完整版三极管及放大电路原理

合集下载

第4章 三极管及放大电路基础1

第4章 三极管及放大电路基础1

与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数

扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理

三极管电流放大原理

三极管电流放大原理

三极管电流放大原理三极管是一种常用的电子元件,广泛应用于各种放大电路中。

其能够实现电流放大的原理主要有以下几个方面:1.基本结构三极管是由三个掺杂不同类型的半导体材料组成,通常是npn或pnp型晶体管。

其中,其中的中间区域称为基区,两侧称为发射区和集电区。

发射区和集电区分别掺杂有高浓度的杂质,形成n型和p型的材料。

而基区掺杂的杂质浓度相对较低,通常是轻掺杂。

2.工作原理当晶体管的基极施加正向电压时,发射结极化并导通,形成一个正向电路,电流从发射区进入基区。

此时,由于基区是轻掺杂的,所以电流密度较小,只有很小的部分电子会穿过基区。

这些电子将会被注入到集电区,形成集电区的电流。

由于集电区采用了较高浓度的杂质进行掺杂,所以电流密度较大。

3.小信号放大原理当输入信号施加到基极时,三极管中的基电流将会因为输入信号而微小变化。

这导致了发射区的电流也会随之变化,使得集电区的电流也发生变化。

由于集电区的电流变化较大,所以输出信号经过放大。

4.级联放大原理为了实现更高的放大倍数,可以将多个三极管级联起来,形成级联放大电路。

当输入信号经过第一个三极管放大后,输出信号再经过第二个三极管放大,这样可实现更高的放大倍数。

5.偏压稳定为了使三极管能够正常工作,需要给其提供一个合适的偏置电压。

通常是通过向基极施加一个恒定的直流电压来实现。

这样,当输入信号改变时,输出信号的幅度变化较大,而偏置电压则保持不变。

综上所述,三极管的电流放大原理主要通过输入信号的变化来调节发射区和集电区的电流,从而实现输出信号的放大。

同时,在实际应用中,还需要注意对三极管进行适当的偏置,以保证其正常工作。

(完整word版)放大电路的工作原理和三种基本放大组态

(完整word版)放大电路的工作原理和三种基本放大组态

放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。

共射放大电路如图所示。

V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。

R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。

V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。

如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。

同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。

电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。

这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。

由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。

如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。

电路中各点的电流、电压波形如图所示。

放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。

三极管放大电路工作原理

三极管放大电路工作原理

三极管放大电路工作原理一、引言在电子技术领域中,放大电路是非常重要的一种电路。

而三极管放大电路是其中最常用的一种。

本文将详细介绍三极管放大电路的工作原理。

二、三极管的基本结构三极管是一种三端口的半导体器件。

它由一个P型半导体和两个N 型半导体构成。

其中,P型半导体称为基区,N型半导体称为发射区和集电区。

三极管的三个端口分别为发射极、基极和集电极。

三、三极管的工作原理三极管的工作原理基于PN结的导电特性。

当三极管的基极与发射极之间施加一个正向偏置电压时,使得基区变薄,形成一个窄的耗尽层。

这样,发射极的电子就能够通过耗尽层进入基极,形成电流流动。

此时,三极管处于放大区。

四、三极管放大电路的组成三极管放大电路由三部分组成:输入回路、输出回路和直流偏置电路。

其中,输入回路用于输入待放大的信号,输出回路用于输出放大后的信号,而直流偏置电路则用于为三极管提供适当的偏置电压。

五、三极管放大电路的工作原理当输入信号通过输入回路加到三极管的基极时,三极管开始工作。

在正半个周期的时间内,输入信号的正半波使得三极管处于放大状态。

此时,三极管的发射极电流增大,集电极电流也相应增大。

在负半个周期的时间内,输入信号的负半波使得三极管处于截止状态。

此时,发射极电流减小,集电极电流也相应减小。

通过这样的工作过程,三极管将输入信号放大了。

放大倍数取决于三极管的参数以及电路的设计。

通常情况下,放大倍数可达到数十倍甚至上百倍。

六、三极管放大电路的特点1. 放大电路具有较高的输入阻抗和较低的输出阻抗,能够适应不同的信号源和负载。

2. 放大电路具有较大的放大倍数,可以将微弱的信号放大到足够的幅度。

3. 放大电路具有较宽的频带宽度,可以传输高频信号。

4. 放大电路具有较好的线性度,能够保持输入信号的形状和幅度不变。

七、应用领域三极管放大电路广泛应用于各个领域,如音频放大器、射频放大器、电视机、收音机等。

它在电子设备中起到了至关重要的作用,使得信号能够被放大并传输。

晶体三极管_结构及放大原理

晶体三极管_结构及放大原理

晶体三极管又称晶体管、双极型晶体管;在晶体管中有两类不同的载流子参与导电。

一、晶体管的结构和类型
1.晶体管的结构
在同一个硅片上制造出三个掺杂区域,并形成两个PN结,就形成三极管。

2.晶体管的类型
基极为P的称为NPN型,基极为N的称为PNP型。

二、晶体管的电流放大作用
晶体管的放大状态的外部条件:发射结正偏且集电结反偏。

发射结正偏:发射区的载流子可以扩散到基区
集电结反偏:基区的非平衡少子(从发射区扩散到基区的载流子)可以漂移到集电区。

如果发射结正偏,集电结也正偏,出现的情况将是发射区的载流子扩散到基区,同时集电区的载流子也漂移到基区。

1.晶体管内部载流子运动
①发射结正偏:发射区载流子向基区扩散,基区空穴向发射区漂移
②集电极反偏,非平衡少子运动:从发射区过来的载流子到达基区后,称为非平衡少子(基区是P带正电,载流子是电子,所以是非平衡少子;基区空穴虽然是多子,但是数量比较少),一方面与基区的空穴复合(少量);另一方面,由于集电极反偏,会产生非平衡少子的漂移运动,非平衡少子从基区漂移到集电极,从而产生漂移电流。

由于集电极面积非常大,所以可以产生比较大的漂移电流(到达基区的载流子,由于集电极反偏,所以对基区的非平衡少子有吸引,集电极带正电,非平衡少子带负电)
③集电极反偏,少子漂移电流:由于集电结反偏,处于基区的少子(电子)会漂移运到到集电区;集电区的少子(空穴)会漂移运动到基区
2.晶体管中的电流分关系
三、共射电路放大系数
1.直流放大系数:放大系数:I c=(1+β)I B
2.交流放大系数:直流电流放大系数可以代替交流电流放大系数
四、结语
希望本文对大家能够有所帮助。

简述三极管放大的基本原理

简述三极管放大的基本原理

简述三极管放大的基本原理
三极管放大是一种常用的电子放大器配置,基于半导体材料制成的三极管被用作放大电路中的核心元件。

其基本原理如下:
1. 三极管的结构:三极管由三个区域构成:发射极、基极和集电极。

发射极主要用于发射电子,基极用于控制电子流,集电极则用于收集电子。

2. 工作方式:通过在发射极-基极电路中施加一个小输入信号,可以改变基极电流。

当基极电流发生变化时,三极管中的电流放大作用会使输出电流比输入电流大得多。

3. 放大原理:当输入信号施加在基极-发射极电路上时,三极管的工作状态将发生变化。

如果输入信号增加,基极电流也会增加,从而导致集电极电流增加。

这会导致集电极电压下降,产生较大幅度的输出信号。

因此,三极管可以将微弱的输入信号放大为较大的输出信号。

4. 放大倍数:三极管放大倍数由其特定的电流放大系数(β值)决定。

β值越大,放大倍数越高。

总结起来,三极管的放大原理基于控制基极电流的方式来实现信号放大。

通过合适的电路设计和合适的工作点设置,可以实现较高的放大倍数和稳定的放大效果。

这使得三极管放大器在各种电子设备中得到广泛应用,例如音频放大器和射频放大器。

(完整版)三极管及放大电路原理

(完整版)三极管及放大电路原理

测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。

”下面让我们逐句进行解释吧。

一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。

根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。

测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。

图2绘出了万用电表欧姆挡的等效电路。

由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。

测试的第一步是判断哪个管脚是基极。

这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。

在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。

二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。

将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。

(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。

根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c 极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

第03章-半导体三极管及放大电路基础

第03章-半导体三极管及放大电路基础
VCC 、 VCC /Rc 2. 由直流负载线 VCE =VCC-ICRC 3. 得到Q点的参数IB 、IC 和VCE 。
退出
放大电路的动态图解分析
(1)交流负载线 1.从B点通过输出特性曲线上的Q点做一条直线,
其斜率为-1/R'L 。 2.R'L= RL∥Rc,
是交流负载电阻。
3.交流负载线是有 交流 输入信号时Q 点的运动轨迹。
退出
三极管电流分配
半导体三极管在工作时一定要加上适当的直流偏置电压。 在放大工作状态: 发射结加正向电压,集电结加反向电压。
退出
三极的工作原理
发射结加正偏时,从发射区将
有大量的电子向基区扩散,形成
的电流为IEN。 从基区向发射区也有空穴的扩
散运动,但其数量小,形成的电
流为IEP。(这是因为发射区的掺杂浓
Av Vo /Vi
A I / I
i
oi
Ap Po / Pi Vo Io /Vi Ii
退出
(2) 输入电阻 Ri
输入电阻是表明放大电路从信号源 吸取电流大小的参数,Ri大放大电路 从信号源吸取的电流小,反之则大。
Ri
Vi Ii
退出
(3) 输出电阻Ro
输出电阻是表明放大电路带负载的能力,
Ro大表明放大电路带负载的能力差,反之则强。
退出
双极型三极管的参数
参数 型号
PCM
I CM
mW mA
3AX31D 125 125
3BX31C 125 125
3CG101C 100 30
3DG123C 500 50
3DD101D 5A
5A
3DK100B 100 30
3DKG23 250W 30A

三极管放大电路工作原理

三极管放大电路工作原理

三极管放大电路工作原理引言:三极管放大电路是现代电子设备中常见的一种电路配置,它可以将输入信号的幅度放大,从而实现信号的增强和放大。

本文将介绍三极管放大电路的工作原理,包括三极管的基本结构、工作方式以及放大原理等内容。

一、三极管的基本结构和工作方式三极管是一种半导体器件,由三个控制电极构成,分别是发射极(Emitter)、基极(Base)和集电极(Collector)。

它的工作方式是通过控制基极电流来控制集电极电流的大小。

当基极电流变化时,集电极电流也相应变化。

二、三极管放大电路的基本原理三极管放大电路的基本原理是利用三极管的放大特性,将输入信号的小幅度变化转化为集电极电流的大幅度变化。

具体来说,输入信号通过耦合电容或变压器等方式与三极管的基极相连,当输入信号的幅度变化时,基极电流也随之变化。

而三极管的集电极电流与基极电流之间存在一定的倍数关系,从而实现信号的放大。

三、三极管放大电路的工作过程1. 输入信号通过耦合电容与三极管的基极相连,进而控制基极电流的大小。

2. 当输入信号为正半周时,基极电流增大,导致集电极电流也增大。

3. 集电极电流的增大又通过负载电阻和电源电压的作用,使输出信号的幅度增大。

4. 当输入信号为负半周时,基极电流减小,导致集电极电流也减小。

5. 集电极电流的减小又通过负载电阻和电源电压的作用,使输出信号的幅度减小。

四、三极管放大电路的放大原理三极管放大电路的放大原理是基于三极管的非线性特性。

具体来说,当三极管的基极电流变化时,集电极电流的变化不是线性的,而是指数级的。

这种非线性特性使得输入信号的小变化可以通过三极管的放大作用转化为集电极电流的大变化,从而实现信号的放大。

五、三极管放大电路的应用领域三极管放大电路广泛应用于各种电子设备中,如放大器、收音机、电视机等。

它可以将微弱的信号放大到足够的幅度,以便实现信号的传输和处理。

六、三极管放大电路的优缺点三极管放大电路的优点是结构简单、成本低廉、工作稳定可靠,并且能够实现较大的电压放大倍数。

晶体三极管的开关电路和放大电路的工作过程

晶体三极管的开关电路和放大电路的工作过程

晶体三极管的开关电路和放大电路的工作过程晶体三极管是一种重要的半导体器件,常用于电子学中的开关和放大电路中。

它具有高频特性、低噪声以及较高的放大能力,因此被广泛应用于各种电子设备中。

下面我们来详细了解晶体三极管在开关电路和放大电路中的工作原理和过程。

一、晶体三极管的基本结构及工作原理晶体三极管由发射极、基极和集电极组成,通过控制发射极电流来实现对集电极电流的调控。

当在基极端加上一个小信号电压时,将使发射极与基极之间的耗尽层宽度发生变化,进而改变发射极电流,从而达到放大电压信号的目的。

1. 晶体三极管在开关电路中的工作过程晶体三极管可以作为一个二极管开关,用来控制电路的通断。

当在基极端加上一个正电压时,将使发射极-基极间的耗尽层封锁,导通电流,此时处于导通状态;当在基极端加上一个反向偏置电压时,将使发射极-基极间的耗尽层扩大,截至电流,此时处于截至状态。

晶体三极管可以根据基极端的输入信号来控制电路的开关状态。

2. 晶体三极管在放大电路中的工作过程晶体三极管可以作为放大器使用,用来放大小信号电压。

在放大电路中,通过在基极端施加一个交流信号电压,使得发射极-基极之间的电流产生相应变化,从而得到经放大的输出信号。

晶体三极管的放大能力由其电流放大倍数β来决定,β值越大,放大能力越强。

二、晶体三极管的开关电路和放大电路设计1. 晶体三极管开关电路设计晶体三极管开关电路常用于数字电路中,可以实现逻辑门、计数器等功能。

设计开关电路时需要合理选择电阻、电容等元件参数,以保证电路的稳定性和可靠性。

还需要注意控制信号的功率和频率范围,以满足具体应用的需求。

2. 晶体三极管放大电路设计晶体三极管放大电路常用于模拟电路中,可以实现音频放大、射频放大等功能。

设计放大电路时需要考虑输入输出阻抗的匹配、电压和电流的偏置设置、负载电阻的选择等因素,以提高电路的放大性能和线性度。

三、晶体三极管在实际电路中的应用晶体三极管广泛应用于各种电子设备中,如放大器、收音机、电视机、电脑等。

三极管及放大电路解析

三极管及放大电路解析
基极开路时的击穿电压U(BR) CEO。
6. 集电极最大允许耗散功耗PCM PCM取决于三极管允许的温升,消耗功率过大,温升过高会烧坏三极管。 PC PCM =IC UCE
硅管允许结温约为150C,锗管约为7090C。
由三个极限参数可画出三极管的安全工作区 IC
ICM
ICUCE=PCM
安全工作区 O
ICE 与 IBE 之比称为共发射极电流放大倍数
C IC
ICBO
N
ICE IB
P
EC
B
ICEICICBO IC
RB
IBE
N
IBE IBICBO IB
EB
E IE
IC IB ( 1)IC BO IB ICEO
若IB =0, 则 IC ICE0
集-射极穿透电流, 温度ICEO
忽 IC略 E , O IC 有 IB (常用公式)
(3)通频带 衡量放大电路对不同频率信号的适应能力。
由于电容、电感及放大管PN结的电容效应,使放大电路在信号频率较低和较高时电压放大倍数数值下降, 并产生相移。
下限频率
fbwfHfL
(4)最大不失真输出电压Uom:交流有效值。 (5)最大输出功率Pom和效率η:功率放大电路的主要指标参数
上限频率
二、基本共射极放大电路 1、基本放大电路组成及各元件作用
问题:
将两个电源合二为
1. 两种电源

2. 信号源与放大电路不“共地”
共地,且要使信号驮载在静 态之上
-+ UBEQ
有交流损失
有直流分量
静态时(ui=0),
UBEQURb1
动态时,VCC和uI同时作用于晶体管的输入回 路。
(2)阻容耦合放大电路

三极管放大电路基本原理案例详解

三极管放大电路基本原理案例详解

三极管放大电路基本原理案例详解一、引言在现代电子技术中,三极管放大电路是一种非常常见且重要的电路。

它可以用于放大电压和电流,用于信号处理、放大和控制等各种应用。

本文将从基本原理出发,详细解释三极管放大电路的工作原理,并通过案例进行详细的分析和讨论。

二、三极管基本原理1. 三极管的结构和工作原理三极管是一种半导体器件,由三个区域组成,分别是发射极、基极和集电极。

通过在基极-发射极之间的输入电流来控制在集电极-发射极之间的输出电流。

这是基本的工作原理,也是三极管放大电路能够实现放大功能的基础。

2. 放大原理在三极管放大电路中,当在基极-发射极之间的输入电流变化时,可以引起集电极-发射极之间的输出电流的相应变化。

通过适当设计电路,可以使输出电流的变化成倍放大,从而实现信号的放大功能。

三、三极管放大电路的基本结构和工作原理在三极管放大电路中,常见的有共射放大电路、共集放大电路和共基放大电路等不同的结构。

它们在电路连接方式和放大特性上各有不同,但基本的工作原理都是一样的。

1. 共射放大电路共射放大电路是一种常见的三极管放大电路,其特点是输入信号加在基极上,输出信号在集电极上获取。

这种电路具有较高的输入电阻和较低的输出电阻,适合用于中等频率的放大器。

2. 共集放大电路共集放大电路的输入信号加在基极上,输出信号也在基极上获取。

这种电路具有较高的电压放大系数和较宽的频率响应范围,是一种常用于高频放大的电路。

3. 共基放大电路共基放大电路的输入信号加在发射极上,输出信号在集电极上获取。

这种电路具有较大的电压放大系数和较小的输入电阻,适合用于低频放大。

通过以上对三种不同结构的三极管放大电路的简要介绍,我们可以看出三极管放大电路在设计和应用时的一些特点和应用范围。

四、示例分析接下来,我们将以一个具体的案例来进行分析和讨论。

假设我们需要设计一个用于音频放大的三极管放大电路,我们可以选择共射放大电路作为基本结构。

在这个案例中,我们可以根据实际需求和参数,选择合适的三极管型号和外围元器件,设计出满足要求的放大电路。

三极管放大电路工作原理及功能分析

三极管放大电路工作原理及功能分析

电流放大功能
总结词
三极管放大电路能够将输入信号的电流幅度按一定比例放大,输出信号的电流幅 度远大于输入信号。
详细描述
除了电压放大作用外,三极管还能实现电流放大。在三极管的工作区域内,基极 输入信号的微小变化会引起集电极输出信号的较大变化,从而实现电流的放大。
功率放大功能
总结词
三极管放大电路能够将输入信号的功率按一定比例放大,输出信号的功率远大于输入信 号。
03
CATALOGUE
三极管放大电路的功能分析
电压放大功能
总结词
三极管放大电路能够将输入信号的电压幅度按一定比例放大,输出信号的电压 幅度远大于输入信号。
详细描述
三极管具有电压放大作用,即基极输入信号的微小变化会引起集电极输出信号 的较大变化。通过合理设置电路参数,三极管可以实现对输入信号的电压放大 。
性能指标。
确定合适的静态工作点
要点一
总结词
静态工作点是三极管放大电路的重要参数,其设置是否合 适直接影响到电路的性能和稳定性。
要点二
详细描述
静态工作点需要根据输入信号的幅度和频率进行选择,通 常需要通过实验和调试来确定最佳的工作点。同时,还需 要考虑三极管的安全工作区,避免因工作点设置不当导致 三极管烧毁。
02
CATALOGUE
三极管放大电路的工作原理
电流放大过程
电流放大
动态范围
三极管通过基极电流的控制,实现集 电极电流的放大,从而实现电流放大 的功能。
三极管在放大不同幅值的信号时,能 够保持较为稳定的放大倍数,从而实 现宽动态范围的电流放大。
电流控制
三极管内部存在三个电极,其中基极 电流的控制作用最为显著,通过改变 基极电流的大小,可以实现对集电极 和发射极电流的调节。

三极管的电流分配关系原理和电流放大作用

三极管的电流分配关系原理和电流放大作用

三极管的电流分配关系原理和电流放大作

将PNP型晶体三极管接成如下图所示的电路。

此电路有两个回路:途中回路1为基极回路;图中回路2为集电极回路。

由于两个回路中都含有放射极,故称此电路为共放射极接法的电路。

转变电路中集电极Rb的数值而使基极电流Ib发生变化,便可相应的测出集电极电流Ic及放射极电流Ie的大小。

下表为从三个电流表中读出的8组Ib、Ic、Ie的数值。

从表中八组数值中,我们发觉:Ie=Ic+Ib。

即放射极电流等于集电极上的电流与基极电流之和,这就是三极管中的三个电极上的电流安排关系。

从表中还可以看到,当基极电流Ib从0.02mA变化到0.04mA时(变化量△Ib=0.04-0.02=0.02mA),集电极电流也相应的从0.98mA变化到1.96mA,(变化量△Ic=1.96-0.98=0.98mA),这说明基极电流Ib的微小变化,能引起集电极电流Ic的较大变化,即三极管基极电流对集电极电流有放大作用。

通常将集电极电流的变化量△Ic与基极电流的变化量△Ib之比,称为共射极电流放大系数,或称为电流放大倍数,用符号β或hFE表示。

(hFE称为共放射极静态电流放大倍数,不同型号的三极管hFE可从手册中查出。


从上表中可算出该三极管的电流放大倍数β为:
β=△Ic/△Ib=0.98/0.02=49
电流放大倍数是晶体三极管的主要参数,三极管的β值一般在10~200之间,有些三极管用顶部颜色点来表示β的分档值:黄色:电流放大倍数为25~50;绿色:50~65,紫色:65~85;白色:85~110;棕色:110~140;黑色:140~180。

三极管放大电路原理

三极管放大电路原理

三极管放大电路原理三极管是一种常用的电子器件,广泛应用于放大电路中。

三极管放大电路是一种主动元件放大电路,通过对输入信号进行放大,从而得到输出信号。

本文将介绍三极管的基本原理以及其在放大电路中的应用。

一、三极管的基本结构与工作原理三极管由三个区域组成,分别是发射极(Emitter,简称E)、基极(Base,简称B)和集电极(Collector,简称C)。

其中,发射极和基极之间是P-N接面,基极和集电极之间是N-P接面。

三极管的工作原理基于二极管的PN结,当发射结正向偏置时,发射区会有大量的载流子注入;同时,当基极结正向偏置时,会使得少量的载流子从基区注入集电区。

这种注入作用使得三极管能够发挥放大作用。

二、三极管放大电路的基本原理三极管放大电路是一种使用三极管作为放大器件的电路。

其基本原理是利用三极管的放大特性,通过对输入信号进行放大,得到增强后的输出信号。

三极管放大电路一般由输入端(信号源)、输出端(负载)以及基极、发射极和集电极之间的电路组成。

输入信号通过输入端进入放大电路,经过放大后的信号通过输出端输出。

放大过程中,输入信号将驱动三极管的基极电流,基极电流的变化将导致发射极电流和集电极电流的变化,进而实现信号的放大。

三、三极管放大电路的分类三极管放大电路可以分为共射、共基和共集三种基本形式。

1. 共射放大电路共射放大电路的基极与发射极之间的电阻称为输入电阻,而集电极与发射极之间的电阻则称为输出电阻。

共射放大电路的特点是输入电阻较高,输出电阻较低,放大倍数较大。

这种电路常用于需要较高放大倍数的场合,如音频放大器等。

2. 共基放大电路共基放大电路的特点是输入电阻较低,输出电阻较高,放大倍数较小。

由于其输入电阻低,可以有效抑制反馈信号,提高电路的稳定性。

这种电路常用于需要较大频带宽度和低失真的场合,如射频放大器等。

3. 共集放大电路共集放大电路的特点是输入电阻较高,输出电阻较低,放大倍数较小。

由于其输出电阻低,能够有效驱动负载,提高电路的功率传输能力。

三极管_放大电路_原理

三极管_放大电路_原理

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。

分成NPN和PNP 两种。

我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流放大下面的分析仅对于NPN型硅三极管。

如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。

这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。

三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。

如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。

这有几个原因。

首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。

当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。

但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。

如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。

三极管放大电路原理

三极管放大电路原理

三极管放大电路原理一、放大电路的组成与各元件的作用Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。

C1、C2是隔直(耦合)电容,隔直流通交流。

共射放大电路Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化△ic转换为集电极与发射极间的电压变化△VCE二、放大电路的根本工作原理静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。

基极电流:IB=IBQ=(VCC-VBEQ)/Rb集电极电流:IC=ICQ=βIBQ集-射间电压:VCE=VCEQ=VCC-ICQRc 动态(vi≠0)分析:,,,,其中。

放大电路对信号的放大作用是利用三极管的电流控制作用来实现,其实质上是一种能量转换器。

三、构成放大电路的根本原那么放大电路必须有适宜的静态工作点:直流电源的极性与三极管的类型相配合,电阻的设置要与电源相配合,以确保器件工作在放大区。

输入信号能有效地加到放大器件的输入端,使三极管输入端的电流或电压跟随输入信号成比例变化,经三极管放大后的输出信号(如ic =β*ib)应能有效地转变为负载上的输出电压信号。

电压传输特性和静态工作点一、单管放大电路的电压传输特性图解分析法:输出回路方程:输出特性曲线:AB段:截止区,对应于输出特性曲线中iB<0的局部。

BCDEFG段:放大区GHI段:饱和区作为放大应用时:Q点应置于E处(放大区中心)。

假设Q点设置C处,易引起载止失真。

假设Q点设置F处,易引起饱和失真。

用于开关控制场合:工作在截止区和饱和区上。

二、单管放大电路静态工作点(公式法计算)单电源固定偏置电路:选择适宜的Rb,Rc,使电路工作在放大状态。

工作点稳定的偏置电路:该方法为近似估算法。

分压式偏置电路:稳定工作点的另一种解释:温度T↑→IC↑→IE↑→VE↑(=IERe)↓(VB固定) ,那么IC↓ IB ↓VBE↓ (=VB-VE)。

三极管放大电路详细讲解

三极管放大电路详细讲解

三极管放大电路详细讲解三极管放大电路是一种常见的电子电路,广泛应用于各种电子产品中。

它可以将弱信号放大到足够的强度以供后续电路使用。

本文将详细讲解三极管放大电路的原理、分类、特点以及应用。

三极管放大电路的基本原理是将输入信号加到输入电容上,使基极电压参数变化,控制电流,从而使输出电压也发生变化,达到放大的目的。

三极管放大电路的输入端为基极,输出端为集电极,另一端为发射极。

根据三极管的工作状态和放大形式,三极管放大电路可以分为共射放大电路、共基放大电路、共集放大电路三类。

1. 共射放大电路共射放大电路是最常见的三极管放大电路之一,也是最常见的放大形式之一。

共射放大电路的输入信号加在基极上,输出信号从集电极上取出。

因为基极和集电极之间是反向偏置的,所以输入信号是正弦波时,输出信号也是正弦波。

共射放大电路不仅能放大电压信号,也可以放大电流信号,因此被广泛应用于各种电子产品中,如放大器、振荡器等。

共基放大电路的输入信号加在发射极上,输出信号从集电极上取出。

相比较共射放大电路,共基放大电路的放大倍数较小,但是它的输入电阻很低,输出电阻很高,可以很好地匹配负载。

1. 放大范围广三极管放大电路具有放大倍数高的特点,可以将弱信号放大至足够大的强度,以供后续电路使用。

其放大倍数可达数千倍,大幅提高了信号传输的效率。

2. 噪声小三极管放大电路的输出信号对噪声具有很强的抑制作用,特别是共射放大电路在中高频段拥有很高的线性度和噪声控制能力。

3. 频率响应宽三极管放大电路适合用于放大中高频信号,并且具有宽频响应的特点,对于一些需要高频调制的信号尤为适用。

其中,放大器是最常见的应用之一,它通过放大微弱电信号,从而使得音频、视频信号等达到足够的强度,使得对应的器件能够正常工作。

同时,由于三极管放大电路的噪声控制能力强,因此它还被广泛应用于放大器的前置级中,提高信号的质量和稳定性。

三极管放大电路的工作原理

三极管放大电路的工作原理

三极管放大电路的工作原理
三极管放大电路是一种常用的电子放大器,由三极管、电源和输入、输出等元件构成。

工作原理如下:
1. 极性划分:三极管由一片N型半导体夹在两片P型半导体之间组成,分为三个区域:发射区、基区和集电区。

2. 偏置:通过在电路中加入适当的偏置电阻和电压源,使得三极管处于工作区域,即基极与发射极之间的电压为正向偏压,且工作在放大状态。

3. 输入信号:将输入信号接入三极管的基极,通过输入电容与基极相连。

输入信号作用在基极上,通过电容的隔离,实现输入信号与三极管发射极之间的隔离。

4. 放大过程:当输入信号作用在基极上时,由于基区薄,少数载流子可以渗透到基区,导致基极电流的变化。

该电流将在集电区交流负载电路中产生一个对应的输出电压信号,实现信号的放大。

5. 输出信号:输出信号通过输出电容与集电极相连,由于电容的隔离,实现输出信号与三极管放大电路的隔离,从而可以连接至其他的电路。

6. 偏置调节:为了确保输出信号的线性放大,需要对偏置进行
适时的调整。

一般通过反馈电路来实现,使得输出信号与输入信号的比例相同。

通过以上工作原理,三极管放大电路可以实现对输入信号的放大,从而得到一个经过放大的输出信号。

该放大过程具有较高的增益和线性度,被广泛应用于各种电子设备和通信系统中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。

’下面让我们逐句进行解释吧。

一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。

根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。

测试三极管要使用万用电表的欧姆挡,并选择R X100或RX1k挡位。

图2绘出了万用电表欧姆挡的等效电路。

由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。

测试的第一步是判断哪个管脚是基极。

这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。

在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。

二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。

将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。

(1)对于NPN型三极管,穿透电流的测量电路如图3所示。

根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔TC 极~b极极T红表笔,电流流向正好与三极管符号中的箭头方向一致(顺箭头”,)所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

(2)对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔Te极Tb极TC极T红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c(参看图1、图3可知)。

四、测不出,动嘴巴若在顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要动嘴巴”了。

具体方法是:在顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。

其中人体起到直流偏置电阻的作用,目的是使效果更加明显。

半导体三极管的分类半导体三极管亦称双极型晶体管,其种类非常多。

按照结构工艺分类,有PNP和NPN型; 按照制造材料分类,有锗管和硅管;按照工作频率分类,有低频管和高频管;一般低频管用以处理频率在3MHz以下的电路中,高频管的工作频率可以达到几百兆赫。

按照允许耗散的功率大小分类,有小功率管和大功率管;一般小功率管的额定功耗在1W以下,而大功率管的额定功耗可达几十瓦以上。

常见的半导体三极管外型见图 2.5.1。

半导体三极管的主要参数共射电流放大系数值一般在20〜200,它是表征三极管电流放大作用的最主要的参数。

理解三极管的工作原理首先从以下两个方面来认识:其一、制造工艺上的两个特点:⑴基区的宽度做的非常薄;(2)发射区掺杂浓度高。

其二、三极管工作必要条件是(a)在B极和E极之间施加正向电压(此电压的大小不能超过1V) ;( b)在C极和E极之间施加反向电压;(c)如要取得输出必须加负载电阻。

当三极管满足必要的工作条件后,其工作原理如下:(1)基极有电流流动时。

由于B极和E极之间有正向电压,所以电子从发射极向基极移动,又因为C极和E极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压的作用下,通过基极进入集电极。

于是,在基极所加的正电压的作用下,发射极的大量电子被输送到集电极,产生很大的集电极电流。

(2)基极无电流流动时。

在B极和E极之间不能施加电压的状态时,由于C极和E极间施加了反向电压,所以集电极的电子受电源正电压吸引而在C极和E极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因而就没有集电极电流产生。

综上所述,在晶体三极管中很小的基极电流可以导致很大的集电极电流,这就是三极管的电流放大作用。

此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是三极管的开关作用(开关特性)。

参见晶体三极管特性曲线 5.2图所示:晶体三极管共发射极放大原理如下图所示:A vt是一个npn型三极管画外音:我们可以用水龙头与闸门放水的关系,来想象或者说是理解三极管的放大原理。

其示意图如下图2-20所示(a)水龙头闸门关紧的状态之间电阻值无穷大雷静薜够佯因cm硅管导通门限电压为0. 6V^0. 7 V图2-20三极管放大原理参考示意图①如图2.20 (a)所示:当发射结无电压或施加电压在门限电压以下,相当于闸门关紧时,水未从水龙头底部通过水嘴流出来。

此时,ec之间电阻值无穷大,ec之间的电流处于截止状态,或者说是开关的OFF状态。

E之间电阻值硅管0 6-0. TV导通(b)水龙头闸门松动一点点的状态②如图2.20 ( b )所示:当对发射结施加电压在门限电压范围时(以硅管0.7V 左右为例),相当于闸门松动一点点,从水龙头底部通过水嘴流出的水成滴答状态。

此时,ec之间的电阻值也下降了一点点。

"之间电阴值J J_____ ^7S87<cn厂UccO.SV左右Ubb(c)水龙头打开三分之一的状态图2-20三极管放大原理参考示意图③如图2.20 ( c )所示:当对发射结施加电压在0.8V时,相当于闸门已打开三分之一的状态时,水龙头底部已经可以有三分之一的水通过水嘴流出来了,此时,ec之间的电阻值也下降了三分之一,ec之间的电流处于调控或者说是放大状态。

X之间电阻值I I I@)水龙头闸门打开三分之二的状态图2-20三极管放大原理参考示意图④如图2.20 ( d )所示:当对发射结施加电压在0.9V时,相当于闸门已打开三分之二的状态时,水龙头底部已经可以有三分之二的水通过水嘴流出来了,此时,ec之间的电阻值也下降了三分之二,ec之间的电流处于调控或者说是放大状态。

比之间电阻值为W——童肇祿雄常呦iv 或L1UccUbb(e)水龙头闸门全部打开的状态图2-20三极管放大原理参考示意图⑤ 如图2.20 ( e )所示:当对发射结施加电压在1V或者1V以上时,相当于闸门已完全打开的状态时,水龙头底部所有的水已经可以通过水嘴流出来了,此时,ec之间的电阻值也下降为“ 0,”或者说很小,可以或略不计,ec之间的电流处于饱和状态,或者说是开关的ON状态。

对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量,。

但三极管厉害的地方在于:它可以通过小电流控制大电流放大的原理就在于:通过小的交流输入,控制大的静态直流。

假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。

小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。

所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。

如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。

在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。

当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。

如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。

管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。

这就是三极管中的截止区。

饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。

如果不开阀门江水就自己冲开了,这就是二极管的击穿。

在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。

而在数字电路中,阀门则处于开或是关两个状态。

当不工作的时候,阀门是完全关闭的,没有功耗。

三极管电路的基本分析方法2009-05-14 09:08一、概述三极管为非线型器件,对含有这些器件的电路进行分析时,可采用适当的近似方法,按线处理。

利用叠加定理可对电路中的交、直流成分分别进行分析。

分析方法:O图解法在输入、输出特性图上画交、直流负载线,求静态工作点“Q',分析动态波形微变等效电路法根据发射结导通压降估算“ Q'。

再用等效电路法分析计算小信号交流路动态参数。

电量参数的表示:B B,B表示主要符号,大写表示该电量是与时间无关的量(直流、平均值、小写表示该电量是随时间而变化的量(瞬时值)。

B为下标符号,大写表示直流量或总电量(总最大值时值);小写表示交流分量。

二、直流分析1.图解分析法:在三极管的特性曲线上用作图的方法求得电路中各直流电流、电压量大小称为图解分析法。

晶体三极管电路如下图(a)所示,三极管的输入、输出特性曲线分别示于下图(b)、(c)中C上匚心内2.工程近似分析法由此可在图(b )的输入特性曲线上确定基极回路的静态工作点 电压U BEQ ^目叠加,使得三极管B 、E 极之间的电压U BE 在原有直流电压U B EQ 的基础上,按U i 即U BE =U3EQ +U i =L BEQ +l lm Sin 3 t ,其波形如图(b )中①所示。

根据U BE 的变化 ,如圈6)中②所示。

由于输入电压幅值很小.输 人特性曲线的动态工作范围很小,可将逹一段曲 生的基极交流电流h 同相地按正弦规律变化,因 此,违二琢卜订二扁41血乩口①仁由图(b )可養岀 其瞬时值在20~4冲总间变动 订的幅度I 血二1。

卩打它与U 加成正比例。

由三极管输入特性可知,当旳E 、卩眈 时,说小变化可弓起掛大变化,此时输入特 性表现为恒压特性.与用图解法求得的结果相同3-0,7 115= 0.02(niA)=P 7BQ =100X 0.02= 2(mA.)^CEQ民=5-2x1= 3(V)三、交流分析1.动态图解分析三极管电路动态工作时的电流、电压、可利用三极管特性曲线,通过作图来求得。

相关文档
最新文档