅度是固定的;而Jarrow-Rudd模型是一种连续时间模型,股价的变动是连续的。
在构建好二叉树之后,我们需要从期权到期日开始反向计算每个节点的期权价值。
通过回溯法,我们可以计算出每个节点的期权价值。
具体计算的方式是,对于期权到期日的节点,其价值等于股价与行权价格的差值(对于欧式期权而言)或者最大值(对于美式期权而言)。
而对于其他节点,其价值等于期权在上涨和下跌情况下的期望值,即其左右子节点的价值经过贴现后得到的值。
通过不断回溯,最终我们可以得到二叉树的根节点即为期权的实际价值。
需要注意的是,期权定价的准确性与二叉树模型的参数设定和树的构建方法有关。
参数的选择需基于市场数据和合理的假设,而构建二叉树的方法应能很好地反映实际股价的变动规律。
此外,二叉树模型也有一定的局限性,特别是在处理股价波动较为剧烈的情况下,可能无法准确地定价。
总之,二叉树模型是一种常用的期权定价工具,可以通过构建二叉树和回溯计算的方式来估计期权的价值。
二叉树期权定价方法的原理
二叉树期权定价方法的原理二叉树期权定价方法是一种常用的金融工具定价方法,它基于二叉树模型,通过离散化时间和价格,将连续时间和连续价格的金融问题转化为离散时间和离散价格的问题,从而简化了计算过程。
该方法的原理主要包括二叉树模型的构建、风险中性概率的计算和期权价格的计算。
首先,二叉树模型的构建是二叉树期权定价方法的基础。
二叉树模型是一种树状结构,每个节点表示某个时间点的价格,根节点表示初始价格,叶子节点表示到期价格。
在构建二叉树模型时,需要确定二叉树的层数和每个节点的价格。
一般情况下,层数越多,模型越精确,但计算复杂度也会增加。
节点的价格可以通过离散化连续价格的方法得到,例如使用二项式模型或几何布朗运动模型。
其次,风险中性概率的计算是二叉树期权定价方法的关键。
风险中性概率是指在无套利条件下,市场上不存在风险,投资者对未来价格的预期与实际发生的概率相等。
在二叉树模型中,每个节点的风险中性概率可以通过反推法计算得到。
具体而言,从期权到期日开始,逐层向上计算每个节点的风险中性概率。
对于每个节点,假设其上涨和下跌的概率分别为p和1-p,根据无套利条件,可以得到期权价格的期望值等于节点价格的折现值。
通过解方程组,可以得到p的值。
最后,期权价格的计算是二叉树期权定价方法的核心。
在二叉树模型中,期权价格可以通过逐层向下计算得到。
从根节点开始,逐层向下计算每个节点的期权价格。
对于每个节点,可以通过期权价格的期望值等于节点价格的折现值来计算期权价格。
具体而言,假设节点上涨和下跌后的价格分别为Cu和Cd,期权价格的期望值为E,节点价格为C,折现因子为r,可以得到以下公式:E = (p * Cu + (1-p) * Cd) / (1 + r)通过逐层向下计算,可以得到所有节点的期权价格。
最后,根据期权类型和期权的执行价格,可以确定期权的实际价格。
总结起来,二叉树期权定价方法的原理是通过构建二叉树模型,计算风险中性概率和期权价格,将连续时间和连续价格的金融问题转化为离散时间和离散价格的问题。
期权定价-二叉树模型
期权定价-二叉树模型期权定价是金融市场中的重要内容,它是根据期权的特点和市场条件来确定期权价格的过程。
二叉树模型是一种常用的期权定价方法之一,其基本思想是将时间离散化,并通过构建一个二叉树来模拟标的资产价格的变动。
在二叉树模型中,每个节点代表了一个特定的时刻,而每个节点之间的关系是通过上涨和下跌两种情况进行连接的。
通过调整上涨和下跌的幅度,可以模拟出不同标的资产的价格变动情况。
期权的定价在二叉树模型中可以通过回溯法进行计算。
首先,在最后一个节点上,根据期权的特点以及市场条件来确定期权的价值。
然后,逐步向前回溯,通过考虑不同的路径来计算每个节点上的期权价值。
在回溯过程中,需要考虑每个节点的两个子节点的权重,即上涨和下跌的概率。
这可以根据市场条件来确定,通常是基于历史数据进行估计。
然后,在回溯过程中,可以根据节点上的期权价值和子节点的权重来计算每个节点的期权价格。
通过不断回溯,最终可以得到期权的初始价值,即在当前市场条件下,期权价格应该是多少。
这个初始价值可以用作参考,帮助投资者做出合理的投资决策。
需要注意的是,二叉树模型是一个简化的模型,它有一些假设和限制。
首先,它假设标的资产的价格只有上涨和下跌两种情况,而忽略了其他可能的情况。
其次,它假设市场条件在整个期权有效期内保持不变,而实际情况可能是变化的。
因此,在使用二叉树模型进行期权定价时,需要注意这些假设和限制。
总而言之,期权定价是金融市场中的重要内容,二叉树模型是一种常用的定价方法。
通过构建二叉树模型,并根据回溯法计算每个节点上的期权价值,可以得到期权的初始价格。
然而,需要注意二叉树模型的假设和限制,并结合实际情况进行综合分析和判断。
期权定价是金融市场中的重要内容,其旨在确定期权的合理价格。
期权是一种金融工具,赋予购买者在期权到期时以约定价格购买或出售标的资产的权利。
很多投资者都希望能够在市场上买入或者卖出期权,以便于在未来某个时刻获得利润。
因此,了解期权的合理价格对投资者来说至关重要。
二叉树期权定价模型
支付已知红利率资产的期权定价
可通过调整在各个结点上的证券价格,算出期权价格;
如果时刻 it 在除权日之前,则结点处证券价格仍为:
Su j d i j , j 0,1,, i
如果时刻 it 在除权日之后,则结点处证券价格相应调整为:
S (1 )u j d i j
j 0,1, ,i
若在期权有效期内有多个已知红利率,则 it 时刻结点的相应的证券价格为:
2、保持不变,仍为 S ;
3、下降到原先的 d 倍,即 Sd
Su3
Su2
Su2
Su
Su
Su
S
S
S
S
Sd
Sd
Sd
Sd2 Sd2
Sd3
一些相关参数:
u e 3t
d1 u
pm
2 3
pd
t 12 2
r
q
2 2
1 6
t
2 1
pu
12 2
r q
2
6
控制方差技术 基本原理:期权A和期权B的性质相似,我们可以得到期权B的解析定价公
的波动率,mˆ i 为 i 在风险中性世界中的期望增长率, ik为 i 和 k 之间的瞬间相关系数)
常数利率和随机利率的蒙特卡罗模拟 利率为常数时:期权价值为(初始时刻设为0):
.
f erT Eˆ fT
其中, Eˆ 表示风险中性世界中的期望。
利率为变量时:期权价值为(初始时刻设为0): f Eˆ erT fT
j 0,1, ,i
注意:由于
u 1 d
,使得许多结点是重合的,从而大大简化了树图。
得到每个结点的资产价格之后,就可以在二叉树模型中采用倒推定价 法,从树型结构图的末端T时刻开始往回倒推,为期权定价。
期权定价的二叉树模型
期权定价的二叉树模型作者:冯晶晶樊业云邢瑞芳来源:《经营管理者·中旬刊》2016年第02期摘要:介绍期权定价的离散型模型—二叉树模型.通过讨论期权定价的一期模型,得到一期模型的期权定价公式及其性质.在此基础上,讨论了期权定价的二期模型,得到二期模型的期权定价公式及其性质.关键词:期权二叉树模型一期模型二期模型一、预备知识金融数学是应用数学的一个分支,是运用数学的方法解决实际操作中的金融问题,进行数学建模、数据分析、数值计算等定量分析,以求找到金融学内在规律并用以指导实践.二叉树期权定价模型:设资本市场是竞争的和无摩擦的(不存在交易费用和税收)、不存在无风险套利机会、股票和期权是无限可分的,那么股票在下一期的价格只能取两种可能,图1.1所示,其中01+r>d>0,r为无风险利率。
假设以该股票为标的的看涨期权的价格为C,执行价格为X,则看涨期权的价值变化如图1.2所示:为了解决期权定价问题,我们需要构造一个无风险套期保值的证券组合:购买一份股票,卖掉m份期权,则如图1.3:由于构造的证券组合是无风险证券组合,故在末期时它在各个状态的收益是一样的.由无风险证券组合的条件,有,则。
下面求期权的价格C:因构造的证券组合是无风险证券组合,故有,所以,将m代入上式得,。
令,,则有。
其中p为套期保值概率,0二、期权定价的二期模型设二期的无风险利率也为r且每期复利一次.设股票的初始价格为S,在二期末到期的看涨期权的执行价X,则如图2.1在期权定价的二期模型中得到的看涨期权的价格公式中知,分子是的二项式展开式。
三、结语期权定价模型从一期模型推广到二期模型,看涨期权的价格随股票价格的上涨而上涨,当执行价格升高时,看涨期权价格随之下降。
无风险利率上升时,影响执行价格的折现值,从而使看涨期权的价格上涨。
参考文献:[1]斯塔夫里.金融数学[M].蔡明超,译.北京:机械工业出版社,2004:1—18.[2]王小群.金融数学介绍[J].系统工程,1999(6):111—114.[3]陈光亭,裘哲勇.数学建模[M].北京:高等教育出版社,2010:34—105.[4]蔡瑞胸.金融数据分析导论[M].北京:机械工业出版社,2013:1—72.[5]魏毅强,张建国,张洪斌等.数值计算方法[M].北京:科学出版社,2004:112—177.作者简介:冯晶晶(1984—),女,陕西韩城,讲师,硕士,主要从事金融数学研究。
金融工程-二叉树模型——期权定价方法实验报告---用于合并
期权定价(二叉树模型)实验报告班级: 创金1201 姓名: 郑琪瑶 学号: 1204200308一、实验目的本实验基于二叉树模型对期权定价。
利用Excel 计算出支付连续红利率资产的期权价格,并探究输入参数(如无风险利率、波动率、期限、时间区间划分方式、收益率等等)对于期权价格的影响,从而巩固二叉树模型这种期权定价的数值方法的相关知识。
二、实验原理当标的资产支付连续收益率为q 的红利时,在风险中性条件下,证券价格的增长率应该为q r -,因此参数p (股票价格上升的概率)、u 、d 应该满足以下式子:d p pue t q r )1()(-+=∆-;同时在一小段时间内股票价格变化的方差满足下式:2222])1([)1(d p pu d p pu t -+--+=∆σ;考克斯、罗斯和鲁宾斯确定参数的第三个条件是du 1=,将三式联列,可以解得(*)三、实验内容1. 假定有一支付连续红利率股票的美式看涨期权,有效期期限为5个月,目前 的股票价格和期权执行价格都为50元,无风险利率为10%,波动率为40%,连续收益率为3%,为了使得估计的期权价格比较准确,把时间区间划分成30步,即N=30,利用excel 加载宏可以计算得到相应美式和欧式期权的价格2.探究基于不同红利支付类型:支付已知收益率和支付已知红利数额,计算出相应的美式和欧式期权价格。
3.以支付已知收益率模式下分析期权价格。
使资产连续复利收益率在[1%,10%]变化,保持其余变量不变,分别计算出相应美式f 1和欧式f 2期权的价格4.以支付已知红利数额模式下分析期权价格。
探究下一期的红利支付数额为常数、递增及递减情况下, 保持其余变量不变,分别计算出相应美式和欧式期权的价格。
5.根据上述每一步计算得到的当期期权价格的数据绘制折线图,观察折线图,得出结论。
四、实验过程:步骤一:输入已知参数步骤二:根据已知参数及式(*)原理,计算如下参数步骤三:改变参数,确定期权价格(1)以支付已知收益率模式下分析期权价格。
基于二叉树模型的期权定价的实证研究
某项交易的一种金融衍生工具。下面的支付 函数可 以描述期权 循二项分布 。将 时间间隔在理论上缩短到最 小, 在极 小的时 间
(看 期 :{- 1 涨 权f s ) : - k
一
此, 二叉树模型 实际上是在用大量离散的小幅度 二值运动 来模
拟连续 的资产价格运动 。由统 计学知识 知道 , N趋于无 穷大 当
价值则用 f u表示 ,u S K f= — ,如果基础 资产 的价格 S下 降到 s , 使得风 险资产 的预期 回报等于无风 险利率 的一个 比率 。满足我 d 则期权 的价值 则用 f d表示。这 是一个一 阶段 伯努利实验, 往下 们之前 的一个重要假设 , 风险中性概率意 味着 风险是 没有 回报 继 续推 的话 , 就相 当于分别 抛 2 4等 次的硬 币, 、 分别得 到股票 的 。
利率上升 , 看涨期权投 资者用 于未 来购 买基础 资产 的资金 K的 现值 减少 , 看涨 期权价值 因此增加 ; 而看 跌 期权投 资者未来 出 图 1多步二又树 3.风 险中性概 率。 在股票价格 s的二项 分布 中, 点为 0 起 期。 经过第一阶段后到期后 , 资产的预期回报为 , q 用 表示资 产 价格 上升 的概 率, 1q 则表示下 降的概率 。则资产预期回报 (- ) 为:l [u + 1 q d ] S q + 1 q d ( ) J= q S (- ) S / = u (- ) , 卜1 。假 定投资者 的
硬 币的正反面 在这个有效期 内, 股票价格可 能上升到 s , u 或者 果 出现 了上 升概率大于 1 而下 降概率 为负数的情况 , 不符 合概
下 降到 s 。相应 的, d 如果基础资产 的价格 s上升 到 s , u 则期权 率定义 。实际上 , 险中性概率并不是真正意义上 的概率 , 风 而是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (1)ABSTRACT (2)第一章绪论 (3)1.1 背景介绍 (3)1.2 本文的主题 (4)第二章预备知识 (5)2.1 期权 (5)2.2二叉树方法 (6)2.2.1 方法概述 (6)2.2.2 二叉树方法的优点和缺点 (9)2.2.3 风险中性定价 (9)2.3 Black-Scholes 期权定价模型 (11)错误!未定义书签。
错误!未定义书签。
错误!未定义书签。
错误!未定义书签。
第三章本论 (14)3.1期权定价的二叉树模型 (14)................................................ 错误!未定义书签。
................................................ 错误!未定义书签。
................................................ 错误!未定义书签。
................................................ 错误!未定义书签。
3.2 例子模拟计算和结果分析 (18)3.3 模型改进——三叉树 (19)第四章结论...................................... 错误!未定义书签。
谢辞及参考文献 (23)谢辞 (23)参考文献 (23)附录 (25)计算过程中涉及算法 (25)摘要Black-Scholes 期权定价模型为期权定价尤其是欧式期权定价提供了良好的解析结果,而Black-Scholes 公式是此模型的核心,但是此公式并不能很好地求解出在很多衍生模型例如亚式期权以及美式期权中的解析解。
二叉树方法作为一种数值方法,同时也是图论中一种重要方法,应用于期权定价问题中,它有了更特别的演变。
本文利用二叉树方法计算期权定价的数值解,用二叉树方法迭代多次,求出较为准确的期权价格。
通过B-S公式得出的结果与二叉树方法得到的结论对比,分析二叉树方法模拟的优点和缺点。
同时,我们还要研究二叉树模拟的步数与预测结果和精度间的关系,从而更加深入了解二叉树方法。
然而,我们在模型中设立了许多条件,这些都使模型离真实情况越来越远,我们必须不断发展模型,完善模型。
三叉树方法正是二叉树方法的合适补充。
关键词:二叉树方法,Black-Scholes 模型,风险中性定价ABSTRACTBlack-Scholes Formula is the core of Black-Scholes Option Pricing Model which provides a practical method for option pricing. It has analytical solutions with good properties in some special situations, for instance, European options. However, the analytical solution is difficult to find in many derivative models like Asian options and American option. As a sort of typical statistical simulation method,Binomial tree plays very important roles in Graph Theory and other significant academic fields. W h e n i t a p p l i e s t o t h e o p t i o n p r i c e,b i n o m i a lt r e e m e t h o d h a s m u c h m o r e s p e c i a l u s e.The main idea is that we put the binomial tree into effect,reapply this method and get numerical results of option price.By comparing the results of Black-Scholes formula with the results of binomial tree method,we come to the advantages and disadvantages of both method. Meanwhile,the study of the steps of binomial tree method is also included to get its relationship with the method’s results and accuracy,which leads us to understand this method deeply and rightly.However,we set many extra conditions,which pushes the situation further away from the real situation.The simple binomial tree method is supposed to be improved constantly in case the finance market changes ceaselessly.Ternary tree is a good supplement for the binomial tree.Key words: B i n o m i a l t r e e method, Black-Scholes optionpricing model,Risk-neutral valuation第一章绪论1.1 背景介绍金融数学这门学科是随着金融市场崛起后产生的一门衍生学科,作为为金融学和数学的交叉学科,它的主要想法就是收集大量金融市场中的实际数据,建立适当的数学模型并不断进行优化,利用一系列的现代数学工具(例如概率论、随机分析以及程序辅助)研究风险资产如金融衍生产品的定价,同时尽可能规避投资风险以及选择最优的消费投资策略。
期权交易作为金融衍生品中的重要部分,18世纪后期在美国与欧洲市场有了初步的雏形,发展初期交易制度以及人们对这种新兴金融产品的认识还十分有限。
那时的期权主要由商业自营者自己提出报价然后由出资人选择购买,因此商业自营者的报价一定会偏向于对自己有利的价格,正是由于这种不完备性期权交易的发展在当时一直受到各种因素的限制。
到了1973年,横空出世的芝加哥交易所规范了期权合约标准了后期交易流程,使这种情况得到改善。
期权相关的研究从这种金融衍生品诞生起就开始了,金融从业者和投资者们想要依靠各种不同数学以及计算机工具来分析期权,想要从供求机制引导的市场波动中找出期权变化发展的隐藏规律,从而使自己获得最大的利润。
1973 年,Black和Scholes得出的期权定价模型的出现是对于金融数学研究有重大意义,尤其是在期权定价方面,它是在金融市场的基本准则上建立的,模型在提出之后又经过不同的研究人员改进,基本符合市场的变化规律,并依此可以对未来的期权价格进行定价研究。
令很多数学家和金融学家欣喜的一点就是Black和Scholes得出的期权定价模型在欧式期权的应用中有着性质优良的解析解,这一点让很多人眼前一亮同时也为其它更加复杂的衍生品的研究打下了良好的基础。
随着这个模型的广泛应用,人们发现这个模型还是具有一定缺陷。
正如很多这样的预测一样,在长期市场大环境下这个模型也许还有着不错的效果,然而金融市场越来越复杂,单纯的数学层面上的技术分析得到的结论往往不是那么尽如人意,于是人们开始不断的发展模型,向里面加入各种各样的新型变量,从而使其更加符合一小段时间下特定市场状况以得到更好的期权定价结果。
但是这又带来另一个问题,随着模型越来越复杂,变量越来越多,计算模型的难度越来越大,求得解析解的情况已经很少,即使用一些现代的数学计算工具和软件,求解单个复杂的微分方程也是相当耗费时间和资源的,更不必说对于一些大的基金公司,要同时追踪上千上万只期权和股票,那么找到一个快速而且相对精准的计算方法就显得非常必要了。
1.2 本文的主题使用风险中性原则进行定价是Black-Scholes模型构造原则之一,此方法使得用这个模型得到的期权价格实质上是一个期望。
其本身就是一个随机问题,那么我们要估计其数值解很自然的就可以想到数值模拟的算法。
二叉树方法正是典型的的随机模拟算法之一,其思路清晰,且没有涉及过多复杂运算,是数值方法模拟的极优选择。
对于计算机而言,如果采用数值模拟算法,就可以避免直接进行一些复杂微分方程的求数值解时不停地执行迭代循环的问题,大幅提升计算机运算速度。
这主要是基于以下原因,首先,二叉树方法简洁易懂,不需要过多的数学及统计基础,只是基于概率论以及利息理论等简单内容的算法,另外,作为计算机模拟方法,二叉树方法过程并不复杂,计算量相对较小,一般只需30步迭代即可求得比较精确的期权价格,还有二叉树方法作为简单的模拟方法还有很大的发展空间,比如三叉树以及有股息的二叉树都是简单二叉树方法的发展。
第二章预备知识2.1 期权期权又被叫做选择权,它是在期货的基础上产生的一种衍生金融工具。
具体是指在未来一定时期可以进行买卖的权利,是买方向卖方支付一定数量的金额(权利金)后拥有的在未来一段时间内或未来某一特定日期以事先规定好的价格即执行价格向卖方购买或售出一定数量的特定标的物的权利,但不负有必须买进或卖出的义务。
所以从本质上讲,期权的实质上是在金融市场交易中将权利进行定价,使得权利的拥有者在规定时间内对于是否进行交易,行使其权利,而义务方必须履行。
在期权的交易中,购买期权的一方称作买方,而出售期权的一方则叫做卖方;权利的拥有者称为买方,而义务的承担者则被叫做卖方。
期权又细分为两种:看涨期权和看跌期权。
持有看涨期权的人可以在将来某特定时间选择使用该权利以某一确定价格即执行价格买入一定量的某种资产,持有看跌期权的人则可以在将来某特定时间选择使用该权利以某一特定价格卖出一定量的某种资产。
我们平时所说的欧式期权、美式期权和由基本期权衍生的亚式期权是根据不同种类期权行使时间的差别而产生的。
本文中,我们主要讨论欧式期权。
欧式期权的特征为:期权持有人也即期权的长头寸方只有在期权到期日此特定时刻才能选择是否行使期权。
这也为我们建立模型以及统计计算提供了便利。