七年级下学期数学知识框架
北师大版七年级(下册)数学知识点总结
北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意:底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。
p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
七年级下沪教版数学知识点
七年级下沪教版数学知识点一、有理数有理数是指可表示成分数形式的数,包括正整数、负整数、零、分数和带小数等。
其中,正数和负数的加减法和乘除法都遵循相同的规律。
二、代数式代数式是指由数、变量和运算符号组成的式子,例如:3x+2、y+4、4y-5x+8等。
其中,常见的运算符号包括加减乘除、括号、指数和根号等。
代数式的运算包括合并同类项、移项、因式分解、配方法和分式化简等。
三、一次函数一次函数是指函数图像呈直线的函数,其一般式为y=kx+b。
其中,k为斜率,表示直线的倾斜程度,b为截距,表示直线与y轴的交点。
一次函数的关键在于掌握斜率的计算和图像的画法。
四、平面图形平面图形包括点、线、面等内容。
常见的平面图形有直线、射线、线段、角、三角形、四边形、多边形、圆等。
其中,规则多边形的周长和面积的计算需要关注边数、边长和apothem的概念,圆的周长和面积的计算需要注意直径、半径和π的关系。
五、立体图形立体图形包括点、线、面和体等内容。
常见的立体图形有球体、圆柱体、圆锥体、正方体、长方体等。
其中,球体的体积和表面积的计算需要注意半径和π的关系,其他立体图形的体积和表面积的计算需要根据图形的具体形状进行计算。
六、概率概率是指某个事件发生的可能性大小,其计算方法为事件发生的次数除以总次数。
常见的概率问题包括:基本事件概率、复合事件概率、互斥事件概率、非互斥事件概率和条件概率等。
七、统计统计是指对数据进行收集、整理、分析和解释的过程。
常见的统计问题包括:数据的收集和整理、频数分布表、频率分布图、统计量的计算、正态分布的概念和应用等。
在实践应用中,统计常常被用于调查、分析及决策等方面。
八、解方程解方程指的是求得方程中未知数的值。
常见的解方程方法包括:消元法、配方法、因式分解和代入法等。
掌握解方程的方法和技巧是理解数学的基础。
九、三角函数三角函数是指正弦函数、余弦函数和正切函数等函数。
在实际问题中,三角函数被广泛应用于建筑、航海、声波等方面。
人教版七年级数学(下)知识点
人教版:七年级数学(下)知识点人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。
第五章相交线与平行线二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质对顶角的性质:对顶角相等。
10垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案. 重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用. 难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
七年级下数学第一章知识点
七年级下数学第一章知识点数学是一门需要认真学习的学科,对于初中生来说,七年级下数学第一章是非常重要的,因此我们需要认真学习掌握。
在本篇文章中,我们将全面介绍七年级下数学第一章的知识点,并给出相关的例子和题目。
一、有理数及其表示法1.有理数的概念:有理数是指可以用两个整数的比表示出来的数,包括整数和分数。
因为它们可以在数轴上表示出来,所以也被称为数轴上的点。
例如,-2,0.5和3/4都是有理数。
2.有理数的表示法:通常表示有理数的方法有三种:分数表示法、小数表示法和百分数表示法。
在这里,我们主要介绍分数表示法和小数表示法。
分数表示法:a/b(a和b都是整数,b不等于0),其中a被称为分子,b被称为分母。
同一个有理数可以有不同的分数表示法,例如2/4和1/2是同一个有理数。
小数表示法:例如,3/4可以表示为0.75,或者0.750000。
在小数表示法中,我们将数字按照一定的方法排列,例如,0.75是3/4的小数表示法,小数点后面的数字表示分数的十分位和百分位。
二、有理数的比较在比较有理数大小时,我们需要将它们转化成同样的形式。
例如,我们可以将分数化简,或者将小数补零。
以下是一些比较有理数大小的示例:1.将小数补零:例如,将0.25和0.2比较大小。
我们将0.25乘以10,得到2.5,将0.2乘以10,得到2。
因此,0.25>0.2。
2.将分数化简:例如,比较1/3和2/5的大小。
我们将1/3化简为5/15,将2/5化简为6/15。
因此,1/3<2/5。
三、有理数的加减法有理数的加减法可以用数轴,或者数表等方式表示出来。
举例来说,如果我们要计算-3+5,我们可以用数轴表示出来:首先,我们在数轴上找到-3的位置,并标记出来。
然后,在它的右侧找到5的位置,并标记出来。
最后,从-3的位置开始,向右移动5个单位,我们可以得到答案2。
四、有理数的乘除法有理数的乘法和除法很容易理解,但需要记住一些规律。
苏教版七年级下册数学知识点总结
第七章 平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。
同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
34、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a 、b 、c ,则b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n边形的内角和等于(n-2)•180°;任意多边形的外角和等于360°。
第八章幂的运算幂(power)指乘方运算的结果。
a n指将a自乘n次(n个a相乘)。
把a n看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有:am•a n=a m+n (同底数幂相乘,底数不变,指数相加)am÷a n=a m-n (同底数幂相除,底数不变,指数相减)(am)n=a mn (幂的乘方,底数不变,指数相乘)(ab)n=a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a0=1(a≠0) (任何不等于0的数的0次幂等于1)a-n=1/a n (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念:a中,a 叫做底数,求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
七年级下数学(重要知识点总结)
七年级数学(下)重要知识点总结第一章:整式的运算一、概念1、代数式:2、单项式:由数字与字母的乘积的代数式叫做单项式。
单项式不含加减运算,分母中不含字母。
3、多项式:几个单项式的和叫做多项式。
多项式含加减运算。
4、整式:单项式和多项式统称为整式。
二、公式、法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。
(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。
(6)负指数幂:11()(0)p p p a a a a -==≠(底倒,指反)(7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。
(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。
(9)平方差公式:(a+b )(a-b)=a 2-b 2 公式特点:(有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同 推广(项数变化):连用变化:(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):完全平方和公式中间项=完全平方差公式中间项=完全平方公式中间项=例如:229x +mxy+4y 是一个完全平方和公式,则m = ;是一个完全平方差公式,则m = ;是一个完全平方公式,则m = ;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第二章 平行线与相交线一、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
人教版本初中七年级数学下册的各章节学习知识点学习梳理
人教版数学七年级下知识点梳理第五章订交线与平行线知识点订交线一、订交线两条直线订交,形成4个角。
、两条直线订交所成的四个角中,相邻的两个角叫做邻补角,特色是两个角共用一条边,另一条边互为反向延伸线,性质是邻补角互补;相对的两个角叫做对顶角,特色是它们的两条边互为反向延伸线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延伸线。
拥有这类关系的两个角,互为邻补角。
如:∠ 1、∠2。
②对顶角:两个角有一个公共极点,而且一个角的两条边,分别是另一个角的两条边的反向延伸线,拥有这类关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线.垂直:假如两条直线订交成直角,那么这两条直线相互垂直。
.垂线:垂直是订交的一种特别情况,两条直线垂直,此中一条直线叫做另一条直线的垂线。
.垂足:两条垂线的交点叫垂足。
.垂线特色:过一点有且只有一条直线与已知直线垂直。
.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连结直线外一点与直线上各点的全部线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,拥有这类地点关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线双侧)在两条直线之间,又在直线EF的双侧,拥有这类地点关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,拥有这类地点关系的两个角叫同旁内角。
如:∠3和∠6。
平行线及其判断(一)平行线1.平行:两条直线不订交。
相互平行的两条直线,互为平行线。
a∥b (在同一平面内,不订交的两条直线叫做平行线。
)2.平行公义:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公义推论:平行于同向来线的两条直线相互平行。
七年级数学下《立方根》知识点总结归纳
七年级数学下《立方根》知识点总结归纳
一、基础概念
1.立方根的定义:如果一个数的立方等于a,那么这个数被称为a的立方根。
记作:
3a。
2.立方根的性质:
•任何非零实数的立方根只有一个,但0的立方根是0。
•正数的立方根是正的,负数的立方根是负的。
1.求立方根的方法:使用直接开立方的公式或计算器进行求解。
二、运算规则
1.乘法性质:3a×3b=3a×b(当a≥0,b≥0)。
2.开方与乘除法的关系:3ba=3b3a(当a≥0,b>0)。
三、与平方根的区别与联系
1.区别:平方根涉及平方,而立方根涉及立方。
例如,(−3)2=9但−33=−27。
2.联系:对于非负实数,其平方根和立方根表示的都是正数。
例如,38=2,因为
23=8。
四、实际应用与解题技巧
1.实际应用:计算物体的体积或容积时需要用到立方根。
例如,求一个长方体或
正方体的体积。
2.解题技巧:
•对于较大的数或复杂的数字,可以使用计算器辅助求解。
•对于负数的立方根,要明确其值是负的。
例如,3−8=−2。
•注意与平方根的区别与联系,避免混淆。
五、易错点与注意事项
1.易错点:容易将平方根与立方根混淆,如误认为39=3(实际上是39≈
2.08)。
2.注意事项:
•在求立方根时,要注意被开方数是非负数。
•对于复杂的数字或问题,建议使用计算器辅助求解。
•多做习题,巩固对立方根的理解和应用。
人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
七年级下数学知识点几何
七年级下数学知识点几何
在七年级数学中,几何是其中一个重要的知识点。
几何是研究空间形状、大小、度量和相互位置关系的学科。
以下是七年级下数学中几何部分的知识点:
1. 基本图形
在七年级下,会学习到各种不同的基本图形,包括点、线、线段、射线、角、三角形、矩形、平行四边形、梯形和圆等。
2. 角
角是由两条射线以一个公共端点组成的图形。
在七年级中,会研究角的种类和计算角度的方法。
特别是直角、锐角和钝角等角度的基本知识。
3. 三角形
三角形是几何学中的一种基本图形。
七年级下的重点将会是三角形的基本特征和分类方法。
学生需要掌握等腰、等边和直角三角形的知识,以及计算三角形的周长和面积的方法。
4. 四边形
四边形是由四条线段组成的图形。
在七年级下,将会学习到特殊的四边形,如矩形、正方形和平行四边形。
此外,还需要掌握计算四边形周长和面积的方法。
5. 圆
圆是几何学中的一种基本图形。
在七年级下,需要掌握圆周、圆心、弧和扇形等圆的基本属性。
其中,计算圆的周长和面积需要掌握公式。
6. 直线和平面
直线和平面是最基本的几何元素。
他们在七年级中的重要性在于,学生需要掌握它们的基本性质,并且能够在图形中正确地划分直线和平面。
综上所述,七年级下学期的几何部分是涉及基本图形、角、三角形、四边形、圆、直线和平面等知识点。
学生需要掌握这些基本概念,并且能够运用他们来解决实际问题。
同时,注意掌握基本公式,以便能够准确地计算图形的面积和周长。
七年级数学下册全部知识点归纳
七年级下知识点第一章:整式的运算单项式整式多项式同底数幂的乘法整幂的乘方积的乘方式幂运算同底数幂的除法的零指数幂运负指数幂整式的加减算单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是 1 或― 1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是 1 或― 1 时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:( 1)列出代数式:用括号把每个整式括起来,再用加减号连接。
( 2)按去括号法则去括号。
( 3)合并同类项。
4、代数式求值的一般步骤:( 1)代数式化简。
数学七年级下册知识框架图
不等式与不等式组
不等式
定义:
不等式:用符号“<”“>”“≤”“≥”表示大小关系的式子
不等式的解:使不等式成立的未知数的值
不等式的解集:一个含有未知数的不等式的所有解一元一次不等式:
一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,
并且未知数的最高次数是1。
不等式的性质:
1、不等式的两边都加上或减去同一个整式,不等号方向不变。
2、不等式的两边都乘以或者除以一个正数,不等号方向不变。
3、不等式的两边都乘以或除以同一个负数,不等号方向相反。
实际问题与一元
一次不等式
列一元一次不等式的具体步骤是:
1、审题
2、设元(未知数)
3、用含未知数的代数式表示相关的量。
4、寻找不等量关系
5、解方程及检验。
6、答案。
注意:解决实际问题与一元一次不等式的过程中,与列方程有很大相
似之处,不同的是,我们要寻找的是相关的不等量关系。
七下
一元一次不等式
组解一元一次不等式组的步骤:
1、先分别求出不等式组中各个不等式的解集;
2、利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.
数据的收集、整理、与描述
统计调查
直方图
定义:
全面调查、抽样调查、总体、个体、
样本、样本容量、简单随机抽样、
定义:
频数、频率、频数分布、
组数和组距、直方图
课题学习:
从数据谈节水。
七年级下数学第七章-平面直角坐标系知识点总结
七年级下数学第七章 平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。
1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。
3、坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;4、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系 平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
3、各种特殊点的坐标特点。
象限:坐标轴上的点不属于任何象限 第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0 第四象限:x>0,y<0横坐标轴上的点:(x ,0) 纵坐标轴上的点:(0,y )(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。
a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;XY点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。
c) 若点P (n m ,)在第一、三象限的角平分线上,则nm =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e)点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八 、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。
初一数学上册、下册重要知识点总结
初一数学上册、下册重要知识点总结初一数学上册、下册重要知识点总结:初一数学上册主要包括四个章节的内容;下册主要包括相六章内容。
为帮助大家更好地掌握七年级数学每个章节的重要内容,小编整理了一些知识点以供学习复习参考!七年级数学(上)知识点第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么的倒数是;若ab=1?a、b互为倒数;若ab=-1?a、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an 或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
北师大版七年级数学下全部知识点归纳
北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。
整 式 多项式: 。
同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。
对顶角的性质:垂线的性质:性质1:过一点有 。
性质2:连接直线外一点 。
平行线的性质:1、平行公里:过 性质2:平行于 平行。
整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。
三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。
任意三角形都有三条角平分线,并且它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。
这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。
七年级下数学黑体字知识点
七年级下数学黑体字知识点一、有理数的概念及运算有理数是整数与分数的统称,包括正整数、负整数、零、正分数、负分数。
有理数的四则运算包括加、减、乘、除,需要掌握这些运算的规律和方法。
例如,同号相加为正,异号相加为负;相乘符号由两个数的符号决定;除以一个不等于零的数,等价于乘以这个数的倒数。
二、平方根与立方根平方根是一个数的平方等于另一个数时,这个数叫做另一个数的平方根。
例如,5的平方根就是2.236。
立方根是一个数的立方等于另一个数时,这个数叫做另一个数的立方根。
例如,27的立方根就是3。
三、比例和比例运算比例是两个数或两个量之间的比较关系,用任意一种比较方法表示出来都是相等的。
比例的表示方法为a:b或a/b。
比例运算包括:比例相等、取比例的反比、比例的倒数比、比例相乘、比例相除等。
需要掌握这些运算规律和方法。
四、代数式和方程式的基本概念代数式是由数、字母和运算符号组成的表示数的式子,例如3x+5。
方程式是含有未知数的等式,例如2x-1=5。
需要掌握代数式和方程式的基本概念,并能够根据给定的条件列方程式和解方程式。
五、图形的基本概念及性质点、线、面是图形的基本概念,需要掌握各种图形的命名、特征、性质、画法和公式,如正方形、长方形、圆等。
六、几何图形的周长和面积周长是指封闭图形上的边长之和,面积是指平面图形所占用的空间大小。
需要掌握各种图形的周长公式、面积公式及其应用,例如长方形的周长公式为2(a+b),面积公式为a×b。
七、统计学的基本知识统计学是对数据进行收集、汇总、分析的科学,需要掌握统计学的基本知识,例如调查方法、样本与总体、频数与频率等。
同时,还需要了解一些常用的数据统计方法,例如平均数、中位数和众数等。
以上就是七年级下数学的一些重要知识点,需要同学们认真掌握,理解并熟练运用。
七年级数学下各章知识点汇总
七年级数学下各章知识点汇总第五章平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等3、判断两直线平行的条件:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
(4)如果两条直线都和第三条直线平行,则这两条直线也互相平行。
(5)如果两条直线都和第三条直线垂直,则这两条直线也互相平行。
4、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)内错角相等,同旁内角互补。
5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。
⑵命题的组成每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,则……”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“则”开始的部分是结论。
6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。
连接各组对应点的线段平行且相等。
第六章 实数一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫ 二、知识回顾算术平方根的定义: 平方根的定义: 平方根的性质: 立方根的定义: 立方根的性质: 练习:1、—8是 的平方根; 64的平方根是 ; =64 ;—64的立方根是 ; =9 ; 9的平方根是 。
2、大于17-而小于11的所有整数为 几个基本公式:(注意字母a 的取值范围)2)(a = ;2a =无理数的定义: 实数的定义: 实数与 上的点是一一对应的第七章 平面直角坐标系 1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b )2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
七年级下册数学第十一章知识框架
第一章:引言在七年级下册数学教材中,第十一章知识框架是一个非常重要的章节。
通过学习这一章的内容,学生将会对数学知识有一个更加全面和深刻的理解。
在本文中,我们将会逐步深入地解析这一章的知识框架,帮助您更好地理解和掌握相关知识。
第二章:基本概念在第十一章的知识框架中,最基本的概念包括线段、射线、角、平行线、垂直线、平面等。
这些基本的概念是数学学习的基础,也是理解后续知识的必要前提。
在学习这些概念的过程中,学生需要通过实例和图形来帮助自己更好地理解。
第三章:相关定理和性质在第十一章中,学生还需要掌握一些相关的定理和性质,比如同位角、同角异构、对顶角、邻补角、互补角等。
这些定理和性质的掌握对于解题和推导具有重要的意义。
在学习这些内容时,学生需要反复练习,并且要理解定理和性质的证明过程,而不是死记硬背。
第四章:实际应用第十一章的知识框架不仅仅停留在理论层面,还需要学生能够将所学的知识运用到实际生活中。
学生需要能够运用角的性质解决相关的实际问题,或者通过平行线和垂直线的性质来推导解决几何问题。
这些实际应用的训练对于学生的数学思维能力有着非常重要的作用。
第五章:总结与回顾通过深入学习第十一章的知识框架,学生将会对几何相关概念和性质有一个更加深刻和全面的掌握。
在总结与回顾中,学生需要能够自主地梳理和总结所学的知识,理清重点和难点,并且要能够通过自己的语言表达来对知识进行进一步的理解和消化。
第六章:个人观点和理解在学习第十一章的知识框架时,我个人认为重点在于理解和掌握基本概念、定理和性质,并且通过实际应用来检验和强化所学的知识。
只有通过不断的练习和思考,才能真正做到“熟能生巧”,让数学知识真正成为自己的技能和武器。
第十一章的知识框架涉及到了许多基本概念和性质,需要学生进行深入的学习和掌握。
要将理论知识与实际应用相结合,通过实际问题的练习来巩固和加深对知识的理解。
希望本文能够帮助您更好地理解和掌握第十一章的知识框架,也希望您在学习数学的过程中能够保持耐心和坚持,相信通过自己的努力一定能够取得丰硕的成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期数学知识梳理第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
四、经典例题EDC B A例1 如图,直线AB,CD,EF 相交于点O ,∠AOE=54°,∠EOD=90°,求∠EOB ,∠COB 的度数。
例2 如图AD 平分∠CAE ,∠B = 350,∠DAE=600,那么∠ACB 等于多少?例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不 相邻的一个内角的2倍,则这个三角形各角的度数为( )。
A .450、450、900 B .300、600、900C .250、250、1300D .360、720、720例4 已知如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数。
例5 如图,AB ∥CD ,EF 分别与AB 、CD 交于G 、H ,MN ⊥AB 于G ,∠CHG=1240,则∠EGM 等于多少度?ED CBA21FEDCBANMHGFE DC BA第六章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x 轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
三、经典例题例1 一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5•点,如果A1求坐1 ●●●●●●ABC DEF O x y-1例3标为(3,0),求点 A5•的坐标。
例2 如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为( ) A 、(0,3) B 、(2,3) C 、(3,2) D 、(3,0)例3 如图2,根据坐标平面内点的位置,写出以下各点的坐标:A( ),B( ),C( )。
例4 如图,面积为12cm2的△ABC 向x 轴正方向平移至△DEF 的位置,相应的坐标如图所示(a ,b 为常数), (1)、求点D 、E 的坐标 (2)、求四边形ACED 的面积。
A BC例2例5过两点A(3,4),B(-2,4)作直线AB,则直线AB( ) A、经过原点B、平行于y轴C、平行于x轴D、以上说法都不对第七章三角形一、知识结构图边与三角形有关的线段高中线角平分线三角形的内角和多边形的内角和三角形的外角和多边形的外角和二、知识定义三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
三、公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有23)-n(n条对角线。
四、经典例题例1 如图,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB于R,PS⊥AC于S,有以下三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中().(A)全部正确(B)仅①正确(C)仅①、②正确(D)仅①、③正确例2 如图,结合图形作出了如下判断或推理:①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;②如图乙,如果AB∥CD,那么∠B=∠D;③如图丙,如果∠ACD=∠CAB,那么AD∥BC;④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是()个.(A)1(B)2(C)3(D)4例3在如图所示的方格纸中,画出,△DEF和△DEG(F、G不能重合),使得△ABC≌△DEF≌DEG.你能说明它们为什么全等吗?例4 测量小玻璃管口径的量具CDE上,CD=l0mm,DE=80mm.如果小管口径AB正对着量具上的50mm刻度,那么小管口径AB的长是多少?例5 在直角坐标系中,已知A(-4,0)、B(1,0)、C(0,-2)三点.请按以下要求设计两种方案:作一条与轴不重合,与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的.分别在下面的两个坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标。
第八章二元一次方程组数学问题解代入法方加减法程(消元)组检验二、知识定义二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。
二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
三、经典例题例1用加减消元法解方程组,由①×2—②得。
例2 如果是同类项,则、的值是()A、=-3,=2B、=2,=-3C、=-2,=3D、=3,=-2例3 计算:例4 王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。
其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。
问王大伯一共获纯利多少元?例5 已知关于x 、y 的二元一次方程组的解满足二元一次方程,求的值。
第九章 不等式与不等式组一、知识结构图设未知数,列不等式(组)解不等式组检验实际问题 数学问题 实际问题的答案 数学问题的解二、知识定义不等式:一般地,用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
不等式的解:使不等式成立的未知数的值,叫做不等式的解。
不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
三、定理与性质不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变四、经典例题例1 当x 时,代数代2-3x的值是正数。
例2 一元一次不等式组的解集是()A.-2<x<3B.-3<x<2C.x<-3D.x <2例3已知方程组的解为负数,求k的取值范围。
例4 某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。
5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)例5 某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。