中南大学高等数学下期末题及答案

合集下载

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)
高等数学(下册)考试试卷(一)
一、填空题(每小题 3 分,共计 24 分)
1、 z = log a ( x 2 y 2 ) (a 0 ) 的定义域为 D=
2、二重积分
2
ln( x
| x| | y | 1
2
y ) dxdy
的符号为
。 。
3 、由 曲线 y ln x 及直线 x y e 1 , y 1 所围图 形的面 积用 二重 积分表 示为
( C)最大值点在 D 的内部,最小值点在 D 的边界上;
( D)最小值点在 D 的内部,最大值点在 D 的边界上。
3、设平面区域 D: ( x
2
2)
(y
2
1)
1 ,若 I 1
则有(

(x
D
2
y) d
, I2
(x
D
3
y) d
( A) I 1 I 2 ; (B) I 1 I 2 ; ( C) I 1 I 2 ;
是由有限块分片光滑的曲面所组成,如果函数
P ( x, y, z) ,
Q (x, y, z) , R( x, y , z) 在 上 具 有 一 阶 连 续 偏 导 数 , 则 三 重 积 分 与 第 二 型 曲 面 积 分 之 间 有 关 系
式:
, 该关系式称为
公式。
7、微分方程 y
6y
9y
2
x
6x
9 的特解可设为
(D )不能比较。
23
4、设 是由曲面 z xy , y x , x 1 及 z 0 所围成的空间区域,则
xy z dxdydz =(

(A) 1 ; 361
( B) 1 ; 362

中南大学高等数学答案

中南大学高等数学答案

中南大学网络教育课程考试复习题及参考答案高等数学(专科)一、填空题: 1.函数1142-+-=x x y 的定义域是。

解:),2[]2,(∞+--∞ 。

2.假设函数52)1(2-+=+x x x f ,那么=)(x f 。

解:62-x3.sin limx x xx→∞-= 。

答案:1 正确解法:101sin lim 1lim )sin 1(lim sin lim=-=-=-=-∞→∞→∞→∞→xxx x x x x x x x x4.22lim 222=--++→x x bax x x ,那么=a _____,=b _____。

由所给极限存在知,024=++b a ,得42--=a b ,又由23412lim 2lim 2222=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.∞=---→)1)((lim0x a x be x x ,那么=a _____,=b _____。

∞=---→)1)((lim 0x a x b e x x , 即01)1)((lim 0=-=---→b abe x a x x x ,∴0,1a b =≠ 6.函数⎪⎩⎪⎨⎧≥+<=0101sin)(x x x xx x f 的连续点是x =。

解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。

因为 1)0(1)1(lim 01sinlim 00==+=+-→→f x xx x x所以函数)(x f 在0=x 处是连续的,又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的连续点是0=x 。

7.设()()()n x x x x y -⋅⋅--= 21, 那么()=+1n y(1)!n +8.2)(x x f =,那么__________)1)((=+'x f f 。

答案:2)12(+x 或1442++x x 9.函数22ln(1)x y z--=的定义域为。

中南大学2021年《线性代数》期末试题及答案

中南大学2021年《线性代数》期末试题及答案

中南大学考试试卷《线性代数》课程 32 学时 2 学分 考试形式:闭卷 总分:100分一、填空题(每小题3分,共15分)1、设2()3f x x =-,矩阵⎪⎪⎭⎫⎝⎛-=3 4 0 1A ,则)(A f = . 2、设B A ,为n 阶矩阵,如果有n 阶可逆矩阵P ,使 成立,则称A 与B 相似.3、n 元非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是 .4、已知二次型()323121232221321662355,,x x x x x x x x x x x x f -+-++=,则二次型f 对应的矩阵A = .5、设4阶方阵A 满足:0,30,2T A E A AA E <+==(其中E 是单位矩阵),则A 的伴随矩阵*A 必有一个特征值为 . 二、选择题(每小题3分,共15分)1、已知4阶方阵A 的伴随矩阵为*A ,且A 的行列式A =3,则*A =( ).(A )81. (B )27. (C )12. (D )9. 2、设A 、B 都是n 阶方阵,且A 与B 有相同的特征值,并且A 、B 都有n 个线性无关的特征向量,则( )。

(A )A 与B 相似. (B )A =B .(C )B A ≠,但0||=-B A .(D )A 与B 不一定相似,但||||B A =. 3、设n 阶方阵A 为正定矩阵,下面结论不正确的是().(A )A 可逆. (B )1-A 也是正定矩阵. (C )0||>A .(D )A 的所有元素全为正.4、若n 阶实方阵2A A =,E 为n 阶单位阵,则( ).(A )()()R A R A E n +->. (B )()()R A R A E n +-<.(C )()()R A R A E n +-=. (D )无法比较()()R A R A E n +-与的大小.5、设1234123400110111c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为().(A )123ααα,,.(B )124ααα,,.(C )134ααα,,.(D )234ααα,,.三(本题满分10分)计算n (2n ≥)阶行列式n xa a a x a D aax=,n D 的主对角线上的元素都为x ,其余位置元素都为a ,且x a ≠.四(本题满分10分)设3阶矩阵,A B 满足关系:1100216,041007A BA A BA A -⎛⎫ ⎪ ⎪⎪=+= ⎪ ⎪ ⎪ ⎪⎝⎭且,求矩阵B . 五(本题满分10分)设方阵A 满足220A A E --=(其中E 是单位矩阵),求11,(2)A A E --+.六(本题满分12分)已知向量组A :11412α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,22131α⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭,31541α⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭,43670α⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭,(1)求向量组A 的秩;(2)求向量组A 的一个最大线性无关组,并把不属于该最大无关组的其它向量用该最大无关组线性表示.七(本题满分14分)设矩阵11111A ααββ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵000010002B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似, (1)求,αβ; (2)求正交矩阵P ,使1P AP B -=.八(本题满分14分)设有线性方程组为23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1)证明:若1a ,2a ,3a ,4a 两两不等,则此方程组无解.(2)设13a a k ==,24a a k ==-(0k ≠),且已知1β,2β是该方程组的两个解,其中1(1, 1, 1)T β=-,2(1, 1, 1)T β=-,写出此方程组的通解.参考答案一、填空题(每小题3分,共15分)1、-2 08 6⎛⎫ ⎪⎝⎭;2、1P AP B -=;3、()(,)R A R A b n ==;4、513153333-⎛⎫⎪-- ⎪ ⎪-⎝⎭;5、43 二、选择题(每小题3分,共15分) BADCC三(本题满分10分,见教材P44习题第5题)解:后面1n -列都加到第1列,得(1)(1)(1)n x n a a a xn axa D x n a ax +-+-=+-xaa x a a a n x a n x c111])1([])1([1-+===-+÷])1([)(0101001])1([1)()()(1223a n x a x ax a x a n x n c a c c a c ca c nn -+-=---+====--+-+-+.四、(本题满分10分,与典型题解P172例6类似)解:111121166()6416327161B A E ----⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪=-=-==⎢⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.五、(本题满分10分,见练习册P118第五大题第1小题和典型题解P173例7)解:212022A E A EA A E A E A -----=⇒=⇒=. 22212112()202(2)()(4A E A A E A E A A E A A ------=⇒+=⇒+===)或 34E A-六、(本题满分12分,见教材P89习题3第2题,或典型题解P178例6)解:12131011415601121347000021100000--⎛⎫⎛⎫⎪ ⎪---⎪ ⎪→→ ⎪ ⎪--- ⎪ ⎪-⎝⎭⎝⎭, 12()2,,R A αα=为所求的一个最大线性无关组,且312412,2αααααα=-+=-+.七、(本题满分14分,见典型题解P190例14)解:(1)由,A B 相似知,,A B 有相同的特征值,而B 的特征值为0,1,2,故得A 的特征值为1230,1,2λλλ===,从而有0010E A E A ⎧⋅-=⎪⎨⋅-=⎪⎩,由此解得0α=,β=0.(2)对于10λ=,解()00E A X ⋅-=,得特征向量101-⎛⎫⎪⎪ ⎪⎝⎭,单位化得:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210211p ;对于21λ=,解()0E A X -=,得特征向量为⎪⎪⎪⎭⎫⎝⎛=0101p ;对于32λ=,解()20E A X -=,得特征向量为101⎛⎫⎪⎪ ⎪⎝⎭,单位化得:⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p 令()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,则P 为正交阵,且使1P AP B -=. 八、(本题满分14分,见教材P87例3.13) 解:(1)增广矩阵B 的行列式是4阶范德蒙行列式:231112322223143332344411||()11j i i j a a a a a a B a a a a a a a a ≤<≤==-∏ 由于1a ,2a ,3a ,4a 两两不等,知||0B ≠,从而()4R B =,但系数矩阵A 的秩()3R A ≤,故()()R A R B ≠,因此方程组无解.(2)13a a k ==,24a a k ==-(0k ≠)时,方程组变为23123231232312323123x kx k x k x kx k x kx kx k x k x kx k x k⎧++=⎪-+=-⎪⎨++=⎪⎪-+=-⎩ 即 2312323123x kx k x k x kx k x k ⎧++=⎨-+=-⎩ 因为1201kk k=-≠-,故()()2R A R B ==,所以方程组有解,且对应的齐次方程组的基础解系含3-2=1个解向量,又1β,2β是原非齐次方程组的两个解,故21(2, 0, 2)T ξββ=-=-是对应齐次方程组的解;由于0ξ≠,故ξ是它的基础解系。

高等数学下册期末测试题含答案

高等数学下册期末测试题含答案

综合测试题(下册)A 卷 一、填空题(每空4分,共20分) 1、 曲线cos ,sin ,tan2tx t y t z ===在点(0,1,1)处的一个切向量与OX 轴正向夹角为锐角,则此向量与OZ 轴正向的夹角是_________________ . 2、 设:1,01D x y ≤≤≤,则3()Dx y yd σ+⎰⎰= _________ . 3、 设2222:x y z a ∑++=,则曲面积分222()xy z ds ∑++⎰⎰ =__________.4、 周期为2π的函数()f x ,它在一个周期上的表达式为10()10x f x x ππ--≤<⎧=⎨≤<⎩,设它的傅立叶级数的和函数为()S x ,则5()2S π= . 5、 微分方程x dyy e dx-+=的通解为______________. 二、选择题(每题4分,共20分)1、函数(,)f x y 在00(,)x y 点可微是函数(,)f x y 在00(,)x y 点连续且可导的 [ ] (A) 充分非必要条件 (B) 必要非充分条件 (C) 充要条件 (D) 无关条件2、设空间区域2222222212:,0;:,0,0,0x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥,则 [ ] (A)124xdv xdv ΩΩ=⎰⎰⎰⎰⎰⎰ (B) 124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰ (D) 124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰3、设L 为221x y +=一周,则2Lx ds ⎰ [ ](A) 等于0 (B) 等于π (C) 等于2π (D) 等于1 4、如果幂级数nn n c x∞=∑和11n nn nc x∞-=∑的收敛半径分别是1R 和2R ,则1R 与2R 的大小关系是 [ ] (A) 1R 大于2R (B) 1R 小于2R (C) 1R 等于2R (D) 不能确定 5、微分方程256xy y y xe '''-+=的特解形式是 [ ](A) 2xAe Bx C ++ (B) 2()x Ax B e + (C) 22()x x Ax B e + (D) 2()x x Ax B e +三、解答题1、(11分)函数(,)z z x y =由方程(,)0z zF x y y x++=所确定 ,其中F 具有一阶偏导数,计算x zxy x y∂∂+∂∂ 2、(9分)计算曲线积分22(23)(2)Lx y x y dx x y xy dy +-+-+⎰ ,其中L 为圆周222x y +=的顺时针方向3、(12分)在曲面z =231x y z -+=的距离最短4、(9分)计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰,其中∑是曲面 221z x y =-- 在xoy 面上方部分的上侧5、(10分)求幂级数111(1)n n n nx ∞--=-∑的收敛区间与和函数()S x6、(9分)求微分方程4cos y y x x ''+=的通解.综合测试题(下册)A 卷答案 一、填空题 1、34π 2、23 3、44a π 4、1 5、()x y e x C -=+二、选择题1、A2、C3、B4、C5、D 三、解答题1、解:1212122211(),(),()()x y z z z F F F F F F F F F x y y x=+-=-+=+ 由隐函数计算公式得 22112()()y zF x F z x x xF yF -∂=∂+21212()()x zF y F z y y xF yF -∂=∂+ 则 22211212()()()y zF x F x zF y F x z x y z xy x y xF yF -+-∂∂+==-∂∂+2、解:由格林公式 原式=22(13)Dyx dxdy -+-+⎰⎰=220)d r rdr πθ-⎰=2412(24r r ππ-=.3、解:设曲面上(,,)x y z 点到平面距离为d ,则2214(231)d x y z =-+-且 22224z x y =++ 即 222420x y z +-+= 令 2222(231)(42)F x y z x y z λ=-+-++-+2(231)204(231)806(231)20x yz F x y z x F x y z x F x y z x z λλλ=-+-+=⎧⎪=--+-+=⎪⎨=-+--=⎪⎪=⎩得唯一解x y z ===. 由实际问题知最小值存在,即为点()4. 4、解:补上一块 221:0,1z x y ∑=+≤ 取下侧,且 10xdydz ydzdx zdxdy ∑++=⎰⎰由高斯公式 原式=222213303(1)2x y dxdydz x y dxdy πΩ+≤-=--=⎰⎰⎰⎰⎰.其中Ω是由1,∑∑所围立体. 5、解:1limlim 11n n n n a nR a n →∞→∞+===+,在 1x =±时,级数发散. 则收敛区间为(1,1)-. 令 111()(1)n n n S x nx ∞--==-∑则1111011()(1)(1)1xn n n n n n xS x dx nx dx x x∞∞---===-=-=+∑∑⎰⎰ 21()()1(1)x S x x x '==++. 6、解:特征方程 240r += , 解得特征根 2r i =±.对应的齐次方程的通解 12cos2sin 2Y C x C x =+. 因为 0,1,i i λωλω==+= 不是特征根 方程的特解形式为 *()c o s ()s i ny a x b x c x d x =+++ 将其代入原方程 解得 12,0,0,39a b c d ====. 所以 *12cos sin 39y x x x =+, 方程的通解 1212cos 2sin 2cos sin 39Y C x C x x x x =+++.综合测试题(下册)B 卷一、填空题(每题3分,总计18分)1、函数y xy ax x y x f 22),(22+++=在点)1,1(-处取得极值,则常数a =______. 2、若曲面2132222=++z y x 的切平面平行于平面02564=++-z y x ,则切点坐标为______________________.3、二重积分dx ey dy y x ⎰⎰-1103的值为______________.4、设()f x 是周期为2的周期函数,它在区间(1,1]-的定义为2,10(),01x f x x x -<≤⎧=⎨ <≤⎩,则()f x 的傅里叶级数在1x =收敛于 .5、级数1nn nx∞=∑的和函数为 .6、微分方程2yx yy +='的通解为_____________________. 二、选择题(每题3分,总计15分)1、),(00y x f x 和),(00y x f y 存在是函数),(y x f 在点),(00y x 连续的 [ ] (A) 必要非充分的条件; (B)充分非必要的条件;(C) 充分且必要的条件; (D) 即非充分又非必要的条件.2、设)ln(222z y x u ++=,则)(u grad div = [ ] (A)2221z y x ++;(B)2222z y x ++;(C)2222)(1z y x ++;(D)2222)(2z y x ++ 3、设D 是xoy 面上以)1,1(),1,1(),1,1(---为顶点的三角形区域,1D 是D 中在第一象限的部分,则积分⎰⎰+Dd y x y x σ)sin cos (33= [ ](A)σd y x D ⎰⎰1sin cos 23; (B)⎰⎰132D yd x σ; (C)⎰⎰+1)sin cos (433D d y x y x σ; (D)04、设∑为曲面)0(222>=+R R y x 上的10≤≤z 部分,则⎰⎰∑++dS y x ey x )sin(2222=[ ](A)0; (B)2sin Re R R π; (C)R π4; (D)2sin Re 2R R π5、设二阶线性非齐次方程)()()(x f y x q y x p y =+'+''有三个特解x y =1,xe y =2,x e y 23=,则其通解为 [ ](A)xxe C e C x 221++; (B)xx eC e C x C 2321++;(C))()(221x x x e x C e e C x -+-+; (D))()(2221x e C e e C x x x -+- 三、计算题(每题7分,总计28分)1、已知22),,(z xy z y x f -=及点)1,1,2(-A 、)1,1,3(-B ,求函数),,(z y x f 在点A 处沿由A 到B 方向的方向导数,并求此函数在点A 处方向导数的最大值.2、设),(xy y x f z -=具有连续的二阶偏导数,求yx z∂∂∂2.3、将函数223)(x x x f --=展开成x 的幂级数,并指出收敛域.4、计算222L dsx y z ++⎰,其中L 是螺旋线t z t y t x ===,sin 8,cos 8对应π20≤≤t 的弧段.四、计算题(每题8分,总计32分) 1、计算⎰⎰⎰Ωdv z ,其中Ω由不等式22y x z +≥及41222≤++≤z y x 所确定.2、计算⎰⎰∑++++2222)(z y x dxdya z axdydz ,其中∑为下半球面222y x a z ---=的下侧,a为大于零的常数.3、设)(x y y =满足方程x e y y y 223=+'-'',且其图形在点)1,0(与曲线12+-=x x y 相切,求函数)(x y .4、对0>p ,讨论级数∑-∞=+11)1(n n n pn 的敛散性.综合测试题(下册)B 卷答案一、填空题1、-5;2、)2,2,1(±± ;3、)1(611--e ;4、()21xx +;5、C y y x =- 二、选择题1、D;2、B;3、A;4、D;5、C 三、计算题1、解:由条件得z zf x y f y x f 2,2,2-=∂∂=∂∂=∂∂ }cos ,cos ,{cos }32,32,31{}2,2,1{0γβα=-=⇒-=AB AB 32cos ,32cos ,31cos -===⇒γβα从而)1,1,2(cos cos cos -⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=∂∂A z f y f x f l f γβα=310 点A 的梯度方向是{2,2,2}{2,4,2}AA grad fy x z ==-=--l所以方向导数的最大值是6224242222==++=∂∂lf2、解:2121,xf f yzyf f xz+-=∂∂+=∂∂ []2221211222211211221212)()()(f xyf f y x f f xf f y xf f f yf y y f yf f y x z y y x z ++-+-=++-++-=+∂∂+∂∂=+∂∂=⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂3、解:2311111()212121/2f x x x x x x x ==+=+---+-+10001(1)(1)1222nn nn n n n n n x x x ∞∞∞+===⎡⎤-⎛⎫=+-=+ ⎪⎢⎥⎝⎭⎣⎦∑∑∑收敛域为)1,1(-. 4、解:dt dt z y x ds t t t 65222='+'+'=220222220arctan 88L ds dt tx y z t ππ===+++⎰ 四、计算题1、解:2222344011cos sin 2sin cos z dv d d r r dr d r dr πππθϕϕϕπϕϕϕΩ==⎰⎰⎰⎰⎰⎰⎰⎰ 24401115sin 22248d r ππϕϕπ⎡⎤=⋅=⎢⎥⎣⎦⎰ 2、解:取xoy ∑为xoy 面上的圆盘222a y x ≤+,方向取上侧,则22222223220021()1()()1(23)122cos sin 33xoy xoy xyD a axdydz z a dxdy a axdydz z a dxdy axdydz z a dxdy a z a dv a dxdy a d d r r d a a a a a πππθϕϕϕϕππ∑∑∑+∑∑Ω=++⎡⎤⎢⎥=++-++⎢⎥⎣⎦⎡⎤⎢⎥=+-⎢⎥⎣⎦⎡⎤=+-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰43443021114cos sin 22a a d r dr a a a a a ππππϕϕϕπππ⎡⎤⎡⎤=+=-+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰.3、解:由条件知)(x y y =满足1)0(,1)0(-='=y y .由特征方程2,1023212==⇒=+-r r r r ,对应齐次方程的通解x x e C e C Y 221+=, 设特解为x Axe y =*,其中A 为待定常数,代入方程,得x xe y A 22*-=⇒-=, 从而得通解x x x xe e C e C y 2221-+=,代入初始条件得0,121==C C . 最后得x e x x y )21()(-=. 4、解:当1p >时 ,1111(1)1n n n n n np np∞∞++==-=∑∑ ()11211lim lim lim 111n n n n n n nu np n u n p p n p +++→∞→∞→∞===<++,所以原级数绝对收敛.当01p <<时,设11q p =>, ()11111(1)nn n n n n qnp n +∞∞+==--=∑∑,()()()11ln 11lim lim lim01xnxn x n x x q q q q q n x ++→∞→+∞→+∞----==≠, 所以原级数发散.。

中南大学高等数学复习题及答案

中南大学高等数学复习题及答案

中南大学复习题及参考答案《高等数学》一、填空题1.函数1142-+-=x x y 的定义域是 . 解. ),2[]2,(∞+--∞Y 。

2.若函数52)1(2-+=+x x x f ,则=)(x f .解. 62-x 3.________________sin lim =-∞→xxx x答案:1正确解法:101sin lim 1lim )sin 1(lim sin lim=-=-=-=-∞→∞→∞→∞→xxx x x x x x x x x4.已知22lim 222=--++→x x bax x x ,则=a _____, =b _____。

由所给极限存在知, 024=++b a , 得42--=a b , 又由23412lim 2lim 2222=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.已知∞=---→)1)((lim 0x a x b e x x ,则=a _____, =b _____。

∞=---→)1)((lim 0x a x b e x x Θ, 即01)1)((lim0=-=---→b abe x a x x x , 1,0≠=∴b a 6.函数⎪⎩⎪⎨⎧≥+<=0101sin)(x x x xx x f 的间断点是x = 。

解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。

因为 1)0(1)1(lim 01sinlim 00==+=+-→→f x xx x x所以函数)(x f 在0=x 处是间断的,又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x 。

7. 设()()()n x x x x y -⋅⋅--=Λ21, 则()=+1n y (1)!n + 8.2)(x x f =,则__________)1)((=+'x f f 。

期末测试答案

期末测试答案

期末测试答案………评卷密封线…………---○---○---20XX年-20XX年学年下学期中南大学数学分析试题---○---○---理处时间120分钟分0按绩成一、填空题(21分,每空3分)试考1.A为f(x)在x a的右极限的定义为者违,息。

信生考写2.设f(x)xsin(x),f(x)的间断点为填准不外对应间断点的类型。

线封密1,x(1 cos(ax)),x 0题答3.设f(x)0,x 0在x 0可导,则a b 。

要不ln(1 bx x2)内x,x 0线封密4.设f(x) xarctan(x5 1),则f'(x) f(x) 2dx 。

…………5.设y e x2,则y(20XX年)(0) 线封密卷评… …二、计算、分析题(30分,每题6分)n1 f(a ) 1.若f(x)在x a可导且f(a) 0,求lim 。

n f(a)2.设f(0) f'(0) 0,f''(0) 6,求limx 0f(sin(x))。

xln(1 sin(x))limx 0f(sin(x))f(sin(x))f'(sin(x))cosxf''(sin(x))lim lim lim 3x 0x 0xln(1 sin(x))x 0x22x23.证明方程2x x2 1有且仅有三个实根。

x t arctant4.求曲线在拐点处的切线方程。

3y t 6t 25.设f(x) xsin(x),求df(x).分)。

三、设0 x02,xn sin(xn 1),n 1,2,...,试讨论{xn}的极限并求limnxn(9n四、设f(x) nx(1 x)n,n为正整数。

试求(1)f(x)在[0,1]上的最大值M;(2)limM(10分)。

n五、证明双曲线xy 9上任意点处的切线与两坐标轴所围的三角形面积为常数(10分)。

六、(1)证明不等式4xln(x) x2 2x 3 0,x (0,2)(5分);(2)证明不等式(abc)七、(1)利用柯西收敛原理及拉格朗日中值定理证明:设f(x)在(0,1)可a b c3。

中南大学考试卷

中南大学考试卷

中南大学第二学期期末考试试卷考试科目高等数学考试时间:100分钟 试卷总分100分一、填空题(每小题10分,总计60分)1、螺旋线cos sin x a y a z b θθθ=⎧⎪=⎨⎪=⎩在xoy 上的投影曲线方程为 .222()x y a += 2、设,x y z f xy g y x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中,f g 均可微,则z x ∂=∂ .1221()y yf f g y x '''+- 3、设()12sin cos x y e c x c x =+为某二阶常系数线性齐次微分方程的通解,则该方程为 .(220)y y y '''-+= 4、二次积分10x y dx dy y =⎰ .(1sin1)- 5、设L 为逆时针取向的圆周222x y R +=,则22L ydx xdy x y -=+⎰Ñ .(2)π- 二、设平面π是过直线3220260x y x y z -+=⎧⎨--+=⎩的平面, 且点()1,2,1M 到平面π的距离为 1,求平面π的方程. 解:(22100;43160)x y z y z ++-=+-=三、设函数()()222222221sin ,0,0,0x y x y x y x y f x y x y ⎧++++≠⎪+=⎨⎪+=⎩(1)问(),f x y 在原点()0,0处是否连续?(2)问(),f x y 在原点()0,0处的偏导数是否存在?(3)问(),f x y 在原点()0,0处是否可微?解:(1)连续;(2)存在;(3)可微.四、设Ω是由z =及1z =围成的立体, 求221zdv x y Ω++⎰⎰⎰.解:1(ln 2)2π-五、(1)求函数23u x y z =-+在222236x y z ++=条件下的最大值与最小值.(2)求圆锥面222z x y =+被柱面222x y x +=截下有限部分的面积.解:(1)6±;(2).六、计算333x y z I dydz dzdx dxdy r r r ∑=++⎰⎰Ò,其中∑取曲面2222x y z a ++=的外侧. 解:4π七、(1)计算23ydx xzdy yz dz Γ--⎰Ñ,其中Γ为曲面222x y z +=与平面2z =的交线,从z 轴正向看是逆时针方向.(20)π-(2)求方程()3232(3)30x xy dx y x y dy -+-=的通解.解:44226x y x y c +-=八、设()),0u f r r r ==>,其中f 具有二阶连续导数,且函数u 满足方程2222220u u u x y z∂∂∂++=∂∂∂,求函数()f r 求的表达式.解:112c r c -=+。

高等代数试卷-中南大学

高等代数试卷-中南大学

4---○---○------○---○---学 院专业班级学 号姓 名………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 ………… 中南大学考试试卷 时间100分钟题 号 一 二 三 四 合 计 得 分 评卷人 复查人 201 ~ 201 学年 1 学期 高等代数 课程期末考试试题 64 学时, 4 学分,闭卷,总分100分,占总评成绩 70 % 一、选择题 (本题15分,每小题3分) 1、若5级矩阵A 的秩为4,则A 的伴随矩阵的秩为( ) *A A. 0 B. 1 C.2 D.4 2、 设5级矩阵A 的行列式 21||=A ,则 ( ) =−|2|*A A. 14 B. 12 C. 2 D. 2−3、设21,αα是非齐次线性方程组β=AX 的两个特解,又β是对应的齐次线性方程组的一个解, 则下列选择中哪一个是0=AX β=AX 的解? ( )A. 21αα+ B. 21αα− C. 1αβ+ D. 1αβ− 4、、设非零的矩阵n n ×A 的行列式为零, 则 ( ) A.A 中至少有一行(列)元素全为零或至少有两行(列)元素对应成比例关系; B. 齐次线性方程组有非零解, 其中是0=∗X A ∗A A 的伴随矩阵; C. A 的行向量组和列向量组不可能都是线性相关的; D. 线性方程组b AX =有无穷多解. 5 设x x x x x x f 111133111212)(−=, 则的系数为 ( )4x A. 5 B. 4 C. 3 D. 2 二、填空题 (本题15分,每小题3分) 1、若,)(23x x x x f −−=1)(+=x x g ,则除的余式)(x g )(x f 为=)(x r . 2、方程组的基础解系是12340x x x x +++= .得 分 评卷人 得 分 评卷人3、设,则次解集向量组W 的秩等于____________. ⎭⎬⎫⎩⎨⎧⎩⎨⎧=+++=−−−==0...0...|),,,(212121n n n x x x x x x x x x X W L 4、排列24351是__ _排列(选择奇偶).5 设A =,A*是A 的伴随矩阵,则(A*)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛543022001-1=得 分评卷人 三、计算题(本题40分,每小题10分)(要求写出主要的计算过程)1、 设 , 求 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=011012111A 1−A---○---○------○---○---学 院专业班级学 号姓 名………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 ………… 2、计算n 级行列式 n L M M M M M M L L L L 222224222223222222222221 3、求讨论λ为何值时方程组 ⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x 无解,有唯一解,有无穷多解?有解时求出其解或通解4、若,.143)(234−−−+=x x x x x f 1)(23−−+=x x x x g 试求:与的最大公因式.)(x f )(x g---○---○------○---○---学 院专业班级学 号姓 名………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 ………… 四、综合证明题 (本题30分,每小题10分) 1、设321,,ααα线性无关,试证明:13322,,1αααααα−−也线性无关。

高等数学下册试题及答案解析

高等数学下册试题及答案解析

高等数学(下册)试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ202013cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ20013cos sin dr r d d 。

中南大学2021年期末《高等数学》试题及答案

中南大学2021年期末《高等数学》试题及答案

一. 单选题(共25题,共100分)1. 若在为(). (4分)2. 设(4分)C.D.3. 的值为(). (4分)4. 下列无穷积分中收敛的是()。

(4分)A.B.C.D.5. 下列函数中为偶函数的是()(4分)A.B.C.D.6. 下列说法正确的是()(4分)A.若可导B.若不连续C.若极限不存在D.若不可导7. 若内(). (4分)A.B.C.D.8. (4分)D.9. 设函数(4分)B.C.D.E.11. 设函数(4分)A.B.C.D.12. 若(4分)A.B.C.D.13. 设(4分)A.B.C.D.14. 设则(). (4分)A.B.C.D.15. 二重极限(4分)C.等于16. 函数在点处().(4分)17. 函数处()(4分)18. (4分)19. 函数(4分)20. 若函数(4分)A.B.C.D.21. 下列函数中,()不是基本初等函数.(4分)A.B.C.D.22. 函数的连续区间是()(4分)A.B.C.D.8af41950-b1bc-single23. 设可导的()(4分)4459256a-f13b-single24. 设记,则有(). (4分)A.B.C.D.1fd6c4b4-ecd9-single25. 已知(4分)第二套一. 单选题(共25题,共100分)ab25448a-4896-single1. 设齐次线性方程组的系数矩阵记为A,若存在3阶非零矩阵B,使AB=0,则()(4分)A.B.C.D.084201bf-ec80-single2. 设向量组不能由线性表示,则对于任意常数k必有()(4分)A.线性无关B.线性相关C.线性无关D.线性相关557467a0-4af9-single3. 向量组线性相关的充分必要条件是() (4分)A.中含有零向量B.中有两个向量的对应分量成比例C.中每一个向量都可由其余个向量线性表示D.中至少有一个向量可由其余个向量线性表示fcd94325-e911-single4. 微分方程的通解为()(4分)A.B.C.D.e063cd0e-b657-single5. A为3阶矩阵,(4分)A.B.2C.e8bc7257-565a-single6. 设线性方程组有唯一解,则相应的齐次方程组().(4分)d85d9502-509f-single7. 若的值为() (4分)7b5bb558-c1b2-single8. 设(4分)14f9b70c-b900-single9. 已知(4分)C.;D.-bdb4841d-7350-single10. M为n阶方阵,的一个特征值为(). (4分)设A、B均为n阶方阵,则必有(). (4分)A.C.D.A是n阶正定矩阵的充分必要条件是(). (4分)A.B.存在n阶矩阵C使094dae6c-371f-single13. 微分方程特解形式可设为((4分)B.C.D.E.设A,B均为n阶矩阵,且AB=O,则必有()(4分)A.B.C.D.26c1c271-3ae6-single15. 方程是()(4分)A、B都是n阶方阵,且A与B有相同的特征值,则(). (4分)A.D.f744a7dd-d0be-single17. ,则必有() (4分)A.B.C.D.0c63d9b9-2607-single18. 已知非齐次线性方程组是其导出组(4分)4a92f68a-ad91-single19. 二次型的矩阵表示为() (4分)A.B.C.D.5052f555-8f89-single20. 设级数(). (4分)含s个向量的向量组线性无关的充要条件是() (4分)下列命题中正确的是((4分)D.任何必然线性相关E.若只有才成立,且线性无关。

高数下期末考试试题及答案解析

高数下期末考试试题及答案解析

WORD 格式整理⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯封号序密超号班要学教不卷答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯2017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共3页;2、考试时间110 分钟; 3 、姓名、学号必须写在指定地方题号一二三四总分得分阅卷人得分一、单项选择题( 8 个小题,每小题 2 分,共 16 分)将每题的正确答案的代号A、 B、 C或 D 填入下表中.号12345678答案1.已知 a 与b都是非零向量,且满足a b a b ,则必有().(A)a b 0(B)a b0(C) a b0(D)a b02. 极限lim( x2y2 )sin12().x0x2yy0(A) 0(B) 1(C) 2(D)不存在3.下列函数中,df f 的是().( A)f (x, y)xy( B)f (x, y)x y c0 ,c0为实数( C)f (x, y)x2y2( D)f (x, y)e x y4.函数f ( x, y)xy (3x y) ,原点 (0,0)是 f ( x, y) 的().( A)驻点与极值点( B)驻点,非极值点( C)极值点,非驻点( D)非驻点,非极值点5 .设平面区域D : (x1)2( y 1)22,若I1x y d, I 2x yd ,D4D4I 33x y,则有() .dD4(A)I1I 2I 3(B)I1I 2I 3(C)I2I1I 3(D)I3I1I 26.设椭圆L:x2y 21的周长为l,则(3x2 4 y2 )ds() .43L(A)l(B)3l(C)4l(D)12l7.设级数a n为交错级数,a n0 (n) ,则().n 1(A) 该级数收敛(B)该级数发散(C) 该级数可能收敛也可能发散(D)该级数绝对收敛8. 下列四个命题中,正确的命题是().( A)若级数a n发散,则级数a n2也发散n 1n 1( B)若级数a n2发散,则级数a n也发散n 1n 1( C)若级数a n2收敛,则级数a n也收敛n 1n 1( D)若级数| a n |收敛,则级数a n2也收敛n 1n 1阅卷人得分二、填空题 (7 个小题,每小题2分,共 14分).3x 4 y2z60a 为.1. 直线3y z a与 z 轴相交,则常数x02.设f ( x, y)ln( xy), 则f y(1,0)___________.x3.函数f (x, y)x y 在 (3, 4) 处沿增加最快的方向的方向导数为.4.设D : x2y22x ,二重积分( x y)d=.D5.设f x是连续函数,{( x, y ,z) | 0z9x2y2 } , f ( x2y2 )dv 在的三次积分为.6. 幂级数( 1)n 1x n的收敛域是.n!n 17. 将函数 f ( x)1,x01x2,0 x以 2为周期延拓后,其傅里叶级数在点于.⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯封号序密超号班要学教不卷答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分三、综合解答题一( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.设 u xf ( x,x) ,其中 f 有连续的一阶偏导数,求u ,u.y x y解:4.设是由曲面z xy, y x, x 1及z0 所围成的空间闭区域,求 I解:2.求曲面 e z z xy 3 在点 (2,1,0) 处的切平面方程及法线方程.解:5.求幂级数nx n 1的和函数 S(x) ,并求级数nn的和.n 1n 12解:3. 交换积分次序,并计算二次积分dxxsin y dy.0y解:⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯封号序密超号班要学教不卷答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分四、综合解答题二( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为 1 的一切直角三角形中,求有最大周长的直角三角形.解4.计算xdS ,为平面x y z 1在第一卦限部分.解:2.计算积分( x2y2 )ds ,其中L为圆周 x2y2ax (a0 ).L解:5.利用高斯公式计算对坐标的曲面积分蝌dxdy + dydz + dzdx,S其中为圆锥面 z2x2y2介于平面z0 及 z 1 之间的部分的下侧.解:3.利用格林公式,计算曲线积分I(x2y2)dx (x 2xy)dy ,其中 L 是由抛物线y x2和Lx y2所围成的区域D的正向边界曲线.y y x2x y22017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)答案及评分标准一、单项选择题(8 个小题,每小题 2 分,共 16 分)题号12345678答案D A B B A D C D1.已知a 与b都是非零向量,且满足a b a b ,则必有(D)(A) a b0 ;(B)a b 0 ;(C) a b0 ;(D)a b0 .2. 极限lim( x2y2 )sin212( A )x0x yy0(A) 0;(B) 1;(C) 2;(D)不存在 . 3.下列函数中,df f 的是( B );( A) f ( x, y)xy ;( B)f ( x, y)x y c0 , c0为实数;( C) f (x, y)x2y2;( D)f (x, y)e x y .4.函数f ( x, y)xy (3x y) ,原点 (0,0)是 f ( x, y) 的( B).(A)驻点与极值点;(B)驻点,非极值点;(C)极值点,非驻点;( D)非驻点,非极值点 .5 .设平面区域 D:( x 1)2( y 1)22,若I1x yd ,I2x y dD4D4WORD 格式整理3xyd,则有( A)I 34D(A)I1I 2I3;(B) I1I 2I 3;(C)I2I1I3;(D)I36.设椭圆L:x2y 21的周长为l,则(3x24y2 )ds( D)43L(A) l;(B)3l;(C)4l ;(D)127.设级数a n为交错级数, a n0 (n) ,则(C)n 1(A) 该级数收敛;(B)该级数发散;(C) 该级数可能收敛也可能发散;(D)该级数绝对收敛.8. 下列四个命题中,正确的命题是(D)( A)若级数a n发散,则级数a n2也发散;n1n 1( B)若级数n1a n2发散,则级数n 1a n也发散;( C)若级数a n2收敛,则级数a n也收敛;n1n 1( D)若级数| a n |收敛,则级数a n2也收敛.n1n1二、填空题 (7 个小题,每小题 2 分,共14 分).3x 4 y2z60a 为31. 直线3y z a与 z 轴相交,则常数。

2019最新高等数学(下册)期末考试试题(含答案)ABC

2019最新高等数学(下册)期末考试试题(含答案)ABC

2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.将函数(,)x f x y y =在(1,1)点展到泰勒公式的二次项.解:(1,1)1,f =(1,1)(1,1)1(1,1)(1,1)ln 0,1,x x x y f y y f xy-====2(1,1)(1,1)1(1,1)(1,1)2(1,1)(1,1)2(ln )0,1ln 1,(1)0,(,)1(1)(1)(1)0().xxx x x xy x yyx f y y xy y y f y f xy x f x y y y x y ρ--==⎛⎫+⋅== ⎪⎝⎭=-===+-+--+2.求下列欧拉方程的通解:2(1)0x y xy y '''+-=解:作变换e t x =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-=即 22d 0d yy t-=特征方程为 210r -=121,1r r =-=故 12121e e t ty c c c c x x-=+=+. 23(2)4x y xy y x '''+-=.解:设e tx =,则原方程化为3(1)4e t D D y Dy y -+-=232d 4e d ty y t-= ① 特征方程为 240r -=122,2r r =-=故①所对应齐次方程的通解为2212e e t t y c c -=+又设*3e t y A =为①的特解,代入①化简得941A A -= 15A =, *31e 5t y = 故 223223121211ee e .55tt t y c c c x c x x --=++=++3.求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x=+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x=--. 2311(2)(23)1,0x y x y y x='+-== . 解:22323d 3ln x x x x c x--=--+⎰ 22223323d 23+3ln d 3ln ee e d e d x xx x x x x xxxy x c x c -------⎰⎡⎤⎰⎡⎤∴==++⎢⎥⎣⎦⎣⎦⎰⎰ 2223311e .e e 22x x x x x c c ----⎛⎫⎛⎫=⋅=++ ⎪ ⎪⎝⎭⎝⎭以x =1,y =0代入上式,得12ec =-. 故所求特解为 2311e 22e x y x -⎛⎫=-⎪⎝⎭.4.计算下列对坐标的曲面积分:(1)22d d x y z x y ∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x , y , z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧; (4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面z =z = h (h >0)所围成的立体的整个边界曲面,取外侧为正向;(6)()()22d d d d d d +++-⎰⎰y y z x z x x y y xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:z =Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.((()()()()()()22222π422002π2222222002π2200354*******d d d d d cos sin d 1sin 2d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yr r rR R r r R R R R r R R R r R r ∑θθθθθθθ=-=-=-⎡⎤+--⎣⎦⎡=---⎣=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:x =(y ,z )∈D yz,故30d d d d 3yzD x y z y z z y y∑===⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为: y =(x ,z )∈D xz,故3d d d d 3xzD y z x z x z x x∑===⎰⎰⎰⎰⎰⎰⎰因此:d d d d d d 236π643π2z x y x y z y z x x x∑++⎡⎤=⎢⎥⎣⎦==⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为cos α=,cos β=cos γ=图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1, 故()()12344110d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰ 因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()220200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yy xz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰5.求下列齐次方程的通解:(1)0xy y'-=;解:d d y y x x =令 d d d d y y u u u x x x x=⇒=+ 原方程变为d xx=两端积分得ln(ln ln u x c =+u cxy cx x +==即通解为:2y cx =d (2)ln d y yxy x x =; 解:d ln d y y y x x x= 令y u x =, 则d d d d y uu x x x=+原方程变为d d (ln 1)u xu u x=-积分得 ln(ln 1)ln ln u x c -=+ln 1ln 1u cxycx x-=-= 即方程通解为 1ecx y x +=22(3)()d d 0x y x xy x +-=解:2221d d y y x y x y x xyx⎛⎫+ ⎪+⎝⎭==令y u x =, 则d d d d y uu x x x=+原方程变为 2d 1d u u u x x u++= 即 d 1d ,d d u x xu u x u x == 积分得211ln ln 2u x c =+ 2122ln 2ln y x c x=+故方程通解为 22221ln()()y x cx c c ==332(4)()d 3d 0x y x xy y +-=; 解: 333221d d 33y y x y x x xy y x ⎛⎫+ ⎪+⎝⎭==⎛⎫ ⎪⎝⎭令y u x =, 则d d d d y uu x x x=+原方程变为 32d 1d 3u u u x x u ++= 即 233d d 12u x u u x=- 积分得 311ln(21)ln ln 2u x c --=+ 以yx代替u ,并整理得方程通解为 332y x cx -=. d (5)d y x y x x y+=-; 解:1d d 1yy x yx x +=- 令y u x =, 则d d d d y uu x x x=+原方程变为 d 1d 1u uu x x u++=- 分离变量,得211d d 1u u x u x-=+ 积分得 211arctan ln(1)ln ln 2u u x c -+=+ 以y x 代替u ,并整理得方程通解为到 2arctan 22211e .()yxx y c c c +==(6)y '=解:d d y yx=即d d x x y y =令x v y =, 则d d ,d d x v x yv v y y y ==+, 原方程可变为d d vv yv y+=+即d d vyy=分离变量,得d y y= 积分得ln(ln ln v y c +=-.即y v c+=2222121y v v c y yv c c⎛⎫=+- ⎪⎝⎭-= 以yv x =代入上式,得 222c y c x ⎛⎫=+ ⎪⎝⎭即方程通解为 222y cx c =+.6.从下列各题中的曲线族里,找出满足所给的初始条件的曲线:220(1),5;x x y C y =-==解:当0x =时,y =5.故C =-25 故所求曲线为:2225y x -=21200(2)()e ,0, 1.x x x y C C x y y =='=+==解: 2212(22)e x y C C C x '=++ 当x =0时,y =0故有10C =. 又当x =0时,1y '=.故有21C =. 故所求曲线为:2e xy x =.7.利用斯托克斯公式,计算下列曲线积分: (1)d d d y x z y x z Γ++⎰,其中Γ为圆周x 2+y 2+z 2= a 2,x +y +z = 0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y z y z x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2 = 2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向; (4)22d 3d d +-⎰y x x y z z Γ,其中Γ是圆周x 2+y 2+z 2 = 9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰ (2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ(是一个边长为2的正六边形); Σ的单位法向量为{}cos ,cos ,cos αβγ==n . 由斯托克斯公式()()()(((()222222d d d2222d22d3d232492x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡++----=--⎢⎣=++==⋅=-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑8.设均匀薄片(面密度为常数1)所占闭区域D如下,求指定的转动惯量:(1)D:22221x ya b+≤,求I y;(2)D由抛物线292y x=与直线x=2所围成,求I x和I y;(3)D为矩形闭区域:0≤x≤a, 0≤y≤b,求I x和I y.解:(1)令x=arcosθ ,y=br sinθ,则在此变换下D :22221x y a b+≤变化为D ':r ≤1,即 0≤r ≤1, 0≤θ≤2π, 且(,)(,)x y abr r θ∂=∂, 所以2π12222323032π30d d cos d d cos d d 1(1cos 2)d π.84y DD I x x y a r abr r a b r ra b a b θθθθθθ'====+=⎰⎰⎰⎰⎰⎰⎰(2) 闭区域D 如图10-35所示图10-353222220005222220272d d 2d d d ;3596d d 2d d .7x Dy DI y x y x y y x x I x x y x x y x x ========⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)32220d d d d d ,3a bbx Dab I y x y x y y a y y ====⎰⎰⎰⎰⎰322200d d d d d .3abay Da bI x x y x x y bx x ====⎰⎰⎰⎰⎰9.求锥面z被柱面z 2 = 2x 所割下部分的曲面面积。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。

中南大学高等数学复习题及答案

中南大学高等数学复习题及答案
n
.
1 3
1
23. 1
1 1 1
1 x 是关于 x 的一次多项式,则该多项式的一次项系数是 1
.
1
答案: 2;
3 1 x
24. f(x)= x
2 5是 x
次多项式,其一次项的系数是

1 4
解:由对角线法则知,f(x)为二次多项式,一次项系数为 4。 25. A、 B、 C 代表三事件, 事件 “A、 B、 C 至少有二个发生” 可表示为 AB+BC+AC 26. 事件 A、B 相互独立,且知 P A 0.2, P B 0.5 则 P A U B 解:∵A、B 相互独立, ∴P(AB)=P(A)P(B) ∴P(A∪B)=P(A)+P(B)–P(AB)=0.2+0.5–0.1=0.6 27. A,B 二个事件互不相容, P A 0.8, P B 0.1, 则 P A B . . .
故 2 x
当 x 2 时,幂级数成为数项级数 为 ( 2 , 2 ) .
1 1 1 1 19. y y 0 的满足初始条件 y1 , y 1 的特解为 y x . 12 4 12 2
2
3
20.微分方程 y 3 y 0 的通解为 y c1 c2 e 3 x . 21.微分方程 y 6 y 13 y 0 的通解为 y e 3 x c1 cos 2 x c2 sin 2 x . 22.设 n 阶方阵 A 满足|A|=3,则=| A A |= 答案: 1
2

2
2
B. x 2 ;
C. ( x 1) ; D. x 1 。
1 1 1 1 1 x 2 2 2 2 ( x ) 2 2 ,所以 f ( x ) ( x ) 2 2 2 x x x x x

中南大学高等数学作业参考答案

中南大学高等数学作业参考答案

《高等数学》作业参考答案第一章函数作业(练习一)一、填空题: 1函数的定义域是________。

解:对函数的第一项,要求且,即且;对函数的第二项,要求,即。

取公共部分,得函数定义域为。

函数的定义域为________。

22有意义,必须满足且,即成立,解不等式方程解:要使或,故得出函数的定义域为。

组,得出已知,则的定义域为________。

解:令, 则,即故的定义域为 1函数的定义域是________。

解:若函数,则________。

解:二、单项选择题:若函数的定义域是[0,1],则的定义域是[ C ]函数的值域是[ D ]设函数的定义域是全体实数,则函数是[ C ] A.单调减函数B.有界函数 C.偶函数 D.周期函数解:A、B、D三个选项都不一定满足。

1x设,则对任意有F(x)即是偶函数,故选项C正确。

4.函数[ B ] A.是奇函数 B.是偶函数 C.既奇函数又是偶函数 D.是非奇非偶函数。

解:利用奇偶函数的定义进行验证。

所以B 正确。

5.若函数,则[ B ]x A. B. C. D.。

解:因为 所以则,故选项B 正确。

6.设 ,则= [ D ] A . x B .x + 1 C .x + 2 D .x + 3 解:由于, 得=将代入 得= 7.下列函数中,( )不是基本初等函数。

[ B ]532A .B .C .D . 解:因为是由,复合组成的,所以它不是基本初等函数。

8.设函数,则= [ C ]A .=B . 442C .D .= 24 2解:因为,故且,所以9.若函数,则=[ C ] xA. B. C. D.10.下列函数中( )是偶函数. [ B ] 2A. B. C. D. 三、解答题:1.设,求:(1)的定义域;(2),,。

解:(1)分段函数的定义域是各区间段之和,故的定义域为(2)时,,时,2. 设, 求复合函数。

解:3.(1)();解:为偶函数(2)为奇函数解:(3)解:,为奇函数4.已知,,求的定义域 3解:, 故的定义域为第二章极限与连续作业(练习二)一、填空题:1. 答案: 1正确解法:2.已知,则_____,_____。

中南大学2021年《高等数学》期末试题及答案详解

中南大学2021年《高等数学》期末试题及答案详解

一、填空题1.设2)(xx a a x f -+=,则函数的图形关于 对称。

解:)(x f 的定义域为),(+∞-∞ ,且有)(222)()(x f a a a a a a x f xx x x x x =+=+=+=------即)(x f 是偶函数,故图形关于y 轴对称。

2.若⎩⎨⎧<≤+<<-=20102sin 2x x x x y ,则=)2(πy .解:412π+。

3. 极限 。

解:010sin lim 1sin lim )sin 1sin (lim sin 1sinlim00020=⨯=⋅==→→→→xx x x x x x x x x x x x x x 注意:01sin lim 0=→xx x (无穷小量乘以有界变量等于无穷小量)111sin lim 1sin 1lim sin lim000====→→→xx x x x x x x x ,其中xx x sin lim 0→=1是第一个重要极限。

4.已知22lim 222=--++→x x bax x x ,则=a _____, =b _____。

由所给极限存在知,024=++b a , 得42--=a b , 又由23412lim 2lim 2222=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.已知0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数a =解. ()()().23,1321112lim 1cos 11lim3123222203120-=∴=-=⎥⎦⎤⎢⎣⎡++++-=--+→→a a ax ax x ax x ax x xlimsinsin x x x x→=0216.设)(22y z y z x ϕ=+,其中ϕ可微,则yz∂∂= 。

解2zz yy z ϕϕϕ'-∂='∂- 7.设2e yzu x =,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则=∂∂)1,0(xu 。

高等数学下册试题题库)及参考答案

高等数学下册试题题库)及参考答案

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( A ) A )5 B ) 3 C ) 6 D )9解 ={1-1,2-0,1-2}={0,2,-1},||=5)1(20222=-++.2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C ) A )2π B )4π C )3π D )π 解 由公式(6-21)有21112)1(211)1(1221c o s 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x .解 由于平面平行于z 轴,因此可设这平面的方程为因为平面过1M 、2M 两点,所以有解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--○○○○………… 评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理…………评卷密封线…………一、填空题(每小题分,总计分)、点(3,1,1)A -到平面:2340x y z π-+-=的距离为( )、曲面42222-+=y x z 在点()1,1,0-处的法线方程为( )、设Ω是由曲面22z x y =+及平面1z =围成的闭区域,则(),,d d d f x y z x y z Ω⎰⎰⎰化为顺序为z y x →→的三次积分为( )、设∑是xoz 面的一个闭区域xz D , 则曲面积分(),,d f x y z S ∑⎰⎰可化为二重积分为( )、微分方程212y x y'=-满足初始条件()10y =的解为( )--=1绕z 轴旋转而成的曲面为( )152=z ; ()154222=+-z y x ; 152=z ; ()()15422=+-z y x D 内具有二阶偏导数222222,,,f f f fx y x y y x∂∂∂∂∂∂∂∂∂∂,则( ) 2fy x∂∂∂; ()则(,)f x y 在区域D 内必连续; D 内必可微; () 以上都不对 D 由2y x =及2y x =-所围成,则化为二次积分后的结果为I = ; ()⎰⎰-+2122y yxydx dy ;⎰⎰-+412xx xydy dx ()⎰⎰-+2122y yxydy dx2=介于点(0,2)到点(2,0)的一段,则=⎰( )(); ; ()2. ()()()y p x y q x y f x '''++=的解, 则().()12y y -也是方程的解()122y y -也是方程的解三、(分)设平面∏:2450x y z---=,且直线0 :30x y blx ay z++=⎧⎨+--=⎩在平面∏上,求,a b的值.------…………评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理…………评卷密封线…………四、(分)已知函数(,)f x y x y xy =++,曲线22:3C x y xy ++=,C 上的最大方向导数.----五、(分)计算由旋转抛物面226z x y =--及锥面z =所围成的立体的体积.六、求解下列各题(每题分,共分){},1d d xy x y ,其中{}(,)02,02D x y x y =≤≤≤≤.sin )()y y dx x e dy +++,其中L 是从(1,0)A 沿y =到(1,0)B -的--七、(分)计算I xydydz yzdzdx xzdxdy ∑=++⎰⎰,其中∑是平面0,0,0,2x y z x y z ===++=所围空间区域整个边界曲面的外侧.--…………评卷密封线…………密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理…………评卷密封线…………具有二阶连续导数,(cos )xz f e y =满足2cos )x xy e ,若(0)0,(0)0f f '==, ()f u 的表达式.(),()3y x b z x a x b =-+=-+-,代入平面∏方5,2a b =-=-.--解法二:过直线l 的平面束方程设为3()0x ay z x y b λ+--+++= (或(3)0x y b x ay z λ++++--=),即(1)()30x a y z b λλλ+++--+= (或(1)(1)30x a y z b λλλλ+++-+-=), 由题意知11241a λλ++-==--(或11241a λλλ++-==--), 解得5,1a λ=-=,将5,1a λ=-=及平面∏上的点(1,2,5)-代入平面束方程,求得2b =-.四.解:最大方向导数即为梯度的模,(,)(1,1),(,)gradf x y y x gradf x y =++=令2222(,,)(1)(1)(3)F x y x y x y xy λλ=++++++-,由222(1)(2)02(1)(2)030x y F x x y F y y x x y xy λλ=+++=⎧⎪=+++=⎨⎪++-=⎩,解得1211,,,1112x x x x y y y y ===-=-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,比较:(1,1)gradf =(2,1)(1,2)3gradf gradf -=-=,(1,1)0gradf --=,所以(,)f x y 在曲线C 上的最大方向导数为.五.解法一: 26222032(6)3xyr rD V dv rdrd dz d r r rdr πθθπ-Ω===--=⎰⎰⎰⎰⎰⎰⎰⎰. 解法二:1226262120202832(6)833z zD D V V V dz dxdy dz dxdy z dz z dz πππππ=+=+=+-=+=⎰⎰⎰⎰⎰⎰⎰⎰.六.解: .123D D D I dxdy dxdy xydxdy =++⎰⎰⎰⎰⎰⎰--12221110221x xdx dy dx xydy =++⎰⎰⎰⎰19ln 24=+ .因为1P Q y x∂∂==∂∂,所以该曲线积分与路径无关, 选择积分路径从(1,0)A 沿x 轴到(1,0)B -,易得11(10)2I dx -=+=-⎰七.解法一:利用高斯公式,3222200()333 2.6xx yI xydydz yzdzdx xzdxdy y z x dvx zdv dx dy zdz dx ∑Ω---Ω=++=++-====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)解法二:在平面0,0,0x y z ===上,积分值为,只需计算:2x y z '∑++=(取上侧)上的积分.因cos cos cos αβγ===(()dS I xydydz yzdzdx xzdxdy xy yz xz xy yz xz dxdy '''∑∑∑=++=++++⎰⎰⎰⎰⎰⎰[]22220(2)(2)()2xyxD xy y x y x x y dxdy dx x y xy x y dy -=+--+--=---++=⎰⎰⎰⎰.解法三:在平面0,0,0x y z ===上,积分值为,只需计算:2x y z '∑++=(取上侧)上的积分.2202(2)(2)3xyxD xzdxdy x x y dxdy xdx x y dy -'∑=--=--=⎰⎰⎰⎰⎰⎰.由被积函数和积分曲面关于积分变量的对称性,可得23xydydz yzdzdx xzdxdy '''∑∑∑===⎰⎰⎰⎰⎰⎰,所以,2323I =⋅=.--八.解:()因为2222(cos )cos ,(cos )cos (cos )cos ,x x x x x x zzf e y e y f e y e y f e y e y x x∂∂''''==+∂∂ 2222(cos )sin ,(cos )sin (cos )cos ,x x x x x x zzf e y e y f e y e y f e y e y yy∂∂''''=-=-∂∂ 所以,已知条件22222(4cos )x x z zz e y e x y∂∂+=+∂∂化为22(cos )4(cos )cos x x x x xf e y e f e y e y e ''⎡⎤=+⎣⎦,所以函数()f u 满足方程()4()f u f u u ''=+.()方程()4()f u f u u ''=+的特征方程为240r -=,得特征根1,22r =± 所以,其对应齐次方程的通解为2212()uu f u C eC e -=+,设非齐方程的特解为*y Au B =+,代入原方程,得1,04A B =-=得非齐方程的一个特解为*4uy =-,故方程的通解为 2212()u u f u C e C e -=+4u-,由(0)0,(0)0f f '==得1212012204C C C C +=⎧⎪⎨--=⎪⎩,得1211,1616C C ==-, 故221()(4)16u uf u e e u -=--.。

相关文档
最新文档