2020-2021学年重庆八中九年级上学期第一次月考模拟数学试卷 (解析版)
重庆市第八中学2023-2024学年九年级上学期第一次月考数学试题及参考答案
重庆八中2023—2024学年上期初三年级第一学月考试数学试题(全卷共四个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.tan45°的值为( )A.1B.1−2.下列图案中是中心对称图形的是( )A. B. C. D.3.估计的值在( ) A.3到4之间B.4到5之间C.5到6之间D.6到7之间4.如图,AF 是BAC ∠的角平分线,DF AC ,若60BDF ∠=°,则1∠的度数为( )A.20°B.25°C.30°D.45°5.一辆汽车的速度()km /h 与时间()min 之间的变化关系如图所示,则下列说法正确的是( )A.速度是自变量,时间是因变量B.汽车在3min 加时,行驶的路程为30kmC.汽车在3~8min 加应时停止运动D.汽车最快的速度是30km /h6.如图,在平面直角坐标系中,已知()12,8A ,()6,4D ,()2,3E ,ABC △与DEF △位似,原点O 是位似中心,则B 点的坐标是( )A.()4,5B.()4,6C.()5,6D.()5,57.二次函数()20y ax bx c a ++≠的顶点坐标为()1,m ,其部分图象如图所示.以下结论错误的是( )A.0a >B.0abc >C.240ac b −<D.30a c +<8.下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,第1个图形中小正方形的个数是3个,第2个图形中小正方形的个数是8个,第3个图形中小正方形的个数是15个,则第5个图形中小正方形的个数是( )A.24B.30C.35D.489.如图,ABC △为等腰直角三角形,BD AB ⊥于点B ,CE AD ⊥于点E ,连接BE ,设CAE x ∠=,若2CE AE =,则ABE ∠可表示为( )A.12x B.152x+°C.45x −°D.60x °−10.数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题,比如12x x −表示在数轴上数1x ,2x 对应的点之间的距离.现定义一种“F 运算”,对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和.例如:对1−,1,2进行“F 运算”,得1112126−−+−−+−=.下列说法:①对m ,1−进行“F 运算”的结果是3,则m 的值是2;②若2x y <<,对于2,x ,y 进行“F 运算”的结果是8,则y 的值是8; ③对a ,a ,b ,c 进行“F 运算”,化简的结果可能存在6种不同的表达式. 其中正确的个数为( ) A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:01−=______. 12.从六边形ABCDEF 的顶点A 出发,可以画出______条对角线。
重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷
重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷一、单选题1.15-的相反数是( ) A .5 B .5- C .15 D .15- 2.下列音符中,是中心对称图形的是( )A .B .C .D . 3.已知反比例函数k y x =的图象经过点(2,-2),则k 的值为 A .4 B .12- C .-4 D .-24.4月23日为世界读书日,为了解八年级1000学生的阅读时间,从中抽取100名学生进行调查,下列说法正确的是( )A .样本容量是100名B .每个学生是个体C .100名学生是总体的一个样本D .1000名学生的阅读时间是总体 5.如图,ABC V 和A B C '''V 是以点O 为位似中心的位似图形,点A 在线段OA '上.若:1:2OA AA '=,则ABC V 和A B C '''V 的周长之比为( )A .1:2B .1:4C .4:9D .1:36.下列图形都是用同样大小的梅花图案按一定规律组成,其中第①个图形中有4朵梅花,第②个图形中有8朵梅花,第③个图形中有14朵梅花,第④个图形中有22朵梅花.按此规律摆放下去,则第⑦个图形中梅花朵数为( )A .44B .58C .74D .927.二次函数y =2x 2﹣1的图象的顶点坐标是( )A .(﹣1,0)B .(1,0)C .(0,1)D .(0,﹣1) 8.设m m 的值应在( )A .7-和6-之间B .6-和5-之间C .5-和4-之间D .4-和3-之间 9.如图,已知四边形ABCD 为正方形,E 为对角线AC 上一点,连接BE , 过 点E 作EF BE ⊥,交DA 的延长线于点F,AE =2AF =, 则BE 的长为( )A.B.C .6 D.10.给定一列数,我们把这列数中第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数).已知1,)0(1a x x x =≠≠,并规定:11n n n a a a +-=,123n n T a a a a =⋅⋅K ,123n n S a a a a =++++L ,下列说法:①215a a =;②123202421T T T T x +++⋯+=+;③对于任意正整数k ,都有()31332323132k k k k k k T S S T T T ++-++-=⋅-成立.其中正确的个数是( )A .0个B .1个C .2个D .3个二、填空题11.计算:01cos60()2+o =. 12.正八边形的一个内角的度数是 度.13.在Rt ABC △中,90C ∠=︒,5tan 12A =,则cos A 的值是. 14.某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是.15.如图,在Rt ABC △中, 90ACB ∠=︒,点D 为AB 的中点,连接CD ,过点B 作BE CD ⊥于点E ,点F 为AC 上一点,CDF CBA ∠=∠,若1BC =,2AB =,则EF 的长为 .16.若关于x 的不等式组341227x x a x +⎧-≥⎪⎨⎪->⎩无解,且关于y 的分式方程3122y a y y y +=---的解为非负整数,则符合条件的所有整数a 的和为.17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,将矩形ABCD 沿对角线BD 折叠,点C 的对应点为点E ,BE 分别交AD ,AC 于点P ,Q .若4AB =,BE AC ⊥,则PQ 的长为 .18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足2a b c d ++=,那么称这个四位数为“和方数”.例如:四位数2613,因为22613++=,所以2613是“和方数”;四位数2514,因为22514++≠,所以2514不是“和方数”.若354a 是“和方数”,则这个数是;若四位数M 是“和方数”,将“和方数”M的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N ,若M N +能被33整除,则满足条件的M 的最大值是.三、解答题19.化简:(1)()()()2223x y y x x y -+--; (2)2542111--⎛⎫++÷ ⎪--⎝⎭x x x x x x . 20.重庆实验外国语学校举行了“书香文化节”知识竞赛,从中随机抽取男生、女生各20名同学的竞赛成绩(满分50分)进行整理和分析,得分用x 表示.共分成四组: A :4244x <≤;B :4446x <<;C :4648x <≤;D :4850x <≤;下面给出了部分信息:男生在C 组的数据个数为5个,20名女生的竞赛成绩为: 50,50,48,44,46,50,46,49,50,48,45,50,50,50,49,48,50,46,50,50.根据以上信息,解答下列问题:(1)填空:a =,b =,m =;(2)根据以上数据,你认为该校女生与男生的竞赛成绩谁更好?请说明理由;(3)若该校有3000名男生和3200名女生,估计该校竞赛成绩为满分的人数.21.在ABC V 中 ,AB AC =,AD BC ⊥ 于点D ,点 E 为线段AD 上一点,连接BE ,CE .用直尺和圆规,在BC 的下方作CBF ∠,使得B CBF E C =∠∠,交AD 的延长线于点F ,连接CF .小明想要研究两底角顶点B 、,C 底边高线上的点E ,及该点关于底边的对称点F 所形成的四边形BFCE 的形状,请根据他的思路完成以下填空:证明:AB AC =Q ,AD BC ⊥,BD ∴= ,又CBF BCE ∠=∠Q ,BDF CDE =∠∠,BDF CDE ∴V ≌,BF ∴= ,CBF BCE ∠=∠Q ,∴,∴四边形BFCE 是平行四边形.又EF BC ⊥Q ,∴四边形BFCE 是菱形.小明进一步研究发现,任意等腰三角形均有此特征.请你依照题意完成下面命题:在等腰三角形中, .22.中秋节,又称祭月节、月光诞、月夕、秋节、团圆节等,是中国民间传统节日.中秋节这天人们都要吃月饼以示“团圆”.商家购甲,乙两种月饼礼盒,已知每盒乙月饼礼盒进价比甲月饼礼盒进价多40元,用8000元购进甲月饼礼盒和用10000元购进乙月饼礼盒的数量相同.(1)求甲、乙月饼礼盒的进价各为多少元?(2)甲月饼礼盒每盒售价为210元,每天可卖出30盒;乙月饼礼盒每盒售价为260元,每天可卖出15盒.在销售过程中为了增大甲月饼礼盒的销量,商家决定对甲月饼礼盒进行降价销售,在现有售价的基础上,每降价1元,可多售出2盒.为更大程度让利顾客,每盒甲月饼礼盒售价多少元时,商家日盈利可达到3000元?23.如图,在ABC V 中,6AB =,8BC =,点P 为AB 上一点,AP x =,过点P 作PQ BC ∥交AC 于点Q .点P ,Q 的距离为1y ,ABC V 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2) 24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈ 2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25.如图,在平面直角坐标系中,抛物线22y ax bx =+-与x 轴交于点()40A ,和点()10B -,,与y 轴交于点C ,连接AC BC 、.(1)求抛物线的表达式;(2)如图1,点P 是直线AC 下方抛物线上的一动点,过点P 作直线PD AC ∥交x 轴于点D ,过点P 作PE AC ⊥于点E ,求出PE AD +的最大值及此时点P 的坐标;(3)如图2,在(2)的条件下,连接OP 交AC 于点Q ,将原抛物线沿射线CA单位得到新抛物线1y ,在新抛物线1y 上存在一点M ,使OQC MAC BCO ∠-∠=∠,请直接写出所有符合条件的点M 的横坐标.26.如图,在ABC V 中,45BAC ∠=︒,CD AB ⊥于点D ,E 为AD 上一点,连接CE .(1)如图1,若CE 平分ACD ∠,3CD =,求线段AE 的长;(2)如图2,过点E 作FE CE ⊥交CB 的延长线于点F ,连接AF ,G 为AF 的中点,连接GE ,若EF EC =,猜想线段GE ,AE ,AC 之间的数量关系,并证明你的猜想;(3)如图3,过点D 作AC 的垂线交AC 于点H ,点P 是直线DH 上一动点,连接AP ,将AP 绕A 点顺时针旋转60︒得'AP ,连接DP ',CP ',CP '与直线AP 交于点Q ,当AQ 最小时,请直接写出ADP PAHS S '△△的值.。
2020-2021学年重庆市中考数学第一次模拟试题及答案解析
最新重庆市中考数学一模试卷一、选择题:(本大题共12个小题,每小题4分,共48分),在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1.下列实数是无理数的是()A.﹣1 B.0 C.πD.2.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30° B.45° C.60°D.90°3.将点(1,﹣2)向右平移3个单位得到新的点的坐标为()A.(1,﹣5)B.(4,﹣2)C.(1,1)D.(﹣2,2)4.剪纸是中国的民间艺术,剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):下列四副图案中,不能用上述方法剪出的是()A.B.C.D.5.下列计算正确的是()A.(a2)3=a5B.(ab2)2=ab4C.a4÷a=a4D.a2•a2=a46.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8,OC=5,则OD的长为()A.1 B.2 C.2.5 D.37.下列说法正确的是()A.四个数2、3、5、4的中位数为4B.了解重庆初三学生备战中考复习情况,应采用普查C.小明共投篮25次,进了10个球,则小明进球的概率是0.4D.从初三体考成绩中抽取100名学生的体考成绩,这100名考生是总体的一个样本8.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个9.关于x的方式方程=3的解是正数,则m可能是()A.﹣4 B.﹣5 C.﹣6 D.﹣710.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计,两组各自加工零件的数量y(件)与时间x(时)的函数图象如图,以下说法错误的是()A.甲组加工零件数量y与时间x的关系式为y甲=40xB.乙组加工零件总量m=280C.经过2小时恰好装满第1箱D.经过4小时恰好装满第2箱11.如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP的长度为()A.B.C.D.12.如图,抛物线y=2x2+bx+c的顶点在△OAB的边OB、AB上运动(不经过点O,点A),已知A(0,2),B(﹣2,1),则下列说法错误的是()A.0<b≤8 B.0<c≤9 C.1+2c>b D.b2<8c﹣16二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.2016年9月19日,重庆市第五届运动会开幕式将在溶陵区拉开大幕,组委会面向社会公开征集了主题门号、会徽、会歌,吉祥物等元素,共收到有效作品1600余件,数据1600用科学记数法表示为.14.若实数a,b满足+|b+3|=0,则ab= .15.两张形状大小背面完全相同的卡片上分别标有数字﹣4、﹣3、0、2,将卡片洗匀后背面朝上放在桌面上,从中任意抽取两张,则所抽卡片的数字都是方程x2+2x﹣8=0的解的概率是.16.如图,已知等边△ABC的三边分别与⊙O相切于点D、E、F,若AB=2,则图中阴影部分的面积为.(结果保留π)17.如图,某社区一建筑物上,悬挂“创文明小区,建和谐社会”的宣传条幅AB,小明站在位于建筑物正前方的台阶上D点处测得条幅顶端A的仰角为36.5°,朝着条幅的方向走到台阶下的E点处,测得条幅顶端A的仰角为64°,已知台阶DE的坡度为1:2,DC=2米,则条幅AB的长度为米.(结果精确到0.1米,参考数据sin36.5°≈0.6,tan36.5°≈0.75,sin64°≈0.9,tan64°≈2.1)18.如图,正方形ABCD,以AB为腰向外作等腰△ABE,连接DE交AB于点F,∠BAE 的平分线交EF于点G,过D点作AG的垂线交GA的延长线于点H,已知tan∠EDA=,S△AEF=9,则AH的长为.三、解答题:(本大题共2个小题,每小题7分,共14分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上19.计算:|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2.20.2016年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.四、解答题:(本大题共4个小题,每小题10分,共40分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上21.化简:(1)(a﹣2b)(a+2b)﹣(2a﹣b)2(2)(﹣)÷.22.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B 两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.23.富士康科技机关作为全球最大电子产品制造商,在“机器换人”的建设方面取得巨大进展,今年一月份它在大陆某“工业40”厂区的生产线上有A、B两种机器去组装小米5手机外壳(以下简称“外壳)”.每小时一台A种机器人比一台B种机器人多组装50个外壳,每小时10台A种机器人和5台B种机器人共组装3500个外壳.(1)求今年一月份每小时一台A种机器人,一台B种机器人分别能组装多少个外壳;(2)因市场销售火爆,二月份小米手机厂商决定在该厂区追加订单,该厂区随机对A、B 两种机器人进行技术升级,二月底升级工作全面完成,升级后A种机器人每小时组装的外壳数量增加12%,B种机器人每小时组装的外壳数量增加15%,已知三月份投入生产的A 种机器人的台数比B重机器人台数的2倍还多18台,且A、B两种机器人每小时组装的外壳数量之和不低于27160个,那么三月份该厂区最少应安排多少台B种机器人投入生产.24.如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13﹣(﹣1)3,26=33﹣13,所以2、26均为“麻辣数”.【立方差公式a3﹣b3=(a﹣b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)在小组合作学习中,小明提出新问题:“求出在不超过2016的自然数中,所有的‘麻辣数’之和为多少?”小组的成员胡图图略加思索后说:“这个难不倒图图,我们知道奇数可以用2k+1表示…,再结合立方差公式…”,请你顺着胡图图的思路,写出完整的求解过程.五、解答题:(本题共2小题,每小题12分,共24分,解答时每小题必须给出必要的演算过程或推理步骤)25.如图,四边形ABCD为矩形,连接AC,AD=2CD,点E在AD边上.(1)如图1,若∠ECD=30°,CE=4,求△AEC的面积;(2)如图2,延长BA至点F使得AF=2CD,连接FE并延长交CD于点G,过点D作DH ⊥EG于点H,连接AH,求证:FH=AH+DH;(3)如图3,将线段AE绕点A旋转一定的角度α(0°<α<360°)得到线段AE′,连接CE′,点N始终为CE′的中点,连接DN,已知CD=AE=4,直接写出DN的取值范围.26.已知抛物线y=﹣x2++4交x轴于点A、B,交y轴于点C,连接AC、BC.(1)求交点A、B的坐标以及直线BC的解析式;(2)如图1,动点P从点B出发以每秒5个单位的速度向点O运动,过点P作y轴的平行线交线段BC于点M,交抛物线于点N,过点N作NC⊥BC交BC于点K,当△MNK与△MPB的面积比为1:2时,求动点P的运动时间t的值;(3)如图2,动点P 从点B出发以每秒5个单位的速度向点A运动,同时另一个动点Q 从点A出发沿AC以相同速度向终点C运动,且P、Q同时停止,分别以PQ、BP为边在x轴上方作正方形PQEF和正方形BPGH(正方形顶点按顺时针顺序),当正方形PQEF和正方形BPGH重叠部分是一个轴对称图形时,请求出此时轴对称图形的面积.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分),在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1.下列实数是无理数的是()A.﹣1 B.0 C.πD.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是整数,是有理数,故A选项错误;B、是整数,是有理数,故B选项错误;C、是无理数,故C选项正确;D、是分数,是有理数,故D选项错误.故选:C.2.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30° B.45° C.60°D.90°【考点】平行线的性质.【分析】由直角三角板的特点可得:∠C=30°,然后根据两直线平行内错角相等,即可求∠CAE的度数.【解答】解:∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.3.将点(1,﹣2)向右平移3个单位得到新的点的坐标为()A.(1,﹣5)B.(4,﹣2)C.(1,1)D.(﹣2,2)【考点】坐标与图形变化-平移.【分析】把点(1,﹣2)的横坐标加3,纵坐标不变即可得到对应点的坐标.【解答】解:将点P(1,﹣2)向右平移3个单位,则点横坐标加3,纵坐标不变,即新的坐标为(4,﹣2).故选B.4.剪纸是中国的民间艺术,剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):下列四副图案中,不能用上述方法剪出的是()A.B.C.D.【考点】剪纸问题.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【解答】解:由题意知,剪出的图形一定是轴对称图形,四个选项中,只有C不是轴对称图形,所以C不能用上述方法剪出.故选C.5.下列计算正确的是()A.(a2)3=a5B.(ab2)2=ab4C.a4÷a=a4D.a2•a2=a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用幂的乘方运算法则、积的乘方运算法则、同底数幂的乘除运算法则计算得出答案.【解答】解:A、(a2)3=a6,故此选项错误;B、(ab2)2=a2b4,故此选项错误;C、a4÷a=a3,故此选项错误;D、a2•a2=a4,正确.故选:D.6.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8,OC=5,则OD的长为()A.1 B.2 C.2.5 D.3【考点】垂径定理.【分析】首先连接OB,由垂径定理即可求得BD的长,然后由勾股定理求得OD的长.【解答】解:连接OB,∵半径OC⊥弦AB,∴BD=AB=×8=4,在Rt△BOD中,OD===3.故选D.7.下列说法正确的是()A.四个数2、3、5、4的中位数为4B.了解重庆初三学生备战中考复习情况,应采用普查C.小明共投篮25次,进了10个球,则小明进球的概率是0.4D.从初三体考成绩中抽取100名学生的体考成绩,这100名考生是总体的一个样本【考点】概率公式;全面调查与抽样调查;总体、个体、样本、样本容量;中位数.【分析】由中位数的定义得出选项A抽取;由调查的方式得出选项B错误;由概率公式得出选项C正确;与样本的定义得出选项D抽取;即可得出结论.【解答】解:A、四个数2、3、5、4的中位数为3.5;故本选项错误;B、了解重庆初三学生备战中考复习情况,应采用抽查;故本选项错误;C、小明共投篮25次,进了10个球,则小明进球的概率是0.4;故本选项正确;D、从初三体考成绩中抽取100名学生的体考成绩,这100名考生的体考成绩是总体的一个样本;故本选项错误;故选:C.8.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个【考点】规律型:图形的变化类.【分析】本题是一道找规律的题目,这类题型在中考中经常出现.【解答】根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个正三角形.此后,每层都比前一层多12个.依此递推,第8层中含有正三角形个数是6+12×7=90个.故选:B.9.关于x的方式方程=3的解是正数,则m可能是()A.﹣4 B.﹣5 C.﹣6 D.﹣7【考点】分式方程的解.【分析】先求出x的值,再根据解为正数列出关于m的不等式,求得m的取值范围,再得出可能的m的值.【解答】解:去分母得,2x+m=3x﹣6,移项合并得,x=m+6,∵x>0,∴m+6>0,∴m>﹣6,∵x﹣2≠0,∴x≠2,∴m+6≠2,∴m≠﹣4,∴m的取值范围为m>﹣6且m≠﹣4,故选B.10.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计,两组各自加工零件的数量y(件)与时间x(时)的函数图象如图,以下说法错误的是()A.甲组加工零件数量y与时间x的关系式为y甲=40xB.乙组加工零件总量m=280C.经过2小时恰好装满第1箱D.经过4小时恰好装满第2箱【考点】一次函数的应用.【分析】先根据(6,240),利用待定系数法求一次函数解析式进行判断;再利用乙组原来的工作效率得出更换设备后的工作效率,求得乙组加工零件的总量进行判断;最后利用函数解析式列出方程,求得当0≤x≤2时,当2<x≤3时,以及当3<x≤6时x的值,判断是否符合题意即可.【解答】解:∵图象经过原点及(6,240),设解析式为y=kx,则6k=240,解得k=40,∴甲组加工零件数量y与时间x的关系式为y甲=40x(0<x≤6),故(A)正确;∵乙2小时加工100件,∴乙的加工速度是每小时50件,∵乙组更换设备后,乙组的工作效率是原来的1.2倍,∴乙组的工作效率是每小时加工:50×1.2=60件,∴m=100+60×(6﹣3)=280,故(B)正确;乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为:y=100+60(x﹣3)=60x﹣80,当0≤x≤2时,40x+50x=200,解得:x=(不合题意);当2<x≤3时,100+40x=200,解得:x=(符合题意);∴经过2小时恰好装满第1箱,故(C)正确;∵当3<x≤6时,40x+(60x﹣80)=200×2,解得x=4.8(符合题意);∴经过4.8小时恰好装满第2箱,故(D)错误.故选(D)11.如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP的长度为()A.B.C.D.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】由由折叠的性质可得:PB′=PB,∠PB′C=∠B,又由在平行四边形ABCD中,PB′⊥AD,求得△B′CD是直角三角形,继而求得DB′的长,然后设BP=x,在Rt△AB′P中,利用勾股定理即可求得答案.【解答】解:由折叠的性质可得:PB′=PB,∠PB′C=∠B,∵四边形ABCD是平行四边形,PB′⊥AD,∴∠B=∠D,∠PB′A=90°,∴∠D+∠CB′D=90°,∴∠DCB′=90°,∵CD=3,BC=4,∴AD=B′C=BC=4,∴DB′==5,∴AB′=DB′﹣AD=1,设BP=x,则PB′=x,PA=3﹣x,在Rt△AB′P中,PA2=AB′2+PB′2,∴x2+12=(3﹣x)2,解得:x=,∴BP=,故选A.12.如图,抛物线y=2x2+bx+c的顶点在△OAB的边OB、AB上运动(不经过点O,点A),已知A(0,2),B(﹣2,1),则下列说法错误的是()A.0<b≤8 B.0<c≤9 C.1+2c>b D.b2<8c﹣16【考点】二次函数图象与系数的关系.【分析】根据对称轴为x=﹣判断A,根据x=﹣2,y=1判断B,根据x=﹣时,y>0判断C,根据抛物线与x轴无交点判断D.【解答】解:∵﹣2≤﹣<0,∴0<b≤8,A正确;∵x=﹣2,y=1,∴8﹣2b+c=1,∴2b=7+c,∵0<2b≤16,∴0<7+c≤16,又c>0,∴0<c≤9,B正确;当x=﹣时,y>0,∴﹣b+c>0,∴1+2c>b,C正确;∵抛物线与x轴无交点,∴b2﹣4ac<0,∴b2﹣8c<0,D错误,故选:D.二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.2016年9月19日,重庆市第五届运动会开幕式将在溶陵区拉开大幕,组委会面向社会公开征集了主题门号、会徽、会歌,吉祥物等元素,共收到有效作品1600余件,数据1600用科学记数法表示为 1.6×103.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据1600用科学记数法表示为1.6×103,故答案为:1.6×103.14.若实数a,b满足+|b+3|=0,则ab= ﹣6 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出算式求出a、b的值,计算即可.【解答】解:由题意的,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则ab=﹣6,故答案为:﹣6.15.两张形状大小背面完全相同的卡片上分别标有数字﹣4、﹣3、0、2,将卡片洗匀后背面朝上放在桌面上,从中任意抽取两张,则所抽卡片的数字都是方程x2+2x﹣8=0的解的概率是.【考点】列表法与树状图法.【分析】首先解方程,进而用树状图表示出所有的可能,进而利用概率公式求出答案.【解答】解:x2+2x﹣8=0(x﹣2)(x+4)=0,解得:x1=2,x2=﹣4,如图所示:,由树状图可得一共有12种可能,符合题意的有2种情况,故所抽卡片的数字都是方程x2+2x﹣8=0的解的概率是:=.故答案为:.16.如图,已知等边△ABC的三边分别与⊙O相切于点D、E、F,若AB=2,则图中阴影部分的面积为π.(结果保留π)【考点】扇形面积的计算;等边三角形的性质;切线的性质.【分析】根据等边△ABC的三边分别与⊙O相切于点D、E、F,于是得到BD=BE,CE=CF,∠B=∠C=60°,BC=AB=2,推出△BDE和△CEF是等边三角形,根据等边三角形的性质得到∠BED=∠CEF=60°,BE=CE=,然后由扇形的面积公式即可得到结论.【解答】解:∵等边△ABC的三边分别与⊙O相切于点D、E、F,∴BD=BE,CE=CF,∠B=∠C=60°,BC=AB=2,∴△BDE和△CEF是等边三角形,∴∠BED=∠CEF=60°,BE=CE=,∴∠DEF=60°,DE=BE=,∴阴影部分的面积==π,故答案为:π.17.如图,某社区一建筑物上,悬挂“创文明小区,建和谐社会”的宣传条幅AB,小明站在位于建筑物正前方的台阶上D点处测得条幅顶端A的仰角为36.5°,朝着条幅的方向走到台阶下的E点处,测得条幅顶端A的仰角为64°,已知台阶DE的坡度为1:2,DC=2米,则条幅AB的长度为7.8 米.(结果精确到0.1米,参考数据sin36.5°≈0.6,tan36.5°≈0.75,sin64°≈0.9,tan64°≈2.1)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】要求AB的长,只要构造出直角三角形,利用锐角三角函数进行求解即可,作DF ⊥AB于点F,然后根据题目中的数量关系,可以表示出关于AB的等式,从而可以得到AB 的值.【解答】解:作DF⊥AB于点F,如右图所示,由题意可得,DF=CB,∵台阶DE的坡度为1:2,DC=2米,∴CE=2CD=4米,∵∠AFD=90°,∠ADF=36.5°,DC=2米,tan∠ADF=,∴tan36.5°=,即DF=,又∵∠ABE=90°,∠AEB=64°,CE=4米,CB=DF,tan∠AEB=,∴BE=,即DF﹣4=,∴﹣4=,解得,AB≈7.8米,故答案为:7.8.18.如图,正方形ABCD,以AB为腰向外作等腰△ABE,连接DE交AB于点F,∠BAE 的平分线交EF于点G,过D点作AG的垂线交GA的延长线于点H,已知tan∠EDA=,S△AEF=9,则AH的长为.【考点】正方形的性质;等腰三角形的性质;解直角三角形.【分析】由于△AEB是等腰三角形,AG是△AEB的平分线,所以延长AG交EB于点I,连接BG,由题意可证明∠HGD=∠HDG=45°,∠BGF=90°,所以∠GBF=∠ADF,利用设AH=x后,用锐角三角形函数可表示出GF、DF的长度,利用△AEF的面积可求出△AHD 的面积,进而列出方程即可求出AH的长度.【解答】解:延长AG交EB于点I,连接BG,∵tan∠EDA==,AD=AB,∴,∴,∴,∴S△EBF=3,∴S△AEB=S△AEF+S△EBF=12,∵AB=AE,AG平分∠EAB,∴S△AIB=S△AEB=6,∵DH⊥GH,AI⊥EB∴∠IAB=∠HDA,在△AIB与△DHA中,,∴△AIB≌△HDA(AAS),∴AH=IB,∵AB=AD=AE,∴∠AED=∠EDA,∵∠EAI=∠BAI=∠HDA,∴∠AGD=∠EAI+∠AED=∠HDA+∠ADE,即∠AGD=∠HDG=45°,∴∠EGI=∠GEI=45°,∴EI=IG∴GD=HD,设AH=x,∴IB=EI=IG=x,BG=x∵∠BGF=90°,∴∠GBF=∠EDA,∴tan∠GBF=,∴=,∴GF=x,由勾股定理可得:BF=x,∴AB=4BF=5x,∴AD=AB=5x,∴cos∠EDA==,∴DF=AD=x,∴DG=DF+GF=x,∵sin∠HGF==,∴HD=7x,S△AIB=S△ADH=6,∴AH•HD=6,∴×7x2=6,∴x=,即AH=故答案为三、解答题:(本大题共2个小题,每小题7分,共14分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上19.计算:|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2的值是多少即可.【解答】解:|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2=3﹣1×1﹣3+4=3﹣1﹣3+4=320.2016年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】根据B类的人数和所占的百分比求出总人数,再根据A类的人数求出A类所占的百分比,再用1减去A、B、D所占的百分比,求出C类所占的百分比,从而得出C、D类的男生人数,即可补全统计图,再用该校的总人数乘以非常喜欢所占的百分比,求出非常喜欢”马拉松的人数.【解答】解:根据题意得:=40(人),A类型所占的百分比是:×100%=45%,C类型所占的百分比是:1﹣10%﹣15%﹣45%=30%,C类型的男生人数是:40×30%﹣8=4(人),D类型的男生人数是:40×10%﹣3=1(人),补图如下:600×45%=270(人),答:该校600名学生中“非常喜欢”马拉松的人数为270.四、解答题:(本大题共4个小题,每小题10分,共40分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上21.化简:(1)(a﹣2b)(a+2b)﹣(2a﹣b)2(2)(﹣)÷.【考点】分式的混合运算;完全平方公式;平方差公式.【分析】(1)根据平方差公式和完全平方公式可以解答本题;(2)先化简括号内的式子,然后根据分式的除法可以解答本题.【解答】解:(1)(a﹣2b)(a+2b)﹣(2a﹣b)2=a2﹣4b2﹣4a2+4ab﹣b2=﹣3a2﹣5b2+4ab;(2)(﹣)÷====.22.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B 两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(2)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.【解答】解:(1)设点A坐标为(﹣2,m),点B坐标为(n,﹣2)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点∴将A(﹣2,m)B(n,﹣2)代入反比例函数y2=﹣可得,m=4,n=4∴将A(﹣2,4)、B(4,﹣2)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+2;(2)在一次函数y1=﹣x+2中,当x=0时,y=2,即N(0,2);当y=0时,x=2,即M(2,0)∴S△AOB=S△AON+S△MON+S△MOB=×2×2+×2×2+×2×2=2+2+2=6;(3)根据图象可得,当y1>y2时,x的取值范围为:x<﹣2或0<x<423.富士康科技机关作为全球最大电子产品制造商,在“机器换人”的建设方面取得巨大进展,今年一月份它在大陆某“工业40”厂区的生产线上有A、B两种机器去组装小米5手机外壳(以下简称“外壳)”.每小时一台A种机器人比一台B种机器人多组装50个外壳,每小时10台A种机器人和5台B种机器人共组装3500个外壳.(1)求今年一月份每小时一台A种机器人,一台B种机器人分别能组装多少个外壳;(2)因市场销售火爆,二月份小米手机厂商决定在该厂区追加订单,该厂区随机对A、B 两种机器人进行技术升级,二月底升级工作全面完成,升级后A种机器人每小时组装的外壳数量增加12%,B种机器人每小时组装的外壳数量增加15%,已知三月份投入生产的A种机器人的台数比B重机器人台数的2倍还多18台,且A、B两种机器人每小时组装的外壳数量之和不低于27160个,那么三月份该厂区最少应安排多少台B种机器人投入生产.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以列出相应的一元一次不等式,从而可以解答本题.【解答】解:(1)设今年一月份每小时一台A种机器人能组装x个外壳,一台B种机器人能组装y个外壳,,解得,,即今年一月份每小时一台A种机器人能组装250个外壳,一台B种机器人能组装200个外壳;(2)设三月份该厂区最少应安排x台B种机器人投入生产,250(1+12%)(2x+18)+200(1+15%)x≥27160,解得,x≥26.2,即三月份该厂区最少应安排27台B种机器人投入生产.24.如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13﹣(﹣1)3,26=33﹣13,所以2、26均为“麻辣数”.【立方差公式a3﹣b3=(a﹣b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)在小组合作学习中,小明提出新问题:“求出在不超过2016的自然数中,所有的‘麻辣数’之和为多少?”小组的成员胡图图略加思索后说:“这个难不倒图图,我们知道奇数可以用2k+1表示…,再结合立方差公式…”,请你顺着胡图图的思路,写出完整的求解过程.【考点】平方差公式.【分析】(1)根据相邻两个奇数的立方差,可得答案;(2)根据相邻两个奇数的立方差,麻辣数的定义,可得答案.【解答】解:设k为整数,则2k+1、2k﹣1为两个连续奇数,设M为“麻辣数”,则M=(2k+1)3﹣(2k﹣1)3=24k2+2;(1)98=53﹣33,故98是麻辣数;M=24k2+2是偶数,故169不是麻辣数;(2)令M≤2016,则24k2+2≤2016,解得k2≤<84,故k2=0,1,4,9,16,25,36,49,64,81,故M的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860.五、解答题:(本题共2小题,每小题12分,共24分,解答时每小题必须给出必要的演算过程或推理步骤)25.如图,四边形ABCD为矩形,连接AC,AD=2CD,点E在AD边上.(1)如图1,若∠ECD=30°,CE=4,求△AEC的面积;(2)如图2,延长BA至点F使得AF=2CD,连接FE并延长交CD于点G,过点D作DH ⊥EG于点H,连接AH,求证:FH=AH+DH;(3)如图3,将线段AE绕点A旋转一定的角度α(0°<α<360°)得到线段AE′,连接CE′,点N始终为CE′的中点,连接DN,已知CD=AE=4,直接写出DN的取值范围.【考点】四边形综合题.【分析】(1)根据30°的直角三角形求CD和ED,再利用面积公式求△AEC的面积;(2)作辅助线,构建全等三角形,证明△AFM≌△ADH,得AM=AH,FM=DH,则△MAH 是等腰直角三角形,有MH=AH,根据线段的和代入得结论;(3)根据将线段AE绕点A旋转一定的角度α(0°<α<30°)得到线段AE′,先计算当AE旋转时DN的最小值和最大值,当α=0°时,DN最小;当α=180°时,DN最大,分别计算,写出结论.【解答】解:(1)在Rt△EDC中,∵∠EDC=30°,∴ED=EC=×4=2,cos30°=,∴DC=EC•cos30°=4×=2,∴AE=2DC﹣ED=4﹣2,∴S△AEC=×AE×DC=(4﹣2)×2=12﹣2;(2)过A作AM⊥AH,交FG于M,∴∠MAH=∠MAD+∠DAH=90°,又∵∠FAD=∠MAD+∠FAM=90°,∴∠FAM=∠DAH,∵AF∥CD,∴∠F=∠FGD∵DH⊥EG,∴∠DHE=∠HDG+∠FGD=90°,。
重庆市巴蜀中学2020-2021学年九年级上学期第一次月考数学试卷(含答案解析)
重庆市巴蜀中学2020-2021学年九年级上学期第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.有理数15-的倒数为( )A .5B .15C .15-D .5-2.下列图形中,是轴对称图形的是( )A .B .C .D .3.计算23(2)a b -的结果是( ) A .636a b -B .638a b -C .638a bD .538a b -4.下列调查中,最适合采用全面调查(普查)方式的是( ) A .对重庆市初中学生每天自主学习时间的调查 B .对渝北区市民观看电影《芳华》情况的调查C .对重庆八中男生311寝室本学期期末体育考试成绩的调查D .对江北区市民了解江北区创“全国文明城区”情况的调查5(的值在( ) A .2-和1-之间B .1-和0之间C .0和1之间D .1和2之间6.下列式子正确的是( ) A .1tan 600tan30︒-=︒B .cos60tan451︒+︒=C .cos60︒=D .223sin 30cos 304︒+︒=7.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .8.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度为1:2.4i =,坡长为26米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (,,,,A B C D E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24︒,则建筑物AB 的高度约为( )米(结果精确到1米)(参考数据:sin240.41,cos240.91,tan240.45︒≈︒≈︒=)A .27B .28C .29D .309.已知二次函数2y ax bx c =++图象如图所示,它与x 轴的两个交点分别为(1,0),(3,0)-.对于下列命题:①0a >;②0b >;③0c <;④20a b -=;⑤420a b c -+>.其中正确的有( )A .3个B .2个C .4个D .1个10.如图,ABC 中,9,32AB AC BC ===,点D 是AC 边上一点,连接BD ,将ABD△沿BD 翻折得到,EBD BE 交AC 于点F ,且//DE BC ,则BDF 的面积为( )A B C D .11.从﹣3、﹣1、0、12、2、3这六个数中,随机抽取一个数记为a ,若数a 使关于x的分式方程11ax x --﹣1=21x -有整数解,且使二次函数y =x 2﹣(a ﹣1)x +3,当x >12时,y 随x 的增大而增大,那么这六个数中满足所有条件的a 的值之和为( ) A .﹣12B .12C .32D .5212.如图平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接,//AE AE y 轴,反比例函数(0)k y x x=>的图象经过点A 及AD 边上一点,4F AF FD =,若,2DA DE OB ==,则k 的值为( )A .11B .12C .15D .16二、填空题13.2016年3月30日国务院通过了《成渝城市群发展规划》,成渝城市群包括重庆全域和四川成都、德阳、绵阳、乐山、眉山、资阳、内江、宜宾、泸州、自贡等11个城市及所辖73个县(市)、1636个建制镇,幅员面积183000平方公里,将183000用科学计数法表为_________. 14.反比例函数(0)ky k x=≠图像上有两点:(2,4)-和(1,)a ,则a 的值为_____ 15.若二次函数顶点坐标为(2,3),且过点(1,5),则二次函数解析式为_______16.如图,ABC 中,3sin tan ,4B C AC ==BC =______.17.在抛物线22(1)y x k =--+图象上有三点()())123,3,,y y y ,则123、、y y y 的大小关系是_______ 18.如图,反比例函数6y x=在第一象限的图象上有两点,,A B 它们的横坐标分别为1,3,则OAB ∆的面积为___.19.甲、乙两地相距360km ,一辆货车从甲地以60km/h 的速度匀速前往乙地,到达乙地后停止在货车出发的同时,另一辆轿车从乙地沿同一公路匀速前往甲地,到达甲地后停止.两车之间的路程(km)y 与货车出发时间(h)x 之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是(0,360),点D 的坐标是(2,0),则点E 的坐标是_______.20.中秋鲜果列晶盘,饼样圆分桂魄寒,聚食合家门不出,要同明月作团乐.沁园的甲、乙两个手工作坊为某公司赶制一批风味独特的月饼,沁园生产部经理调研,把甲、乙两个员工人数不相等的作坊一天生产的手工月饼数量进行对比发现,甲作坊平均每人生产的月饼数量比乙作坊平均每人生产的月饼数量多0.5个,乙作坊的负责人老李说:“我们乙作坊是新手小王影响了平均数,他一天才制作了45个月饼,要是不算小王,我们的平均数量会比甲作坊还多一个.”甲作坊的生产负责人老张说:“我们甲作坊要是不算动作较慢的秦大爷一天生产的20个,我们甲作坊的平均数量也会比乙作坊多15个.”生产经理听了他们的对话,语重心长地说:“时间紧,任务重,让我们一起帮助新手小王和秦大爷,如果他们2人一天生产的数量都提高到正整数x 个,那么甲、乙两个作坊一天平均每人生产的月饼数量相同,大家都高兴!”,甲、乙两个作坊的人数之和超过55人,不超过60人,则正整数x =__________三、解答题 21.计算:(1)22(2)()x x y x y y +--+; (2)22944333x x x x x x --+⎛⎫-+÷⎪+--⎝⎭22.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .80≤x <85,B .85≤x <90,C .90≤x <95,D .95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82;八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94. 七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?23.如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD于点E ,F .(1)若∠BCF =60°,求∠ABC 的度数; (2)求证:BE =DF .24.在函数的学习中,我们经历了“确定函数表法式-画函数图象-利用函数图象研究函数性质-利用图象解决问题”的学习过程.在画函数图象时,我们常常通过描点的方法画函数图象.已知函数,2(50)21(2)4(0)4kx x y x x ⎧-≤<⎪⎪+=⎨⎪--+≥⎪⎩探究函数的表达式、图象和性质、解决问题的过程如下:(1)下表是y 与x 的几组值,则函数表达式中的k =_______,表格中的a =______(2)在平面直角坐标系中,补全描出表格中数据对应的各点,补全函数图象: (3)观察函数2(50)21(2)4(0)4kx x y x x ⎧-≤<⎪⎪+=⎨⎪--+≥⎪⎩的图象,请描述该函数(当0x ≥时)的一条性质:____________.(4)若直线y m =(m 为常数)与该函数图象有且仅有两个交点,则m 的取值范围为_________.25.阅读理解:对于各位数字都不为0的两位数m 和三位数n ,将m 中的任意一个数字作为一个新的两位数的十位数字,将n 中的任意一个数字作为该新的两位数的个位数字,按照这种方式产生的所有新的两位数的和记为(,)F m n .例如:(12,345)131415232425114F =+++++=. (1)填空:(13,579)F =__________(2)求证:当n 能被3整除时,(,)F m n 一定能被6整除:26.目前我国的高铁技术世界领先,营业里程稳居世界第一.现新开“重庆-昆明”和“重庆-香港”的两条高铁线,试乘阶段推出车票共800张,并且“重庆-香港”车票数量不少于“重庆-昆明”车票数量的3倍. (1)求至少推出多少张“重庆-香港”车票;(2)试乘阶段两种车票的价格均为每张450元.为了促进车票的销量,现决定两种车票的价格均减少%a ,结果实际“重庆-香港”车票数量在(1)问条件下的最少车票数量上增加3%2a ,“重庆-昆明”车票数量增加了(40)%a +,这样这两条高铁车票的总金额为396000元,求a 的值.27.如图,在平面直角坐标系中,抛物线22y x x c =--+(c 为常数)与一次函数y x b =-+(b 为常数)交于,A B 两点,其中A 点坐标为(3,0)-. (1)求B 点坐标;(2)点P 为直线AB 上方抛物线上一点连接,PA PB ,当1258PABS=时,求点P 的坐标;(3)将抛物线22y x x c =--+(c 为常数)沿射线AB 平移线1y 与原抛物线22y x x c =--+相交于点E ,点F 为抛物线1y 的顶点,点M 为y 轴上一点,在平面直角坐标系中是否存在点N ,使得以点,,,E F M N 为顶点的四边形是菱形,若存在,请直接写出点N 的坐标:若不存在,请说明理由.28.如图1,在平行四边形ABCD 中,,AB AC AB AC ⊥=,点E 在线段AD 上,点F 在线段AC 上,连接EF ,且//EF CD . (1)连接BE,若3,AE AB ==BE 的长.(2)将AFE △绕A 点沿顺时针方向旋转到如图2所示的位置,连接,BF CF CF 、交AE 边于点P ,延长BF 交AE 于M ,且M 为AE 的中点,求证:2AE BF AP +=(3)如图3,将AEF 绕A 点沿逆时针方向旋转,连接,CF N 为CF 的中点,连接,BN AN ,若AB AF =BN 的长最大时,请直接写出ACN BCNS S的值.参考答案1.D 【分析】根据倒数的定义,找出15-的倒数为−5,此题得解.【详解】解:根据倒数的定义可知:15-的倒数为−5.故选:D . 【点睛】本题考查了倒数,熟练掌握倒数的定义是解题的关键. 2.B 【分析】根据轴对称图形的定义判断即可. 【详解】解:A 、不是轴对称图形,不符合题意; B 、是轴对称图形,符合题意; C 、不是轴对称图形,不符合题意; D 、不是轴对称图形,不符合题意, 故选:B . 【点睛】本题考查轴对称图形的定义,理解轴对称图形的定义,找到对称轴是解答的关键. 3.B 【详解】解:23(2)a b - =638a b -. 故选B . 4.C 【详解】根据全面调查事件的特征,范围小,易操作. 故选C. 5.D【分析】先根据二次根式的运算法则计算出最简结果,再利用实数比较大小的方法即可得答案. 【详解】(6-, ∵1.41.5, ∴4.2< 4.5, ∴-4.5<--4.2, ∴6-4.5<6-<6-4.2, ∴1.5<6- 1.8(的值在1和2之间, 故选:D . 【点睛】本题考查了二次根式的运算及无理数的估算,熟练掌握二次根式的运算法则是解题关键. 6.A 【分析】根据特殊角的三角函数值依次进行计算判断即可. 【详解】 解:A.1tan 600tan 30︒-==︒,所以A 正确; B .13cos60tan 45122︒+︒=+=,所以B 错误; C .1cos602︒=,所以C 错误; D .22sin 30cos 301︒+︒=,所以D 错误; 故选A . 【点睛】本题考查了特殊三角函数求值问题,掌握相关知识是解题的关键. 7.D 【详解】试题分析:A .由直线与y 轴的交点在y 轴的负半轴上可知,2n <0,错误;B .由抛物线与y 轴的交点在y 轴的正半轴上可知,m >0,由直线可知,﹣m >0,错误;C .由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m <0,错误;D .由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m >0,正确, 故选D .考点:1.二次函数的图象;2.一次函数的图象. 8.B 【分析】延长AB 交ED 的延长线于F ,作CG EF ⊥于G ,首先解直角三角形Rt CDG ∆,求出CG ,DG ,再根据锐角三角函数构建方程即可解决问题. 【详解】解:如图,延长AB 交ED 的延长线于F ,作CG EF ⊥于G ,由题意得:20FG BC ==米,40DE =米,BF CG =, 在Rt CDG △中,1:2.4i =,26CD =米,10BF CG ∴==米,24GD =米,在Rt AFE 中,90AFE ∠=︒,84FE FG GD DE =++=米,24E ∠=︒,tan24840.4537.8AF FE ∴=︒≈⨯=(米), 37.81028AB AF BF ∴=-=-≈(米);即建筑物AB 的高度为28米; 故选:B . 【点睛】本题考查的是解直角三角形的应用-仰角俯角、坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 9.A利用抛物线开口方向可对①进行判断;根据抛物线的对称性得到12bx a=-=,则20b a =-<,于是可对②④进行判断;根据抛物线与y 轴的交点位置可对③进行判断;利用2x =-,0y >可对⑤进行判断. 【详解】解:抛物线开口向上,0a ∴>,所以①正确;抛物线与x 轴的两个交点分别为(1,0)-,(3,0),∴抛物线的对称轴为直线1x =,即12ba-=, 20b a ∴=-<,所以②错误;抛物线与y 轴的交点坐标在x 轴下方,0c ∴<,所以③正确;2b a =-,20a b ∴+=,所以④错误;2x =-时,0y >,420a b c ∴-+>,所以⑤正确.故选:A . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,)c .抛物线与x 轴交点个数由判别式确定:△240b ac =->时,抛物线与x 轴有2个交点;△240b ac =-=时,抛物线与x 轴有1个交点;△240b ac =-<时,抛物线与x 轴没有交点. 10.B 【分析】证明BCF ACB ∆∆∽,得出BC CFAC BC=,求出2CF =,证明DEF CBF ∆∆∽,设DF x =,则92232xx --=,解得1x =,过点B 作BH AC ⊥于点H ,1FH CH ==,由三角形面积公式可得出答案.解:将ABD ∆沿BD 翻折得到EBD ∆,AD DE ∴=,A E ∠=∠,AB BE =,//DE BC ,E CBF ∴∠=∠,A CBF ∴∠=∠,BCF ACB ∠=∠, BCF ACB ∴∆∆∽,∴BC CFAC BC=, 22BC CF AC∴==,//DE BC ,DEF CBF ∴∆∆∽,∴DE DF EFBC CF BF==, 设DF x =,则92232xx --=, 解得1x =,1DF ∴=,32AD DE ==,∴12EF BF =, 3BF ∴=,BF BC ∴=,过点B 作BH AC ⊥于点H ,1FH CH ∴==,BH ∴ 11122BDF S DF BH ∆∴=⨯=⨯⨯= 故选:B . 【点睛】本题考查了折叠的性质,相似三角形的判定与性质,等腰三角形的判定与性质,熟练掌握折叠的性质是解题的关键. 11.D 【分析】 求解分式方程12111ax x x--=--,利用使分式有意义和使分式有整数解的条件来判断符合的a 的值,再将这些数代入二次函数,根据二次函数的性质即可最后确定符合的a 的值,最后相加即可. 【详解】 解分式方程12111ax x x--=--,得:21x a =-,且1x ≠.∴1a ≠-. ∴-3、-1、0、12、2、3这六个数中,使x 为整数的a 为:0、12、2、3;将上述满足条件的a (0、12、2、3)逐项代入二次函数表达式,根据二次函数的性质可知满足条件的a 为:0、12、2, ∴其和为:52.故选:D . 【点睛】本题考查二次函数的性质,解分式方程和使分式方程有意义的条件,掌握分式方程的解法和二次函数的性质是解答本题的关键. 12.C 【分析】根据题意得到ADE ∆和ABE ∆是等腰直角三角形,设AE y =,则1122DM AM EM AE y ====,即可得到(2,)A y y -,进而通过三角形相似对得出F 点的坐标为7(25y -,3)5y ,即可得到73(2)(2)55k y y y y =-=-,解方程即可求得k 的值.【详解】解:作DM AE ⊥于M ,FN AE ⊥于N , 四边形ABCD 是矩形,AD BC ∴=,90ADE BCD ∠=∠=︒, DA DE =,ADE ∴∆是等腰直角三角形,45DAE AED ∴∠=∠=︒,M 是AE 的中点,12DM AM EM AE ∴===,45BAE ∠=︒, //AE y 轴,90AEB ∴∠=︒,ABE ∴∆是等腰直角三角形,BE AE ∴=,设AE y =,则1122DM AM EM AE y ====, 2OB =,2OE y ∴=-, (2,)A y y ∴-,//FN DM ,ANF AMD ∴∆∆∽,∴AN NF AFAM DM AD==, 4AF FD =,∴411522AN FN y y ==, 25AN NF y ∴==, 2355EN y y y ∴=-=, 7(25F y ∴-,3)5y ,反比例函数(0)ky k x=>的图象经过点A 、F , 73(2)(2)55k y y y y ∴=-=-,解得5y =或0y =(舍去),(2)15k y y ∴=-=,故选:C .【点睛】本题考查了矩形的性质,等腰直角三角形的性质,三角形相似的判定和性质,反比例函数图象上点的坐标特征,表示出A 、F 的坐标是解题的关键. 13.51.8310⨯ 【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:将183000用科学记数法表示为51.8310⨯, 故答案为:51.8310⨯. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.-8 【分析】利用反比例函数图象上点的坐标特征得到124a ⨯=-⨯,然后解方程即可. 【详解】解:点(2,4)-和(1,)a 都在反比例函数(0)ky k x=≠图象上, 124a ∴⨯=-⨯,解得8a =-.故答案为8-. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(ky k x=为常数,0)k ≠的图象是双曲线,图象上的点(,)x y 的横纵坐标的积是定值k ,即xy k =. 15.22(2)3y x =-+ 【分析】设顶点式2(2)3y a x =-+,然后把(1,5)代入求出a 即可. 【详解】解:设抛物线解析式为2(2)3y a x =-+, 把(1,5)代入得25(12)3a =-+,解得2a =, 所以抛物线解析式为22(2)3y x =-+. 故答案为22(2)3y x =-+. 【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.16.【分析】过A 作AD 垂直于BC ,在直角三角形ACD 中,利用锐角三角函数定义求出AD ,CD 的长,在直角三角形ABD 中,利用锐角三角函数定义求出AB 的长,再利用勾股定理求出BD ,即可解决问题. 【详解】解:过A 作AD BC ⊥,在Rt ACD △中,3tan 4C =,AC =AD ∴=CD =在Rt △ABD中,sin B =sin AD AB B ∴==根据勾股定理得:BDBC BD CD ∴=+=,故答案为【点睛】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键. 17.321y y y >> 【分析】对二次函数22(1)y x k =-+,对称轴1x =,在对称轴两侧时,则A 、B 、C 的横坐标离对称轴越近,则纵坐标越大,由此判断1y 、2y 、3y 的大小. 【详解】解:在二次函数22(1)y x k =--+,对称轴1x =,在图象上的三点(1)y ,(,)23y,3)y ,|1||31|1|>->,则1y 、2y 、3y 的大小关系为:321y y y >>. 故答案为:321y y y >>. 【点睛】本题考查了二次函数图象上点的坐标特征,由点的横坐标到对称轴的距离判断点的纵坐标的大小. 18.8根据题意结合反比例函数图象上点的坐标性质S△AEO=S△ACO=S△OBD=3,得出S四边形AODB的值是解题关键.【详解】解:如图所示:过点A作AE⊥x轴于点E,过点B作BD⊥x轴于点D,∵反比例函数6yx在第一象限的图象上有两点A,B,它们的横坐标分别是1,3,∴x=1时,y=6;x=3时,y=2,故S△AEO=S△OBD=S△ACO=3,S四边形AEDB=12×(2+6)×2=8,故△AOB的面积是:S四边形AEDB + S四边形AECO-S△ACO-S△OBD=8.故答案为:8.【点睛】此题主要考查了反比例函数图象上点的坐标性质,得出四边形AODB的面积是解题关键.19.(3,180)【分析】根据题意和函数图象中的数据,可以计算出快车的速度,从而可以计算出点E的横坐标,然后即可计算出点E的纵坐标,本题得以解决.【详解】解:由题意可得,轿车的速度为:360÷2-60=120(km/h),则点E的横坐标为:360÷120=3,纵坐标为:60×(3-2)+120×(3-2)=180,故点E的坐标为(3,180),故答案为:(3,180).本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 20.66 【分析】设甲作坊m 人,平均每人生产a 个,乙作坊n 人,平均每人生产b 个且m 和n 是正整数,由题意列方程组,分别求值即可. 【详解】解:设甲作坊m 人,平均每人生产a 个,乙作坊n 人,平均每人生产b 个且m 和n 是正整数, 由题意,()()()()0.514512120 1.53255604a b n b a n m a b m m n ⎧-=⎪⋅-⎪=+⎪-⎨⋅-⎪=+⎪-⎪<+⎩, 求解上式(2)和(3)得451nb an n a -=+--(5),20 1.5 1.5ma mb b m -=-+-(6),化简(5)和(6)整理得,1.544a n -=(7), 18.5b m -=(8),将(1)代入上述化简整理的式子(7)和(8)中去 可求得,18.5=19m b a =--(9), 288(10)3a n -=, 将m ,n 的表达式代入不等式(4)中可取得a 的取值范围, 即6265a <, 由于n 是正整数 故65a =, 又0.5a b -=, 可得64.5b =,代入a ,b 的值,联立(9)和(10)解得46m =,14n =,2045ma xnb x -+-+, 又2045m a x n b x m n⋅-+⋅-+=, 代入a ,b ,mn 的值可得,4665201464.5454614x x ⨯-+⨯-+=. 进一步整理可得,322112x =,解得66x =,故答案为:66.【点睛】本题考查了方程组,一元一次不等式组的解法,根据题意列出方程组或不等式组是解题的关键.21.(1)4xy ;(2)2x x - 【详解】分析:(1)根据单项式与多项式的乘法计算()2x x y +,根据完全平方公式计算()2x y -,然后合并同类项;(2)先把括号里通分,并把分子、分母分解因式,再把除法转化为乘法,然后把分子、分母公因式约分化简.详解:(1)()()222x x y x y y +--+222222x xy x xy y y =+-+-+ 4xy =;(2)22944333x x x x x x --+⎛⎫-+÷ ⎪+--⎝⎭ ()()22229933x x x x x ---+=÷+-+ ()()()22332x x x x x ---+=⋅+-2x x =-. 点睛:本题考查了整式和分式的混合运算,熟练掌握整式、分式混合运算的运算顺序及运算法则是解答本题的关键.22.(1)40,94,99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级;(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人【分析】(1)根据中位数和众数的定义可求出b 和c 的值,根据扇形统计图可求出a 的值;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【详解】解:(1)a =(1﹣20%﹣10%﹣310)×100=40, ∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴b =94942+=94; ∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c =99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人, 答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力,以及用样本估计总体;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题. 23.(1)60°;(2)证明见解析.【分析】(1)根据题意可得∠BCD =2∠BCF =120°,利用平行四边形的性质即可解答;(2)根据平行四边形的性质及角平分线即可证明△ABE ≌△CDF ,再利用全等三角形的性质即可证明.【详解】(1)∵CF 平分∠DCB ,∴∠BCD =2∠BCF =120°∵四边形ABCD 是平行四边形,∴∠ABC =180°-∠BCD =180°-120°=60°.(2)∵四边形ABCD 是平行四边形,∴∠BAD =∠DCB ,AB =CD ,AB ∥CD ,∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD ,∠CDF =12∠DCB ,∴∠BAE =∠CDF ,∴△ABE ≌△CDF ,∴BE =DF .【点睛】本题主要考查了平行四边形的性质,解题的关键是熟悉平行四边形的性质以及全等三角形的判定. 24.(1)6,74;(2)见解析;(3)当2x >时,y 随x 的增加而减小;(4)2m ≤-或3m =或4m =【分析】(1)根据表格信息,利用待定系数法解决即可求得k ,把5x =代入21(2)44y x =--+即可求得a .(2)利用描点法画出函数图象即可,结合图形描述函数的性质即可.(3)根据图象即可求得;(4)判断出直线与双曲线有交点的m 的取值范围即可.【详解】解:(1)把1x =-,6y =代入(50)2k y x x =-<+得,612k =-+, 解得6k =,把5x =代入21(2)44y x =--+得,74y =, 74a ∴=, 故答案为:6,74. (2)函数图象如图所示.(3)性质:当2x >时,y 随x 的增加而减小.故答案为:当2x >时,y 随x 的增加而减小.(4)观察图象可知,若直线(y m m =为常数)与该函数图象有且仅有两个交点,则m 的取值范围为2m ≤-或3m =或4m =,故答案为2m ≤-或3m =或4m =.【点睛】本题考查反比例函数与二次函数的性质,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.25.(1)162;(2)见解析【分析】(1)直接利用材料提供的方法计算即可得出结论;(2)先判断出a b c ++是3的倍数,再表示出(F m ,)30()2()n x y a b c =++++,最后判断即可得出结论.【详解】解:(1)根据题意得,(13,579)151719353739162F =+++++=,故答案为:162;(2)证明:设两位数m 为(xy x ,y 是正整数),三位数n 为(abc a ,b ,c 是正整数), n 能被3整除,a b c ∴++是3的倍数,根据题意,(,)F m n101010101010x a x b x c y a y b y c =+++++++++++30302()x y a b c =++++30()2()x y a b c =++++, x ,y 是正整数,30()x y ∴+是6的倍数,a b c ++是3的倍数,2()a b c ∴++是6的倍数,30()2()x y a b c ∴++++是6的倍数,即(,)F m n 一定能被6整除.【点睛】此题主要考查了数的整除问题,理解材料提供的计算方法是解本题的关键.26.(1)600张;(2)20【分析】(1)设推出x 张“重庆-香港”车票,则推出(800)x -张“重庆-昆明”车票,根据推出“重庆-香港”车票数量不少于“重庆-昆明”车票数量的3倍,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论;(2)根据总价=单价⨯数量结合实际这两条高铁车票的总金额为396000元,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设推出x 张“重庆-香港”车票,则推出(800)x -张“重庆-昆明”车票,依题意,得:3(800)x x ≥-,解得:600x ≥.答:至少推出600张“重庆-香港”车票.(2)依题意,得:3450(1%)600(1%)450(1%)(800600)[1(40)%]3960002a a a a ⨯-⨯⨯++⨯-⨯-⨯++=, 整理,得:2200a a -=,解得:120a =,20a =.经检验:20a =不合题意,取120.a =答:a 的值为20.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程. 27.(1)(2,5)-;(2)1(2-,15)4;(3)19(6,)2N -,2(2,7)N --,3(2,3)N --,4(2,3)N ,5(2,5)N - 【分析】(1)根据点A 的坐标,分别求得b 、c 的值,然后利用待定系数法即可得到答案; (2)过P 作//PH y 轴,交AB 于点H ,然后设出点P 的坐标,从而得H 的坐标,代入三角形面积公式即可得到答案;(3)由(1)直线:3AB y x =--得45BAO ∠=︒,然后根据平移性质,得1y 的顶点坐标,然后分类讨论:①当EF 为菱形对角线时,②当EM 为菱形对角线时,③当EN 为菱形对角线时,联立方程,得N 点坐标,最后根据菱形的性质,列出方程,求解即可得到答案.【详解】解:(1)把(3,0)A -代入,得960c -++=, 3c ∴=,223y x x ∴=--+.把(3,0)A -代入一次函数,得30b +=,3b ∴=-.3y x ∴=-+.联立方程:2233y x x y x ⎧=--+⎨=-+⎩, 解得:30x y =-⎧⎨=⎩或25x y =⎧⎨=-⎩.(2,5)B ∴-.(2)割补法表示三角形面积:12⨯铅垂高⨯水平宽,过P 作//PH y 轴,交AB 于点H .设2(,23)P t t t --+,则(,3)H t t --,211125()()(233)(23)228PAB P H B A S y y x x t t t ∆=-⨯-=--+++⨯+=, 即24410t t ++=,12t ∴=-, 1(2P ∴-,15)4. (3)由(1)直线:3AB y x =--.45BAO ∴∠=︒,沿AB平移225y x x ∴=--+向右平移5个,向下平移5个单位,∴平移后表达式为:221(5)2(5)35817y x x x x =----+-=-+-.联立:22123817y x x y x x ⎧=--+⎨=-+-⎩, ∴25x y =⎧⎨=-⎩, (2,5)E ∴-. F 为1y 顶点,则(4,1)F -,设(0,)M m ,(,)N x y ,分类讨论:①当EF 为菱形对角线时,E F M N E F M N x x x x y y y y +=+⎧⎨+=+⎩,24051x m y+=+⎧⎨--=+⎩, 66x y m =⎧⎨=--⎩, (6,6)N m ∴--2222(02)(5)1029EM m m m ∴=-++=++,2222(04)(1)217FM m m m ∴=-++=++,22EM FM ∴=,即221029217m m m m ++=++,32m ∴=-, 19(6,)2N ∴- ②当EM 为菱形对角线时,E MF N EM F N x x x x y y y y +=+⎧⎨+=+⎩,20451x m y +=+⎧⎨-+=-+⎩, ∴24x y m =-⎧⎨=--⎩, (2,4)N m ∴--,2222(22)(45)217EN m m m ∴=--+-+=++,222(42)(15)20EF ∴=-+-+=,221720m m ∴++=,13m ∴=-,21m =,2(2,7)N ∴--,3(2,3)N --,③当EN 为菱形对角线时,E NF M EN F M x x x x y y y y +=+⎧⎨+=+⎩, ∴24051x y m +=+⎧⎨-+=-+⎩, ∴24x y m=⎧⎨=+⎩, (2,4)N m ∴+,2222(02)(5)1029EM m m m ∴=-++=++,222(42)(15)20EF ∴=-+-+=,2102920m m ∴++=,31m ∴=-,49m =-,4(2,3)N ∴,5(2,5)N -,综上可得,N 的坐标为:19(6,)2N -,2(2,7)N --,3(2,3)N --,4(2,3)N ,5(2,5)N -.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、二次函数的性质,三角形的面积,菱形的性质,综合性较强,难度适中.28.(1)(2)见解析;(3)25 【分析】(1)如图1中,过点B 作BH DA ⊥交DA 的延长线于H .解直角三角形求出BH ,HE 即可解决问题.(2)如图2中,作//BT FE 交AE 的延长线于T ,连接CT .想办法证明BF ET =,PA PT =即可解决问题.(3)如图3中,取AC 的中点J ,连接BJ ,JN .AF =,4AB m =,首先说明当B ,J ,N 共线时,BN 的值最大,如图32-中,过点N 作NH AC ⊥于H ,NK BC ⊥于K ,过点J 作JT BC ⊥于T .分别求出ACN ∆,BCN ∆的面积(用m 表示),即可解决问题.【详解】解:(1)如图1中,过点B 作BH DA ⊥交DA 的延长线于H .AB AC =,AB AC ⊥,90BAC ∴∠=︒,45ABC ACB ∴∠=∠=︒,四边形ABCD 是平行四边形,45HAB ABC ∴∠=∠=︒,90H ∠=︒,45ABH BAH ∴∠=∠=︒,HB HA ∴=, 3AB =3HB HA ∴==,336HE HA AE =+=+=,BE ∴(2)如图2中,作//BT FE 交AE 的延长线于T ,连接CT .由(1)可知,AFE ∆是等腰直角三角形, FA FE ∴=,90AFE ∠=︒,AM ME =,BM AE ∴⊥,FM ME AM ==,45MFE MEF ∴∠=∠=︒, //BT FE ,45MFE MBT ∴∠=∠=︒,45MTB MEF ∠=∠=︒, 45MBT MTB ∴∠=∠=︒,BM MT ∴=,45ABC MBT ∠=∠=︒,ABM CBT ∴∠=∠,AB BM BC BT ==, ABM CBT ∴∆∆∽,∴AM CT =,90AMB CTB ∠=∠=︒,CT ∴=, 2AF =,AF CT ∴=,CT BT ∴⊥,AF EF ⊥,//EF CF ,//AF CT ∴,FAP CTP ∴∠=∠,APF TPC ∠=∠,()APF TPC AAS ∴∆≅∆,PA PT ∴=,BM MT =,MF ME =,FB ET ∴=,2AE BF AE ET AT AP ∴+=+==.(3)如图3中,取AC 的中点J ,连接BJ ,JN .:5AB AF =,∴可以假设AF ,4AB m =,2AJ JC m ∴==,BJ =,AJ JC =,=FN CN ,12JN AF ∴==, BN BJ JN +, 552BN m ∴, ∴当B ,J ,N 共线时,BN 的值最大,如图32-中,过点N 作NH AC ⊥于H ,NK BC ⊥于K ,过点J 作JT BC ⊥于T .//AB NH , ∴NH JN AB BJ=,∴4NH m = HN m ∴=,21422ACN S m m m ∆∴=⨯⨯=, //JT NK,JT =, ∴JT BJ NK BN=,,NK ∴,2152BCN S m ∆∴=⨯=, ∴222255ACN BCN S m S m ∆∆==. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质解直角三角形,三角形的面积等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.。
2020-2021重庆巴川中学九年级数学上期末一模试卷(带答案)
2020-2021重庆巴川中学九年级数学上期末一模试卷(带答案)一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x +=D .()11980x x -= 2.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( )A .1x 0=,2x 4=B .1x 2=-,2x 6=C .13x 2=,25x 2= D .1x 4=-,2x 0= 3.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°5.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )A .27B .36C .27或36D .18 6.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .129.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3 B .1、﹣3 C .﹣1、﹣3D .1、3 12.关于y=2(x ﹣3)2+2的图象,下列叙述正确的是( ) A .顶点坐标为(﹣3,2) B .对称轴为直线y=3C .当x≥3时,y 随x 增大而增大D .当x≥3时,y 随x 增大而减小 二、填空题13.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).15.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____.16.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2.17.如图,Rt △ABC 中,∠C =90°,AC =30cm ,BC =40cm ,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm .18.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.19.已知二次函数y =kx 2﹣6x ﹣9的图象与x 轴有两个不同的交点,求k 的取值范围_____.20.已知扇形的面积为12πcm 2,半径为12cm ,则该扇形的圆心角是_______. 三、解答题21.如图,斜坡AB 长10米,按图中的直角坐标系可用35y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB 的最大高度;(3)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树?22.请你依据下面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图(或表格)表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.23.已知关于x的方程x2-2(k-1)x+k2 =0有两个实数根x1.x2.(1)求实数k的取值范围;(2)若(x1+1)(x2+1)=2,试求k的值.24.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了________名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.25.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.A解析:A【解析】【分析】二次函数y=ax2+1的图象经过点(-2,0),得到4a+1=0,求得a=-,代入方程a(x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a(x-2)2+1=0为:方程-(x-2)2+1=0,解得:x1=0,x2=4,故选:A.【点睛】本题考查了二次函数与x轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.3.C解析:C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、图形既不是轴对称图形是中心对称图形,B、图形是轴对称图形,C、图形是轴对称图形,也是中心对称轴图形,D、图形是轴对称图形.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.C解析:C【解析】试题解析:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.5.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.6.C解析:C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选C.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x,依题意得:()2+=4001640x故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.9.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.12.C解析:C【解析】∵ y=2(x﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3,x 时,y随x的增大而增大.∴当3∴选项A、B、D中的说法都是错误的,只有选项C中的说法是正确的.故选C.二、填空题13.3【解析】【分析】根据旋转的性质知AB=AE在直角三角形ADE中根据勾股定理求得AE长即可得【详解】∵四边形ABCD是矩形∴∠D=90°BC=AD=3∵将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG解析:【解析】【分析】根据旋转的性质知AB=AE ,在直角三角形ADE 中根据勾股定理求得AE 长即可得.【详解】∵四边形ABCD 是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG ,∴EF=BC=3,AE=AB ,∵DE=EF ,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.15.-2017【解析】【分析】根据根与系数的关系可得出将其代入中即可得出结论【详解】∵是方程的两个实数根∴∴故答案为:-2017【点睛】本题考查了根与系数的关系牢记两根之和等于两根之积等于是解题的关键解析:-2017【解析】【分析】根据根与系数的关系可得出1a b +=-,2019ab =-,将其代入()()()111a b ab a b --=-++中即可得出结论.【详解】∵a 、b 是方程220190x x +-=的两个实数根,∴1a b +=-,2019ab =-,∴()()()111a b ab a b --=-++2019112017=-++=-.故答案为:-2017.【点睛】本题考查了根与系数的关系,牢记“两根之和等于ba-,两根之积等于ca”是解题的关键.16.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.17.【解析】【分析】根据勾股定理求出的斜边AB再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆设AC边上的切点为D连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB223040+50cm,设半径OD=rcm,∴S△ACB=12AC BC⋅=111AC r BC r AB r222⋅+⋅+⋅,∴30×40=30r+40r+50r,∴r =10,则该圆半径是 10cm .故答案为:10.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.18.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P (摸到白球)== 解析:38【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38. 19.k >﹣1且k≠0【解析】【分析】根据函数与方程的关系求出根的判别式的符号根据△>0建立关于的不等式通过解不等式即可求得的取值范围【详解】令y =0则kx2﹣6x ﹣9=0∵二次函数y =kx2﹣6x ﹣9的解析:k >﹣1且k ≠0.【解析】【分析】根据函数与方程的关系,求出根的判别式的符号,根据△>0建立关于k 的不等式,通过解不等式即可求得k 的取值范围.【详解】令y =0,则kx 2﹣6x ﹣9=0.∵二次函数y =kx 2﹣6x ﹣9的图象与x 轴有两个不同的交点,∴一元二次方程kx 2﹣6x ﹣9=0有两个不相等的解,()()206490k k ≠⎧⎪∴⎨=--⨯->⎪⎩, 解得:k >﹣1且k ≠0.故答案是:k >﹣1且k ≠0.【点睛】本题考查了一元二次方程与函数的关系,函数与x 轴的交点的横坐标就是方程的根,若函数与x 轴有交点说明方程有根,两者互相转化,要充分运用这一点来解题..20.30°【解析】设圆心角为n°由题意得:=12π解得:n=30故答案为30° 解析:30°【解析】设圆心角为n°,由题意得:212360n π⨯=12π, 解得:n=30,故答案为30°.三、解答题21.(1)2153y x x =-++;(2)254米;(3)水柱能越过树 【解析】【分析】(1)根据直角三角形的性质求出点A 、B 的坐标,再利用待定系数法求解可得; (2)水柱离坡面的距离d=-13x 2+3x+5-(-3x+5),整理成一般式,再配方成顶点式即可得;(3)先求出点C 的坐标为(1),再求出y ,与1+3.5比较大小即可得.【详解】(1)∵AB=10、∠OAB=30°,∴OB=12AB=5、OA=ABcos ∠, 则A (0)、B (0,5),将A 、B 坐标代入y=-13x 2+bx+c ,得:175035c c ⎧-⨯++⎪⎨⎪⎩==,解得:5b c ⎧⎪⎨⎪⎩=,∴抛物线解析式为y=-13x 2+3x+5; (2)水柱离坡面的距离d=-13x 2x+5-() =-13x 2x =-13(x 2)=-13(x-532)2+254,∴当x=532时,水柱离坡面的距离最大,最大距离为254米;(3)如图,过点C作CD⊥OA于点D,∵AC=2、∠OAB=30°,∴CD=1、AD=3,则OD=43,当x=43时,y=-13×(43)2+43×43+5=5>1+3.5,所以水柱能越过树.【点睛】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式、直角三角形的性质、二次函数的图象与性质.22.(1)答案见解析;(2)1 6【解析】【分析】列举出所有情况,让寻宝游戏中胜出的情况数除以总情况数即为所求的概率.【详解】(1)树状图如下:(2)由(1)中的树状图可知:P(胜出)【点睛】本题考查的是用画树状图法求概率,解答本题的关键是熟练掌握概率=所求情况数与总情况数之比.同时熟记用树状图或表格表达事件出现的可能性是求解概率的常用方法23.(1)12k;(2)k=-3.【解析】【分析】(1)根据一元二次方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数可得出x1+x2=2(k-1),x1x2=k2,结合(x1+1)(x2+1)=2,即可得出关于k的一元二次方程,解之即可得出k值,结合(1)的结论即可得出结论.【详解】解:(1)∵关于x的方程x2-2(k-1)x+k2=0有两个实数根,∴△=[-2(k-1)]2-4×1×k2≥0,∴k≤12,∴实数k的取值范围为k≤12.(2)∵方程x2-2(k-1)x+k2=0的两根为x1和x2,∴x1+x2=2(k-1),x1x2=k2.∵(x1+1)(x2+1)=2,即x1x2+(x1+x2)+1=2,∴k2+2(k-1)+1=2,解得:k1=-3,k2=1.∵k≤12,∴k=-3.【点睛】本题考查了根的判别式以及根与系数关系,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)根据根与系数关系结合(x1+1)(x2+1)=2,找出关于k的一元二次方程.24.(1)200;(2)答案见解析;(3)12.【解析】【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名)B组百分比:70÷200×100%=35%如图(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:61 122.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)2或3秒;(2)不能.【解析】【分析】(1)设经过x秒钟,△PBQ的面积等于6cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解.(2)通过判定得到的方程的根的判别式即可判定能否达到8cm2.【详解】(1)设经过x秒以后△PBQ面积为6cm2,则12×(5﹣x)×2x=6,整理得:x2﹣5x+6=0,解得:x=2或x=3.答:2或3秒后△PBQ的面积等于6cm2 .(2)设经过x秒以后△PBQ面积为8cm2,则1×(5﹣x)×2x=8,2整理得:x2﹣5x+8=0,△=25﹣32=﹣7<0,所以,此方程无解,故△PQB的面积不能等于8cm2.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于6cm2”,得出等量关系是解决问题的关键.。
八中20级九上第一次月考数学-含答案
上 两 点 , 连 接 DE . 将 BDE 沿 DE 折 叠 , 得 到
BDE ,点 B 恰好落在 AC 的中点处.设 DE 与 BB
交于点 F ,则 EF ( )
A. 1 2
B. 5 3
C. 10 6
D. 3 2
12 题图
二、填空题:(本大题 6 个小题,每小题 4 分,共 24 分)请将每小题的答案直接填在答
代号为 A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧
正确答案所对应的框涂黑.
1. sin 45° ( )
A.
1 2
B. 2 2
C. 3 2
D.1
2.如图是由 5 个大小相同的小正方体摆成的立体图形,它的俯视图是( )
2 题图
A.
B.
C.
3.在 RtABC 中, C 90 , tan A 5 ,则 cos A 等于( 12
3
x
1
有且只有两个奇数解,且关于
y
的分式方程
4x 6 a 4
3y y2
a 10 2 y
1
的解为非负整数,则符合条件的所有整数
a
的和为(
)
A. 8
B.16
C.18
12 . 如 图 , 在 等 腰 RtABC 中 C 90 ,
D. 20
AC BC 2 2 .点 D 和点 E 分别是 BC 边和 AB 边
米到达点 F ,再沿水平方向走 8 米就到达了旗杆底端点 B .则旗杆 AB 的高度约为
( )米.(参考数据: sin 50.2 0.77,cos 50.2 0.64, tan 50.2 1.2 )
A. 8.48
B. 14
2020-2021重庆市初三数学上期末第一次模拟试卷含答案
C. D.
8.已知关于 的一元二次方程 的两根为 , ,则一元二次方程 的根为()
A.0,4B.-3,5C.-2,4D.-3,1
9.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()
A. B. C. D.
10.“射击运动员射击一次,命中靶心”这个事件是()
A.确定事件B.必然事件C.不可能事件D.不确定事件
A.2023B.2021C.2020D.2019
4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣1
5.现有一块长方形绿地,它的短边长为20 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
三、解答题
21.小明在解方程 时出现了错误,其解答过程如下:
解: (第一步)
(第二步)
(第三步)
(第四步)
(1)小明解答过程是从第几步开始出错的,写出错误原因.
(2)请写出此题正确的解答过程.
22.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为 米.
3.A
解析:A
【解析】
【分析】
根据题意可知b=3-b2,a+b=-1,ab=-3,所求式子化为a2-b+2019=a2-3+b2+2019=(a+b)2-2ab+2016即可求解.
重庆市第八中学校2021-2022学年九年级上学期第一次月考数学试题(含答案解析)
重庆市第八中学校2021-2022学年九年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.数2的倒数是( ) A .2- B .2 C .12-D .122.若分式2xx -有意义,则x 的取值范围是( ) A .2x >B .0x ≠C .0x ≠且2x ≠D .2x ≠3.计算62a a ÷的结果是( ) A .2aB .3aC .4aD .5a4.如图,ABC 与DEF 位似,点O 是它们的位似中心,其中3OE OB =,则ABC 与DEF 的面积之比是( )A .1:2B .1:4C .1:3D .1:95 )A .5B .C .D .6.对于抛物线()213y x =+﹣,下列结论:①抛物线的开口向下;②对称轴为直线1x =;③顶点坐标是()1,3--;④1x >-时,y 随x 的增大而减小.其中正确结论的个数为( ) A .1B .2C .3D .47.下列命题是真命题的是( ) A .对角线相等的四边形是平行四边形 B .对角线互相平分且相等的四边形是矩形 C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形8.点()112,P y -,()221,P y -,()335,P y 均在二次函数221y x x =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >>C .123y y y >>D .213y y y >>9.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离乙地的距离y (单位:km )与慢车行驶时间x (单位:h )的函数关系如图,则两车先后两次相遇的间隔时间是( )hA .52B .94C .2110D .210.如图,某大楼AB 正前方有一栋小楼ED ,小明从大楼顶端A 测得小楼顶端E 的俯角为45度,从大楼底端B 测得小楼顶端E 的仰角为24度,小楼底端D 到大楼前梯坎BC 的底端C 有90米,梯坎BC 长65米,梯坎BC 的坡度1:2.4i =,则大楼AB 的高度为( )(结果精确到1米,参考数据:sin 240.41︒≈,cos240.91︒≈,tan 240.45︒≈)A .217B .218C .242D .24311.若关于x 的一元一次不等式组()31212x x x a ⎧-<+⎨≤+⎩的解集为4x <,且关于y 的分式方程2422y a ay y++=--的解是非负整数解,则所有满足条件的整数a 的值之和是( ) A .5 B .7 C .13 D .1512.如图,在直角坐标系中,四边形OABC 为正方形,且边BC 与y 轴交于点M ,反比例函数k y x =()0k ≠的图像经过点A ,若2CM BM =且135OBM S =△,则k 的值为( )A .185-B .165C .185D .365二、填空题13.2021年9月17日,神舟十二号载人飞船返回舱在东风着陆场成功着陆,中国空间站阶段首次载人飞行任务取得圆满成功,此次任务总时长为129600分钟,将数129600用科学记数法表示为______.14()0cos301︒+︒-=______.15.如图,Rt ABC 中,90BAC ∠=︒,5BC =,4cos 5C =,将CAB △绕A 点按顺时针方向旋转后得到EAD ,且点D 点刚好落在BC 上,则BD =______.16.四张背面相同的卡片,分别标记有1-,1,2,3的数字,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a ,不放回,再从剩下的卡片中抽取一张,把抽到的数记为c ,使得抛物线2y ax c =+的图像与x 轴有交点的概率为______.17.如图,Rt ABC 中,90ACB ∠=︒,点D 为边AB 的中点,连接CD ,将BDC 沿直线CD 翻折至ABC 所在平面内,得EDC △,连接BE ,分别与边CD 交于点O ,与AC 交于点F .若AEF CEF S S =△△,6AB =,则点E 到BC 的距离为______.18.某商店销售A 、B 、C 三种产品,七月份A 和B 两种产品销售数量之比为2:1,已知C 产品每件售价为30元,每件利润率为50%,且C 产品每件的成本比A 产品每件的成本少10元,比B 产品每件的成本少15元八月份C 产品销售量与七月份一样,A 产品销售量比七月份增加50%,B 产品销售量是七月份的三倍,且八月份三种产品的总销售量比七月份多了300件.八月份A 产品的成本和售价保持不变,8月份B 产品成本增加了1元,售价增加了5元,8月份C 产品成本不变,售价减少了2元,发现7月份C 产品的销售额占7月份总销售额的75%,A 产品两个月总利润是C 产品两个月总利润的518,那么在8月份销售8件A 产品的利润比销售1件B 产品的利润多______元.三、解答题 19.计算:(1)()()()2a b ab b a b +++﹣; (2)24816455x x x x x x +-+⎛⎫++÷ ⎪--⎝⎭. 20.为了庆祝新中国成立72周年,某校学生处在七年级和八年级开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析(竞赛成绩用x 表示,共分为四个等级:A .70x <, B .7080x ≤<,C .8090x ≤<, D .90100x ≤≤) 下面给出了部分信息:七年级C 等中全部学生的成绩为:86,87,83,89, 84,89,86,89,89,85. 八年级D 等中全部学生的成绩为:92,95,98,98, 98,98,100,100,100,100. 七、八年级抽取的学生知识竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述表中a,b,c,m的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的1800名学生和八年级的2500名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次知识竞赛中优秀的人数.21.如图,在平行四边形ABCD中,AC为对角线.(1)用尺规完成以下基本作图:过点A作BC边的垂线交BC于点E.(保留作图痕迹,不写作法,只下结论)(2)在(1)所作的图形中,若12tan5B=,24AE=,30AC=,求边AD的长.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数621xyx-=+的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把如表补充完整,并在给出的图中补全该函数的大致图象;(2)请根据这个函数的图象,写出该函数的一条性质;(3)已知函数3y x 的图象如图所示.根据函数图象,直接写出不等式6231xx x -+>+的解集.(近似值保留一位小数,误差不超过0.2)23.巫溪某村民承包土地发展李子种植,2020年开始大量投产增收,其中早熟李种植面积亩数是晚熟李种植面积亩数的3倍,早熟李、晚熟李分别收益60000元和40000元,而早熟李平均每亩收益比晚熟李少1000元.(1)2020年早熟李、晚熟李种植面积分别有多少亩?(2)在扶贫专家小组的精准帮助下,优化管理,淘汰了部分低产李子林改种其他经济作物增加收益,2021年,早熟李、晚熟李的种植面积比2020年分别降低了1%3a 和%a ,然而平均每亩早熟李和晚熟李的收益在2020年基础上分别增加了%a 和1%2a ,2021年两种李子的总收益与2020年两种李子总收益相等,求a 的值.24.如果一个四位自然数M ,如果它的千位加上百位等于十位加上个位且每个数位上的数字均不为零,我们称这个四位数为“欣欣向荣数”.我们把M 的千位和十位、千位和个位、百位和十位、百位和个位组成的四个两位数的和再除以11的商记为()F M ,例如:四位数1524,1524+=+,∴1524+=+,∴1524是“欣欣向荣数”,那么()121452541211F M +++==.(1)判断2332和2544是不是“欣欣向荣数”,并说明理由;(2)一个四位数自然数N 是“欣欣向荣数”,它的个位与千位之和为9且自然数N 能被13整除,求出()F N 的值.25.如图,直线y =x 轴、y 轴分别交于A 、B 两点,抛物线2y ax bx c=++()0a ≠经过A 、B 两点,与x 轴交于点C ,若tan BCA ∠=(1)求抛物线的解析式;(2)点P 为直线BC 上方抛物线上一点,连接PC ,PB ,求四边形OBPC 面积的最大值及此时点P 的坐标;(3)把抛物线2y ax bx c =++()0a ≠向右平移12物线,点M 是新抛物线上一点,点N 是原抛物线对称轴上一点,直接写出所有使得以点B ,C ,M ,N 为顶点的四边形是平行四边形的点N 的坐标,并把求其中一个点N 的坐标的过程写出来.26.在锐角ABC 中,AB AC =,点D 是线段BC 上一动点,连接AD ,将AD 绕着点A 顺时针旋转至AE ,使得2DAE BAC ∠=∠,连接DE ,交线段AB 于点F .在线段AC 上有一点G ,连接DG 使得180EDG DAE ∠+∠=︒.(1)如图1当60BAC ∠=︒,45BAD ∠=︒时,2BD =,求AG 的长;(2)如图2,连接FG ,猜想EF ,FG ,GD 的数量关系,并证明你的猜想;(3)如图3,以线段AD ,AE 为边构造平行四边形ADPE ,若P ,D ,G 三点共线,连接EG ,当ED 最小时,2DG ,请直接写出PEG △的周长.参考答案1.D 【分析】直接利用倒数的定义求2的倒数是12; 【详解】解:2的倒数是12; 故选:D . 【点睛】本题考查倒数;熟练掌握倒数的求法是解题的关键. 2.D 【分析】根据分式有意义时分母不为0 即可解答问题. 【详解】 解:若2xx - 有意义,则20x -≠, 即2x ≠ . 故选:D . 【点睛】本题考查了分式有意义的条件,掌握分式的分母不能为0 是解题的关键. 3.C 【分析】直接利用同底数幂的除法运算法则计算得出答案. 【详解】 解:624a a a ÷=. 故选:C . 【点睛】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键. 4.D 【分析】由位似三角形的含义可得:1,3BC OB EF OE ==再利用位似图形的面积比等于位似比的平方可得答案. 【详解】 解: 3OE OB =1,3OB OE ∴=ABC 与DEF 位似,点O 是它们的位似中心,1,3BC OB EF OE ∴== 21.9ABC DEFS BC SEF ⎛⎫∴== ⎪⎝⎭ 故选:D 【点睛】本题考查的是位似三角形的含义,位似三角形的性质,掌握“位似三角形的面积之比等于位似比的平方”是解题的关键. 5.C 【分析】根据二次根式的运算,求解即可. 【详解】故选C 【点睛】此题考查了二次根式的乘法和加法运算,熟练掌握二次根式的有关运算法则是解题的关键. 6.A 【分析】根据二次函数的性质对各小题分析判断即可得解. 【详解】解:①∵a =1>0,∴抛物线的开口向上,故本小题错误; ②对称轴为直线x =-1,故本小题错误; ③顶点坐标为(-1,3),正确;④∵x >-1时,y 随x 的增大而增大,∴x >1时,y 随x 的增大而增大,故本小题错误;综上所述,结论正确的个数是③共1个.故选:A .【点睛】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.7.B【分析】A 、根据平行四边形的判定定理作出判断;B 、根据矩形的判定定理作出判断;C 、根据菱形的判定定理作出判断;D 、根据正方形的判定定理作出判断.【详解】解:A 、对角线互相平分的四边形是平行四边形;故本选项错误,不符合题意;B 、对角线互相平分且相等的四边形是矩形;故本选项正确,符合题意;C 、对角线互相垂直的平行四边形是菱形;故本选项错误,不符合题意;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误,不符合题意; 故选:B .【点睛】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.8.D【分析】先求出抛物线的对称轴方程,然后根据二次函数的性质,通过比较三个点到对称轴的距离大小可得到y 1,y 2,y 3的大小关系.【详解】二次函数y =-x 2+2x + c 的图象的对称轴为直线x =()221⨯- =1,a =-1<0,开口向下; ∵P 1(-2,y 1)和P 2(-1,y 2)、P 3(5,y 3)到直线x =1的距离分别为3和2、4; ∴y 2>y 1>y 3,故选D.【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.. 9.B【分析】根据图象得出,慢车的速度为540=609km h,快车的速度为540=1803km h利用方程思想即可分别求出两次相遇时间;从而得出答案.【详解】解,设第一次相遇的时间为慢车出发后a h,由题可知, 60a=180(a-3)解得:a=9 2设第二次相遇时间为慢车出发后b h,由题可知, 60b=180(9-b)解得:b=27 4∴2799 424-=h故选:B【点睛】本题主要考查了函数图像的分析能力,分析图像得到正确的有效数据是解题的关键.10.B【分析】延长AB交DC于H,作EG⊥AB于G,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=65米,由勾股定理得出方程,解方程求出BH=25米,CH=60米,得出EG的长度,在Rt△GBE 中,利用正切函数得出BG的长度,证明△AEG是等腰直角三角形,得出AG=EG=150米,即可得出大楼AB的高度.【详解】解:如图,延长AB交DC于H,作EG⊥AB于G,则四边形GHDE为矩形,∴GH=DE,EG=DH,∵梯坎坡度i=1:2.4,∴BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=65米,由勾股定理得:x2+(2.4x)2=652,解得:x=25(负值已舍),∴BH=25米,CH=60米,∴EG=DH=CH+CD=60+90=150(米),在Rt△GBE中,∠BEG=24°,∴BG=EG tan24︒=150⨯0.45=67.5(米),在Rt△GAE中,∠EAG=90°-45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=150(米),∴AB=AG+BG=150+67.5≈218(米);故选:B.【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.11.C【分析】先计算不等式组的解集,根据“同小取小”原则,得到24a +≥解得2a ≥,再解分式方程得到8=3a y -,根据分式方程的解是非负整数解,得到8a ≤,且8a -是3的倍数,据此解得所有符合条件的整数a 的值,最后求和.【详解】解不等式()3121x x -<+得,4x <,2x a ≤+不等式组的解集为:4x <24a ∴+≥2a ∴≥ 解分式方程2422y a a y y++=--得 2422y a a y y +-=-- 24(2)y a a y ∴+-=- 整理得8=3a y -, 20,y -≠ 则82,3a -≠ 2,a ∴≠分式方程的解是非负整数解,803a -∴≥ 8a ∴≤,且8a -是3的倍数,28a ∴<≤,且8a -是3的倍数,∴整数a 的值为58,5813∴+=故选:C .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.12.D【分析】设BM =a 则CM =2a ,作BH ⊥y 轴,AD ⊥x 轴,证明△OMC ∽△BMH ,利用三边对应成比例可求BH ,再借助135OBM S =△求出a 的值,从而求出△OMC 的三边长,证明△OMC ∽△OAD ,求出OD 、AD 的值,再求出k 得值.【详解】设BM =a 则CM =2a ,∴CB =CO =OA =3a, OM =作BH ⊥y 轴,AD ⊥x 轴∵∠C =∠BHM =90°,∠CMO =∠HMB∴△OMC ∽△BMH∴HB MB CO MO= 即3HB a =∴HB ∵135OBM S =△ ∴11325BH OM ⨯⨯=∴11325=解得:a = ∵∠COM +∠MOA =∠MOA +∠AOD∴∠COM =∠AOD∵∠C =∠ADO =90°∴△OCM ∽△ODA∴CO CM OM OD AD AO ==即32a a OD AD ==OD AD ∴==== ∴k=OD ×AD =365 故答案选:D【点睛】本题考查了相似三角形的性质及判定以及反比例函数解析式的确定,其中相似三角形的性质及判定是解题的关键.13.51.29610⨯【分析】根据科学记数法的表示形式为a ×10n 的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:129600用科学记数法表示为51.29610⨯.故答案为:51.29610⨯.【点睛】本题主要考查了科学记数法的表示方法,熟练掌握科学记数法的表示形式为a ×10n 的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值是解题的关键. 14.2【分析】分别计算特殊角的三角函数值零指数幂,化简后再进行计算.【详解】()030cos30112︒+︒-=, 故答案是:2.【点睛】本题考查了特殊角的三角函数值,零指数幂,熟悉相关性质是解题的关键.15.185【分析】先求出4AC =,3AB =,作AF ⊥BC 于点F ,利用旋转的性质和等腰三角形的性质得到125AF =,再求出95DF =,即可得到答案. 【详解】解:根据题意,∵Rt ABC 中,90BAC ∠=︒,5BC =, ∴4cos 5AC C BC ==, ∴4AC =;由勾股定理,则3=AB ;将CAB △绕A 点按顺时针方向旋转后得到EAD ,且点D 点刚好落在BC 上,作AF ⊥BC 于点F ,如图:∴AD =AB =3,∠AFC =90°,BF =DF =12BD , ∵1122BC AF AB AC •=•, ∴1153422AF ⨯•=⨯⨯, ∴125AF =,∴95DF ==, ∴918255BD =⨯=; 故答案为:185. 【点睛】 本题考查了三角函数,旋转的性质,勾股定理解直角三角形,等腰三角形的性质,解题的关键是掌握所学的知识,正确的作出辅助线进行解题.16.12## 【分析】当抛物线2y ax c =+的图像与x 轴有交点,可得()00,ac a ≤≠再利用列表的方法得到()00ac a ≤≠的情况数有6种,所有的等可能的结果有12种,从而可得答案.【详解】 解: 抛物线2y ax c =+的图像与x 轴有交点,2040,ac ∴=-≥ 即()00,ac a ≤≠而,a c 的取值列表如下:一共有12种等可能的情况,使()00ac a ≤≠有6种,所以:使得抛物线2y ax c =+的图像与x 轴有交点的概率为:61.122= 故答案为:1.2【点睛】本题考查的是二次函数与x 轴的交点问题,等可能事件的概率,掌握“列表法求解概率与0≥时,二次函数的图象与x 轴有交点”是解题的关键.17 【分析】过点E 作EG BC ⊥的延长线,交BC 于点G ,根据Rt ABC 中,90ACB ∠=︒,6AB =,可得3AD BD CD ===,再根据BDC 沿直线CD 翻折得EDC △,易得3AD BD ED ===,则有ABE △是直角三角形,并有:点A ,E ,C ,B 四点在以点D 为圆心的圆上;AEF CEF S S =△△,可得AF FC =,2AC FC =,根据CEF CAE ∠=∠,ECF ACE ∠=∠,可证ECF ACE ,则有EC FCAC EC =,可求出EC =,CB CE =,再利用勾股定理,可得FC得BC =AC =设OD x =,则3OC x =-,利用折叠得性质和勾股定理可得1OD =,2OC =,并可得22AE OD ==,EB =1122BC EG EB OC =,求解后可得点E 到BC 的距离.【详解】解:如图示,过点E 作EG BC ⊥的延长线,交BC 于点G ,∵Rt ABC 中,90ACB ∠=︒,6AB =,点D 为边AB 的中点,∴3AD BD CD ===,又∵将BDC 沿直线CD 翻折得EDC △,∴C BDC ED ≅,∴3ED BD ==,CE CB =,∴3AD BD ED ===,∴ABE △是直角三角形,90AEB =︒∠,并有:点A ,E ,C ,B 四点在以点D 为圆心的圆上,∵AEF CEF S S =△△,且AEF ,CEF △同高,∴AF FC =,2AC FC =∵CE CB =∴CEF CAE ∠=∠∵ECF ACE ∠=∠∴ECF ACE ∴EC FC AC EC=, ∴2222EC FC AC FC FC FC ===即:EC = ∴CB CE =在Rt ABC 中,222AC BC AB +=∴())22226FC +=, 解之得:FC ∴BC EC ==,2AC FC ==∵BDC 沿直线CD 翻折得EDC △,点B 的对称点是点E ,对称轴CD∴EB CD ⊥,OE OB =,设OD x =,则3OC x =-,则有2222CE OC ED OD -=-,即:(()222233x x --=- 解之得:1x =,∴1OD =,312OC =-=,又∵OE OB =,AD BD =,∴OD 是AEB △的中位线,∴22AE OD ==在Rt ABE 中,222EB AB AE =-∴EB =在BCE 中,1122BC EG EB OC =即: 422EB OC EG BC ==. 【点睛】 本题主要考查相似三角形的判定与性质,圆周角定理,折叠的性质,勾股定理的应用等知识点,能作出辅助线,灵活运用等面积法,是解题的关键.18.91【分析】设七月份A 产品的售价为m 元,B 产品的售价为n 元,根据题中的等量关系,求得,m n 的关系式,即可求解. 【详解】解:设七月份B 销售数量为x ,C 产品的销售数量为y ∵已知七月份A 和B 两种产品销售数量之比为2:1 ∴A 产品的销售数量为2x又∵已知八月份C 产品销售量与七月份一样,A 产品销售量比七月份增加50%,B 产品销售量是七月份的三倍∴八月份A 产品销售量为3x ,B 产品销售量为3x ,C 产品的销售数量为y 又∵已知八月份三种产品的总销售量比七月份多了300件 ∴6(3)300x y x y +-+=,解得100x = 设七月份C 产品的成本为z 元,∵已知C 产品每件售价为30元,每件利润率为50% ∴3050%z z -=⨯,解得20z =C 产品每件的成本比A 产品每件的成本少10元,比B 产品每件的成本少15元∴七月份A 产品每件的成本为30元,B 产品每件的成本为35元,C 产品每件的成本为20元∵八月份A 产品的成本保持不变,8月份B 产品成本增加了1元,8月份C 产品成本不变 ∴八月份A 产品每件的成本为30元,B 产品每件的成本为36元,C 产品每件的成本为20元设七月份A 产品的售价为m 元,B 产品的售价为n 元,C 产品的售价为30元 ∵八月份A 产品的售价保持不变, B 产品售价增加了5元, C 产品售价减少了2元 ∴八月份A 产品每件的售价为m 元,B 产品的售价为5n +元,C 产品的售价为28元 已知7月份C 产品的销售额占7月份总销售额的75%,A 产品两个月总利润是C 产品两个月总利润的518,则: 3075%(20010030)5(30)200(30)300[(3020)(2820)]18y m n y m m y y =⨯++⎧⎪⎨-⨯+-⨯=-+-⎪⎩, 化简得:2010(30)100y m ny m =+⎧⎨=-⨯⎩,可得3008n m += 8月份销售8件A 产品的利润为8(30)m -元, 销售1件B 产品的利润为53631n n +-=-元那么在8月份销售8件A 产品的利润比销售1件B 产品的利润多 8(30)(31)820991m n m n ---=--=元故答案为91 【点睛】此题考查了一次方程的应用,解题的关键是根据题中的等量关系,求得,m n 的关系式. 19.(1)2a 2ab +;(2)44x x +- 【分析】(1)根据整式的乘法以及加减运算,求解即可; (2)根据分式的加减乘除运算,求解即可. 【详解】(1)解:原式222222a b ab b a ab =-++=+ (2)解:原式()()()()()()()2244544545444x x x x x x x x x x x +++-+--+=⋅==---- 【点睛】此题考查了整式和分式的加减乘除运算,熟练掌握相关运算法则是解题的关键. 20.(1)10a =,89=b ,25c =,10m =;(2)七年级,见解析;(3)七年级810人,八年级625人 【分析】(1)根据七年级C 等中有10名学生,可求出C 等学生占总体的比例,而得到c 的值;根据扇形统计图各部分所占的百分比,可求出a ;七年级学生中,D 等学校占中45%,即有.4045%18⨯=.人,将七年级C 等中全部学生的成绩按从小到大排列后,可得七年级学生成绩的中位数b ;根据八年级学生中满分有4人,可求出满分率,可得 m ; (2)根据中位数,满分率解答即可,(3)根据七、八年级样本中的优秀率,分别用1800和2500相乘即可求出结果. 【详解】解:(1)∵根据题意可知,七年级C 等中有10名学生, ∴C 等学生占总体的:10100%25%40⨯=, ∴25c =,∴10045252010a =---=∵七年级C 等中全部学生的成绩为:86,87,83,89,84,89,86,89,89,85, 按从小到大排列后是:83,84,85,86,86, 87, 89, 89, 89,89, ∵七年级学生中,D 等学校占中45%,即有4045%18⨯=人, ∴七年级抽取的学生中,中位数是:8989892+=, ∵八年级D 等中全部学生的成绩为:92,95,98,98,98,98,100,100,100,100,满分有4人,∴八年级D 等中全部学生的成绩满分率为:4%100%10%40m =⨯= ∴10m =综上所述,10a =,89=b ,25c =,10m =;(2)七年级更好,平均数相同,但中位数,满分平均7年级更高; (3)七年级中优秀的人数是:45%1800810⨯=, ∵八年级D 等学生有10人, ∴八年级中优秀的人数是:102500250025%62540⨯=⨯=. 【点睛】本题考查扇形统计图、中位数、众数、平均数、利用数据进行决策等知识点,熟悉掌握相关知识点是正确解答的关键. 21.(1)见解析;(2)28 【分析】1)利用基本作图,过A 点作BC 的垂线得到E 点;(2)利用正切的定义得到BE 的长,在Rt △ACE 中,利用勾股定理求出CE 的长,根据平行四边形的性质即可求解. 【详解】解:(1)如图,AE 为所作;(2)∵AE ⊥BC , ∴∠AEB =∠AEC =90°, 在Rt △ABE 中, ∵tan ∠B =AE BE =125,AE =24, ∴BE =10,在Rt △ACE 中,AC =30,AE =24,∴18CE ==, ∵四边形ABCD 是平行四边形, ∴AD =BC =BE +CE =28. 【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了解直角三角形和平行四边形的性质.22.(1)见解析;(2)见解析;(3)31x -<<-或0.6x > 【分析】(1)利用函数解析式分别求出对应的函数值即可;利用描点法画出图象即可; (2)观察图象可到函数的性质; (3)利用图象即可解决问题. 【详解】(1)把表格补充完整如下:(2)函数621xyx-=+的图象如图所示:①该函数图象是轴对称图形,对称轴是y轴;②该函数在自变量的取值范围内,有最大值,当x=0时,函数取得最大值6;③当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小(以上三条性质写出一条即可);(3)由图象可知,不等式6231xxx-+>+的解集为:31x-<<-或0.6x>.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.23.(1)早熟李种60亩,晚熟李种20亩;(2)50.【分析】(1)设晚熟李、早熟李两个品种种植面积分别是x亩和3x亩;根据题意列出方程组即可得到结论.(2)根据题意列方程式可得到结论.【详解】解:(1)设2020年晚熟李种植面积有x亩,则早熟李种植面积为3x亩,根据题意,得40006000010003x x -= , 解方程,得20x ,经检验,20x是分式方程式得解,360x ∴= ,即2020年早熟李、晚熟李种植面积分别有60亩、20亩.(2)由(1)可得: 2020年早熟李、晚熟李种植面积分别有60亩、20亩,2020年早熟李平均每亩收益为60000100060=元,晚熟李平均每亩收益为40000200020=元, 由题意可得:2021 年早熟李、晚熟李种植面积分别有1601%3a ⎛⎫- ⎪⎝⎭ 亩、()201%a -亩,2021 年早熟李平均每亩收益为()10001%a + 元,晚熟李平均每亩收益为120001%2a ⎛⎫+ ⎪⎝⎭元,由2021 年两种李子的总收益与2020 年两种李子总收益相等,得, ()()11601%10001%201%20001%600004000032a a a a ⎛⎫⎛⎫-⨯++-⨯+=+ ⎪ ⎪⎝⎭⎝⎭令%t a =,则()()11600001140000111000032t t t t ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭,()()()()31125t t t t -++-+= ,223225t t t t +-+--=, 220t t -=,()210t t -=,0t =或0.5=t ,0a =(舍),50a =.答:50a =. 【点睛】本题考查了一元二次方程的应用,正确的理解题意是解答的关键. 24.(1)2332是,2544不是;见解析;(2)16,20,24. 【分析】(1)根据新定义,仿照样例进行解答便可;(2)根据新定义与已知条件,令四位数N 的千位为a ,百位为b ,十位为c ,个位为d ,可得N abcd =,且a b c d +=+,则()22F M a b =+,然后根据:它的个位与千位之和为9且自然数N 能被13整除,分步讨论求解即可.【详解】解:(1)由题意知:2332+=+, ∴2332是“欣欣向荣”; ∵2544+≠+,∴2544不是“欣欣向荣”.(2)令四位数N 的千位为a ,百位为b ,十位为c ,个位为d . 且19a ≤≤,19b ≤≤,19c ≤≤,19d ≤≤,且a ,b ,c ,d 为整数.∴N abcd =.且a b c d +=+()101010101111ac ad bc cd a c a d b c b dF M ++++++++++==()()2020220202221111a b c d a b a b a b ++++++===+千位与百位之和为9,即99d a d a +=⇒=-.a b c d+=+,即9a b c a +=+-,29c a b =+-. ∴()()299101911081N ab a b a a b =+--=+-.N 能被13整除.∴10191108156378861313a b a b a b +-+-=+-+.290a b +-≠,90a -≠.∴9a ≠,9b ≠.∴18a ≤≤,18b ≤≤;291a b +-≥,210a b +≥. ∴856385a b ≤+-≤.∴56313a b +-=,26,39,52,65,78.①563135610a b a b +-=⎧⎨+=⎩,∴12b a =⎧⎨=⎩,210a b +≥,∴舍.②563265629a b a b +-=⎧⎨+=⎩,∴41b a =⎧⎨=⎩,210a b +≥,∴舍.③563395642a b a b +-=⎧⎨+=⎩,∴26b a =⎧⎨=⎩,()12416F N =+=.④563525655a b a b +-=⎧⎨+=⎩,∴55b a =⎧⎨=⎩,()101020F N =+=.⑤563655668a b a b +-=⎧⎨+=⎩,∴103a b =⎧⎨=⎩(舍),48a b =⎧⎨=⎩,()81624F N =+=.⑤563785681a b a b +-=⎧⎨+=⎩(舍).综上:()F N 的值为16,20,24. 【点睛】本题为新定义题型,根据题干中所给的新定义及运算规则来完成相关计算,能根据题目要求,进行分类讨论解答,是解题得关键.25.(1)2y x =(2)32P ⎛- ⎝⎭;(3)N ⎛- ⎝⎭,(1,-,(1,--,见解析【分析】(1)先利用y =+A 、B 坐标,利用正切三角函数求出点C 坐标,利用待定系数法求抛物线解析式即可;(2)过P 作//PQ y 轴交BC 于Q ,利用待定系数法求出BC 的解析式为y =,设P(m .2,根据PQ ∥y 轴,求出Q (m , ,求出PQ =2,求出四边形面积并配方变为顶点式即S 四边形OBPC = S △BOC + S △CPB =232m ⎫=+⎪⎝⎭当m =32-时,OBPC S 四最大(3)把原函数配方为顶点式)2y x 1=+2y =+确定四点坐标2,M m ⎛ ⎝,()1,N n -,(B ,()3,0C -,分类讨论①BC 对角线,②BN 对角线,③BM 对角线,利用平行四边形的性质找出横坐标之间关系与纵坐标之间关系即可求解. 【详解】解:(1)A ,B 为y =x 轴,y 轴交点,∴当x=0时, y =y=0时,0=,1x =,∴1,0A,(B .∵OBtan BCA ∠,∴tan OB BCA OC∠==∴3OC ==, ∴()3,0C -.∵2y ax bx c =++,经过A 、B 、C 三点,将坐标代入抛物线解析式得:0930c a b c a b c ⎧=⎪++=⎨⎪-+=⎩解得c a b ⎧⎪=⎪⎪=⎨⎪⎪==⎪⎩∴)221y x =++(2)过P 作//PQ y 轴交BC 于Q , 设BC 的解析式为1y kx b =+, 将B 、C 两点坐标代入解析式得:1130b k b ⎧=⎪⎨-+=⎪⎩解得1b k ⎧=⎪⎨=⎪⎩∴BC的解析式为y =, 设P (m. 2, ∵PQ ∥y 轴,∴点P 与点Q 的横坐标相同,∴Q (m ,∴PQ =2++⎝=2S △BOC =11322OB OC ⋅==S △CPB =2211322PQ CO ⎛⎫⋅=⨯= ⎪ ⎪⎝⎭∴S 四边形OBPC = S △BOC + S △CPB =2232m ⎫=+⎪⎝⎭,∴当m =32-时,OBPC S 四最大 223322⎫⎛⎫=--⎪ ⎪⎝⎭⎝⎭点P 32⎛- ⎝⎭;(3)∵把抛物线)2y x 1=+12∴新抛物线2112y x ⎫=+-⎪⎝⎭ 212y x ⎫=+⎪⎝⎭=22,M m ⎛ ⎝,()1,N n -,(B ,()3,0C -,①BC 对角线,则B C N M B C N Mx x x x y y y y +=+⎧⎨+=+⎩,20310m n -=-+⎧⎛=- ⎝,解得2m n =-⎧⎪⎨=⎪⎩N ⎛- ⎝⎭;②BN 对角线,则B N C M BN C M x x x x y y y y +=+⎧⎨+=+⎩,20130m n -=-+⎧⎪=+解得2m n =⎧⎪⎨=⎪⎩则(2,M,(1,N -;③BM 对角线,则B M C N BM C N x x x x y y y y +=+⎧⎨+=+⎩,20310m n +=--⎧⎪+,解得4m n =-⎧⎪⎨=-⎪⎩则(4,M --,(1,N --.综上点N的坐标为⎛- ⎝⎭,(1,-.(1,--. 【点睛】本题考查一次函数与两轴交点问题,待定系数法求抛物线解析式,利用线段函数表示面积并求最值,抛物线平移变换,平行四边形的性质,本题难度大,系数为无理数增大难度,要求计算能力强,绘图能力高,熟练掌握二次函数的知识,准确画出图形,灵活应用分类讨论思想和数形结合思想是解题关键.26.(1)AG =(2)EF FG GD =+,见解析;(3)10+【分析】(1)在EF 上截取EM =DG ,连接AM ,作DH ⊥AB 于H ,作AI ⊥ED 于I ,得出△AEM ≌△ADG ,得出AM =AG ,利用勾股定理求出DH =AI =MA = (2)在EF 上截取EM =DG ,连接AM .得出△AEM ≌△ADG ,再证△AFM ≌△AFG 即可;(3)由P ,D ,G 三点共线,得出60°,利用勾股定理和含30°角的直角三角形求解即可.【详解】解:(1)在EF 上截取EM =DG ,连接AM ,作DH ⊥AB 于H ,作AI ⊥ED 于I ,∵180E EDA DAE ∠+∠+∠=︒,∵180EDG DAE ∠+∠=︒,∴EDG E EDA ∠=∠+∠,∴ADG E ∠=∠,∵AE =AD ,∴△AEM ≌△ADG ,∴AM =AG ,MAE GAD ∠=∠,∵60BAC ∠=︒,AB AC =,∴2120DAE BAC ∠=∠=︒,60B ∠=︒,∴30E EDA ∠=∠=︒,∵2BD =,DH ⊥AB ,∴1BH =,DH ,∵45BAD ∠=︒,∴DH AH =DA =∵AI ⊥ED ,30EDA ∠=︒,∴AI = ∵604515MAE GAD ∠=∠=︒-︒=︒,∴45DMA E EAM ∠=∠+∠=︒,∴AI IM ==MA =∴AG =(2)在EF 上截取EM =DG ,连接AM .∵180E EDA DAE ∠+∠+∠=︒,∵180EDG DAE ∠+∠=︒,∴EDG E EDA ∠=∠+∠,∴ADG E ∠=∠,∵AE =AD ,∴△AEM ≌△ADG ,∴AM =AG ,MAE GAD ∠=∠,∴2MAG EAD BAC ∠=∠=∠,∴MAF GAF ∠=∠,∵AF =AF ,∴△AFM ≌△AFG ,∴FM =FG ,∴EF FM EM FG GD =+=+.(3)由(1)得,ADE ADG ∠=∠,ADE AED ∠=∠,∵AE ∥PD ,∴AED EDP ∠=∠,又P ,D ,G 三点共线,∴60PDE ADE ADG ∠=∠=∠=︒,∴60EAD ∠=︒,30BAC ∠=︒,∴DE AD =.当AD BC ⊥时,ED 最小,此时30GDC ∠=︒,∵AB AC =, ∴180-30=752C ︒︒∠=︒, ∴2DG DC ==.Rt ADC 中,15DAC ∠=︒.在AD 上取点L ,使AL =CL ,可得,30CLD ∠=︒,CL =4,勾股定理得DL =∴4AD DP EP =+=.作EN ⊥PD 于N ,∵60EAD P ∠=∠=︒,同理可得,2PN =,3EN =+4GN PD DG PN =+-=EG∴4610PEG C =+++△【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质和判断,勾股定理等知识,解题关键是准确把握已知,得出正确信息,恰当作辅助线利用勾股定理和全等三角形知识解决问题.。
2020-2021学年重庆八中九年级上学期第一次月考模拟数学试卷 (解析版)
2020-2021学年重庆八中九年级(上)第一次月考模拟数学试卷一、选择题(共12小题).1.sin45°的值是()A.B.C.D.12.如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A.B.C.D.3.在Rt△ABC中,∠C=90°,tan A=,则cos A等于()A.B.C.D.4.下列命题中,是真命题的是()A.对角线相等的平行四边形是菱形B.一组邻边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.四个角相等的四边形是菱形5.估计的值应在()之间.A.0和1B.1和2C.2和3D.3和46.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.67.按如图所示的运算程序,能使输出y值为的是()A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°8.如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=09.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°,AC=,函数y=(x>0)的图象经过点C,则k的值为()A.3B.4C.6D.910.如图,为了测量旗杆AB的高度,小明在点C处放置了高度为2米的测角仪CD,测得旗杆顶端点A的仰角∠ADE=50.2°,然后他沿着坡度为i=的斜坡CF走了20米到达点F,再沿水平方向走8米就到达了旗杆底端点B.则旗杆AB的高度约为()米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A.8.48B.14C.18.8D.30.811.如果关于x的不等式组有且只有两个奇数解,且关于y的分式方程﹣=1的解为非负整数,则符合条件的所有整数a的和为()A.8B.16C.18D.2012.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.二、填空题(共6小题).13.万众瞩目的重庆来福士广场开业当天,游客数量突破了350000人,比成都来福士广场开业首日游客数量和杭州来福士广场开业首日游客数量的总和还要多,将数据350000用科学记数法表示为.14.计算:|﹣4|+(﹣2)2+cos60°=.15.抛物线y=x2+bx+c的顶点为(1,2),则它与y轴交点的坐标为.16.现有4张完全相同的卡片分别写着数字﹣2,1,3,4.将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作a.再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线y=ax2+4x+c与x轴有交点的概率为.17.一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行,轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有千米.18.重阳佳节来临之际,某糕点店对桂圆味,核桃味、绿豆味重阳糕(分别记为A、B、C)进行混装,推出了甲、乙两种盒装重阳糕,盒装重阳糕的成本是盒中所有A、B、C的成本与盒装包装成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中所有A、B、C的成本之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的倍.每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是元.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.化简:(1)(2m﹣n)2﹣n(2m+n);(2)(x+2﹣)÷.20.如图,在矩形ABCD中,点E是边BC上的点,AD=DE,AF⊥DE于点F.(1)求证:AF=CD;(2)若CE=12,tan∠ADE=,求EF的长.21.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,A,B两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从A,B两村各抽取15户进行了抽样调查,并对每户每月销售的土豆箱数(用x表示)进行了数据整理、描述和分析,下面给出了部分信息:A村卖出的土豆箱数为40≤x<50的数据有:40,49,42,42,43B村卖出的土豆箱数为40≤x<50的数据有:40,43,48,46土豆箱数<3030≤x<4040≤x<5050≤x<60≥60A村03552B村1a45b 平均数、中位数、众数如表所示村名平均数中位数众数A村48.8m59B村47.44656根据以上信息,回答下列问题:(1)表中a=;b=;m=;(2)你认为A,B两村中哪个村的小土豆卖得更好?请说明理由;(3)在该电商平台进行销售的A,B两村村民共210户,若该电商平台把每月的小土豆销售量x在45<x<60范围内的村民列为重点培养对象,估计两村共有多少户村民会被列为重点培养对象?22.小帆根据学习函数的过程与方法,对函数y=x|ax+b|(a>0)的图象与性质进行探究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而(在横线上填增大或减小);③当x<4时,y=x|ax+b|的最大值是;①直线y=k与函数y=x|ax+b|有两个交点,则k=.23.如果在一个多位自然数n中,各数位上的数字之和恰好等于10,则称这个数为“十全十美数”,并将它各数位上的数字之积记为F(n).例如在数1234中,因为1+2+3+4=10,所以数1234是“十全十美数”,且F(1234)=1×2×3×4=24.(1)若在一个自然数中的任意两个相邻数位上,左边数位上的数字大于或等于右边数位上的数字,则称这个自然数为“降序数”例如:在数32210中,因为3>2=2>1>0,所以数32210是“降序数”,已知四位自然数a既是“十全十美数”又是“降序数”,它的千位上的数字是5,F(a)=0.将数a千位上的数字减1,个位上的数字加1,得到数b,F(b)=24.求出数a;(2)“十全十美数”P是三位自然数,将数p百位上的数字与个位上的数字交换得到数q,若10p+q=2882,求F(p)的最大.24.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.25.己知抛物线与x轴交于点A(﹣2,0)、B(3,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第一象限内的一点,当四边形ABPC的面积最大时,求出四边形ABPC的面积最大值及此时点P的坐标.(3)如图2,将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',若抛物线y'与原抛物线对称轴交于点Q.点E是新抛物线y'对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,求点E的坐标.参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C.D的四个答案,其中只有--个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.sin45°的值是()A.B.C.D.1解:sin45°=.故选:B.2.如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A.B.C.D.解:从上面看易得第一层有2个正方形,第二层有2个正方形.故选:D.3.在Rt△ABC中,∠C=90°,tan A=,则cos A等于()A.B.C.D.解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.4.下列命题中,是真命题的是()A.对角线相等的平行四边形是菱形B.一组邻边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.四个角相等的四边形是菱形解:A、对角线相等的平行四边形是矩形,故错误,不符合题意;B、一组邻边相等的平行四边形是菱形,故错误,不符合题意;C、对角线互相垂直的平行四边形是菱形,正确,是真命题,符合题意;D、四个角相等的四边形是矩形,故原命题错误,不符合题意,故选:C.5.估计的值应在()之间.A.0和1B.1和2C.2和3D.3和4解:=﹣3,∵3<<4,∴0<﹣3<1,故选:A.6.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.6解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.按如图所示的运算程序,能使输出y值为的是()A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°解:A、α=60°,β=45°,α>β,则y=sinα=;B、α=30°,β=45°,α<β,则y=cosβ=;C、α=30°,β=30°,α=β,则y=sinα=;D、α=45°,β=30°,α>β,则y=sinα=;故选:C.8.如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=0解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,故A、B错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a﹣2b+c=0,∵b=﹣2a,∴4a+4a+c=0,即8a+c=0,故D正确,故选:D.9.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°,AC=,函数y=(x>0)的图象经过点C,则k的值为()A.3B.4C.6D.9解:过点C作CD⊥x轴,垂足为D,∵A、B的坐标分别是(0,3)、(3、0),∴OA=OB=3,在Rt△AOB中,AB2=OA2+OB2=18,又∵∠ABC=90°,∴∠OAB=∠OBA=45°=∠BCD=∠CBD,∴CD=BD,∴BC2=2CD2,∵AC=,在Rt△ABC中,AB2+BC2=AC2,∴18+2BD2=20,∴CD=BD=1,∴C(4,1),代入函数y=(x>0)得:k=4,故选:B.10.如图,为了测量旗杆AB的高度,小明在点C处放置了高度为2米的测角仪CD,测得旗杆顶端点A的仰角∠ADE=50.2°,然后他沿着坡度为i=的斜坡CF走了20米到达点F,再沿水平方向走8米就到达了旗杆底端点B.则旗杆AB的高度约为()米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A.8.48B.14C.18.8D.30.8解:如图,延长AB交水平线于M,作FN⊥CM于N,延长DE交AM于H.在Rt△CFN中,∵=,CF=20米,∴FN=BM=12米,CN=16米,∴DH=CM=16+8=24米,在Rt△ADH中,AH=DH•tan50.2=24×1.2=28.8米,∴AB=AM﹣BM=AH+HM=BM=28.8+2﹣12=18.8米,故选:C.11.如果关于x的不等式组有且只有两个奇数解,且关于y的分式方程﹣=1的解为非负整数,则符合条件的所有整数a的和为()A.8B.16C.18D.20解:不等式组整理得:,解得:<x≤6,由不等式组有且只有两个奇数解,得到1≤<3,解得:2≤a<10,即整数a=2,3,4,5,6,7,8,9,分式方程去分母得:3y+a﹣10=y﹣2,解得:y=,由分式方程解为非负整数,得到a=2,6,8,之和为16,故选:B.12.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,故答案为:.故选:C.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.万众瞩目的重庆来福士广场开业当天,游客数量突破了350000人,比成都来福士广场开业首日游客数量和杭州来福士广场开业首日游客数量的总和还要多,将数据350000用科学记数法表示为 3.5×105.解:350000=3.5×105,故答案为:3.5×105.14.计算:|﹣4|+(﹣2)2+cos60°=8.5.解:|﹣4|+(﹣2)2+cos60°=4+4+0.5=8.5故答案为:8.5.15.抛物线y=x2+bx+c的顶点为(1,2),则它与y轴交点的坐标为(0,3).解:∵抛物线y=x2+bx+c的顶点为(1,2),∴抛物线为y=(x﹣1)2+2=x2﹣2x+3,令x=0得:y=3,∴与y轴的交点坐标为(0,3),故答案为:(0,3).16.现有4张完全相同的卡片分别写着数字﹣2,1,3,4.将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作a.再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线y=ax2+4x+c与x轴有交点的概率为.解:画树状图如下由树状图知,共有12种等可能结果,其中能使△=42﹣4ac≥0,即ac≤4的有10种结果,∴抛物线y=ax2+4x+c与x轴有交点的概率为=,故答案为:.17.一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行,轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有65千米.解:设轮船的速度为x千米/小时,快艇的速度为y千米/小时,依题意得:,解得,150﹣15×(300÷45﹣1)=65(千米).答:当快艇返回到乙港时,轮船距乙港还有65千米.故答案为:6518.重阳佳节来临之际,某糕点店对桂圆味,核桃味、绿豆味重阳糕(分别记为A、B、C)进行混装,推出了甲、乙两种盒装重阳糕,盒装重阳糕的成本是盒中所有A、B、C的成本与盒装包装成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中所有A、B、C的成本之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的倍.每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是2500元.解:设A的单价为x元,B的单价为y元,C的单价为z元,每盒甲的盒装包装成本为k,则每盒乙的盒装包装成本是k,当销售这两种盒装重阳糕的销售利润率为24%时,该店销售甲的销售量为a盒,乙的销售量为b盒,甲每盒装的重阳糕的成本是:15x=6x+2y+2z,化简得:y+z=4.5x,乙每盒装的重阳糕的成本是:2x+4y+4z=2x+4(y+z)=2x+4×4.5x=20x,∵=,∴乙每盒的成本是甲每盒的成本的,设甲每盒的成本为m,则乙每盒的成本为m,乙每盒的售价为:m(1+20%)=1.6m,∵每盒乙的售价比每盒甲的售价高20%,∴甲每盒的售价为:=m,根据甲乙的利润得:(m﹣m)a+(1.6m﹣m)b=(ma+b)×24%,化简得:0.28ma=0.16mb,∴b=a,∵ma+1.6mb=31000,∴ma+1.6m×a=31000,解得:ma=7500,∴销售甲种盒装重阳糕的总利润是:ma﹣ma=ma=×7500=2500(元),故答案为:2500.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 19.化简:(1)(2m﹣n)2﹣n(2m+n);(2)(x+2﹣)÷.解:(1)原式=4m2﹣4mn+n2﹣2mn﹣n2=4m2﹣6mn;(2)原式=÷=•=.20.如图,在矩形ABCD中,点E是边BC上的点,AD=DE,AF⊥DE于点F.(1)求证:AF=CD;(2)若CE=12,tan∠ADE=,求EF的长.解:(1)∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC,∠AFD=∠C=90°.∵AD=DE.∴△ADF≌△DEC(AAS),∴AF=DC.(2)∵tan∠ADE=,∠ADE=∠CED,∴Rt△CDE中,tan∠CED==,∴CD=CE=9,∴DE===15,∵△ADF≌△DEC,∴DF=CE=12,∴EF=DE﹣DF=15﹣12=3.21.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,A,B两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从A,B两村各抽取15户进行了抽样调查,并对每户每月销售的土豆箱数(用x表示)进行了数据整理、描述和分析,下面给出了部分信息:A村卖出的土豆箱数为40≤x<50的数据有:40,49,42,42,43B村卖出的土豆箱数为40≤x<50的数据有:40,43,48,46土豆箱数<3030≤x<4040≤x<5050≤x<60≥60A村03552B村1a45b 平均数、中位数、众数如表所示村名平均数中位数众数A村48.8m59B村47.44656根据以上信息,回答下列问题:(1)表中a=4;b=1;m=49;(2)你认为A,B两村中哪个村的小土豆卖得更好?请说明理由;(3)在该电商平台进行销售的A,B两村村民共210户,若该电商平台把每月的小土豆销售量x在45<x<60范围内的村民列为重点培养对象,估计两村共有多少户村民会被列为重点培养对象?解:(1)由B村的中位数为46,即中间第8个为46,∴1+5+b=7,∴b=1,∴a=15﹣1﹣4﹣5﹣1=4,A村的中位数为第8个数49,即m=49;故答案为:4;1;49;(2)A,B两村中A村的小土豆卖得更好;理由如下:①A村的平均数比B村大;②A村的中位数比B村大;③A村的众数比B村大;(3)A,B两村抽取的15户中每月的小土豆销售量x在45<x<60范围内的村民有8﹣2=6户,210×=91(户);答:估计两村共有91户村民会被列为重点培养对象.22.小帆根据学习函数的过程与方法,对函数y=x|ax+b|(a>0)的图象与性质进行探究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而减小(在横线上填增大或减小);③当x<4时,y=x|ax+b|的最大值是1;①直线y=k与函数y=x|ax+b|有两个交点,则k=0或1.解:(1)将点(2,1),(4,0)代入y=x|ax+b|,得到a=﹣1,b=4或a=1,b=﹣4,∵a>0,∴a=1,b=﹣4,∴y=x|x﹣4|;(2)①如图所示:②由图可知,当2≤x≤4时,y随x的增大而减小;故答案为减小;③当x<4时,由图象可知,当x=2时,y=x|x﹣4|有最大值,此时y=1,故答案为1;④直线y=k与函数y=x|x﹣4|有两个交点,由图象可知,k=0或k=1;故答案0或1.23.如果在一个多位自然数n中,各数位上的数字之和恰好等于10,则称这个数为“十全十美数”,并将它各数位上的数字之积记为F(n).例如在数1234中,因为1+2+3+4=10,所以数1234是“十全十美数”,且F(1234)=1×2×3×4=24.(1)若在一个自然数中的任意两个相邻数位上,左边数位上的数字大于或等于右边数位上的数字,则称这个自然数为“降序数”例如:在数32210中,因为3>2=2>1>0,所以数32210是“降序数”,已知四位自然数a既是“十全十美数”又是“降序数”,它的千位上的数字是5,F(a)=0.将数a千位上的数字减1,个位上的数字加1,得到数b,F(b)=24.求出数a;(2)“十全十美数”P是三位自然数,将数p百位上的数字与个位上的数字交换得到数q,若10p+q=2882,求F(p)的最大.解:(1)设四位数a的百位上数字是m,十位上数字是n,∵F(a)=0,∴个位上数字是0,∴m+n=5,∵数a千位上的数字减1,个位上的数字加1,得到数b,∴b的千位上数字是4,个位上数字是1,∵F(b)=24,∴mn=6,∵m≥n,∴m=3,n=2,∴a是5320;(2)设p的百位数是x,十位数是y,个位数是z,则p=100x+10y+z,q=100z+10y+x,∵10p+q=1001x+110y+110z,∵x+y+z=10,∴1001x+110y+110z=1001x+110(10﹣x)=1100+1001x﹣110x=2882,∴x=2,∴y+z=8,∴p是208,217,226,235,244,253,262,271,280,∴F(208)=F(280)=0,F(217)=F(271)=14,F(226)=F(262)=24,F (235)=F(253)=30,F(244)=32,∴F(p)的最大值为32.24.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.解:(1)设该水果店去年8月份购进福建蜜柚x个,则购进泰国青柚(900﹣x)个,依题意,得:6x+20(900﹣x)≤12400,解得:x≥400.答:水果店去年8月份购进福建蜜柚最少400个.(2)由(1)可知:今年8月份,该水果店购进福建蜜柚400个、泰国青柚500个.依题意,得:[16(1﹣a%)×﹣6]×400+[30(1+2a%)﹣20×(1﹣40%)]×500(1﹣a%)=[(16﹣6)×400+(30﹣20)×500]×(1+),整理,得:90a﹣3.6a2=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.25.己知抛物线与x轴交于点A(﹣2,0)、B(3,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第一象限内的一点,当四边形ABPC的面积最大时,求出四边形ABPC的面积最大值及此时点P的坐标.(3)如图2,将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',若抛物线y'与原抛物线对称轴交于点Q.点E是新抛物线y'对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,求点E的坐标.解:(1)∵抛物线与x轴交于点A(﹣2,0)、B(3,0),∴可设抛物线的解析式为:y=a(x+2)(x﹣3)(a≠0),把C(0,4)代入y=a(x+2)(x﹣3)(a≠0)中,得4=﹣6a,∴a=﹣,∴抛物线的解析式为:y=﹣,即y=﹣+;(2)设P点的坐标为(t,),过点P作PM⊥x轴,与BC交于点M,如图1,设直线BC的解析式为y=kx+b(k≠0),则,解得,∴直线BC的解析式为:y=﹣,∴M(t,),∴,∴=﹣t2+3t,,,∴S四边形ABPC=S△AOC+S△BOC+S△BPC=,∴当t=时,S四边形ABPC取最大值,∴此时P点的坐标为(,);(3)∵将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',∴y′的解析式为y=,即y=﹣,∴抛物线y′的对称轴为x=1,∵抛物线y=﹣,∴抛物线y=﹣+的对称轴为直线x=,把x=代入y=﹣中,得y=2,∴Q点的坐标为(,2),①当∠PEQ=90°,且PE=QE时,过E作x轴的平行线,与过Q作x的垂线交于点M,与过P作x轴的垂线交于点N,如图2,则∠QME=∠ENP,ME=1﹣,∴∠QEM+∠PEN=∠PEN+∠EPN=90°,∴∠QEM=∠EPN,∵QE=EP,∴△QEM≌△EPN(AAS),∴,∵P(,),∴E点的纵坐标为,∵点E是新抛物线y'对称轴上一动点,∴E点的坐标为(1,4);②当∠PQE=90°,且PQ=QE时,过Q作y轴的平行线,与过P作y轴的垂线交于点M,与过E作y轴的垂线交于点N,如图3,则MQ=,NE=1﹣,按①的方法可证明,△PMQ≌△QNE,∴MQ=NE,即,这显然不成立,∴∠PQE=90°,且PQ=QE不成立;③当∠QPE=90°,且PQ=PE时,过点P作y轴的平行线,与过E点作y轴的垂线交于点M,与过Q点作y轴的垂线交于点N,如图4,则EM=,PN=,按①的方法可证明,△PME≌△QNP,∴EM=PN,即,这显然不成立,∴∠QPE=90°,且PQ=PE不成立;综上,当△PQE是等腰三角形时,点E的坐标为(1,4).。
重庆八中初2020级九年级上数学第一次月考
31000 元,总利润率为 24%时,销售甲种盒装重阳糕的总利润是
元.
第3页共8页
本®数学工作室出品
三、解答题:(本大题 7 个小题,每小题 10 分,共 70 分)解答时每小题必须给出必要的演算过程或推理步 骤,画出必要的图形(包括辅助线)请将解答过程书写在答.题.卡.中对应的位置上.
将卡片上的数字记作 a,再从余下的卡片中任意抽取一张,将卡片上的数字记作 c,则抛物线
y=ax2+4x+c 与 x 轴有交点的概率为
.
17.一般轮船和一般快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达
甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船
础上先降价 17 a%,再“买三送一”(每买 3 个就免费赠送 1 个.即 4 个装成一袋,一袋以 3 个的 8
价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降 40%,
5
进货量下降 a%,售价上涨 2a%.两种柚子卖完后,该水果店今年 9 月份销售两种柚子的总利润
19.计算:(1)( 2m-n )2-m( 2m+n )
5
x2 6x 9
(2)( x+2-
)÷
x2
x2
20.如图,在矩形 ABCD 中,点 E 是边 BC 上的点,AD=DE. AF⊥DE 于点 F.
(1)求证:AF=CD;
A
D
(2)若 CE=12,tan∠ADE= 3 ,求 EF 的长. 4
D.9
10.如图,为了测量旗杆 AB 的高度,小明在点 C 处放置了高度为 2 米的测角仪 CD,测得旗杆顶端点 A
2020-2021重庆第八中学九年级数学上期末一模试题(带答案)
2020-2021重庆第八中学九年级数学上期末一模试题(带答案)一、选择题1.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣12.如图,Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,分别以A 、C 为圆心,以2AC 的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为( )A .(24−254π)cm 2 B .254πcm 2 C .(24−54π)cm 2D .(24−256π)cm 2 3.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>4.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .125.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个根是x =1D .不存在实数根6.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .87.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x(x -1)=2070 B .x(x +1)=2070 C .2x(x +1)=2070D .(1)2x x -=2070 8.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .359.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A .74-B .3或3-C .2或3-D .2或3-或74-10.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .311.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( ) A .0,4B .-3,5C .-2,4D .-3,112.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2二、填空题13.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .14.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.15.如图,Rt△ABC中,∠C=90°,AC=30cm,BC=40cm,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm.16.请你写出一个有一根为0的一元二次方程:______.17.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个.18.若二次函数y=x2﹣3x+3﹣m的图象经过原点,则m=_____.19.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于_____.20.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.23.如图,已知△ABC,∠A=60°,AB=6,AC=4.(1)用尺规作△ABC的外接圆O;(2)求△ABC的外接圆O的半径;(3)求扇形BOC的面积.24.2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A.【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.2.A解析:A 【解析】 【分析】利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可. 【详解】解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,∴10AC ===cm ,则2AC=5 cm , ∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604ππ⨯⨯⨯-=-(cm 2), 故选:A . 【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.3.A解析:A 【解析】 【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小. 【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.4.D解析:D 【解析】 【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解. 【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°, ∵BC 是⊙O 内接正六边形的一边, ∴∠BOC =360°÷6=60°,∴∠AOB =∠AOC ﹣∠BOC =90°﹣60°=30°, ∴n =360°÷30°=12; 故选:D .【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.5.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.6.A解析:A 【解析】 【分析】 【详解】解:连接OA ,OC ,过点O 作OD ⊥AC 于点D ,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴33,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.8.A解析:A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)∴63P2010==两次红,故选A.9.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=74-,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣故选C.10.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.连接OC ,∵CD ⊥AB ,CD=8, ∴PC=12CD=12×8=4, 在Rt △OCP 中,设OC=x ,则OA=x , ∵PC=4,OP=AP-OA=8-x , ∴OC 2=PC 2+OP 2, 即x 2=42+(8-x )2, 解得x=5, ∴⊙O 的直径为10. 故选A . 【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.B解析:B 【解析】 【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+= ∴整理方程即得:160a c += ∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --= 解得:13x =-,25x = 故选:B . 【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.12.D解析:D【分析】抛物线的形状只是与a有关,a相等,形状就相同.【详解】y=2(x﹣1)2+3中,a=2.故选D.【点睛】本题考查了抛物线的形状与a的关系,比较简单.二、填空题13.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.考点:圆的有关性质.14.【解析】试题分析:确定出偶数有2个然后根据概率公式列式计算即可得解∵标号为12345的5个小球中偶数有2个∴P=考点:概率公式解析:【解析】试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.考点:概率公式15.【解析】【分析】根据勾股定理求出的斜边AB再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆设AC边上的切点为D连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB ,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt △ABC 的内切圆,设AC 边上的切点为D ,连接OA 、OB 、OC ,OD ,∵∠ACB =90°,AC =30cm ,BC =40cm ,∴AB 223040+50cm ,设半径OD =rcm ,∴S △ACB =12AC BC ⋅=111AC r BC r AB r 222⋅+⋅+⋅, ∴30×40=30r +40r +50r ,∴r =10,则该圆半径是 10cm .故答案为:10.【点睛】 本题考查内切圆、勾股定理和等面积法的问题,属中档题.16.【解析】【分析】根据一元二次方程定义只要是一元二次方程且有一根为0即可【详解】可以是=0等故答案为:【点睛】本题考核知识点:一元二次方程的根解题关键点:理解一元二次方程的意义解析:240x x -=【解析】【分析】根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.【详解】可以是240x x -=,22x x -=0等.故答案为:240x x -=【点睛】本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.17.2【解析】试题解析:∵袋中装有6个黑球和n 个白球∴袋中一共有球(6+n )个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2 解析:2【解析】试题解析:∵袋中装有6个黑球和n 个白球,∴袋中一共有球(6+n )个, ∵从中任摸一个球,恰好是黑球的概率为34, ∴6364n =+, 解得:n=2.故答案为2. 18.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m 求得m 的值即可【详解】由于二次函数y=x2-3x+3-m 的图象经过原点把(00)代入y=x2-3x+3-m 得:3-m=0解得:m=解析:【解析】【分析】此题可以将原点坐标(0,0)代入y=x 2-3x+3-m ,求得m 的值即可.【详解】由于二次函数y=x 2-3x+3-m 的图象经过原点,把(0,0)代入y=x 2-3x+3-m ,得:3-m=0,解得:m=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.19.-1【解析】由题意得ABBC 于DBC 于EBC 交BC 于FAB=勾股定理得AE=AD=1DB=-1解析:2-1【解析】由题意得, AB ⊥B’C’于D ,BC 'AC ⊥于E ,BC 交B’C’于F .Q AB =2,勾股定理得∴AE =AD=1,∴DB =2-122112122ABE DBF S S S AE BD =-=-=-V V 阴影.20.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:5 6【解析】【分析】【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5 6故答案为:56.三、解答题21.(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.22.(1)W1=﹣x2+32x﹣236;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.23.(1)见解析;(2)221;(3)289【解析】【分析】(1)分别作出线段BC,线段AC的垂直平分线EF,MN交于点O,以O为圆心,OB为半径作⊙O即可.(2)连接OB,OC,作CH⊥AB于H.解直角三角形求出BC,即可解决问题.(3)利用扇形的面积公式计算即可.【详解】(1)如图⊙O即为所求.(2)连接OB,OC,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=4,∠A=60°,∴∠ACH=30°,∴AH12=AC=2,CH3=3,∵AB=6,∴BH=4,∴BC22224(23)BH CH=+=+=7,∵∠BOC=2∠A=120°,OB=OC,OF⊥BC,∴BF=CF7=COF12=∠BOC=60°,∴OC7221603CFsin===︒.(3)S扇形OBC2221120(2833609ππ⋅⋅==.【点睛】本题考查了作图﹣复杂作图,勾股定理,解直角三角形,三角形的外接圆与外心等知识,解答本题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.1 3【解析】【分析】分别用字母A,B,C代替引导员、联络员和咨询员岗位,利用列表法求出所有等可能结果,再根据概率公式求解可得.【详解】分别用字母A,B,C代替引导员、联络员和咨询员岗位,用列表法列举所有可能出现的结果:小西A B C小南A(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)的结果中,小南和小西恰好被分配到同一个岗位的结果有3种,即AA,BB,CC,∴小南和小西恰好被分配到同一个岗位进行志愿服务的概率=39=13.【点睛】考查随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.25.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用。
重庆八中2020-2021学年九年级上期中考试数学试题及答案(全套样卷)
重庆八中2020-2021学年度(上)半期考试初三年级数学试题命题:张炳全、张泳华 审核:李铁 打印:张泳华 校对:张炳全一、选择题:(本大题12个小题,每小题4分,共48分)请将正确答案的代号填在答题卷中相应的位置上. 1.31-的倒数是( ) A .3-B .3C .31-D .31 2.计算233x x ÷的结果是( )A .22xB .23xC .x 3D .3 3.下列图案中,不是中心对称图形的是( )A .B .C .D .4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为63.02=甲s ,51.02=乙s ,48.02=丙s ,42.02=丁s ,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁5.如果代数式1-x x有意义,那么x 的取值范围是( ) A .1-≠xB .1x ≠C .1≠x 且0≠xD .1-≠x 且0≠x6.如图,将一个长为8cm ,宽为6cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .26cmB .212cmC .224cmD .248cm7.甲、乙、丙三家超市为了促销一种定价为100元的商品,甲超市连续两次降价2020乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买种商品,若想最划算应到的超市是( )A .甲B .乙C .丙D .三个超市一样划算ABCD⇒⇒⇒ABCDMNOxy 8.如图,A 、B 、C 三点在⊙O 上,且∠ABO=50°,则∠ACB 等于( ) A .100°B .80°C .50°D .40°9.如图,把矩形ABCD 沿EF 翻转,点B 恰好落在AD 边的 B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面 积是( ) A .12B .24C .D .10.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是( )A .B .C .D .11.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是( )A .50B .51C .53D .5512.如图,在平面直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A,C 分别在x 轴、y 轴上,反比例函数)0,0(>≠=x k xky 的图象与 正方形的两边AB 、BC 分别交于点M 、N,轴x ND ⊥,垂足为D ,连接OM 、ON 、MN. 下列结论: ①OAM OCN ∆≅∆;②ON=MN ;③四边形DAMN 与MON ∆面积相等;④若045=∠MON ,MN=2,则点C 的坐标为(0,12+). 其中正确结论的个数是( )A .1B .2C .3D .4ABCO二、填空题:(本大题6个小题,每小题4分,共24分)请将答案写在答卷上. 13.世界文化遗产长城总长约为6700000m ,若将6700000用科学记数法表示为6.7×10n(n 是正整数),则n 的值为__________.14.合作交流是学习教学的重要方式之一,某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,7,这组数据的众数是 . 15.如图,一个圆心角为90°的扇形,半径OA =2,那么图中阴影部分的面积为 .(结果保留π) 16.方程的解为 .17.在平面直角坐标系中,作OAB ∆,其中三个顶点分别是)0,0(O ,)1,1(B ,),(y x A 其中22≤≤-x ,22≤≤-y ,x 、y 均为整数,则所作OAB ∆为直角三角形的概率是 .18.我市某重点中学校团委、学生会发出倡议,在初中各年级捐款购买书籍送给我市贫困地区的学校. 初一年级利用捐款买甲、乙两种自然科学书籍若干本,用去5324元;初二年级买了A 、B 两种文学书籍若干本,用去4840元,其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同. 若甲、乙两种书的单价之和为121元,则初一和初二两个年级共向贫困地区的学校捐献了 本书.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.计算:02)2013(60tan 223)31(27π-+--+-- .2020△ABC中,AB=AC=10,sin∠ABC=0.8,求△ABC的面积.AB C四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:,其中是不等式组的整数解.22.“中国梦”关乎每个人的幸福生活.为进一步感知我们身边的幸福,展现重庆八中人追梦的风采.我校教职工开展了以“梦想中国,逐梦八中”为主题的摄影大赛,要求参赛教职工每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级 成绩(用s 表示)频数 频率 A 10090≤≤sx 0.08 B 9080<≤s35 y C s <80 11 0.22 合计501请根据上表提供的信息,解答下列问题: (1)表中x 的值为______,y 的值为______;(2)将本次参赛作品获得A 等级的教职工依次用A 1,A 2,A 3,…表示,学校决定从本次参赛作品获得A 等级的教职工中,随机抽取两名教职工谈谈他们的参赛体会,请用树状图或列表法求恰好抽到教职工A 1和A 2的概率.23.沙坪坝小龙坎华润万家超市为“开业庆典”举行了优惠酬宾活动. 对A 、B 两种商品实行打折出售. 打折前,购买5件A 商品和1件B 商品需用90元;购买6件A 商品和3件B 商品需用126元. 在开业庆典期间,B 商品打4折销售,某顾客购买40件A 商品和50件B 商品时,他所用的钱数不低于584元. (1)打折前,A 、B 两种商品的价格分别是多少元? (2)开业庆典期间,A 商品最低打了几折?24.如图,P 为正方形ABCD 边BC 上一点,F 在AP 上,AF =AD ,EF ⊥AP 于F 交CDAD于点E ,G 为CB 延长线上一点,且BG =DE . (1)求证:DAP BAG ∠=∠21; (2)若DE =3,AD =5,求AP 的长.五、解答题(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图(1),在直角坐标系xoy 中,抛物线与x 轴交于A 、B 两点,交y 轴于点C ,过A 点的直线与抛物线的另一交点为D (m ,3),与y 轴相交于点E , 点A 的坐标为(1-,0),∠BAD = 45,点P 是抛物线上的一点,且点P 在第一象限. (1)求直线AD 和抛物线的解析式; (2)若:PBC S ∆3:2=BOC S ∆,求点P 的坐标. (3)如图(2),若M 为抛物线的顶点,点Q 为y 轴上一点,求使QB QM +最小时,点Q 的 坐标,并求QM QB +的最小值.26.如图,在Rt △ACB 中,ACB =90,AC =3,BC =6,D 为BC 上一点,CD =2,射线DG BC 交AB 于点G . 点P 从点A 出发以每秒个单位长度的速度沿AB 方向运图(1)图(2)动,点Q从点D出发以每秒2个单位长度的速度沿射线DG运动,P、Q两点同时出发,当点P到达点B时停止运动,点Q也随之停止,过点P作PE AC于点E,PF BC 于点F,得到矩形PECF,点M为点D关于点Q的对称点,以QM为直角边,在射线DG的右侧作Rt△QMN,使QN =2QM.设运动时间为t位:秒).(1)当点N恰好落在PF上时,求t的值.(2)当△QMN和矩形PECF有重叠部分时,直接写出重叠部分图形面积S与t的函数关系式以及自变量t的取值范围.(3)连接PN、N D、PD,是否存在这样的t值,使△PND为直角三角形?若存在,求出相应的t值若不存在,请说明理由;2020-2021学年度(上)半期考试初三年级数学试题参考答案一、选择题(每小题4分)二、填空题(每小题4分) 13、614、715、π-216、x=2 17、5218、168三、解答题(每小题7分)19、解:原式=132-3-29-33+⨯+ ……5分 =6-……7分20、解:过点A 作AD ⊥BC 于点D 在Rt △ABD 中∵AB=10,8.0sin =∠ABC∴88.010sin =⨯=∠=ABC AB AD……3分在Rt △ABD 中 68102222=-=-=AD AB BD……2分在△ABC 中,AB=AC ,AD ⊥BC ∴D 为BC 的中点∴12622=⨯==BD BC ∴488122121=⨯⨯=⨯=AD BC S ABC △ ……2分四、解答题(每小题10分)21、解:原式=44111a -322+-+⋅++a a a a=()2224a --+a……3分=()()()222a 2a ---+a=()()22a --+a……5分由()⎩⎨⎧<+-≥+1221513a 2a 得 31<≤-a……7分∵a 为整数 ∴a 可取-1,0,1,2 为使分式有意义 1,2a -≠≠a ∴0=a 或1=a ……8分当a=0时,原式=1 当a=1时,原式=3……10分 22、(1)4 0.7……4分(2)解:画树状图如下: 开始 :1A 2A 3A 4A 2A 3A 4A 1A 3A 412A 4A 1A 2A 3A ……8分 ()611222,1==A A P……10分答:恰好抽到1A 、2A 的概率()612,1=A AP 23、解:(1)设打折前A 、B 两种商品的价格分别是x 元,y 元。
2020-2021学年重庆八中九年级(上)第一次月考数学试卷(附答案详解)
2020-2021学年重庆八中九年级(上)第一次月考数学试卷一、选择题(本大题共12小题,共48.0分)1.sin30°的值是()A. 12B. √22C. √32D. 12.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.3.下列计算中,正确的是()A. 2x−y=−xyB. x2+x2=x4C. x−2x=−xD. (x−1)2=x2−14.如图是一个边长为1的正方形组成的网格,△ABC与△A1B1C1都是格点三角形(顶点在网格交点处),并且△ABC∽△A1B1C1,则△ABC与△A1B1C1的面积比是()A. 1:2B. 1:4C. 4:9D. 2:35.抛物线y=2(x−3)2+1的顶点坐标是()A. (3,1)B. (3,−1)C. (−3,1)D. (−3,−1)6.一个多边形的内角和是1260°,这个多边形的边数是()A. 7B. 8C. 9D. 107.估计√3×√6−1的值应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间8.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(−1,0),对称轴为直线x=1,下列结论中正确的是()A. b<0B. c<0C. a−b+c>0D. 4a+2b+c>09.如图,在某居民楼AB楼顶有一广告牌BC,在距楼底A点左侧水平距离30m的D点处有一个山坡,山坡DE的坡度(或坡比)i=1:2.4,山坡坡底D点到坡顶E点的距离DE=26m,在坡底D点处测得居民楼楼顶B点的仰角为45°,在坡顶E点处测得居民楼楼顶广告牌上端C点的仰角为27°,居民楼AB,广告牌BC与山坡DE的剖面在同一平面内,则广告牌BC的高度约为()(结果精确到0.1,参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A. 4.5mB. 4.8mC. 7.1mD. 7.5m10.若关于x的不等式组{2(x−1)≤2+2x+1>a有解,且关于y的分式方程12=2y−ay−2的解为非负数,那么满足条件的所有整数a的值之和为()A. 6B. 10C. 11D. 1511.如图,在平面直角坐标系中,反比例函数y=kx(x>0,k>0)的图象经过矩形ABCD 的顶点C,D,∠BAO=60°,且A(1,0),B点横坐标为−1,则k的值为()C. 2√3D. 2√6A. √2B. 5√3412.如图,在三角形纸片ABC中,点D是BC边上的中点,连接AD,把△ABD沿着AD,则△AEC的面积为()翻折,得到△AED,连接CE,若BC=6,tan∠ECB=√52D. 2√5A. √2B. 2C. 5√54二、填空题(本大题共6小题,共24.0分)13.2020年第三季度,重庆市“蓝天白云、繁星闪烁”天数持续增加,获得环境空气质量生态补偿资金6090000元,6090000用科学记数法表示为______.)−1−tan45°=______.14.√9+(−1315.抛物线y=(k+1)x2−2x+1与x轴有交点,则k的取值范围是______ .16.有4张正面分别标有数字−2,−3,0,5的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,数记为a,不放回,再从剩余卡片中随机抽取一张,数记为b,则使a+b能被5整除的概率为______.17.一条笔直的公路上顺次有A,B,C三地,甲车从B地出发匀速向C地行驶,同时乙车从B地出发匀速向A地行驶,到达A地并在A地停留0.5小时后,调头将速度提高了5向C地行驶,两车到达C地均停止运动.在两车行驶的过程中,甲乙两车9之间的距离s(千米)与行驶时间t(小时)之间的函数图象如图所示,当甲乙两车第一次相遇时,距A地的距离为______千米.18. 双节期间,某超市推出的“彩云追月”“众星拱月”“花好月圆”三种月饼礼盒热销,“彩云追月”礼盒含有摩卡月饼4个,芝士月饼8个,“众星拱月”礼盒含有摩卡月饼3个,芝士月饼8个,虫草月饼1个,“花好月圆”礼盒含有摩卡月饼2个,芝士月饼6个,虫草月饼1个,已知摩卡月饼每个20元,芝士月饼每个15元,虫草月饼每个100元,中秋节当天销售这三种礼盒共9440元,其中摩卡月饼的销售额为2320元,则虫草月饼的销售量为______个. 三、解答题(本大题共8小题,共78.0分) 19. 计算(1)(2a −b)(2a +b)+b(3a +b); (2)(m +1m−2)÷m 2−m m−2.20. 如图,在矩形ABCD 中,E ,F 分别在边DA 和边BC 的延长线上,连接BE ,DF ,且满足∠E =∠F . (1)求证:四边形EDFB 为平行四边形;(2)若EB =ED =5,sinE =910,求平行四边形EDFB 的面积.21.“立德树人奋进担当,教育扶贫托举希望”,多年来,重庆八中积极探索教育扶贫的有效途径,走出了一条富有八中特色的帮扶之路,谱写着中国最美的教育诗歌.重庆八中为了鼓励更多年轻人参与到教育扶贫志愿活动来,面向全市招募志愿者,甲乙两所大学组织参与了志愿者选拔活动(选拔分为笔试和面试两个环节),两所学校各有600名志愿者进入面试环节.为了了解两所大学志愿者的整体情况,从两所大学进入面试环节的志愿者中分别随机抽取了20名志愿者的笔试成绩,相关数据(成绩)整理统计如下:收集数据:甲校:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94.乙校:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)请估计在两所学校通过笔试的1200名志愿者中,笔试成绩在90分以上的共有多少人?(3)你认为哪个学校的志愿者笔试成绩的总体水平较好,请说明理由.22.在初中阶段的学习中,我们经历了列表、描点、连线画函数图象,并结合函数图象研究函数性质的过程.某数学兴趣小组根据学习函数的经验,对函数y=x4−2x2−2的图象和性质进行了探究,下面是小组的探究过程,请补充完整:(1)请把下表补充完整,并在图中补全该函数图象:x…−2−32−1−23−12−13______1312231322…y…6−2316−3−21881______ −17981______ −17981−3916−21881−3−23166…(2)结合函数图象,写出该函数的一条性质:______;(3)已知y=34x−3图象如图所示,结合你所画函数图象,直接写出34x−3≥x4−2x2−2的解集(保留1位小数,误差不超过0.2).23.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”.例如:2534,因为2+5=3+ 4=7,所以2534是“7类诚勤数”.(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出A的所有可能取值.24.某大型文具超市销售的A型画笔和B型画笔都很受消费者的欢迎,其中A型画笔售价24元/支,B型画笔售价16元/支.第一周A型画笔的销量比B型画笔多200支,且这两种画笔的总销售额为12800元.(1)第一周A型画笔、B型画笔的销量为多少支?(2)该文具超市第二周继续销售这两种画笔,第二周A型画笔售价降价13a%,销量比第一周增加了43a%,B型画笔售价不变,销量比第一周增加了15a%,结果这两种画笔第二周的总销售额比第一周的总销售额增加了35a%,求a的值.25. 如图1,在平面直角坐标系中,已知抛物线y =ax 2+bx +c(a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,其中A(−1,0),OB =4OA ,tan∠CAB =3,连接AC 、BC . (1)求该抛物线的解析式;(2)如图2,过A 作AD//BC ,交抛物线于点D ,点P 为直线BC 下方抛物线上任意一点,连接DP ,与BC 交于点E ,连接AE ,当△APE 面积最大时,求点P 的坐标及△APE 面积的最大值;(3)如图3,在(2)的条件下,将抛物线先向右平移12个单位,再向上平移3个单位后与x 轴交于点F 、G(点F 在点G 的左侧),点Q 为直线AC 上一点,连接QP 、QG 、PG ,当△QPG 是以PG 为腰的等腰三角形时,请直接写出点Q 的坐标.26. 在Rt △ABC 中,∠ACB =90°,点D 是边AB 上一点,连接CD ,CE 平分∠ACD 交AB 于点E ,∠BEC =45°.(1)如图1,当∠DCE =15°,CB =2时,求CE 的长;(2)如图2,过点E 作EF ⊥AB ,且EF =EB ,连接FD ,求证:CD =√22FD ;(3)在(2)的条件下,当tanF =13时,直接写出FECE 的值.答案和解析1.【答案】A.【解析】解:sin30°=12故选:A.直接根据特殊角的三角函数值进行计算即可.本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.2.【答案】D【解析】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.根据轴对称图形的概念对各选项分析判断利用排除法求解.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】C【解析】解:A、2x与−y不能合并,所以A选项错误;B、原式=2x2,所以B选项错误;C、原式=−x,所以C选项正确;D、原式=x2−2x+1,所以D选项错误.故选:C.利用合并同类项对A、B、C进行判断;根据完全平方公式对D进行判断.本题考查了完全平方公式:熟练运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2=a2±2ab+b2.4.【答案】C【解析】解:∵△ABC∽△A 1B 1C 1,∴△ABC 与△A 1B 1C 1的相似比为:AB A 1B 1=23,∴△ABC 与△A 1B 1C 1的面积比是:(23)2=49.故选:C .先由图形得出△ABC 与△A 1B 1C 1的相似比,再根据相似三角形的面积比等于相似比的平方得出答案即可.本题考查了相似三角形的性质,数形结合并明确相似三角形的面积比等于相似比的平方是解题的关键.5.【答案】A【解析】【分析】此题考查二次函数的性质,解析式化为顶点式y =a(x −ℎ)2+k ,顶点坐标是(ℎ,k),对称轴是x =ℎ.根据抛物线的解析式为顶点式,可直接写出顶点坐标.【解答】解:由y =2(x −3)2+1,根据顶点式的坐标特点可知,顶点坐标为(3,1). 故选A .6.【答案】C【解析】解:设这个多边形的边数是n ,则(n −2)⋅180°=1260°,解得n =9.故选C .根据多边形的内角和公式列式求解即可.本题考查了多边形的内角和公式,熟记公式是解题的关键,是基础题,比较简单.7.【答案】C【解析】解:∵1<2<4,∴1<√2<2,即4<3√2<5,∴3<3√2−1<4,即3<√3×√6−1<4,故选:C.估算确定出所求范围即可.此题考查了无理数的大小,熟练掌握估算的方法是解本题的关键.8.【答案】D【解析】解:A、抛物线开口方向向下,则a<0;对称轴位于y轴的右侧,则a、b异号,即b>0,故本选项不符合题意.B、抛物线与y轴交于正半轴,则c>0,故本选项不符合题意.C、当x=−1时,y=0,即a−b+c=0,故本选项不符合题意.D、根据抛物线的对称性质得到:当x=2时,y>0,即4a+2b+c>0,故本选项符合题意.故选:D.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、与y轴的交点有关.9.【答案】D【解析】解:作EF⊥AB于F,作DG⊥EF于G,如图所示:则GF=AD=30m,AF=DG,∠CEF=27°,∵山坡DE的坡度i=12.4=DGEG,∴EG=2.4DG,∵DE=26m,DE2+EG2=DE2,∴AF=DG=10m,EG=24m,∴EF=EG+GF=54m,在Rt △CEF 中,tan∠CEF =CF EF =tan27°≈0.51,∴CF ≈0.51×54=27.54(m),∴AC =AF +CF =10+27.54=37.54(m),又∵∠ADB =45°,∠A =90°,∴△ABD 是等腰直角三角形,∴AB =AD =30m ,∴BC =AC −AB =37.54−30≈7.5(m);故选:D .作EF ⊥AB 于F ,作DG ⊥EF 于G ,则GF =AD =30m ,AF =DG ,∠CEF =27°,求出AF =DG =10m ,EG =24m ,则EF =EG +GF =54m ,由三角函数定义求出CF ≈27.54m ,则AC =37.54m ,证出△ABD 是等腰直角三角形,则AB =AD =30m ,求出BC 即可.本题考查了直角三角形的应用−坡度、仰角问题,作出辅助线构造直角三角形是解题的关键.10.【答案】A【解析】解:不等式组整理得:{x ≤3x >a −1, ∵关于x 的不等式组{2(x −1)≤2+2x +1>a有解, ∴a −1<3,即a <4,解分式方程12=2y−a y−2得y =2a−23, ∵关于y 的分式方程12=2y−a y−2的解为非负数, ∴2a−23≥0,且2a−23≠2,解得,a ≥1,且a ≠4∴1≤a <4,∵a 为整数,∴a =1或2或3,∴满足条件的所有整数a 的值之和:1+2+3=6.故选:A .不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.【答案】B【解析】解:如图,过B 作BF ⊥x 轴于点F ,过D作DE ⊥x 轴于点E ,∵A(1,0),B 点横坐标为−1,∴AF =1−(−1)=2,∵∠BAO =60°,∴BF =√3AF =2√3, ∴B(−1,2√3). ∵∠BAO =60°,∠BAD =90°,∴∠DAE =30°,∴AE =√3DE .设DE =m ,则D(1+√3m,m),∵四边形ABCD 是矩形,∴AD//BC ,AD =BC ,∴C(−1+√3m,2√3+m).∵反比例函数y =k x (x >0,k >0)的图象经过点C ,D ,∴k =(−1+√3m)(2√3+m)=(1+√3m)⋅m ,解得m =√32,k =5√34.故选:B .过B 作BF ⊥x 轴于点F ,过D 作DE ⊥x 轴于点E ,求出AF =1−(−1)=2,解直角△ABF ,得出BF =√3AF =2√3,那么B(−1,2√3).解直角△ADE ,得出AE =√3DE.设DE =m ,则D(1+√3m,m),根据矩形与平移的性质得出C(−1+√3m,2√3+m).将C ,D 两点坐标代入反比例函数y =k x ,即可求出k .本题考查了反比例函数图象上点的坐标特征,解直角三角形,矩形的性质等知识.设DE =m ,用含m 的代数式表示出C 、D 两点的坐标是解题的关键.12.【答案】D【解析】解:连接BE,过点D作DM⊥EC,垂足为M,∵点D是BC边上的中点,BC=6,∴BD=CD=3,由折叠得,BD=DE,AD⊥BE,∴DE=DB=DC,∴∠BEC=90°,即BE⊥EC,∴EC//AD,∴S△AEC=S△DEC,在△DEC中,DE=DC=3,DM⊥EC,∴ME=MC,∵tan∠MCD=√52=DMMC,设MC=2m,则DM=√5m,由勾股定理得,DM2+MC2=DC2,即4m2+5m2=32,解得m=1,∴DM=√5,MC=2,∴S△DEC=12EC⋅DM=2√5,故选:D.通过作辅助线得出S△AEC=S△DEC,根据等腰三角形的性质,可求出S△DEC,进而得出答案.本题考查直角三角形的边角关系、等腰三角形、折叠轴对称的性质等知识,求出等腰三角形EDC的面积是解决问题的关键.13.【答案】6.09×106【解析】解:6090000=6.09×106,故答案为:6.09×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【答案】−1【解析】解:√9+(−13)−1−tan45°=3−3−1=−1.故答案为:−1.首先计算乘方、开方、三角函数,然后从左向右依次计算,求出算式的值是多少即可. 此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.15.【答案】k ≤0且k ≠−1【解析】解:依题意,得{k +1≠0△=(−2)2−4(k +1)≥0解得 {k ≠−1k ≤0, 所以k 的取值范围为k ≤0且k ≠−1,故答案为:k ≤0且k ≠−1.由题意可知k +1≠0,又因为二次函数y =(k +1)x 2−2x +1的图象与x 轴有交点,所以△=b 2−4ac ≥0,进而求出k 的取值范围.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.△=b 2−4ac 决定抛物线与x 轴的交点个数.△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.16.【答案】13【解析】解:画树状图如图:共有12个等可能的结果,使a +b 能被5整除的结果有4个,∴使a +b 能被5整除的概率=412=13;故答案为:13.画出树状图,共有12个等可能的结果,使a +b 能被5整除的结果有4个,由概率公式即可求解.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【答案】840【解析】解:如图:设甲的速度为v 甲,乙的速度为v 乙,OD 段:两人的速度和为:450÷3=150(km/ℎ),即v 甲+v 乙=150①,此时乙休息0.5ℎ,则E 处的横坐标为:3+0.5=3.5,则乙用了:9.5−3.5=6(ℎ)追上甲,则6(1+59)v 乙=3v 乙+9.5v 甲②,联立①②得{v 甲=60km/ℎv 乙=90km/ℎ, 则第一次相遇是在9.5ℎ时,距离A 地:6×90×(1+59)=840(km).故答案为:840.设甲的速度为v 甲,乙的速度为v 乙,根据题意可得v 甲+v 乙=150①,可求出乙追上甲的时间为6h ,根据题意可得6(1+59)v 乙=3v 乙+9.5v 甲②,联立①②求出乙车的速度即可解答.本题主要考查了一次函数的应用.理解函数图象的点的坐标的实际意义,从而得到甲乙两车的行驶的距离和速度是解题的关键.18.【答案】28【解析】解:每盒“彩云追月”的价格为20×4+15×8=200(元),每盒“众星拱月”的价格为20×3+15×8+100×1=280(元),每盒“花好月圆”的价格为20×2+15×6+100×1=230(元).设中秋节当天销售“彩云追月”礼盒x 盒,“众星拱月”礼盒y 盒,“花好月圆”礼盒z 盒,依题意得:{200x +280y +230z =9440①20×4x +20×3y +20×2z =2320②, ①−2.5×②得130y +130z =3640,∴y +z =28.故答案为:28.利用总价=单价×数量可分别求出每盒“彩云追月”、“众星拱月”、“花好月圆”三种月饼礼盒的价格,设中秋节当天销售“彩云追月”礼盒x 盒,“众星拱月”礼盒y 盒,“花好月圆”礼盒z 盒,根据“中秋节当天销售这三种礼盒共9440元,其中摩卡月饼的销售额为2320元”,即可得出关于x ,y ,z 的三元一次方程组,利用①−2.5×②可得130y +130z =3640,进而可求出(y +z)的值,此题得解.本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.19.【答案】解:(1)原式=4a2−b2+3ab+b2 =4a2+3ab;(2)原式=(m2−2mm−2+1m−2)÷m(m−1)m−2=(m−1)2m−2⋅m−2 m(m−1)=m−1m.【解析】(1)先利用平方差公式和单项式乘多项式法则计算,再合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.本题主要考查整式和分式的混合运算,解题的关键是掌握平方差公式和单项式乘多项式法则、分式的混合运算顺序和运算法则.20.【答案】(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠BCD=90°,∴AD=BC,AB=CD,∴∠BAE=∠DCF=90°,在△ABE和△CDF中,{∠BAE=∠DCF ∠E=∠FAB=CD,∴△ABE≌△CDF(AAS),∴BE=DF,AE=CF,∴AD+AE=BC+CF,即DE=BF,∴四边形EDFB为平行四边形;(2)解:∵sinE=910=ABBE,BE=5,∴AB=910BE=92,∵ED=EB=5,AB⊥DE,∴平行四边形EDFB的面积=ED×AB=5×92=452.【解析】(1)证△ABE≌△CDF(AAS),得BE=DF,AE=CF,则DE=BF,即可得出四边形EDFB为平行四边形;(2)由三角函数定义求出AB =910BE =92,由平行四边形面积公式即可得出答案.本题考查了矩形的性质、平行四边形的判定与性质、全等三角形的判定与性质、三角函数定义等知识;熟练掌握矩形的性质和平行四边形的判定与性质,证明三角形全等是解题的关键.21.【答案】11 10 78 81【解析】解:(1)a =20−1−7−1=11,20−1−7−2=10,甲校抽查的20名学生成绩从小到大排列后,处在中间位置的两个数的平均数为77+792=78,即中位数是78,c =78,乙校抽查的20名学生成绩出现次数最多的是81,共出现3次,故d =81, 故答案为:11,10,78,81;(2)1200×1+220+20=90(人),答:在两所学校通过笔试的1200名志愿者中,笔试成绩在90分以上的共有90人;(3)甲、乙两校的平均数相等,但中位数、众数乙校均比甲校的高,因此乙校的成绩较好,答:乙校成绩较好,乙校的中位数、众数均比甲校的大.(1)根据各组频数的和为20可求出a 、b 的值,根据中位数、众数的意义,可求出c 、d 的值;(2)求出两个学生90分以上所占的百分比,即可求出总体1200名学生中成绩在90分以上的人数;(3)从中位数、众数方面进行判断即可.本题考查频数分布表,中位数、众数、平均数的意义及应用,各组频数之和等于样本容量是正确计算的前提.22.【答案】0 −3916 −2 函数图象关于y 轴对称【解析】解:(1)当x =−12时,y =x 4−2x 2−2=−(−12)4−2×(−12)2−2=−3916. 当x =0时,y =x 4−2x 2−2=−2,(2)答案不唯一.如:函数图象关于y轴对称,故答案为函数图象关于y轴对称.x−3≥x4−2x2−2的解集0.6≤x≤1.4.(3)根据函数图象,34(1)把x=−1和x=0分别代入代入函数解析式即可把下表补充完整;描点、连线即可得2到函数的图象;(2)函数图象关于y轴对称;x−3≥x4−2x2−2的解集.(3)根据函数的图象即可得到34本题考查了抛物线与x轴的交点,二次函数的图象和性质,正确的识别图象是解题的关键.23.【答案】解:(1)在7441中,7+4=11,4+1=5,因为11≠5.∴7441不是“诚勤数”;在5436中,因为5+4=6+3=9,∴5436是“诚勤数”.(2)由题可得,设这个四位数的十位数为a,千位数为b,则个位数为(5−a),百位数为(5−b),且0≤a≤5,1≤b≤5,∴这个四位数为:1000b+100(5−b)+10a+(5−a)=900b+9a+505,∵900=13×69...3,505=13×38...11,∴900b+9a+505=(13×69+3)b+9a+13×38+11=13×(69b+38)+3b+∵这个四位数是13的倍数, ∴3b +9a +11必须是13的倍数; ∵0≤a ≤5,1≤b ≤5.∴3b +9a 在a =b =5时,取到最大值为60, ∴3b +9a 可以为:2、15、28、41、54, ∵3b +9a =3(b +3a),则3b +9a 是3的倍数. ∴3b +9a =15或3b +9a =54, ∴b +3a =5或b +3a =18, ①当b +3a =5时,a =5−b 3,∵1≤b ≤5,且a 为非负整数, ∴5−b =0或5−b =3, ∴b =5或b =2,若b =5,则a =0,此时900b +9a +505=5005; 若b =2,则a =1,此时900b +9a +505=2314; ②当b +3a =18时,a =18−b 3,∵1≤b ≤5,且a 为非负整数, ∴b =3,a =5,∴900b +9a +505=3250;综上所述,满足条件的A 为:2314、5005、3250.【解析】(1)利用“诚勤数”的定义进行验证,即可得到答案;(2)由题意可设这个四位数的十位数为a ,千位数为b.则个位数为(5−a),百位数为(5−b),然后根据13的倍数关系,以及“5类诚勤数”的定义,利用分类讨论思想进行分析,即可得到答案.本题考查了二元一次方程,新定义的运算法则,解题的关键是熟练掌握题意,正确列出二元一次方程,结合新定义,利用分类讨论思想进行求解.24.【答案】解:(1)设第一周A 型画笔的销量为x 支,B 型画笔的销量为y 支,依题意,得:{x −y =20024x +16y =12800,解得:{x =400y =200.答:第一周A 型画笔的销量为400支,B 型画笔的销量为200支.(2)依题意,得:24(1−13a%)×400(1+43a%)+16×200(1+15a%)=12800(1+35a%),整理,得:a 2−60a =0,解得:a 1=60,a 2=0(不合题意,舍去). 答:a 的值为60.【解析】(1)设第一周A 型画笔的销量为x 支,B 型画笔的销量为y 支,根据“第一周A 型画笔的销量比B 型画笔多200支,且这两种画笔的总销售额为12800元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.25.【答案】解:(1)∵A(−1,0),OB =4OA ,∴B(4,0), ∵tan∠CAB =3, ∴OC OA=3,∴C(0,−3),将A(−1,0),B(4,0),C(0,−3)代入y =ax 2+bx +c 得: {0=a −b +c0=16a +4b +c −3=c,解得{a =34b =−94c =−3,∴抛物线的解析式为y =34x 2−94x −3;(2)过P 作PF//AD 交x 轴于F ,连接DF ,如图:设经过B(4,0),C(0,−3)的直线为y =dx +e , 则{0=4d +e −3=e ,解得{d =34e =−3, ∴直线BC 为y =34x −3,由AD//BC ,设直线AD 为y =34x +f ,把A(−1,0)代入得: 0=−34+f ,解得f =34, ∴直线AD 为y =34x +34,解{y =34x 2−94x −3y =34x +34得{x =−1y =0或{x =5y =92, ∴D(5,92), ∵AD//BC , ∴S △ADE =S △ADB ,而S △ADB =12AB ⋅|y D |=12×5×92=454,∴S △ADE =454,设P(m,34m 2−94m −3),而PF//AD ,设直线PF 为y =34x +g , 则34m 2−94m −3=34m +g ,解得g =34m 2−3m −3, ∴直线PF 为y =34x +34m 2−3m −3, 令y =0得x =−m 2+4m +4, ∴F(−m 2+4m +4,0), ∵PF//AD ,∴S △ADF =S △ADP ,而S △ADF =12AF ⋅|y D |=12=12[−m 2+4m +4−(−1)]⋅92=−94m 2+9m +454,∴S △ADP =−94m 2+9m +454,∴S △APE =S △ADP −S △ADE =−94m 2+9m =−94(m −2)2+9, ∴m =2时,S △APE 最大,最大值为9, ∴P(2,−92);(3)将抛物线y =34x 2−94x −3先向右平移12个单位,再向上平移3个单位,得到的抛物线解析式为y =34(x −12)2−94(x −12)−3+3=34x 2−3x +2116, 令y =0得x =12或x =72, ∴G(72,0),∵A(−1,0),C(0,−3),∴直线AC 的解析式为y =−3x −3,设Q(n,−3n −3),则QG 2=(n −72)2+(−3n −3)2,QP 2=(n −2)2+(−3n −3+92)2,PG 2=(72−2)2+(92)2=452,△QPG 是以PG 为腰的等腰三角形,分两种情况: ①PG =QG 时,(n −72)2+(−3n −3)2=452,解得n =−11+3√1920或n =−11−3√1920, ∴Q(−11+3√1920,−27−9√1920)或(−11−3√1920,−27+9√1920); ②PG =QP 时,(n −2)2+(−3n −3+92)2=452,解得n =13+3√9120或n =13−3√9120, ∴Q(13+3√9120,−99−9√9120)或(13−3√9120,−99+9√9120), 综上所述,Q 的坐标为:(−11+3√1920,−27−9√1920)或(−11−3√1920,−27+9√1920)或(13+3√9120,−99−9√9120)或(13−3√9120,−99+9√9120).【解析】(1)由OB =4OA 可得B(4,0),由tan∠CAB =3可得OC =3OA ,则C(0,−3),利用待定系数法将A ,B ,C 三点坐标分别代入即可求解;(2)过P 作PF//AD 交x 轴于F ,连接DF ,先求出直线BC 为y =34x −3,直线AD 为y =34x +34,解{y =34x 2−94x −3y =34x +34得D(5,92),由AD//BC ,得S △ADE =454,设P(m,34m 2−94m −3),同理可得S △ADP =−94m 2+9m +454,从而S △APE =S △ADP −S △ADE =−94m 2+9m =−94(m −2)2+9,即可得到m =2时,S △APE 最大,最大值为9,P(2,−92);(3)将抛物线y =34x 2−94x −3先向右平移12个单位,再向上平移3个单位,得到的抛物线解析式为y =34x 2−3x +2116,可得G(72,0),设Q(n,−3n −3),则QG 2=(n −72)2+(−3n −3)2,QP 2=(n −2)2+(−3n −3+92)2,PG 2=(72−2)2+(92)2=452,①PG =QG时,(n −72)2+(−3n −3)2=452,可得Q(−11+3√1920,−27−9√1920)或(−11−3√1920,−27+9√1920),②PG =QP 时,(n −2)2+(−3n −3+92)2=452,可得Q(13+3√9120,−99−9√9120)或(13−3√9120,−99+9√9120). 本题考查二次函数的综合应用,涉及解析式、三角形面积、等腰三角形判定等知识,解题的关键是设相关点的坐标,用含字母的代数式表示线段长,再列方程.26.【答案】解:(1)如图1,过点C 作CN ⊥AB 于N ,∵∠DCE =15°,∠BEC =45°, ∴∠BDC =∠DCE +∠DEC =60°, ∵CE 平分∠ACD , ∴∠ACE =∠DCE =15°,∴∠BCD =90°−15°−15°=60°, ∴∠BCD =60°, ∴△BCD 是等边三角形, ∴BD =CD =BC =2, ∵CN ⊥BD ,∴BN =DN =1,∠DCN =30°, ∴CN =√3DN =√3,∵∠NEC=45°,CN⊥BA,∴∠NCE=∠NEC=45°,∴CN=NE=√3,∴CE=√2CN=√6;(2)延长EF交AC于H,连接BH,∵∠BEC=45°,∠BEH=90°,∴∠BEC=∠CEH=45°,在△CED和△CEH中,{∠DCE=∠ECH CE=CE∠DEC=∠HEC,∴△CED≌△CEH(ASA),∴DE=EH,CD=CH,∠CDE=∠CHE,在△DFE和△HBE中,{DE=EH∠BEH=∠FED=90°EF=BE,∴△DFE≌△HBE(SAS),∴DF=BH,∵∠BCH=∠BEH=90°,∴∠CBD+∠CHE=180°,∵∠BDC+∠CDE=180°,∴∠BDC=∠CBD,∴BC=CD,∴BC=CH=CD,∴BH=√2BC=√2CD,∴DF=√2CD,∴CD=√22DF;(3)过点C作CN⊥AB于N,∵tanF=13=DEEF,∴设DE=a,EF=3a,∴DF=√DE2+EF2=√a2+9a2=√10a,∵CD=√22DF,∴CD=√5a,∵CD2=CN2+DN2,∴5a2=CN2+(CN−a)2,∴CN=2a,∴CE=√2CN=2√2a,∴EFCE =2√2a=3√24.【解析】(1)过点C作CN⊥AB于N,可证△BCD是等边三角形,可得BD=CD=BC=2,由等边三角形的性质可求CN=√3,可求解;(2)延长EF交AC于H,连接BH,由“ASA”可证△CED≌△CEH,可得DE=EH,CD= CH,∠CDE=∠CHE,由“SAS”可证△DFE≌△HBE,可得DF=BH,由等腰直角三角形的性质可得结论;(3)过点C作CN⊥AB于N,设DE=a,EF=3a,由勾股定理可求DF的长,由勾股定理可求DN的长,可求CE的长,可求解.本题是三角形综合题,考查了全等三角形的判定和性质,直角三角形的性质,等边三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的关键.。
重庆八中九年级(上)第一次月考数学试卷
重庆八中九年级(上)第一次月考数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑1.(4分)4的倒数是()A.﹣4B.4C.﹣D.2.(4分)下列四个选项中,既是轴对称又是中心对称的图形是()A.矩形B.等边三角形C.正五边形D.正七边形3.(4分)计算(x2y)2的结果是()A.x4y2B.x4y C.x2y2D.x2y4.(4分)下列调查中,最适合采用普查方式的是()A.调查某品牌灯泡的使用寿命B.调查重庆市国庆节期间进出主城区的车流量C.调查重庆八中九年级一班学生的睡眠时间D.调查某批次烟花爆竹的燃放效果5.(4分)函数中自变量x的取值范围是()A.x≥﹣2B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠16.(4分)若y=(m﹣1)x是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在7.(4分)若△ABC∽△DEF,△ABC与△DEF的面积之比为4:25,则△ABC与△DEF周长之比为()A.4:25B.2:5C.5:2D.25:48.(4分)佔计+的运算结果应在哪两个连续自然数之间()A.5和6B.6和7C.7和8D.8和99.(4分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.10.(4分)如图,是一次函数y=kx+b的图象,则二次函数y=2kx2﹣bx+1的图象大致为()A.B.C.D.11.(4分)△OAB在第一象限中,OA=AB,OA⊥AB,O是坐标原点,且函数y=正好过A,B 两点,BE⊥x轴于E点,则OE2﹣BE2的值为()A.3B.2C.3D.412.(4分)使得关于x的分式方程﹣2=有正整数解,且关于x的不等式组至少有4个整数解,那么符合条件的所有整数a的和为()A.﹣20B.﹣17C.﹣9D.﹣5二、填空题:(本大题6个小题,每小题題4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4分)﹣4cos45°+(﹣)﹣2﹣|π﹣3|0=.14.(4分)如图,矩形ABCD的边AB长为4,对角线BD的长是边AB长的两倍,在矩形ABCD 中以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)15.(4分)第一次体育月考,年级主任尹老师对初三年级前6个班级的满分人数进行了统计,为了鼓励先进缩短差距,尹老师还让数学老师绘制了如图所示的折线统计图,则这6个班级体育满分人数的中位数为.16.(4分)如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tan∠B 的值为.17.(4分)春天的某个周末,阳光明媚,适合户外运动.下午,住在同一小区的小懿、小静两人不约而同的都准备从小区出发,沿相同的路线步行去同一个公园赏花!小懿出发5分钟后小静才出发,同时小懿发现当天的光线很适合摄影,所以决定按原速回家拿相机,小懿拿了相机后,担心错过最佳拍照时间,所以速度提高了20%,结果还是比小静晚2分钟到公园.小懿取相机的时间忽略不计,在整个过程中,小静保持匀速运动,小懿提速前后也分别保持匀速运动.如图所示是小懿、小静之间的距离y(米)与小懿离开小区的时间x(分钟)之间的函数图象,则小区到公园的距离为米.18.(4分)2018年9月28日,重庆八中80周年校庆在渝北校区隆重举行,学校总务处购买了红,黄,蓝三种花卉装扮出甲,乙,丙,丁四种造型,其中一个甲造型需要15盆红花,10盆黄花,10盆蓝花;一个乙造型需要5盆红花,7盆黄花,6盆蓝花;一个丙造型需要7盆红花,8盆黄花,9盆蓝花;一个丁造型需要6盆红花,4盆黄花,4盆蓝花,若一个甲造型售价1800元,利润率为20%,一个乙和一个丙造型一共成本和为1830元,且一盆红花的利润率为25%,问一个丁造型的利润率为.三、解答题:(本大题共两小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤19.(8分)如图,MN∥PQ,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ 于点C.过点B作BD平分∠ABC交AC于点D,若∠NAC=32°,求∠ADB的度数.20.(8分)解方程:(1)3x2﹣5x﹣2=0(2)﹣=1四、解答题:(本大题共五个小题,21-25题每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤21.(10分)(1)(2m﹣n)2﹣(m+n)(4m﹣n)(2)(﹣x+1)÷22.(10分)在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度,如图,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为6米,落在斜坡上的影长CD为4米,AB⊥BC,同一时刻,光线与旗杆的夹角为37°,斜坡CE 的坡角为30°,旗杆的高度约为多少米?(结果精确到0.1,参考数据:sin37°=060,cos37°≈0.80,tan37°=075,≈1.73)23.(10分)小飞文具店今年7月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从8月份开始进行销售,若每本售价为11元,则可全部售完;且每本售价每增长1元,销量就减少30本.(1)若该种笔记本在8月份的销售量不低于2200本,则8月份售价应不高于多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量进行了销售调整,售价比8月份在(1)的条件下的最高售价减少了m%,结果9月份的销量比8月份在(1)的条件下的最低销量增加了m%,9月份的销售利润达到6600元,求m的值.24.(10分)在▱ABCD中,连接对角线BD,AB=BD,E为线段AD上一点,AE=BE,F为射线BE上一点,DE=BF,连接AF(1)如图1,若∠BED=60°,CD=2,求EF的长;(2)如图2,连接DF并延长交AB于点G,若AF=2DE,求证:DF=2GF.25.(10分)如果一个三位正整数A与另一个三位正整数B相加得到三位数C,C的三个数位上的数字都相同,我们就称三位正整数A和三位正整数B互为“影子数”如:191+253=444,191+475=666…,所以191和253互为“影子数,同时191和475也互为“影子数”,475和253都是191的“影子数”.(1)若一个三位正整数M是67的倍数,它比它的一个“影子数”小107,求这个三位数M;(2)若将一个三位正整数的十位和百位交换位置后组成的三位数是,且是的“影子数”,若﹣=540,求证:b=c+3.五、解答题:(本大题共12分)解答时每小题必须给出必要的演算过程城推理步骤26.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).(1)求抛物线的解析式;=3,若在x轴上(2)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S△PAD 存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑1.解:4的倒数是.故选:D.2.解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.3.解:(x2y)2=x4y2.故选:A.4.解:A、调查某品牌灯泡的使用寿命适合采用抽样调查方式,故本选项错误;B、调查重庆市国庆节期间进出主城区的车流量适合采用抽样调查方式,故本选项错误;C、调查重庆八中九年级一班学生的睡眠时间适合采用普查方式,故本选项正确;D、调查某批次烟花爆竹的燃放效果适合采用抽样调查方式,故本选项错误.故选:C.5.解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.6.解:若y=(m﹣1)x是关于x的二次函数,则,解得:m=﹣2.故选:A.7.解:∵相似三角形△ABC与△DEF面积的比为4:25,∴它们的相似比为2:5,∴△ABC与△DEF的周长比为2:5.故选:B.8.解:(+)2=39+2=39+,∵29<<30,∴68<39+<69,∴+的运算结果应在8和9之间,故选:D.9.解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.10.解:由一次函数y=kx+b的图象可得,k>0,b>0,∴二次函数y=2kx2﹣bx+1的图象开口向上,对称轴为x=>0,故选:B.11.解:如图:过点A作AF⊥y轴于点F,延长EB交FA的延长线于点D.∵AF⊥OF,BE⊥OE,OE⊥OF∴四边形DEOF是矩形∴∠D=90°,OF=DE,DF=OE设点A(a,),即AF=a,OF=∵∠BAO=90°,AF⊥FO∴∠BAD+∠FAO=90°,∠FAO+∠FOA=90°∴∠DAB=∠AOF且AO=AB,∠AFO=∠ADB=90°∴△AFO≌△BDA(AAS)∴AD=OF=,DB=AF=a∴BE=DE﹣DB=﹣a,OE=DF=AF+AD=a+∴OE2﹣BE2=(a+)2﹣(﹣a)2=4故选:D.12.解:分式方程去分母得:﹣6﹣2(x﹣1)=ax+2,即(a+2)x=﹣6,由分式方程有正整数解,得到a+2≠0,解得:x=﹣>0,得a<﹣2,不等式组整理得:,即≤x<5,由不等式组至少有4个整数解,得到,解得:a≤﹣4,由x为正整数,且﹣≠1,得到a+2=﹣1,﹣2,﹣3,解得:a=﹣4或﹣3或﹣5,∵a≤﹣4,∴a=﹣4或﹣5,﹣4﹣5=﹣9,则符合条件的所有整数a的和为﹣9,故选:C.二、填空题:(本大题6个小题,每小题題4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.解:原式=2﹣4×+4﹣1=2﹣2+3=3,故答案为:3.14.解:∵矩形ABCD的边AB长为4,对角线BD的长是边AB长的两倍,∴BD =8,∠ABE =60°,∴S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣π,故答案为8﹣π. 15.解:由图可知,把数据按从小到大的顺序排列是:36、42、48、54、54、60, 则中位数是(48+54)÷2=51.故答案是:51.16.解:Rt △AMC 中,sin ∠CAM ==,设MC =3x ,AM =5x ,则AC ==4x .∵M 是BC 的中点,∴BC =2MC =6x .在Rt △ABC 中,tan ∠B ===. 17.解:由题意,可知小懿提速后的速度为240÷2=120(米/分),∴小懿提速前的速度为120÷(1+20%)=100(米/分).∵两人之间的距离y =400米时,小懿返回到了家中,此时小懿走了1000米,讲去提前走的500米,所以小懿在小静出发后又走了500米,小静走了400米,∴小静的速度为100×=80(米/分).设小静走了400米后还需x 分钟到达公园.由题意,可得(120﹣80)x =400﹣240,解得x =4,∴小区到公园的距离为400+4×80=720(米).故答案为720.18.解:∵甲造型售价1800元,利润率为20%,∴甲造型成本价=1800÷(1+20%)=1500元,设一盆红花的成本价为x 元,根据题意得,×15+12x=1830,解得:x=40,∴1盆黄花+1盆蓝花的成本==90元,∵1盆红花的售价=40×(1+25%)=50元;∴1盆黄花+1盆蓝花的售价==105元,∴一个丁造型的利润率=×100%=20%,故答案为:20%.三、解答题:(本大题共两小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤19.解:∵MN∥PQ,∴∠ACB=∠NAC=32°,∵AC⊥AB,∴∠BAC=90°,∴∠ABC=58°,∵BD平分∠ABC,∴∠ABD=∠ABC=29°,∴∠ADB=90°﹣29°=61°.20.解:(1)(3x+1)(x﹣2)=0,3x+1=0或x﹣2=0,所以x1=﹣,x2=2;(2)去分母得2x2﹣(x﹣3)=2x(x﹣3),去括号得,2x2﹣x+3=2x2﹣6x,移项、合并同类项得,5x=﹣3,系数化为1得,x=﹣,经检验,原方程的解为x=﹣.四、解答题:(本大题共五个小题,21-25题每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤21.解:(1)原式=4m2﹣4mn+n2﹣(4m2﹣mn+4mn﹣n2)=4m2﹣4mn+n2﹣4m2﹣3mn+n2=2n2﹣7mn;(2)原式=•=•=﹣.22.解:如图,过点C作CG⊥EF于点G,延长GH交AD于点H,过点H作HP⊥AB于点P,则四边形BCHP为矩形,∴BC=PH=6,BP=CH,∠CHD=∠A=37°,∴AP==8,过点D作DQ⊥GH于点Q,∴∠CDQ=∠CEG=30°,∴CQ=CD=2,DQ=CD cos∠CDQ=4×=2,∵QH=,∴CH=QH﹣CQ=﹣2,则AB=AP+PB=AP+CH=8+﹣2≈10.6123.解:(1)设8月份售价应为x元,依题意得:2290﹣30(x﹣11)≥2200,解得x≤14.答:8月份售价应不高于14元;(2)9月份的进价为10(1+10%)元,售价为14(1﹣m%)元,根据题意,得[14(1﹣m%)﹣10(1+10%)]×2200(1+m%)=6600,令m%=t,则原方程可化为(3﹣2t)(1+t)=3,解得t1=0(不合题意,舍去),t2=0.5,则m=50.答:m的值是50.24.(1)解:如图1中,∵四边形ABCD是平行四边形,∴AB=CD=2,∵AB=BD,∴BD=2,∵EA=EB,∴∠EAB=∠EBA,∵∠DEB=60°,∠DEB=∠EAB+∠EBA,∴∠BAD=∠EBA=∠ADB=30°,∴∠EBD=90°,∴BE=2,DE=2BE=4,∵BF=DE,∴BF=4,∴EF=BF﹣BE=4﹣2=2.(2)证明:作FH∥AB交AE于H.设DE=BF=a,则AF=2a.∵EA=EB,BA=BD,∴∠EAB=∠EBA=∠ADB,∵BF=DE,∴△ABF≌△BDE(SAS),∴BE=AF=2a,∴EF=a,EA=EB=2a,∵FH∥AB,EF=FB,∴AH=EH=a,∴===2,∴DF=2FG.25.解;(1)设一个三位数正整数为M=,且满足是67的倍数(中a,b,c为0到9之间的整数,a≠0,b≠0)由题意,+107为它的“影子数”,则它和它的“影子数”的和可表示为:,由“影子数”的定义可得:a+1=b+0=c+7,满足条件的情况条件的三位数为:①c=0时,b=7,a=6,三位数正整数为abc为670;②c=1时,b=8,a=7,三位数正整数为abc为781;③c=2时,b=9,a=8,三位数正整数为abc为892.能被67整除的只有670,所以这个三位数M为670.(2)证明:∵和bac互为影子数,所以a=2c﹣b,∵﹣=540,∴100b+10(2c﹣b)+c=540+100(2c﹣b)+10b+c,∴180b﹣180c=540,∴b﹣c=3,∴b=c+3.五、解答题:(本大题共12分)解答时每小题必须给出必要的演算过程城推理步骤26.解:(1)∵抛物线的顶点为H(1,2),∴可以假设抛物线的解析式为y=a(x﹣1)2+2,把A(﹣1,0)代入得到,a=﹣,∴抛物线的解析式为y=﹣(x﹣1)2+2,即y=﹣x2+x+.(2)如图1中,连接PA,PD,在y轴上取一点M(0,﹣),连接BM,作QN⊥BM于N.设AD交对称轴于K.由题意C(0,),D(2,),A(﹣1,0),B(3,0),∴直线AD的解析式为y=x+,∴K(1,1),设P(1,m),则有×(m﹣1)×3=3,∴m=3,∴P(1,3),∵OB=3,OM=,∴BM=,∴sin∠ABM==,∴=,∴QN=BQ,∴PQ+BQ=PQ+QN,根据垂线段最短可知,当PN⊥BM,且P,Q,N共线时,PQ+BQ的值最小,最小值=线段PN的值.∵直线BM的解析式为y=x﹣,∴当PN⊥BM时,直线PN的解析式为y=﹣2x+5,此时Q(,0),由,解得,∴N(,﹣),∴PN==,∴PQ+BQ的最小值为.(3)(3)设F(m,﹣m2+m+),有三种情况:①如图2,当G在y轴上时,过E作EQ⊥y轴于Q,作EM⊥x轴于M,∵四边形EBFG是正方形,∴EG=EB,∵∠EQG=∠EMB=90°,∠QEG=∠MEB,∴△EQG≌△EMB,∴EQ=EM,即m=﹣m2+m+,解得:m1=,m2=﹣,∴E点横坐标为或﹣.②当F 在y 轴上时,如图3,过E 作EM ⊥x 轴于M ,同理得:△EMB ≌△BOF ,∴OB =EM =3,即﹣m 2+m +=﹣3,m 1=1﹣,m 2=1+,∴P 的横坐标为1﹣或1+, ③当G 在y 轴上时,如图4,作EM ⊥OB 于E ,EN ⊥OG 于N .同法可证:EN =EM ,∴m =﹣(﹣m 2+m +),解得m 1=2+,m 2=2﹣,∴点E 的横坐标为2﹣或2+综上所述,点E 的横坐标为或﹣或1﹣或1+或2﹣或2+.。
2020年重庆八中九年级(上)第一次月考数学试卷
月考数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1.4的倒数是()A. 4B. -4C.D. -2.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形3.计算(x2y)2的结果是()A. x4y2B. x4yC. x2y2D. x2y4.下列调查中,最适合采用普查方式的是()A. 调查某品牌灯泡的使用寿命B. 调查重庆市国庆节期间进出主城区的车流量C. 调查重庆八中九年级一班学生的睡眠时间D. 调查某批次烟花爆竹的燃放效果5.函数y=中,自变量x的取值范围是()A. x>-2且x≠1B. x≥2且x≠1C. x≥-2且x≠1D. x≠16.若y=(m-1)x是关于x的二次函数,则m的值为()A. -2B. -2或1C. 1D. 不存在7.若△ABC∽△DEF,△ABC与△DEF的面积之比为4:25,则△ABC与△DEF周长之比为()A. 4:25B. 2:5C. 5:2D. 25:48.佔计+的运算结果应在哪两个连续自然数之间()A. 5和6B. 6和7C. 7和8D. 8和99.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.10.如图,是一次函数y=kx+b的图象,则二次函数y=2kx2-bx+1的图象大致为()A. B.C. D.11.△OAB在第一象限中,OA=AB,OA⊥AB,O是坐标原点,且函数y=正好过A,B两点,BE⊥x轴于E点,则OE2-BE2的值为()A. 3B. 2C. 3D. 412.使得关于x的分式方程-2=有正整数解,且关于x的不等式组至少有4个整数解,那么符合条件的所有整数a的和为()A. -20B. -17C. -9D. -5二、填空题(本大题共6小题,共24.0分)13.-cos45°+=______.14.如图,矩形ABCD的边AB长为4,对角线BD的长是边AB长的两倍,在矩形ABCD中以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是______(结果保留π)15.第一次体育月考,年级主任尹老师对初三年级前6个班级的满分人数进行了统计,为了鼓励先进缩短差距,尹老师还让数学老师绘制了如图所示的折线统计图,则这6个班级体育满分人数的中位数为______.16.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tan∠B的值为______.17.春天的某个周末,阳光明媚,适合户外运动.下午,住在同一小区的小懿、小静两人不约而同的都准备从小区出发,沿相同的路线步行去同一个公园赏花!小懿出发5分钟后小静才出发,同时小懿发现当天的光线很适合摄影,所以决定按原速回家拿相机,小懿拿了相机后,担心错过最佳拍照时间,所以速度提高了20%,结果还是比小静晚2分钟到公园.小懿取相机的时间忽略不计,在整个过程中,小静保持匀速运动,小懿提速前后也分别保持匀速运动.如图所示是小懿、小静之间的距离y (米)与小懿离开小区的时间x(分钟)之间的函数图象,则小区到公园的距离为______米.18.2018年9月28日,重庆八中80周年校庆在渝北校区隆重举行,学校总务处购买了红,黄,蓝三种花卉装扮出甲,乙,丙,丁四种造型,其中一个甲造型需要15盆红花,10盆黄花,10盆蓝花;一个乙造型需要5盆红花,7盆黄花,6盆蓝花;一个丙造型需要7盆红花,8盆黄花,9盆蓝花;一个丁造型需要6盆红花,4盆黄花,4盆蓝花,若一个甲造型售价1800元,利润率为20%,一个乙和一个丙造型一共成本和为1830元,且一盆红花的利润率为25%,问一个丁造型的利润率为______.三、计算题(本大题共3小题,共28.0分)19.解方程:(1)3x2-5x-2=0(2)-=120.(1)(2m-n)2-(m+n)(4m-n)(2)(-x+1)÷21.小飞文具店今年7月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从8月份开始进行销售,若每本售价为11元,则可全部售完;且每本售价每增长1元,销量就减少30本.(1)若该种笔记本在8月份的销售量不低于2200本,则8月份售价应不高于多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量进行了销售调整,售价比8月份在(1)的条件下的最高售价减少了m%,结果9月份的销量比8月份在(1)的条件下的最低销量增加了m%,9月份的销售利润达到6600元,求m的值.四、解答题(本大题共5小题,共50.0分)22.如图,MN∥PQ,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C.过点B作BD平分∠ABC交AC于点D,若∠NAC=32°,求∠ADB的度数.23.在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度,如图,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为6米,落在斜坡上的影长CD为4米,AB⊥BC,同一时刻,光线与旗杆的夹角为37°,斜坡CE的坡角为30°,旗杆的高度约为多少米?(结果精确到0.1,参考数据:sin37°=060,cos37°≈0.80,tan37°=075,≈1.73)24.在ABCD中,连接对角线BD,AB=BD,E为线段AD上一点,AE=BE,F为射线BE上一点,且DE=BF,连接AF.(1)如图1,若∠BED=60°,,求EF的长;(2)如图2,连接DF并延长交AB于点G,若AF=2DE,求证:DF=2GF.25.如果一个三位正整数A与另一个三位正整数B相加得到三位数C,C的三个数位上的数字都相同,我们就称三位正整数A和三位正整数B互为“影子数”如:191+253=444,191+475=666…,所以191和253互为“影子数,同时191和475也互为“影子数”,475和253都是191的“影子数”.(1)若一个三位正整数M是67的倍数,它比它的一个“影子数”小107,求这个三位数M;(2)若将一个三位正整数的十位和百位交换位置后组成的三位数是,且是的“影子数”,若-=540,求证:b=c+3.26.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)和点B,与y轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).(1)求抛物线的解析式;(2)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S△PAD=3,若在x轴上存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.答案和解析1.【答案】C【解析】解:由题可得,4的倒数是.故选:C.乘积是1的两数互为倒数,据此进行计算即可.本题主要考查了倒数的概念,解决问题的关键是掌握:乘积是1的两数互为倒数.2.【答案】A【解析】解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】A【解析】解:(x2y)2=x4y2.故选:A.直接利用积的乘方运算法则计算得出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.4.【答案】C【解析】解:A、调查某品牌灯泡的使用寿命适合采用抽样调查方式,故本选项错误;B、调查重庆市国庆节期间进出主城区的车流量适合采用抽样调查方式,故本选项错误;C、调查重庆八中九年级一班学生的睡眠时间适合采用普查方式,故本选项正确;D、调查某批次烟花爆竹的燃放效果适合采用抽样调查方式,故本选项错误.故选:C.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【答案】C【解析】解:根据题意得:解得:x≥-2且x≠1.故选C.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x的取值范围.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.【答案】A【解析】解:若y=(m-1)x是关于x的二次函数,则,解得:m=-2.故选:A.根据y=ax2+bx+c(a是不为0的常数)是二次函数,可得答案.本题考查了二次函数,注意二次项的系数不能是0.7.【答案】B【解析】解:∵相似三角形△ABC与△DEF面积的比为4:25,∴它们的相似比为2:5,∴△ABC与△DEF的周长比为2:5.故选:B.根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.8.【答案】D【解析】解:(+)2=39+2=39+,∵29<<30,∴68<39+<69,∴+的运算结果应在8和9之间,故选:D.先将+进行平方,然后估算得到即可.本题主要考查的是比较无理数的大小,熟练掌握相关法则是解题的关键.9.【答案】D【解析】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.根据题意知原图形中各行、各列中点数之和为10,据此可得.本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.10.【答案】B【解析】【分析】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.根据一次函数的图象可以判断k和b的正负,从而可以判断二次函数y=2kx2-bx+1的图象的开口方向和对称轴,从而可以解答本题.【解答】解:由一次函数y=kx+b的图象可得,k>0,b>0,∴二次函数y=2kx2-bx+1的图象开口向上,对称轴为x=>0,故选:B.11.【答案】D【解析】解:如图:过点A作AF⊥y轴于点F,延长EB交FA的延长线于点D.∵AF⊥OF,BE⊥OE,OE⊥OF∴四边形DEOF是矩形∴∠D=90°,OF=DE,DF=OE设点A(a,),即AF=a,OF=∵∠BAO=90°,AF⊥FO∴∠BAD+∠FAO=90°,∠FAO+∠FOA=90°∴∠DAB=∠AOF且AO=AB,∠AFO=∠ADB=90°∴△AFO≌△BDA(AAS)∴AD=OF=,DB=AF=a∴BE=DE-DB=-a,OE=DF=AF+AD=a+∴OE2-BE2=(a+)2-(-a)2=4故选:D.过点A作AF⊥y轴于点F,延长EB交FA的延长线于点D.由题意可证四边形DEOF 是矩形,可得DE=OF,DF=OE,由题意可证△AFO≌△BDA,可得AF=DB,AD=OF,设出A点坐标,表示出BE与OE,即可求出所求式子的值.本题考查了反比例函数应用,涉及的知识有:全等三角形的判定与性质,坐标与图形性质,熟练掌握全等三角形的判定与性质是解本题的关键.12.【答案】C【解析】解:分式方程去分母得:-6-2(x-1)=ax+2,即(a+2)x=-6,由分式方程有正整数解,得到a+2≠0,解得:x=->0,得a<-2,不等式组整理得:,即≤x<5,由不等式组至少有4个整数解,得到,解得:a≤-4,由x为正整数,且-≠1,得到a+2=-1,-2,-3,解得:a=-4或-3或-5,∵a≤-4,∴a=-4或-5,-4-5=-9,则符合条件的所有整数a的和为-9,故选:C.表示出不等式组的解集,由不等式组有且只有四个整数解,确定出a的范围,分式方程去分母转化为整式方程,表示出x,由x为正整数确定出a的值即可.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13.【答案】3+【解析】解:-cos45°+=2-+4-1=3+故答案为:3+.首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.14.【答案】8-π【解析】解:∵矩形ABCD的边AB长为4,对角线BD的长是边AB长的两倍,∴BD=8,∠ABE=60°,∴S阴=S△ABD-S扇形BAE=×4×4-=8-π,故答案为8-π.根据S阴=S△ABD-S扇形BAE计算即可;本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.15.【答案】51【解析】解:由图可知,把数据按从小到大的顺序排列是:36、42、48、54、54、60,则中位数是(48+54)÷2=51.故答案是:51.把这组数据按从小到大的顺序排列,处于最中间两个数的平均数就是这组数据的中位数.此题考查了中位数和折线统计图,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.【答案】【解析】解:Rt△AMC中,sin∠CAM==,设MC=3x,AM=5x,则AC==4x.∵M是BC的中点,∴BC=2MC=6x.在Rt△ABC中,tan∠B===.根据∠CAM的正弦值,用未知数表示出MC、AM的长,进而可表示出AC、BC的长.在Rt△ABC中,求∠B的正切值.本题考查了解直角三角形中三角函数及勾股定理的应用,要熟练掌握好边与边、边与角之间的关系.17.【答案】720【解析】解:由题意,可知小懿提速后的速度为240÷2=120(米/分),∴小懿提速前的速度为120÷(1+20%)=100(米/分).∵两人之间的距离y=400米时,小懿返回到了家中,此时小懿走了1000米,讲去提前走的500米,所以小懿在小静出发后又走了500米,小静走了400米,∴小静的速度为100×=80(米/分).设小静走了400米后还需x分钟到达公园.由题意,可得(120-80)x=400-240,解得x=4,∴小区到公园的距离为400+4×80=720(米).故答案为720.根据图象可知,两人之间的距离y=240米时,小静到达了公园,根据小懿比小静晚2分钟到公园,求出小懿提速后的速度,再求出小懿提速前的速度.根据两人之间的距离y=400米时,小懿返回到了家中,根据时间相同时,速度比等于路程比求出小静的速度.设小静走了400米后还需x分钟到达公园,根据追击问题的相等关系列出方程,求出x,进而得出小区到公园的距离.本题考查了一次函数的应用,行程问题的基本关系,函数的图象,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键.18.【答案】20%【解析】解:∵甲造型售价1800元,利润率为20%,∴甲造型成本价=1800÷(1+20%)=1500元,设一盆红花的成本价为x元,根据题意得,×15+12x=1830,解得:x=40,∴1盆黄花+1盆蓝花的成本==90元,∵1盆红花的售价=40×(1+25%)=50元;∴1盆黄花+1盆蓝花的售价==105元,∴一个丁造型的利润率=×100%=20%,故答案为:20%.根据已知条件得到甲造型成本价=1800÷(1+20%)=1500元,设一盆红花的成本价为x 元,根据题意列方程得到x=40,求出1盆黄花+1盆蓝花的成本,1盆红花的售价,1盆黄花+1盆蓝花的售价,根据利润÷成本×100%=利润率即可得到结论.本题考查了利润率问题,一元一次方程,正确的理解题意是解题的关键.19.【答案】解:(1)(3x+1)(x-2)=0,3x+1=0或x-2=0,所以x1=-,x2=2;(2)去分母得2x2-(x-3)=2x(x-3),去括号得,2x2-x+3=2x2-6x,移项、合并同类项得,5x=-3,系数化为1得,x=-,经检验,原方程的解为x=-.【解析】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了解分式方程.(1)利用因式分解法解方程;(2)把分式方程化为整式方程得到2x2-(x-3)=2x(x-3),然后解整式方程后进行检验得到原方程的解.20.【答案】解:(1)原式=4m2-4mn+n2-(4m2-mn+4mn-n2)=4m2-4mn+n2-4m2-3mn+n2=2n2-7mn;(2)原式=•=•=-.【解析】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分和除法运算化为乘法运算,再计算同分母的减法运算,然后把分子分母因式分解后约分即可.21.【答案】解:(1)设8月份售价应为x元,依题意得:2290-30(x-11)≥2200,解得x≤14.答:8月份售价应不高于14元;(2)9月份的进价为10(1+10%)元,售价为14(1-m%)元,根据题意,得[14(1-m%)-10(1+10%)]×2200(1+m%)=6600,令m%=t,则原方程可化为(3-2t)(1+t)=3,解得t1=0(不合题意,舍去),t2=0.5,则m=50.答:m的值是50.【解析】(1)设8月份售价应为x元,根据不等关系:该种笔记本在8月份的销售量不低于2200本,列出不等式求解即可;(2)先求出9月份的进价与售价,再根据等量关系:9月份的销售利润达到6600元,列出方程求解即可.本题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.22.【答案】解:∵MN∥PQ,∴∠ACB=∠NAC=32°,∵AC⊥AB,∴∠BAC=90°,∴∠ABC=58°,∵BD平分∠ABC,∴∠ABD=∠ABC=29°,∴∠ADB=90°-29°=61°.【解析】根据平行线的性质得到∠ACB=∠NAC=32°,由垂直的定义得到∠BAC=90°,根据三角形的内角和得到∠ABC=58°,根据角平分线的定义即可得到结论.本题考查了平行线的性质,角平分线的定义,以及直角三角形两锐角互余,熟记性质是解题的关键.23.【答案】解:如图,过点C作CG⊥EF于点G,延长GH交AD于点H,过点H作HP⊥AB于点P,则四边形BCHP为矩形,∴BC=PH=6米,BP=CH,∠CHD=∠A=37°,∴AP==8米,过点D作DQ⊥GH于点Q,∴∠CDQ=∠CEG=30°,∴CQ=CD=2米,DQ=CD cos∠CDQ=4×=2米,∵QH=米,∴CH=QH-CQ=-2(米),则AB=AP+PB=AP+CH=8+-2≈10.61米∴旗杆的高度约为10.61米【解析】本题主要考查解直角三角形、三角函数,坡脚等知识,解题的关键是正确添加辅助线,构造直角三角形解决问题.作CG⊥EF、延长GH交AD于点H、作HP⊥AB可得四边形BCHP为矩形,从而知BC=PH=6米、BP=CH、∠CHD=∠A=37°,先求出AP==8米,作DQ⊥GH知∠CDQ=∠CEG=30°,求出CQ=2米、DQ=2米,再求得QH=米,CH=QH-CQ=-2(米),根据AB=AP+PB=AP+CH可得答案.24.【答案】(1)解:如图1中,∵四边形ABCD是平行四边形,∴AB=CD=2,∵AB=BD,∴BD=2,∵EA=EB,∴∠EAB=∠EBA,∵∠DEB=60°,∠DEB=∠EAB+∠EBA,∴∠BAD=∠EBA=∠ADB=30°,∴∠EBD=90°,∴BE=2,DE=2BE=4,∵BF=DE,∴BF=4,∴EF=BF-BE=4-2=2.(2)证明:作FH∥AB交AE于H.设DE=BF=a,则AF=2a.∵EA=EB,BA=BD,∴∠EAB=∠EBA=∠ADB,∵BF=DE,∴△ABF≌△BDE(SAS),∴BE=AF=2a,∴EF=a,EA=EB=2a,∵FH∥AB,EF=FB,∴AH=EH=a,∴===2,∴DF=2FG.【解析】本题考查平行四边形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)证明△BDE是直角三角形,解直角三角形求出BE,DE即可解决问题;(2)作FH∥AB交AE于H.设DE=BF=a,则AF=2a.证明AH=EH=DE=a,根据FH∥AB,EF=FB,推出===2即可;25.【答案】解;(1)设一个三位数正整数为M=,且满足是67的倍数(中a,b,c为0到9之间的整数,a≠0,b≠0)由题意,+107为它的“影子数”,则它和它的“影子数”的和可表示为:,由“影子数”的定义可得:a+1=b+0=c+7,满足条件的情况条件的三位数为:①c=0时,b=7,a=6,三位数正整数为abc为670;②c=1时,b=8,a=7,三位数正整数为abc为781;③c=2时,b=9,a=8,三位数正整数为abc为892.能被67整除的只有670,所以这个三位数M为670.(2)证明:∵和bac互为影子数,所以a=2c-b,∵-=540,∴100b+10(2c-b)+c=540+100(2c-b)+10b+c,∴180b-180c=540,∴b-c=3,∴b=c+3.【解析】(1)根据题中“影子数”的定义,可设一个满足条件的三位数为M=abc,然后表示出比之大107的“影子数”,根据定义可解;(2)根据“影子数”的定义求出a、b、c之间的关系式代入题中给定的等式求出.本题主要运用了因式分解的思想,把一个三位数用乘积的形式表示出来,从而转换为所求解的形式,这是解答本题的关键.26.【答案】解:(1)∵抛物线的顶点为H(1,2),∴可以假设抛物线的解析式为y=a(x-1)2+2,把A(-1,0)代入得到,a=-,∴抛物线的解析式为y=-(x-1)2+2,即y=-x2+x+.(2)如图1中,连接PA,PD,在y轴上取一点M(0,-),连接BM,作QN⊥BM于N.设AD交对称轴于K.由题意C(0,),D(2,),A(-1,0),B(3,0),∴直线AD的解析式为y=x+,∴K(1,1),设P(1,m),则有×(m-1)×3=3,∴m=3,∴P(1,3),∵OB=3,OM=,∴BM=,∴sin∠ABM==,∴=,∴QN=BQ,∴PQ+BQ=PQ+QN,根据垂线段最短可知,当PN⊥BM,且P,Q,N共线时,PQ+BQ的值最小,最小值=线段PN的值.∵直线BM的解析式为y=x-,∴当PN⊥BM时,直线PN的解析式为y=-2x+5,此时Q(,0),由,解得,∴N(,-),∴PN==,∴PQ+BQ的最小值为.(3)(3)设F(m,-m2+m+),有三种情况:①如图2,当G在y轴上时,过E作EQ⊥y轴于Q,作EM⊥x轴于M,∵四边形EBFG是正方形,∴EG=EB,∵∠EQG=∠EMB=90°,∠QEG=∠MEB,∴△EQG≌△EMB,∴EQ=EM,即m=-m2+m+,解得:m1=,m2=-,∴E点横坐标为或-.②当F在y轴上时,如图3,过E作EM⊥x轴于M,同理得:△EMB≌△BOF,∴OB=EM=3,即-m2+m+=-3,m1=1-,m2=1+,∴P的横坐标为1-或1+,③当G在y轴上时,如图4,作EM⊥OB于E,EN⊥OG于N.同法可证:EN=EM,∴m=-(-m2+m+),解得m1=2+,m2=2-,∴点E的横坐标为2-或2+综上所述,点E的横坐标为或-或1-或1+或2-或2+.【解析】(1))由抛物线的顶点为H(1,2),可以假设抛物线的解析式为y=a(x-1)2+2,把A(-1,0)代入得到,a=-;(2)如图1中,连接PA,PD,在y轴上取一点M(0,-),连接BM,作QN⊥BM于N.设AD交对称轴于K.首先证明QN=BQ,推出PQ+BQ=PQ+QN,根据垂线段最短可知,当HN⊥BM,且P,Q,N共线时,PQ+BQ的值最小,最小值=线段PN的值;(3)设P(m,-m2+m+3),有三种情况:①如图2,当G在y轴上时,过E作EQ⊥y轴于Q,作EM⊥x轴于M,证明△EQG≌△EMB,则EQ=EM,列方程可得m的值;②当F在y轴上时,如图3,过E作EM⊥x轴于M,同法可得;③当G在y轴上时,如图4,作EM⊥OB于E,EN⊥OG于N.只要证明EM=EN,构建方程即可解决问题;本题为二次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、正方形的性质、垂线段最短、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中构造三角形相似是解题的关键,在(3)中确定出E的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
重庆市沙坪坝区第八中学校2020-2021学年九年级上学期第一次月考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在实数-1,0, , 中,最大的数是()
A.-1B.0C. D.
2.下列图形是我国各大公司的标识,在这些标识中,是轴对称图形的是()
A.5B.4C.3D.2
二、填空题
13. ______.
14. ______.
15.已知一个正n边形的每个内角都为144°,则边数n为_____.
16.如图,在 中, ,垂足为 ,若 , , ,则 _____.
17.不览夜景,未到重庆山城夜景,早在清乾隆时期就已有名气,被时任巴县知县王尔鉴,列为巴渝十二景之一在朝天门码头坐船游两江(即长江、嘉陵江),是游重庆赏夜景的一个经典项目.一艘轮船从朝天门码头出发匀速行驶, 小时后一快艇也从朝天门码头出发沿同一线路匀速行驶,当快艇先到达目的地后立刻按原速返回并在途中与轮船第二次相遇.设轮船行驶的时间为 ,快艇和轮船之间的距离为 , 与 的函数关系式如图所示,则快艇与轮船第二次相遇时到朝天门码头的距离为_____千米.
三、解答题
19.化简:(1) ;
(2) .
20.如图,在△ABC中,AB=AC,D是BC的中点,DE∥AB交AC于点E,∠B=34°.
(1)求∠BAD的度数;
(2)求证:AE=DE.
21.为践行习总书记提出的“绿水青山就是金山银山”重要思想,我市举办了“重庆市第五届生态文明知识竞赛”某校从七、八年级中各随机抽取 名同学的竞赛成绩(百分制)进行整理分析(成绩得分用 表示,共分成五组:A. ,B. ,C. ,D. ,E. ),绘制了如下不完整的统计图表:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年重庆八中九年级(上)第一次月考模拟数学试卷一、选择题(共12小题).1.sin45°的值是()A.B.C.D.12.如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A.B.C.D.3.在Rt△ABC中,∠C=90°,tan A=,则cos A等于()A.B.C.D.4.下列命题中,是真命题的是()A.对角线相等的平行四边形是菱形B.一组邻边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.四个角相等的四边形是菱形5.估计的值应在()之间.A.0和1B.1和2C.2和3D.3和46.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.67.按如图所示的运算程序,能使输出y值为的是()A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°8.如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=09.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°,AC=,函数y=(x>0)的图象经过点C,则k的值为()A.3B.4C.6D.910.如图,为了测量旗杆AB的高度,小明在点C处放置了高度为2米的测角仪CD,测得旗杆顶端点A的仰角∠ADE=50.2°,然后他沿着坡度为i=的斜坡CF走了20米到达点F,再沿水平方向走8米就到达了旗杆底端点B.则旗杆AB的高度约为()米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A.8.48B.14C.18.8D.30.811.如果关于x的不等式组有且只有两个奇数解,且关于y的分式方程﹣=1的解为非负整数,则符合条件的所有整数a的和为()A.8B.16C.18D.2012.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.二、填空题(共6小题).13.万众瞩目的重庆来福士广场开业当天,游客数量突破了350000人,比成都来福士广场开业首日游客数量和杭州来福士广场开业首日游客数量的总和还要多,将数据350000用科学记数法表示为.14.计算:|﹣4|+(﹣2)2+cos60°=.15.抛物线y=x2+bx+c的顶点为(1,2),则它与y轴交点的坐标为.16.现有4张完全相同的卡片分别写着数字﹣2,1,3,4.将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作a.再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线y=ax2+4x+c与x轴有交点的概率为.17.一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行,轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有千米.18.重阳佳节来临之际,某糕点店对桂圆味,核桃味、绿豆味重阳糕(分别记为A、B、C)进行混装,推出了甲、乙两种盒装重阳糕,盒装重阳糕的成本是盒中所有A、B、C的成本与盒装包装成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中所有A、B、C的成本之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的倍.每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是元.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.化简:(1)(2m﹣n)2﹣n(2m+n);(2)(x+2﹣)÷.20.如图,在矩形ABCD中,点E是边BC上的点,AD=DE,AF⊥DE于点F.(1)求证:AF=CD;(2)若CE=12,tan∠ADE=,求EF的长.21.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,A,B两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从A,B两村各抽取15户进行了抽样调查,并对每户每月销售的土豆箱数(用x表示)进行了数据整理、描述和分析,下面给出了部分信息:A村卖出的土豆箱数为40≤x<50的数据有:40,49,42,42,43B村卖出的土豆箱数为40≤x<50的数据有:40,43,48,46土豆箱数<3030≤x<4040≤x<5050≤x<60≥60A村03552B村1a45b 平均数、中位数、众数如表所示村名平均数中位数众数A村48.8m59B村47.44656根据以上信息,回答下列问题:(1)表中a=;b=;m=;(2)你认为A,B两村中哪个村的小土豆卖得更好?请说明理由;(3)在该电商平台进行销售的A,B两村村民共210户,若该电商平台把每月的小土豆销售量x在45<x<60范围内的村民列为重点培养对象,估计两村共有多少户村民会被列为重点培养对象?22.小帆根据学习函数的过程与方法,对函数y=x|ax+b|(a>0)的图象与性质进行探究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而(在横线上填增大或减小);③当x<4时,y=x|ax+b|的最大值是;①直线y=k与函数y=x|ax+b|有两个交点,则k=.23.如果在一个多位自然数n中,各数位上的数字之和恰好等于10,则称这个数为“十全十美数”,并将它各数位上的数字之积记为F(n).例如在数1234中,因为1+2+3+4=10,所以数1234是“十全十美数”,且F(1234)=1×2×3×4=24.(1)若在一个自然数中的任意两个相邻数位上,左边数位上的数字大于或等于右边数位上的数字,则称这个自然数为“降序数”例如:在数32210中,因为3>2=2>1>0,所以数32210是“降序数”,已知四位自然数a既是“十全十美数”又是“降序数”,它的千位上的数字是5,F(a)=0.将数a千位上的数字减1,个位上的数字加1,得到数b,F(b)=24.求出数a;(2)“十全十美数”P是三位自然数,将数p百位上的数字与个位上的数字交换得到数q,若10p+q=2882,求F(p)的最大.24.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.25.己知抛物线与x轴交于点A(﹣2,0)、B(3,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第一象限内的一点,当四边形ABPC的面积最大时,求出四边形ABPC的面积最大值及此时点P的坐标.(3)如图2,将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',若抛物线y'与原抛物线对称轴交于点Q.点E是新抛物线y'对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,求点E的坐标.参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C.D的四个答案,其中只有--个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.sin45°的值是()A.B.C.D.1解:sin45°=.故选:B.2.如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A.B.C.D.解:从上面看易得第一层有2个正方形,第二层有2个正方形.故选:D.3.在Rt△ABC中,∠C=90°,tan A=,则cos A等于()A.B.C.D.解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.4.下列命题中,是真命题的是()A.对角线相等的平行四边形是菱形B.一组邻边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.四个角相等的四边形是菱形解:A、对角线相等的平行四边形是矩形,故错误,不符合题意;B、一组邻边相等的平行四边形是菱形,故错误,不符合题意;C、对角线互相垂直的平行四边形是菱形,正确,是真命题,符合题意;D、四个角相等的四边形是矩形,故原命题错误,不符合题意,故选:C.5.估计的值应在()之间.A.0和1B.1和2C.2和3D.3和4解:=﹣3,∵3<<4,∴0<﹣3<1,故选:A.6.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.6解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.按如图所示的运算程序,能使输出y值为的是()A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°解:A、α=60°,β=45°,α>β,则y=sinα=;B、α=30°,β=45°,α<β,则y=cosβ=;C、α=30°,β=30°,α=β,则y=sinα=;D、α=45°,β=30°,α>β,则y=sinα=;故选:C.8.如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=0解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,故A、B错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a﹣2b+c=0,∵b=﹣2a,∴4a+4a+c=0,即8a+c=0,故D正确,故选:D.9.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°,AC=,函数y=(x>0)的图象经过点C,则k的值为()A.3B.4C.6D.9解:过点C作CD⊥x轴,垂足为D,∵A、B的坐标分别是(0,3)、(3、0),∴OA=OB=3,在Rt△AOB中,AB2=OA2+OB2=18,又∵∠ABC=90°,∴∠OAB=∠OBA=45°=∠BCD=∠CBD,∴CD=BD,∴BC2=2CD2,∵AC=,在Rt△ABC中,AB2+BC2=AC2,∴18+2BD2=20,∴CD=BD=1,∴C(4,1),代入函数y=(x>0)得:k=4,故选:B.10.如图,为了测量旗杆AB的高度,小明在点C处放置了高度为2米的测角仪CD,测得旗杆顶端点A的仰角∠ADE=50.2°,然后他沿着坡度为i=的斜坡CF走了20米到达点F,再沿水平方向走8米就到达了旗杆底端点B.则旗杆AB的高度约为()米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A.8.48B.14C.18.8D.30.8解:如图,延长AB交水平线于M,作FN⊥CM于N,延长DE交AM于H.在Rt△CFN中,∵=,CF=20米,∴FN=BM=12米,CN=16米,∴DH=CM=16+8=24米,在Rt△ADH中,AH=DH•tan50.2=24×1.2=28.8米,∴AB=AM﹣BM=AH+HM=BM=28.8+2﹣12=18.8米,故选:C.11.如果关于x的不等式组有且只有两个奇数解,且关于y的分式方程﹣=1的解为非负整数,则符合条件的所有整数a的和为()A.8B.16C.18D.20解:不等式组整理得:,解得:<x≤6,由不等式组有且只有两个奇数解,得到1≤<3,解得:2≤a<10,即整数a=2,3,4,5,6,7,8,9,分式方程去分母得:3y+a﹣10=y﹣2,解得:y=,由分式方程解为非负整数,得到a=2,6,8,之和为16,故选:B.12.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,故答案为:.故选:C.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.万众瞩目的重庆来福士广场开业当天,游客数量突破了350000人,比成都来福士广场开业首日游客数量和杭州来福士广场开业首日游客数量的总和还要多,将数据350000用科学记数法表示为 3.5×105.解:350000=3.5×105,故答案为:3.5×105.14.计算:|﹣4|+(﹣2)2+cos60°=8.5.解:|﹣4|+(﹣2)2+cos60°=4+4+0.5=8.5故答案为:8.5.15.抛物线y=x2+bx+c的顶点为(1,2),则它与y轴交点的坐标为(0,3).解:∵抛物线y=x2+bx+c的顶点为(1,2),∴抛物线为y=(x﹣1)2+2=x2﹣2x+3,令x=0得:y=3,∴与y轴的交点坐标为(0,3),故答案为:(0,3).16.现有4张完全相同的卡片分别写着数字﹣2,1,3,4.将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作a.再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线y=ax2+4x+c与x轴有交点的概率为.解:画树状图如下由树状图知,共有12种等可能结果,其中能使△=42﹣4ac≥0,即ac≤4的有10种结果,∴抛物线y=ax2+4x+c与x轴有交点的概率为=,故答案为:.17.一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行,轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有65千米.解:设轮船的速度为x千米/小时,快艇的速度为y千米/小时,依题意得:,解得,150﹣15×(300÷45﹣1)=65(千米).答:当快艇返回到乙港时,轮船距乙港还有65千米.故答案为:6518.重阳佳节来临之际,某糕点店对桂圆味,核桃味、绿豆味重阳糕(分别记为A、B、C)进行混装,推出了甲、乙两种盒装重阳糕,盒装重阳糕的成本是盒中所有A、B、C的成本与盒装包装成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中所有A、B、C的成本之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的倍.每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是2500元.解:设A的单价为x元,B的单价为y元,C的单价为z元,每盒甲的盒装包装成本为k,则每盒乙的盒装包装成本是k,当销售这两种盒装重阳糕的销售利润率为24%时,该店销售甲的销售量为a盒,乙的销售量为b盒,甲每盒装的重阳糕的成本是:15x=6x+2y+2z,化简得:y+z=4.5x,乙每盒装的重阳糕的成本是:2x+4y+4z=2x+4(y+z)=2x+4×4.5x=20x,∵=,∴乙每盒的成本是甲每盒的成本的,设甲每盒的成本为m,则乙每盒的成本为m,乙每盒的售价为:m(1+20%)=1.6m,∵每盒乙的售价比每盒甲的售价高20%,∴甲每盒的售价为:=m,根据甲乙的利润得:(m﹣m)a+(1.6m﹣m)b=(ma+b)×24%,化简得:0.28ma=0.16mb,∴b=a,∵ma+1.6mb=31000,∴ma+1.6m×a=31000,解得:ma=7500,∴销售甲种盒装重阳糕的总利润是:ma﹣ma=ma=×7500=2500(元),故答案为:2500.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 19.化简:(1)(2m﹣n)2﹣n(2m+n);(2)(x+2﹣)÷.解:(1)原式=4m2﹣4mn+n2﹣2mn﹣n2=4m2﹣6mn;(2)原式=÷=•=.20.如图,在矩形ABCD中,点E是边BC上的点,AD=DE,AF⊥DE于点F.(1)求证:AF=CD;(2)若CE=12,tan∠ADE=,求EF的长.解:(1)∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC,∠AFD=∠C=90°.∵AD=DE.∴△ADF≌△DEC(AAS),∴AF=DC.(2)∵tan∠ADE=,∠ADE=∠CED,∴Rt△CDE中,tan∠CED==,∴CD=CE=9,∴DE===15,∵△ADF≌△DEC,∴DF=CE=12,∴EF=DE﹣DF=15﹣12=3.21.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,A,B两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从A,B两村各抽取15户进行了抽样调查,并对每户每月销售的土豆箱数(用x表示)进行了数据整理、描述和分析,下面给出了部分信息:A村卖出的土豆箱数为40≤x<50的数据有:40,49,42,42,43B村卖出的土豆箱数为40≤x<50的数据有:40,43,48,46土豆箱数<3030≤x<4040≤x<5050≤x<60≥60A村03552B村1a45b 平均数、中位数、众数如表所示村名平均数中位数众数A村48.8m59B村47.44656根据以上信息,回答下列问题:(1)表中a=4;b=1;m=49;(2)你认为A,B两村中哪个村的小土豆卖得更好?请说明理由;(3)在该电商平台进行销售的A,B两村村民共210户,若该电商平台把每月的小土豆销售量x在45<x<60范围内的村民列为重点培养对象,估计两村共有多少户村民会被列为重点培养对象?解:(1)由B村的中位数为46,即中间第8个为46,∴1+5+b=7,∴b=1,∴a=15﹣1﹣4﹣5﹣1=4,A村的中位数为第8个数49,即m=49;故答案为:4;1;49;(2)A,B两村中A村的小土豆卖得更好;理由如下:①A村的平均数比B村大;②A村的中位数比B村大;③A村的众数比B村大;(3)A,B两村抽取的15户中每月的小土豆销售量x在45<x<60范围内的村民有8﹣2=6户,210×=91(户);答:估计两村共有91户村民会被列为重点培养对象.22.小帆根据学习函数的过程与方法,对函数y=x|ax+b|(a>0)的图象与性质进行探究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而减小(在横线上填增大或减小);③当x<4时,y=x|ax+b|的最大值是1;①直线y=k与函数y=x|ax+b|有两个交点,则k=0或1.解:(1)将点(2,1),(4,0)代入y=x|ax+b|,得到a=﹣1,b=4或a=1,b=﹣4,∵a>0,∴a=1,b=﹣4,∴y=x|x﹣4|;(2)①如图所示:②由图可知,当2≤x≤4时,y随x的增大而减小;故答案为减小;③当x<4时,由图象可知,当x=2时,y=x|x﹣4|有最大值,此时y=1,故答案为1;④直线y=k与函数y=x|x﹣4|有两个交点,由图象可知,k=0或k=1;故答案0或1.23.如果在一个多位自然数n中,各数位上的数字之和恰好等于10,则称这个数为“十全十美数”,并将它各数位上的数字之积记为F(n).例如在数1234中,因为1+2+3+4=10,所以数1234是“十全十美数”,且F(1234)=1×2×3×4=24.(1)若在一个自然数中的任意两个相邻数位上,左边数位上的数字大于或等于右边数位上的数字,则称这个自然数为“降序数”例如:在数32210中,因为3>2=2>1>0,所以数32210是“降序数”,已知四位自然数a既是“十全十美数”又是“降序数”,它的千位上的数字是5,F(a)=0.将数a千位上的数字减1,个位上的数字加1,得到数b,F(b)=24.求出数a;(2)“十全十美数”P是三位自然数,将数p百位上的数字与个位上的数字交换得到数q,若10p+q=2882,求F(p)的最大.解:(1)设四位数a的百位上数字是m,十位上数字是n,∵F(a)=0,∴个位上数字是0,∴m+n=5,∵数a千位上的数字减1,个位上的数字加1,得到数b,∴b的千位上数字是4,个位上数字是1,∵F(b)=24,∴mn=6,∵m≥n,∴m=3,n=2,∴a是5320;(2)设p的百位数是x,十位数是y,个位数是z,则p=100x+10y+z,q=100z+10y+x,∵10p+q=1001x+110y+110z,∵x+y+z=10,∴1001x+110y+110z=1001x+110(10﹣x)=1100+1001x﹣110x=2882,∴x=2,∴y+z=8,∴p是208,217,226,235,244,253,262,271,280,∴F(208)=F(280)=0,F(217)=F(271)=14,F(226)=F(262)=24,F (235)=F(253)=30,F(244)=32,∴F(p)的最大值为32.24.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.解:(1)设该水果店去年8月份购进福建蜜柚x个,则购进泰国青柚(900﹣x)个,依题意,得:6x+20(900﹣x)≤12400,解得:x≥400.答:水果店去年8月份购进福建蜜柚最少400个.(2)由(1)可知:今年8月份,该水果店购进福建蜜柚400个、泰国青柚500个.依题意,得:[16(1﹣a%)×﹣6]×400+[30(1+2a%)﹣20×(1﹣40%)]×500(1﹣a%)=[(16﹣6)×400+(30﹣20)×500]×(1+),整理,得:90a﹣3.6a2=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.25.己知抛物线与x轴交于点A(﹣2,0)、B(3,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第一象限内的一点,当四边形ABPC的面积最大时,求出四边形ABPC的面积最大值及此时点P的坐标.(3)如图2,将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',若抛物线y'与原抛物线对称轴交于点Q.点E是新抛物线y'对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,求点E的坐标.解:(1)∵抛物线与x轴交于点A(﹣2,0)、B(3,0),∴可设抛物线的解析式为:y=a(x+2)(x﹣3)(a≠0),把C(0,4)代入y=a(x+2)(x﹣3)(a≠0)中,得4=﹣6a,∴a=﹣,∴抛物线的解析式为:y=﹣,即y=﹣+;(2)设P点的坐标为(t,),过点P作PM⊥x轴,与BC交于点M,如图1,设直线BC的解析式为y=kx+b(k≠0),则,解得,∴直线BC的解析式为:y=﹣,∴M(t,),∴,∴=﹣t2+3t,,,∴S四边形ABPC=S△AOC+S△BOC+S△BPC=,∴当t=时,S四边形ABPC取最大值,∴此时P点的坐标为(,);(3)∵将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',∴y′的解析式为y=,即y=﹣,∴抛物线y′的对称轴为x=1,∵抛物线y=﹣,∴抛物线y=﹣+的对称轴为直线x=,把x=代入y=﹣中,得y=2,∴Q点的坐标为(,2),①当∠PEQ=90°,且PE=QE时,过E作x轴的平行线,与过Q作x的垂线交于点M,与过P作x轴的垂线交于点N,如图2,则∠QME=∠ENP,ME=1﹣,∴∠QEM+∠PEN=∠PEN+∠EPN=90°,∴∠QEM=∠EPN,∵QE=EP,∴△QEM≌△EPN(AAS),∴,∵P(,),∴E点的纵坐标为,∵点E是新抛物线y'对称轴上一动点,∴E点的坐标为(1,4);②当∠PQE=90°,且PQ=QE时,过Q作y轴的平行线,与过P作y轴的垂线交于点M,与过E作y轴的垂线交于点N,如图3,则MQ=,NE=1﹣,按①的方法可证明,△PMQ≌△QNE,∴MQ=NE,即,这显然不成立,∴∠PQE=90°,且PQ=QE不成立;③当∠QPE=90°,且PQ=PE时,过点P作y轴的平行线,与过E点作y轴的垂线交于点M,与过Q点作y轴的垂线交于点N,如图4,则EM=,PN=,按①的方法可证明,△PME≌△QNP,∴EM=PN,即,这显然不成立,∴∠QPE=90°,且PQ=PE不成立;综上,当△PQE是等腰三角形时,点E的坐标为(1,4).。