中职数学数列教案
中职数学(高教版)基础模块教学设计:等比数列
【课题】 6.3 等比数列
【教学目标】
知识目标:
(1)理解等比数列的定义; (2)理解等比数列通项公式. 能力目标:
通过学习等比数列的通项公式,培养学生处理数据的能力.
【教学重点】
等比数列的通项公式.
【教学难点】
等比数列通项公式的推导.
【教学设计】
本节的主要内容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导.
等比数列与等差数列在内容上相类似,要让学生利用对比的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公式的基础,教学中要给以足够的重视.同时要强调“等比”的特点:
q a a n
n =+1
(常数). 例1是基础题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:1a ,q ,
n , n a , 只
有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例3都是这类问题.注意:例3中通过两式相除求公比的方法是研究等比数列问题常用的方法.
从例4可以看到,若三个数成等比数列,则将这三个数设成是
aq a q
a
,,比较好,因为这样设了以后,这三个数的积正好等于,3
a 很容易将a 求出.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
【教师教学后记】。
中职数学(人教版)拓展模块教案:数列的概念和通项公式
数列公式数学学科导学案教师寄语:做对国家有用的人课题:数列的概念和通项公式班级 17级姓名陈兆侠组别二年级一、学习目标:1.知识与能力:(1)理解数列及其有关概念;(2)理解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的一个通项公式.2.过程与方法:理解数列的定义,表示法,分类,初步学会求数列通项公式的方法。
3.情感态度价值观:提高观察,分析能力,理解从特殊到一般,从一般到特殊思想。
二、学习重、难点:重点:了解数列的概念及其表示方法,会写出简单数列的通项公式难点:数列与函数关系的理解,用归纳法写数列的通项三、学习过程【导、探、议、练】导知识点一:数列及其有关概念思考1:数列1,2,3与数列3,2,1是同一个数列吗?思考2:数列的记法和集合有些相似,那么数列与集合的区别是什么?梳理:(1)按照________排列的________称为数列,数列中的每一个数叫做这个数列的_____.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的__________(通常也叫做______),排在第二位的数称为这个数列的……排在第n位的数称为这个数列的__________.(2) 数列的一般形式可以写成,简记为_________.知识点二:通项公式思考1:数列1,2,3,4,…的第100项是多少?你是如何猜的?思考2 数列的通项公式an=f(n)与函数解析式y=f(x)有什么异同?知识点三:数列的分类思考:对数列进行分类,可以用什么样的分类标准?梳理:(1)按项数分类,项数有限的数列叫做__________数列,项数无限的数列叫做__________数列.(2)按项的大小变化分类,从第2项起,每一项都大于它的前一项的数列叫做___________;从第2项起,每一项都小于它的前一项的数列叫做;各项相等的数列叫做;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做_____________.探、议(一)自主探究类型一:由数列的前几项写出数列的一个通项公式例1 写出下列数列的一个通项公式,使它的前4项分别是下列各数: (1)5,10,15,20,…(2)12,14,116,8,… (3)-1,1,-1,1,…跟踪训练1写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)11×2,1112×3,3×4,4×5, (2222)(2)2-12,3-13,4-14,5-15,…(3) 13572,4,6,8,…类型二:数列的通项公式的应用例2 已知数列{an}的通项公式an=12N, n∈N*.(1)写出它的第5项;(2)判断164是不是该数列中的项,是,是第几项?例3 判断16和45是否为数列?3n?1?中的项,如果是,请指出是第几项?跟踪训练2已知数列{a1n}的通项公式为an=n(n+2)(n∈N*),那么1120是这个数列的第______项.练课时作业A1.下列叙述正确的是( )A.数列1,3,5,7与7,5,3,1是相同的数列B.数列0,1,2,3,…可以表示为{n}C.数列0,1,0,1,…是常数列D.数列{nn+1}是递增数列2.数列2,3,4,5,…的一个通项公式为( )A.an=n,n∈N*B.an=n+1,n∈N*C.an=n+2,n∈N*D.an=2n,n∈N* .3.已知数列{a(-1)n-13?nn}的通项公式an=2n-1,n∈N*,则a1=________;an+1=________.4.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,1,3,5,…; (2)2,2,2,2,…; (3) -113,6,-19,112,…;B1.已知数列{a2n}的通项公式为an=n-n-50,n∈N*,则-8是该数列的( ) A.第5项B.第6项 C.第7项 D.非任何一项2.数列1,3,6,10,…的一个通项公式是( )A.a2n=n-n+1 B.a(n-1)n=n2 C.an(n+1)n=2 D.an=n2+13.数列23,45,67,89,…的第10项是( )A.1617B.182019C.21D.22234.数列4,9,16,25,…的一个通项公式是________.5.已知数列???9n2-9n+2?????9n2-1??,n∈N*.(1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么?【课后反思】学完本节课,你在知识、方法等方面有什么收获与感受?请写下来。
人教版中职数学基础模块下册《数列的概念》教案 (一)
人教版中职数学基础模块下册《数列的概念》教案 (一)本文将围绕人教版中职数学基础模块下册《数列的概念》教案进行阐述和分析。
文章结构分为引言、教案分析和教学体会。
希望本文能够对数学教学教师以及学生们提供一些参考和帮助。
引言数列是数学中的一个重要概念,在高中数学中便有涉及。
而在中职教学中,更是需要对数列进行更加深入的了解和探究。
为此,人教版编写了《数列的概念》的教案,帮助教师更好地教授这一内容。
接下来将对这一教案进行分析和讨论。
教案分析一、教学目标本教案的教学目标明确,包括基本知识、技能、过程、情感和价值观的培养。
其中包括对数列和等差数列的定义和性质、数列的公式和求和公式以及解决实际问题的能力。
通过教学,学生们可以具备较好的数列分析能力,掌握一定的实际问题解决能力。
二、教学内容本教案的教学内容主要包括以下几个方面:数列的概念、等差数列的定义和性质、数列的公式和求和公式以及解决实际问题。
这些内容相辅相成,包含了数列最基本的知识点,可以帮助学生们全面地了解数列的性质和应用。
三、教学方法本教案的教学方法多样,包括了讲授、自主学习、小组合作等多种形式。
其中,小组合作能够增强学生们的合作意识和解决问题的能力;自主学习则可以培养学生们的自主学习能力。
这些教学方法能够帮助学生们更好地掌握数列相关知识点。
四、教具准备和课堂安排本教案的教具准备比较充足,包括了PPT、教学黑板、教学实物等。
这些教具对于教师讲解、学生学习都有很大的帮助。
此外,教案规定了较为详细的课堂安排,包括了准备、导入、展示、提高、反思等五个环节。
这种严谨的课堂安排有助于教学效果的提高。
教学体会通过对教案的分析和讨论,我们可以看到这份教案的编写有着较为严谨的逻辑和合理的设计。
在实际教学中,我也发现了教案的优点和好处。
例如,教案具有较高的针对性和系统性,能够帮助学生们更好地理解和掌握数列相关知识点;同时,教案的安排合理,能够帮助教师更好地指导和管理整个教学过程。
中职数学拓展模块二教学设计-数列的概念
7.1数列的概念角和与差的余弦公式1978年底,中国共产党召开了具有转折意义的十一届三中全会,吹响了改革开放的号角. 至今,改革开放40多年,中国成功走完了西方发达国家几百年才完成的工业化道路,经济持续快速增长,综合国力位于世界前列,人民生活水平不断提高. 2020年2月,国家统计局在其官网给出了2015—2019 年国内生产总值及其增长速度统计图.从这张统计图中你能获得哪些数据信息?提出问题引发思考根据图中的数据,把这五年的国内生产总值依次排成讲解例1根据通项公式,写出下列数列{a n }的前5项.(1)a n =1n+1; (2)a n =(-1) n +1.解(1) 在通项公式中依次取n=1,2,3,4,5,得到数列的前5项,分别为提问引导(2)在通项公式中依次取n=1,2,3,4,5,得到数列的前5项,分别为例2 写出数列{a n}的一个通项公式,使它的前4项分别是下列各数.(1)2,4,6,8;(2) 13,15,17,19;(3)-11×2,12×3,-13×4,14×5.解(1)因为数列的前4项2,4,6,8都等于相应项数的2倍,所以它的一个通项公式是a n=2n;(2)因为数列前4项的分母都等于相应的项数的2倍加1,所以它的一个通项公式是a n=12n+1;(3)因为数列前4项的绝对值的分母都等于相应的项数乘以该项数加1,且奇数项为负,偶数项为正,所以它的一个通项公式是a n=(-1)n1n (n+1).例3 设数列{a n }的通项公式是a n=3n+1,问13是否为该数列的项?若是,它数列的是第几项?解设13是数列{a n}的第n项,将13代入数列的通项公式a n=3n+1中,得13=3n+1,解得n=4.因此,13是数列{a n}中的项,并且它是数列的第4项.例4已知数列{a n}的首项a1=3,n≥2时,a n=a n-1+2 ,试写出这个数列的前5项.解由题意可知,a1=3,a n=a n-1+2(n≥2,n∈N*)。
中职数学(基础模块)下册第六章《数列》教学设计
6.1 数列的概念教学目标:(1)了解数列的有关概念;(2)理解数列的通项(一般项)和通项公式.教学重点:利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.教学难点:根据数列的前若干项写出它的一个通项公式.课时安排:2课时.教学过程:,.的值排成一列数为,….,依照有效数字的个数,排成一列数为,3.1416,….,n a ,.()n ∈N下角码中的数为项数,1a 表示第1项,2a 表示第依次可以表示数列中的各项,.教学目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.教学重点:等差数列的通项公式.教学难点:等差数列通项公式的推导.课时安排:2课时.教学过程:6.2 等差数列(二)教学目标:理解等差数列通项公式及前n项和公式.教学重点:等差数列的前n项和的公式.教学难点:等差数列前n项和公式的推导.课时安排:2课时.教学过程:2n a -++3a a +++)1n a a =+,)a d +=1212)+=1000+111.15=12111.15形架的最下面6.3 等比数列(一)教学目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.教学重点:等比数列的通项公式.教学难点:等比数列通项公式的推导.课时安排:2课时.教学过程:6.3 等比数列(二)教学目标:理解等比数列前n项和公式.教学重点:等比数列的前n项和的公式.教学难点:等比数列前n项和公式的推导.课时安排:3课时.教学过程:++n a a 式的两边分别减去(2)式的两边,得111=-a a 式得等到数列−。
人教版中职数学基础模块下册《数列的概念》教案 (二)
人教版中职数学基础模块下册《数列的概念》教案 (二)1. 数列的定义- 数列是由一系列有序数所组成的序列。
- 数列中的每个数叫做数列的项,用a1, a2, a3, …… 表示。
- 数列的项数可以是有限的,也可以是无限的。
2. 数列的分类- 等差数列:相邻两项之差相等,称为公差,用d表示。
- 等比数列:相邻两项之比相等,称为公比,用q表示。
- 等差-等比数列:既有等差又有等比的性质,称为等差-等比数列。
3. 数列的通项公式- 等差数列的通项公式:an = a1 + (n-1)d- 等比数列的通项公式:an = a1q^(n-1)- 等差-等比数列的通项公式:an = a1q^(n-1) + (n-1)d4. 数列的前n项和公式- 等差数列的前n项和公式:Sn = (a1+an)n/2- 等比数列的前n项和公式:Sn = (a1(1-q^n))/(1-q)- 等差-等比数列的前n项和公式:Sn = (a1q^n-d)/(q-1)5. 数列的应用- 数列在数学中有广泛的应用,如数学分析、概率论、组合数学等。
- 数列在生活中也有很多应用,如金融领域的利息计算、物流领域的路径规划等。
6. 数列的拓展- 斐波那契数列:数列的每一项都是其前两项之和,即a(n) = a(n-1) + a(n-2),其中a1 = 1,a2 = 1。
- 等比数列的和无穷公式:当|q|<1时,Sn = a1/(1-q);当|q|≥1时,Sn = 无穷大或无穷小。
- 等比数列的和的性质:当|q|<1时,Sn有上界,即Sn≤a1/(1-q);当|q|≥1时,Sn无上界。
人教版中职数学教案-第六章--数列[7份教案]
6.1.1 数列的定义【教学目标】1. 理解数列的有关概念和通项公式的意义.2. 了理解数列与函数的关系,培养学生观察分析的能力.3. 使学生体会数学与生活的密切联系,提高数学学习的兴趣.【教学重点】数列的概念及其通项公式.【教学难点】数列通项公式的概念.【教学方法】这节课主要采用情景教学法.利用多媒体,在教师的引导下,根据学生的认知水平,设计了创设情境——引入概念,观察归纳——形成概念,讨论研究——深化概念,即时训练——巩固新知等环节.各步骤环环相扣,层层深入,引导学生体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受.【教学过程】环节教学内容师生互动设计意图导入1.讲故事,感受数列2.提出问题,引入新课我国有用十二生肖纪年的习俗,每年都用一种动物来命名,12年轮回一次.20XX年(农历乙丑年)是21世纪的第一个牛年,请列出21世纪所有牛年的年份.教师讲述古印度传说故事《棋盘上的麦粒》.学生倾听故事,认识数列.教师提出问题.学生分组讨论,找出问题的答案.创设情境,让学生认识数列,激发学生的好奇心,增强学生的学习兴趣.提出和本节课密切相关的问题,让学生思考,充分发挥学习小组的作用,展开讨论.新课1.数列的定义把21世纪所有牛年的年份排成一列,得到2 009,2 021,2 033,2 045,2 057,2 069,2 081,2 093.①像①这样按一定次序排列的一列教师在学生探究的基础上,给出问题的答案.教师板书定义.6.1.2 数列的通项【教学目标】1. 理解数列的通项公式的意义,能根据通项公式写出数列的任意一项,以及根据其前几项写出它的一个通项公式.2. 了解数列的递推公式,会根据数列的递推公式写出前几项.3. 培养学生积极参与、大胆探索的精神,培养学生的观察、分析、归纳的能力.【教学重点】数列的通项公式及其应用.【教学难点】根据数列的前几项写出满足条件的数列的一个通项公式.【教学方法】本节课主要采用例题解决法.通过列举实例,进一步研究数列的项与序号之间的关系.通过三类题目,使学生深刻理解数列通项公式的意义,为以后学习等差数列与等比数列打下基础.【教学过程】6.2.1 等差数列的概念【教学目标】1. 理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念.2. 逐步灵活应用等差数列的概念和通项公式解决问题.3. 通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想.【教学重点】等差数列的概念及其通项公式.【教学难点】等差数列通项公式的灵活运用.【教学方法】本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.【教学过程】6.2.2 等差数列的前n 项和【教学目标】1. 理解并掌握等差数列前n项和公式,并会应用公式解决简单的问题.2.逐步熟练等差数列通项公式与前n项和公式的综合应用,培养学生的运算能力.3. 通过公式的探索、发现,培养学生观察、猜想、归纳、分析、综合推理的能力,渗透特殊到一般的思想.【教学重点】等差数列前n项和公式的应用.【教学难点】等差数列前n项和公式的推导.【教学方法】本节课在公式推导中宜采用引导发现法.师生共同参与整个教学活动,教师是活动的主导,学生是活动的主体.教师在引导的同时,必须辅之以指导学生亲自探究、发现、应用等活动,为学生思维指路搭桥.通过学生自主的尝试、发现活动,使学生在感知的基础上有效地揭示知识间的内在联系,从而使学生获取知识,提高能力.【教学过程】6.3.1 等比数列的概念【教学目标】1. 理解等比数列的概念,掌握等比数列的通项公式;掌握等比中项的概念.2. 逐步灵活应用等比数列的概念和通项公式解决问题.3. 通过教学,培养学生的观察、分析、归纳、推理的能力,培养学生类比分析的能力.【教学重点】等比数列的概念及通项公式.【教学难点】灵活应用等比数列概念及通项公式解决相关问题.【教学方法】本节课主要采用类比教学法和自主探究教学法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生在等差数列的基础上用类比的方法自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.【教学过程】6.3.2 等比数列的前n项和【教学目标】1. 理解并掌握等比数列前n项和公式,并会应用公式解决简单的问题.2.逐步熟练等比数列通项公式与前n项和公式的综合应用,培养学生的运算能力.3. 通过公式的探索、发现,培养学生观察、猜想、归纳、分析、综合推理的能力,渗透类比与转化的思想.【教学重点】等比数列前n项和公式的应用.【教学难点】等比数列前n项和公式的推导和灵活运用.【教学方法】本节课在公式推导中宜采用类比教学法和自主探究教学法.师生共同参与整个教学活动,教师是活动的主导,学生是活动的主体,教师在引导的同时,让学生在等差数列的基础上用类比的方法自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.【教学过程】6.4 数列的应用【教学目标】1. 能够应用等差数列、等比数列的知识解决简单的实际问题.2.通过解决实际问题,培养学生分析问题、解决问题的能力,渗透数学建模的思想.3. 在应用数列知识解决问题的过程中,培养学生勇于探索、积极进取的精神,激发学生学习数学的热情.【教学重点】通过数列知识的应用,培养学生分析问题、解决问题的能力和运用数学的意识.【教学难点】根据实际问题,建立相应的数列模型.【教学方法】这节课主要采用问题解决法和分组合作探究的教学方法.在教学过程中,从学生身边的实例入手,引起学生兴趣,体会所学知识的重要性.培养学生分析问题、解决问题的能力,为今后进一步学习打好基础.【教学过程】。
语文版中职数学拓展模块6.1《数列的概念》教案
【课题】6.1 数列的概念
【教学目标】
知识目标:
(1)了解数列的有关概念;
(2)掌握数列的通项(一般项)和通项公式.
能力目标:
通过实例引出数列的定义,培养学生的观察能力和归纳能力.
【教学重点】
利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】
根据数列的前若干项写出它的一个通项公式.
【教学设计】
通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.
从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列.
例4和例5是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.
通过表6-2、图6-1引导学生分析比较不同表示法的特点.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
,. 从小到大依次取正整数时,cos ,…. 的近似值(四舍五入法),n a ,.()n ∈N
下角码中的数为项数,1a 表示第由小至大依次取正整数值时,
【教师教学后记】。
(完整版)职高数学复习-数列教案
第 课时教学内容:数列的定义教学目的:理解数列的定义、通项公式、Sn 的含义,掌握通项公式的求法及其应用,了解递推的含义.教学重点:数列的基本概念.教学难点:求通项公式、递推公式的应用 教学过程:一、数列的定义: 按一定顺序排列成的一列数叫做数列. 记为:{a n }.即{a n }: a 1, a 2, … , a n .二、通项公式:用项数n 来表示该数列相应项的公式,叫做数列的通项公式。
1、本质:数列是定义在正整数集(或它的有限子集)上的函数. 2、通项公式: a n =f(n)是a n 关于n 的函数关系. 三、前n 项之和:S n = a 1+a 2+…+a n 注 求数列通项公式的一个重要方法: 对于数列}{n a ,有: ⎩⎨⎧≥-==-)2()1(11n s s n s a n nn例1、已知数列{100-3n},(1)求a 2、a 3;(2)67是该数列的第几项;(3)此数列从第几项起开始为负项. 解:例2 求下列数列的通项公式:(1)1,3,5,7, ……(2)-211⨯,321⨯,-431⨯,541⨯.…… (3)9,99,999,9999,……解:(1)12-=n a n ;(2))1(1)1(+-=n n a nn ;(3)110-=nn a练习:定写出数列3,5,9,17,33,……的通项公式: 答案:a n =2n +1 。
例3 已知数列{}n a 的第1项是1,以后的各项由公式111-+=n n a a 给出,写出这个数列的前5项.解 据题意可知:3211,211,123121=+==+==a a a a a ,58,3511534==+=a a a 例4 已知数列{}n a 的前n 项和,求数列的通项公式: (1) n S =n 2+2n ; (2) n S =n 2-2n-1.解:(1)①当n ≥2时,n a =n S -1-n S =(n 2+2n)-[(n-1)2+2(n-1)]=2n+1;②当n=1时,1a =1S =12+2×1=3;③经检验,当n=1时,2n+1=2×1+1=3,∴n a =2n+1为所求. (2)①当n ≥2时,n a =n S -1-n S =(n 2-2n-1)-[(n-1)2+2(n-1)-1]=2n-3; ②当n=1时,1a =1S =12-2×1-1=-2;③经检验,当n=1时,2n-3=2×1-3=-1≠-2,∴n a =⎩⎨⎧≥-=-)2(32)1(2n n n 为所求.注:数列前n 项的和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式1n n n a S S -=-时,一定要注意条件2n ≥ ,求通项时一定要验证1a 是否适合四、提高:例5 当数列{100-2n}前n 项之和最大时,求n 的值.分析:前n 项之和最大转化为10n n a a +≥⎧⎨≤⎩.五、同步练习:1.已知:2n a n n =+,那么 (C ) (A )0是数列中的一项 (B )21是数列中的一项 (C )702是数列中的一项 (C )30不是数列中的一项2、在数列2,5,9,14,20,x ,…中,x 的值应当是 (D ) (A )24 (B )25 (C )26 (D )273、已知数列11,7,3,…,79,…且a n =179,则n 为 (C ) (A )21 (B )41 (C )45 (D )494、数列{a n }通项公式a n =log n+1(n+2),则它的前30项之积是 (B )(A )51(B )5 (C )6 (D )231log 3log 3215+ 5、已知数列1,-1,1,-1,…,则下列各式中,不是它的通项公式的为 (D ) (A )1)1(--=n n a (B )2)12(sinπ-=n a n (C ) 1 ()1()n n a n ⎧=⎨-⎩为奇数为偶数(D )n n a )1(-=6、数列 ,541,431,321,211⋅⋅-⋅⋅-的一个通项公式是 (A )(A ))1(1)1(+-=n n a n n (B ))1(1)1(1+-=+n n a n n(C )nn a nn)1(1)1(-⋅-=(D ))2()1(+-=n n a nn7、数列通项是nn a n ++=11,当其前n 项和为9时,项数n 是 (B )(A )9 (B )99 (C )10(D )100 8.数列112,223,334,445,…的一个通项公式是 (B )(A )21n n a n =+ (B )221n n n a n +=+ (C )211n n n a n ++=+ (D )221n n n a n +=+ 92,5,22,11,,则25 (B ) (A )第六项 (B )第七项 (C )第八项 (D )第九项 10.已知数列{a n }满足a 1=1,且121(2)n n a a n -=+≥,求数列的第五项a 5= 31 11、已知数列{a n }的前n 项和S n 满足log 2 (S n + 1) = n + 1,求a n .(答案: 3 n=12 n 2n n a ⎧=⎨≥⎩)12、已知数列{100-4n},(1)求a 10;(2)求此数列前10项之和; (3)当此数列前n 项之和最大时,求n 的值. 答案(1)60(2)780(3)24or2513、设数列{a n }中,S n =-n 2+24n ,(1)求通项公式; (2)求a 10+a 11+a 12+…+a 20的值; (3)求S n 最大时a n 的值.答案:(1)an=25-2n (2)-55(3)1 补充:1、已知数列{a n }满足a 1=b(b ≠1),且)(211N n a a nn ∈-=+, (1)求a 1, a 2, a 3; (2)求此数列的通项公式.2、已知数列{a n }前n 项之和S n =1nn +,求a n .3、一数列的通项公式为a n = 30 + n -n 2. ①问-60是否为这个数列中的一项. ②当n 分别为何值时,a n = 0, a n >0, a n <0第 课时教学内容:等差数列(1)教学目的:通过复习,巩固等差数列的定义、通项公式、求和公式 教学重点:等差数列 教学过程:(一)主要知识 1.等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.即:)()(1•+∈=-N n d a a n n 常数2.通项:d n a a n )1(1-+=,推广:d m n a a m n )(-+=. 3.求和:d n n na a a n S n n 2)1(2)(11-+=+=.(关于n 的没有常数项的二次函数). 4.中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c (二)主要方法: 1.等差数列的判定方法(1)定义法: )()(1•+∈=-N n d a a n n 常数 (2)中项法:212+++=n n n a a a (3)通项法:d n a a n )1(1-+= (4)前n 项和法:Bn An S n +=2 2.知三求二(n n S a n d a ,,,,1),要求选用公式要恰当.3.设元技巧: 三数:d a a d a +-,, 四数d a d a d a d a 3,,,3-+-- (二)基础题型: 讲练题:1.求等差数列8,5,2…的第20项。
职高数学基础模块下(人教版)教案:数列
职高数学基础模块下(人教版)教案:数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。
其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。
定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。
若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d.定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn .定义3 等比数列,若对任意的正整数n ,都有q a ann =+1,则{a n }称为等比数列,q 叫做公比。
定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。
中职数列教学设计方案
一、教学目标1. 知识目标:(1)使学生掌握数列的概念、通项公式、前n项和公式等基本知识。
(2)使学生了解数列在自然科学、社会科学和实际生活中的应用。
2. 能力目标:(1)培养学生观察、分析、归纳、推理等数学思维能力。
(2)提高学生运用数列知识解决实际问题的能力。
3. 情感目标:(1)激发学生对数学学习的兴趣,培养良好的学习习惯。
(2)培养学生的合作精神、创新意识和团队协作能力。
二、教学内容1. 数列的概念及性质2. 数列的通项公式3. 数列的前n项和公式4. 数列的应用三、教学过程1. 导入新课(1)结合实际生活,引导学生思考数列在生活中的应用,激发学生学习兴趣。
(2)通过列举实例,让学生了解数列的基本概念。
2. 新课讲解(1)数列的概念及性质:讲解数列的定义、通项公式、递推公式等基本概念,并通过实例让学生理解数列的性质。
(2)数列的通项公式:讲解数列的通项公式、递推公式、求和公式等,通过实例让学生掌握通项公式的求解方法。
(3)数列的前n项和公式:讲解数列的前n项和公式,并通过实例让学生掌握前n项和的计算方法。
(4)数列的应用:结合实际生活,讲解数列在自然科学、社会科学和实际生活中的应用。
3. 练习巩固(1)布置课后作业,巩固所学知识。
(2)课堂上进行随堂练习,及时检验学生的学习效果。
4. 总结与反思(1)引导学生总结本节课所学内容,巩固知识点。
(2)鼓励学生提出问题,共同探讨解决方法。
四、教学评价1. 课堂表现:观察学生在课堂上的学习态度、合作精神、创新意识等方面。
2. 作业完成情况:检查学生课后作业的完成质量,了解学生对知识的掌握程度。
3. 课堂练习:通过课堂练习,检验学生对知识的运用能力。
4. 期末考试:全面评价学生对数列知识的掌握程度。
五、教学资源1. 教材:选用符合中职教学要求、内容丰富的数列教材。
2. 多媒体课件:制作与教学内容相关的多媒体课件,提高课堂教学效果。
3. 实际案例:收集与数列相关的实际案例,丰富教学内容。
中职数学基础模块下册《数列实际应用举例》word教案1
数列的应用举例
【教学目标】
1.掌握利用数列的基础知识来解决实际问题的方法。
2.通过解决实际问题,培养学生搜集资料、分析资料的良好习惯,培养学生分析问题、解决问题的能力,渗透数学建模的思想.
3. 在应用数列知识解决问题的过程中,培养学生勇于探索、积极进取的精神,激发学生学习数学的热情.
【教学重点】
通过数列知识的应用,培养学生分析问题、解决问题的综合能力和运用数学的意识.【教学难点】
根据实际问题,建立相应的数列模型.
【教学方法】
这节课主要采用问题解决法和分组合作探究的教学方法.在教学过程中,从学生身边的实例入手,引起学生兴趣,体会所学知识的重要性.培养学生分析问题、解决问题的能力,为今后进一步学习打好基础.
【教学过程】。
中职教育数学《等差数列》教案
观看
课件
思考
三、动脑思考探索新知
如果一个数列从第2项开始,每一项与它前一项的差都等于同一个常数,那么,这个数列叫做等差数列.这个常数叫做等差数列的公差,一般用字母d表示.
由定义知,若数列 为等差数列, 为公差,则 ,即
思考
理解
记忆
四、巩固知识典型例题
例1已知等差数列的首项为12,公差为−5,试写出这个数列的第2项到第5项.
思考
归纳
理解
记忆
三、巩固知识典型例题
例2求等差数列 ...的第50项.
解由于 所以通项公式为
即
故
例3在等差数列 中, 公差 求首项
解由于公差 故设等差数列的通项公式为
由于 ,故 ,
解得
【小提示】
本题目初看是知道2个条件,实际上是3个条件: , .
观察
思考
主动
求解
观察
思考
求解
领会
思考
求解
四、运用知识强化练习练习6.2.2
本次课学了哪些内容?重点和难点各是什么?
回忆
反思
七、继续探索活动探究
(1)书面作业:教材习题6.2的1、2、3、4题
(2)思考例4的解题方法,完成练习6.2.2的第4题
动手
求解
1.求等差数列 ,1, ,…的通项公式与第15项.
2.在等差数列 中, , ,求 与公差 .
3.在等差数列 中, , ,判断-48是否为数列中的项,如果是,请指出是第几项.
思考
了解
动手
求解
五、理论升华整体建构
思考并回答下面的问题:
等差数列的通项公式是什么?结论:等差数列的通项公式
理解
强化
高教版中职数学(基础模块)下册6.1《数列的概念》word教案1
6.1.1 数列的定义【教学目标】1. 理解数列的有关概念和通项公式的意义.2. 了理解数列与函数的关系,培养学生观察分析的能力.3. 使学生体会数学与生活的密切联系,提高数学学习的兴趣.教学重点数列的概念及其通项公式.教学难点数列通项公式的概念.教学方法这节课主要采用情景教学法.利用多媒体,在教师的引导下,根据学生的认知水平,设计了创设情境——引入概念,观察归纳——形成概念,讨论研究——深化概念,即时训练——巩固新知等环节.各步骤环环相扣,层层深入,引导学生体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受.【教学过程】环节教学内容师生互动设计意图导入1.讲故事,感受数列2.提出问题,引入新课我国有用十二生肖纪年的习俗,每年都用一种动物来命名,12年轮回一次.2009年(农历乙丑年)是21世纪的第一个牛年,请列出21世纪所有牛年的年份.教师讲述古印度传说故事《棋盘上的麦粒》.学生倾听故事,认识数列.教师提出问题.学生分组讨论,找出问题的答案.创设情境,让学生认识数列,激发学生的好奇心,增强学生的学习兴趣.提出和本节课密切相关的问题,让学生思考,充分发挥学习小组的作用,展开讨论.新课1.数列的定义把21世纪所有牛年的年份排成一列,得到2 009,2 021,2 033,2 045,2 057,2 069,2 081,2 093.①像①这样按一定次序排列的一列数,叫做数列.数列中的每一个数都叫做这个数列教师在学生探究的基础上,给出问题的答案.教师板书定义.教师出示一组数列的例。
中职数学基础模块6.1.2数列的通项教学设计教学设计教案人教版
,
33-1 3
,
43-1 4
,
53-5 1,…的一个通项公式是(
).
(A)n
(n2-1) n +1
(B)n
(n 2+1) n
师生共同订正答案.
在教师的引导 下,培养学生观察、 分析、归纳的能力.
(C)n
(n2 +3n+ n+1
3)
(D)n
(n2 n
+2)
例 3 已知数Leabharlann {an}的第 1 项是 1,以后各项由公式
的
构 数列与等比数列打下基础.
想
第 1页 (总 页)
太原市教研科研中心研制
环节
教师行为
⒈ 数列的定义
按一定次序排列的一列数叫做数
列.
注意:(1)数列中的数是按一定次
序排列的;
(2)同一个数在数列中可以重复出
现.
导
入
2. 数列的一般形式
数列 a1,a2,a3,…,an,…,可记 作{ an }.
学生行为 教师引导学生复习.
(2)22-2 1,32-3 1,42-4 1,52-5 1;
对应关系: 项1
3
5
7
(3)-11•2 ,21•3 ,-31•4 ,41•5 .
↓↓↓↓
解 (1)数列的前四项 1,3,5,7
序号 1 2 3 4
都是序号的 2 倍减去 1,所以它的一个通
师:你能找出各项与项数
项公式是
二者的对应关系满足什么规律
引导学生得出:是任一项
与前一项的关系.
教师给出递推公式的定
义.
a2 = 1+a11 = 1+11 = 2;
中职数学数列教学实施报告
中职数学数列教学实施报告一、教学目标:
1.了解数列的概念,掌握常见的数列类型及相关的概念;
2.掌握用通项公式求数列的第n项及求通项公式的方法;
3.了解数列的性质及应用。
二、教学重点:
数列的通项公式及应用。
三、教学难点:
用通项公式求数列的第n项。
四、教学方法:
1.归纳法:启发学生从前几项数字的规律中发现数列的关系;
2.递推法:引导学生从前一项数字推算出后一项数字;
3.通项公式法:让学生通过推导数列的通项公式,快速求得数列的任意项。
五、教学过程:
1.引入:
引导学生思考数列的概念,通过举例让学生了解数列的基本特征及常见的数列类型。
2.知识讲解:
详细讲解数列的概念、公差、项数、首项、通项公式等相关概念及数列类型。
3.案例分析:
通过实例分析引导学生掌握用通项公式求数列的第n项及求通项公式的方法。
4.练习与巩固:
教师带领学生进行数列计算的练习,并引导学生应用数列的相关概念及性质,提高学生的实际应用能力。
六、教学评价:
1.通过教学实验,学生对数列的概念及应用能够有所掌握,能够用通项公式解决简单的数列问题。
2.教学方法多样化,既有讲解,又有案例分析和练习,能够激发学生的学习兴趣,提高学生的学习效果。
3.需要再次加强练习,让学生更加熟练地运用所学知识并将其应用到实际问题中。
职高数学数列教学
职高数学数列教学一、教学任务及对象1、教学任务本教学任务聚焦于职业高中数学课程中的数列单元。
考虑到职业高中学生的学习特点及未来职业发展的需求,本教学设计旨在通过数列知识的学习,培养学生逻辑推理、数学建模及问题解决的能力。
具体教学内容包括:数列的定义、通项公式、数列的求和、等差数列与等比数列的性质及其应用。
此外,结合实际案例,让学生了解数列在日常生活和职业领域中的应用,提高学生的数学素养。
2、教学对象教学对象为职业高中一年级学生,他们具有一定的数学基础,但在逻辑推理和问题解决方面能力较弱。
此外,由于职业高中的学生具有较强的动手能力和实践意识,因此,教学过程中应注重理论与实践相结合,充分调动学生的学习兴趣和积极性。
在此基础上,针对学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
二、教学目标1、知识与技能(1)理解数列的概念,掌握数列的通项公式及其推导方法;(2)掌握等差数列、等比数列的性质,能够运用数列的求和公式进行计算;(3)能够运用数列知识解决实际问题,例如在财务管理、工程技术等领域;(4)培养数学建模的能力,通过数列知识对实际问题进行抽象、分析和解决;(5)提高数学运算速度和准确性,增强数学思维能力。
2、过程与方法(1)通过自主探究、合作学习等方式,培养学生的独立思考能力和团队协作能力;(2)运用案例分析、实际问题引入等教学方法,引导学生从实际情境中发现问题、提出问题,并运用数列知识解决问题;(3)采用启发式教学,引导学生掌握数列知识的基本原理和方法,培养学生的问题解决能力;(4)注重数学思维的培养,让学生在解决问题的过程中,学会分析、归纳、总结,形成自己的思维方法;(5)鼓励学生进行数学写作,通过撰写解题过程、学习心得等,提高学生的数学表达能力。
3、情感,态度与价值观(1)激发学生学习数学的兴趣,培养他们积极、主动、持久的学习态度;(2)通过数列知识的学习,使学生认识到数学在职业领域中的重要作用,提高他们的职业素养;(3)培养学生严谨、踏实的学风,使他们形成良好的学习习惯和价值观;(4)鼓励学生面对困难时保持积极的心态,培养他们克服困难的信心和毅力;(5)引导学生将数学知识应用于实际生活,提高他们的社会责任感和使命感。