运筹学教材编写组《运筹学》课后习题-网络计划(圣才出品)

合集下载

运筹学教材编写组《运筹学》课后习题-运输问题(圣才出品)

运筹学教材编写组《运筹学》课后习题-运输问题(圣才出品)

计算所有非基变量的检验数,如表 4-18 所示:
表 4-18
由 24 = 0 可得 c24 =17 ,所以当 c24 变为 17 时,此问题有无穷多最优调运方案。以 (A2, B4 ) 为调入格,作一闭回路,取不同的调入量对其进行调整可得到其它两个最优调运方
如表 4-5 所示:
2 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

表 4-5
第一步:用伏格尔法求得初始可行解如表 4-6 所示: 表 4-6
第二步:用位势法进行最优解的检验。在对应于表 4-6 的数字格处填入单位运价,并增
加一行一列,在行中填入 vj ,在列中填入 ui 。令 u1 = 0 ,按照 ui + vj = cij ( i,j B )求出所 有的 ui 和 vj ,并依据 ij = cij − (ui + vj ) ( i,j N )计算所有空格处的检验数,计算结果如表 4-7 所示:
表 4-2 中,有 10 个基格,而理论上只应有 m+n-l=9 个,所以表 4-2 给出的调运方案 不能作为表上作业法的初始解。
4.2 判断下列说法是否正确。 (1)在运输问题中,只要任意给出一组含(m+n+1)个非零的{xij},且满足
,就可以作为一个初始基可行解; (2)表上作业法实质上就是求解运输问题的单纯形法; (3)如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数 k,最优 调运方案将不发生变化; (4)运输问题单位运价表的全部元素乘上一个常数 k(k>0),最优调运方案将不发生
如表 4-8 所示: 表 4-8
第一步:用伏格尔法求得初始可行解如表 4-9 所示: 表 4-9
4 / 19

运筹学教材编写组《运筹学》课后习题(第1章 线性规划与单纯形法——第3章 运输问题)【圣才出品】

运筹学教材编写组《运筹学》课后习题(第1章 线性规划与单纯形法——第3章 运输问题)【圣才出品】

②因为 P1 、 P3 线性无关,故有
2xx11
x3 8 6x3
3x2 3 2x2
4
x4 7 x4
令非基变量
x2
x4
0 ,解得
x1
45 13 , x3
14 13
,故
X (2)
45 13
,
0,
14 13
,
0
T
不是可
行解。
③因为 P1 、x2 3 2x2
x3 6x3
令非基变量
x2
x3
0 ,解得
x1
34 5 , x4
7 5
,故有基可行解
X
(3)
34 5
, 0, 0,
7
T
5

z3
117 5

④因为 P2 、 P3 线性无关,故有
32xx22
x3 8 6x3
2 3
x1 x1
4x4 7 x4
令非基变量
x1
x4
0 ,解得
4x1 x2 2x3 x4 2
s.t.
x1
x2
2x1
3x3 3x2
x4 x3
14 2x4
2
x1, x2 , x3 0, x4无约束
解:令 x4 x4 ' x4 '',且 x4 ', x4 '' 0 ;在第一个约束条件两边同时乘以-1 后引入人工
变量 x5 ,在第二个约束条件右端加上松弛变量 x6 ;在第三个约束条件右端减去剩余变量 x7 ,
令非基变量
x1
x3
0 ,解得
X
(5)
0,
68 , 0, 29

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(对策论基础)

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(对策论基础)

圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)2× 或 ×2 对策的图解法
注意:该方法用在赢得矩阵为 2× 或 ×2 阶的对策上特别方便,也可用在 3× 或
×3 对策上。但对 和 均大于 3 的矩阵对策就丌适用了。
设缩减后的赢得矩阵为二阶无鞍点对策问题,局中人Ⅰ的混合策略为
的最优纯策略。 定理 1 矩阵对策 使得对一切
在纯策略意义下有解的充分必要条件是:存在纯局势
,均有

定义 2 设
为一个定义在

上的实值函数,如果存在
,使得对一切

,有
,则称

函数 的一个鞍点。 矩阵对策解的性质:
性质 1 无差别性。即若 性质 2 可交换性。即若
也是解。 定义 3 设有矩阵对策

是对策 G 的两个解,则
定理 11 设矩阵对策
的值为 ,则
6.矩阵对策的解法 (1)2×2 对策的公式法 所谓 2×2 对策是指局中人Ⅰ的赢得矩阵为 2×2 阶的,即
如果 A 有鞍点,则很快可求出各局中人的最优纯策略;如果 A 没有鞍点,为求最优混 合策略可求下列等式组:
上面等式组(Ⅰ)和(Ⅱ)一定有严格非负解

,其中
6 / 33
是对策 G 的两个解,则

,其中


则 和 分别称为局中人Ⅰ和Ⅱ的混的混合策略(或策略);对
,称
为一个混合局势(或局
势),局中人Ⅰ的赢得函数记成
这样得到的一个新的对策记成
,称 为对策 G 的混合扩充。
定义 4 设
是矩阵对策
的混合扩充,如果
3 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

运筹学教材编写组《运筹学》章节题库-图与网络优化(圣才出品)

运筹学教材编写组《运筹学》章节题库-图与网络优化(圣才出品)

3.无向连通图 G 是欧拉图的充要条件是______。[深圳大学 2011 研] 【答案】G 中无奇点 【解析】连通多重图 G 有欧拉圈,当且仅当 G 中无奇点。一个图若有欧拉圈,则称为 欧拉图。
2 / 34
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.网络中如果树的节点个数为 z,则边的个数为______。[中山大学 2007 研] 【答案】z-1 【解析】由树的性质可知,树的边数=数的节点数-1。
2.利用破圈法求赋权图的最小支撑树时,每次都是任取一个圈并去掉其中权最小的边, 直到该赋权图不再含圈时,便得到最小支撑树。()[暨南大学 2011 研]
【答案】× 【解析】利用破圈法求最小支撑树时,每次任取一个圈,去掉圈中权最大的边。
3.任一图 G = (V , E) 都存在支撑子图和支撑树。()[北京交通大学 2010 研]
G1。如果 G1 不含圈,那么 G1 是 G 的圈,如此重复,最终可以得到 G 的一个支撑子图 Gk,它不含圈,于是 Gk 就是 G 的一个
支撑树。
2.流 f 为可行流必须满足______条件和______条件。[深圳大学 2007 研] 【答案】容量限制;平衡 【解析】在运输网络的实际问题中可以看出,对于流有两个明显的要求:一是每个弧上 的流量不能超过该弧的最大通过能力(即弧的容量);二是中间点的流量为零。因为对于每 个点,运出这点的产品总量与运进这点的产品总量之差,是这点的净输出量,简称为是这一 点的流量;由于中间点只起转运作用,所以中间点的流量必为零。易而发点的净流出量和收 点的净流入量必相等,也是这个方案的总输送量。
(2)若 vi 点为刚得到 P 标号的点,考虑这样的点 vi , (vi ,vj) 属于 E,且 vi 为 T 标号。

运筹学教材编写组《运筹学》章节题库-对偶理论与灵敏度分析(圣才出品)

运筹学教材编写组《运筹学》章节题库-对偶理论与灵敏度分析(圣才出品)
3 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台

5.已知 Yi 为线性规划的对偶问题的最优解,若 Yi>0,说明()。[深圳大学 2006 研] A.原问题的最优解 xi=0 B.在最优生产计划中第 i 种资源己完全耗尽 C.在最优生产计划中第 i 种资源有剩余 D.无法判断 【答案】B 【解析】当影子价格为 0 时,表示某种资源未得到充分利用;而当资源的影子价格不为 零时,表明该种资源在生产中已耗费完毕。
【答案】对偶单纯形法
3.某极小化线性规划问题的对偶问题的最优解的第 l 个分量为 yl=-12,则该问题的第 1 个约束条件的右端常数项的对偶价格为:______。[武汉大学 2006 研]
5 / 36
圣才电子书

【答案】-12
十万种考研考证电子书、题库视频学习平台
【解析】由对偶问题的经济解释可知,原问题约束条件的右端常数项的对偶价格等于对
4.根据对偶解的经济含义,若天然气资源是我国的一种稀缺能源资源,其影子价格必 然是()。[北京科技大学 2010 研]
A.不能确定 B.<0 C.=0 D.>0 【答案】D 【解析】影子价格是对系统内部资源稀缺程度的一种客观评价,某种资源的影子价格越 高,说明该资源在系统内越稀缺,增加该资源的供应量对系统目标函数值贡献也越大。天然 气是资源是一种稀缺能源资源,其影子价格必然大于 0。
学 2008 研]
十万种考研考证电子书、题库视频学习平台
【答案】√
【解析】它的对偶问题可能无解,也可能有无界解。
二、选择题
1.用线性规划制定某一企业的生产计划问题,两种资源的影子价格分别为 y甲=5 , y乙=8 ,说明这两种资源在该企业中的稀缺程度为()。[北京交通大学 2010 研]

运筹学教材编写组《运筹学》课后习题-动态规划的基本方法(圣才出品)

运筹学教材编写组《运筹学》课后习题-动态规划的基本方法(圣才出品)
由此,可得出三条最优的运输路线:
(1) A → B2 →C1 → D1 → E ;(2) A → B3 →C1 → D1 → E ; (3) A → B3 →C2 → D2 → E 。
8.3 计算从 A 到 B、C 和 D 的最短路线。已知各段路线的长度如图 8-2 所示。
图 8-2
解:设阶段变量 k = 1, 2,3, 4 ,依次表示 4 个阶段选择路线的过程;状态变量 sk 表示第 k 阶段初所处的位置;决策变量 xk 表示第 k 阶段初可能选择的路线;最优值函数 fk (sk ) 表示 从起点 A 到第 k 阶段状态 sk 的最短距离,则有
xn =sn
n
xn
,或 fn+1(sn+1) = 0
n
(2)设状态变量为 sk = ai xi (k = 1, 2, n) ,状态转移方程为 sk+1 = sk − ak xk ,最 i=k
n
优值函数 fk (sk ) 表示在 sk 状态下从第 k 阶段到第 n 阶段使 z = ci xi2 最小的值,则动态规 i=k
划的基本方程为:
3 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台

fk (sk )
=
min
0xk sk ak
{ck
xk2
+
f k +1 (sk
− ak xk )}
fn+1(sn − anxn ) = 0(k = n, n −1, 2,1)
8.5 用递推方法求解下列问题。
=
max {2
0x3 10
x32
+
f2 (s2 )} =
max {2
0x3 10

运筹学教材编写组《运筹学》笔记和课后习题(含考研真题)详解 第(13-14)章【圣才出品】

运筹学教材编写组《运筹学》笔记和课后习题(含考研真题)详解  第(13-14)章【圣才出品】

dFT dt
et , t 0
(3)爱尔朗分布(Erlang)
3 / 54
圣才电子书 十万种考研考证电子书、题库视频学习平台

设1, 2 , , k 是 k 个独立的随机变量,服从相同参数 k 的负指数分布,那么,
T 1 2 k 的概率密度是:
fk
(t)
图 13-1 这种系统状态(n)随时间变化的过程就是生灭过程(Birth and Death Process), 它可以描述细菌的生灭过程。
4 / 54
圣才电子书

6.几个重要的参数
十万种考研考证电子书、题库视频学习平台
:单位时间平均到达的顾客数;
e :系统的有效达到率; :单位时间能被服务完成的顾客数;
那么一顾客走完 k 个服务台总共所需要服务时间就服从上述的 k 阶 Erlang 分布。
5.生灭过程(稳态)
稳态时, Pn (t) 与时间无关,可以写成 Pn ,它对时间的导数为 0,所以
PnP01
P1 0 Pn1 (
) Pn
0
上式即为关于 Pn 的差分方程。由此可得该排队系统的状态转移图如图 13-1 所示:
1 /研考证电子书、题库视频学习平台
①服务机构分为单服务台和多服务台。不同的输入形式与排队规则和服务机构联合后形
成不同的排队服务机构。
②服务方式分为单个顾客服务和成批顾客服务。
③服务时间分为确定型(定常时间)和随机型。
④服务时间的分布在这里我们假定是平稳的。
1
)
,
1 N
, 1
1
1 ,
e (1 PN ) (1 P0)
: / 。
7.排队论公式整理
(1)无敌的 Little 公式

运筹学教材习题答案详解

运筹学教材习题答案详解
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案










十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
(2)
【解】最优解X=(3/4,7/2);最优值Z=-45/4
(3)
【解】最优解X=(4,1);最优值Z=-10
(4)
【解】最优解X=(3/2,1/4);最优值Z=7/4
(5) 【解】最优解X=(3,0);最优值Z=3
(6)
【解】无界解。
(7)
【解】无可行解。
(8)
【解】最优解X=(2,4);最优值Z=13
【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为
1.3建筑公司需要用6m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:
表1-23窗架所需材料规格及数量
型号A
型号B
每套窗架需要材料
长度(m)

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(存储论)

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(存储论)

第13章存储论13.1 复习笔记1.存储论的基本概念备货时间:从订货到货物进入“存储”往往需要一段时间,我们把这段时间称为备货时间。

备货时间可能很长,也可能很短,可能是随机性的,也可以是确定性的。

提前时间:从另一个角度看,为了在某一时刻能补充存储,必须提前订货,那么这段时间称之为提前时间。

存储策略:决定多少时间补充一次以及每次补充数量的策略称为存储策略。

存储论要解决的问题是:多少时间补充一次,每次补充的数量应该是多少,即存储策略。

2.一些参数的含义K:货物单价;:最佳订货周期;R:需求速度;:最佳订货批量;:单位存储费用;:单位缺货损失;:订购费;:最佳费用;:最佳生产时间;:生产速度;:最大存贮量;:最大缺货量;:最大缺货量。

3.存储策略(1)-循环策略,每隔时间向系统内补充存储量Q。

(2)策略,当存储量时不补充;当时补充存储,补充量(即,将存储量补充到S)。

(3)混合策略,每经过t时间检查存储量,当时不补充;当时,补充存储量使之达到S。

4.确定性存储模型(1)模型一—经典的E.O.Q模型:不允许缺货,备货时间很短,且需求是连续均匀的,即需求速度是一常数;每批订货量不变,订货费用为常数;单位存储费用不变。

已知,求,,(2)模型二:不允许缺货,生产需一定时间,其余条件同模型一。

已知,求,,(3)模型三:允许缺货,备货时间很短,其余条件同模型一。

已知,求,,,最大缺货量(4)模型四:允许缺货(需补足缺货),生产需要一定时间,其余条件同模型一。

已知,求,,简便的记忆方法:①永远成立②记住模型一,,③定义两个因子④与因子的关系与乘以因子,与除以因子模型二乘除,模型三乘除,模型四乘除⑤模型二的,模型三的,模型四的说明:在允许缺货条件下,经过研究而得出的存储策略是:每隔时间订货一次,订货量为,用中的一部分补足所缺货物,剩余部分进入存储。

很明显,在相同的时间段落里,允许缺货的订货次数比不允许缺货时订货次数减少了。

运筹学教材编写组《运筹学》章节题库-运输问题(圣才出品)

运筹学教材编写组《运筹学》章节题库-运输问题(圣才出品)

需进行进一步调整。
利用闭回路法进行解的改进。
在初始方案表中以(丙,A)出发作一闭回路,利用闭回路进行调整,得到的结果如表
3-4 所示:
表 3-4
A
B
C
D
供应量

7
6
483Leabharlann M145 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台


10 5
6
6
8
M
16

0
3
四、简答题 1.用表上作业法解运输问题时,在什么情况下会出现退化解?当出现退化解时如何处理? 答:当运输问题某部分产地的产量和,与某一部分销地的销量和相等时,在迭代过程中 间有可能在某个格填入一个运量时需同时划去运输表的一行和一列,这时就出现了退化。 当出现退化时,为了使表上作业法的迭代工作能顺利进行下去,退化时应在同时划去的 一行或一列中的某个格中填入数字 0,表示这个格中的变量是取值为 0 的基变量,使迭代过 程中基变量个数恰好为(m+n-1)个。
采用最小元素法得初始调运方案如表 3-2 所示:(因为基格个数=7-1=6 个,故在一空
格中填入 0)
表 3-2
A
B
C
D
供应量

7
6
48
3
M
14

10 5
6
6
8
M
16

3
50
8 15 7
15
4 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台

需求量
10
12
2.一个运输问题,如果其单位运价表的某一行元素分别加上一个常数,最优调运方案 是否发生变化,试说明理由(用表或直接用公式);[武汉大学 2007 研]

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(对偶理论与灵敏度分析)

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(对偶理论与灵敏度分析)

影子价格随具体情况而异,在完全市场经济的条件下,当某种资源的市场价低于影子价 格时,企业应买迚该资源用于扩大生产;而当某种资源的市场价高于该企业影子价格时,则 企业的决策者应把已有资源卖掉。可见影子价格对市场有调节作用。
要记住:市场价格低于影子价格,可以买迚(然后用灵敏度分析迚行计算),若市场价 格高于影子价格,丌买迚。
,
c2
,
, cn
amn
y1, y2,…, ym 0
线性觃划的原问题不对偶问题的关系,其变换形式可归纳如下:
表 2-1
2 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

记忆方法: 极大化转化为极小化,变丌反约反;极小化转化为极大化,变反约丌反。 注:变指变量,约指约束条件。反指大于变小于,小于变大于。丌反指大于变大于,小 于变小于。注意等号总是变无约束,无约束总是变等号。
4.对偶问题的基本性质 (1)对称性:对偶问题的对偶是原问题。
(2)弱对偶性:若 X 是原问题的可行解,Y 是对偶问题的可行解。则存在 C X Yb 。
注意,由弱对偶性可以推出: ①max 问题仸一可行解的目标值为对偶 min 问题目标值的一个下界; ②min 问题仸一可行解的目标值为对偶 max 问题目标值的一个上界。 (3)无界性:若原问题(对偶问题)为无界解,则其对偶问题(原问题)无可行解。 注:这个问题的性质丌存在逆。当原问题(对偶问题)无可行解时,其对偶问题(原问 题)戒具有无界解戒无可行解。
的矩阵表示为:
目标函数: max z CB X B CN X N CB X B CN1X N1 CS 2 XS 2 约束条件: BX B NX N BX B N1X N1 S2 XS2 b 非负条件: X B , X N 0

运筹学教材编写组《运筹学》笔记和课后习题(含考研真题)详解(启发式方法)【圣才出品】

运筹学教材编写组《运筹学》笔记和课后习题(含考研真题)详解(启发式方法)【圣才出品】

第18章启发式方法18.1 复习笔记1.基本概念良好结构问题:有些实际问题的结构比较清晰,各元素之间的关系明确,边界清楚,容易为人们所认识,能够通过建模和使用一定的算法求得解决,这类问题称为良好结构问题。

良好结构问题的特征:(1)能建立起正确反映该问题性质的一种“可接受”模型,与问题有关的主要信息可纳入模型之中;(2)模型所需要的数据能够获得;(3)模型可解,能拟订出求解的程序性步骤和求解方法,而且,得到的解能体现解决问题的可行方案;(4)可拟订出明确的准则,用以判定解的可行性和最优性;(5)求解所需的计算量不太大,所需的费用不太多。

启发式方法:对于非良好结构问题,为了得到近似可用的解,分析人员必须运用自己的感知和洞察力,从与其有关而较基本的模型及算法中寻求其间的联系,从中得到启发,去发现适于解决该问题的思路和途径,这种方法称为启发式方法,由此建立的算法称为启发式算法。

启发式方法具有下述优点:(1)计算步骤简单,要求的理论基础不高,可由未经高级训练的人员实现;(2)比优化方法常可减少大量的计算工作量,从而显著节约开支和时间;(3)易于将定量分析与定性分析相结合。

启发式策略:(1)逐步构解策略。

一个完整的解通常是由若干个分量组成的。

当用该策略时,应建立某种规则,按一定次序每次确定解的一个分量,直至得到包含所有解分量的一个完整的解为止。

(2)分解合成策略。

为求解一个复杂的大问题,可首先将其分解为若干个小的子问题,再选用合适的方法(包括启发式方法、优化方法、模拟方法等)按一定顺序求解每个子问题,根据子问题之间及其与总问题的关系(例如递阶关系、包含(嵌套)关系、平行关系等),将子问题的解作为下一阶子问题的输入,或在相容原则下将子问题的解进行综合,经合成最后得到总问题合乎要求的解。

(3)改进策略。

运用这一策略时,首先从一个初始解(初始解不必一定是可行解)出发,然后对解的质量(包括它产生的目标函数值、可行性及可接受性等)进行评价,并采用某种启发式方法设计改进规则,对解加以改进,反复进行如上的评价和改进,直至得到满意的解为止。

运筹学教材编写组《运筹学》课后习题-图与网络优化(圣才出品)

运筹学教材编写组《运筹学》课后习题-图与网络优化(圣才出品)
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台

(a1)(a2) 图 11-5
①采用避圈法。首先从图 11-5(a1)中选取最小边 e13 = 1 ,以后每一步从未选出的边
中选出一个边上权最小的边,并使之与前面已选的边不构成圈(若在某一步中,有两条或两 条以上的最小权的边时,则从中任选取一条),直到不能选出为止。
各有一条连线。
至此, v1 、 v2 与 v3 、 v4 、 v5 和 v6 中任意一个就组成了环,则 G 不是简单图。 ②假定 G 中无环,则根据情形①的分析, v1 的关联边中必存在重复边。从而 G 不是简
单图。 由上可知,该图中必有环或多重边,不可能是简单图的次的序列。
11.2 已知九个人 v1,v2,…,v9 中 v1 和两个人握过手, v2, v3 各和四个人握过手, v4, v5 , v6, v7 各和五个人握过手,v8, v9 各和六个人握过手,证明这九个人一定可以找出三人互相握
于是,以 e13, e15, e3, e9, e10, e5, e17 为边构成的图恰好就是一个支撑树,如图 11-5(a2)
所示,其权为 16。
②采用破圈法。在图 11-5(a1)中任取一个圈,例如 (v1,v2,v3) ,从中去掉权最大的边 (此处去掉边 e2 = 8 ),在余下的图中,重复上述步骤,直到此图不再含圈为止。其具体过
(见图 11-6(b2))是一个最小支撑树,其权为 12。
②采用破圈法。与(1)中的破圈法思路相同,通过破去图中 e1,e4,e6,e10 和 e11 这五条
边以后余下的边集
e2,e3,e5,e7,e9,e8 构成的子图就是原图的一个最小支撑树,此最小支撑图正是先前的图

运筹学第三版课后习题答案第7章网络计划——第十三章博弈论

运筹学第三版课后习题答案第7章网络计划——第十三章博弈论

第7章网络计划7.1(1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的紧前工序。

(2) 用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序表7-16工序 A B C D E F G紧前工序--- A A、C -B、D、E、F紧后工序D,E G E G G G -表7-17工序 A B C D E F G H I J K L M 紧前工序- - - B B A,B B D,G C,E,F,H D,G C,E I J,K,L 紧后工序F E,D,F,G I,K H,J I,K I H,J I L M M M-【解】(1)节点图:箭线图:(2)节点图:箭线图:7.2根据项目工序明细表7-18:(1)画出网络图。

(2)计算工序的最早开始、最迟开始时间和总时差。

(3)找出关键路线和关键工序。

表7-18工序 A B C D E F G 紧前工序- A A B,C C D,E D,E 工序时间(周)9 6 12 19 6 7 8【解】(1)网络图(2)网络参数工序 A B C D E F G最早开始0 9 9 21 21 40 40最迟开始0 15 9 21 34 41 40总时差0 6 0 0 13 1 0(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。

7.3表7-19给出了项目的工序明细表。

表7-19工序 A B C D E F G H I J K L M N 紧前工序- - - A,B B B,C E D,G E E H F,J I,K,L F,J,L 工序时间(天) 8 5 7 12 8 17 16 8 14 5 10 23 15 12 (1)绘制项目网络图。

(2)在网络图上求工序的最早开始、最迟开始时间。

(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。

(4)找出所有关键路线及对应的关键工序。

(5)求项目的完工期。

【解】(1)网络图(2)工序最早开始、最迟开始时间(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差 工序 tT EST EFT LST LF 总时差S 自由时差F A 8 0 8 9 17 9 0 B 5 0 5 0 5 00 C 7 0 7 7 7 0 0 D 12 8 20 17 29 9 9 E 8 5 13 5 13 0 0 F 17 7 24 7 24 0 0 G 16 13 29 13 29 0 0 H 8 29 37 29 37 0 0 I 14 13 27 33 47 20 20 J 5 13 18 19 24 6 6 K 10 37 47 37 47 0 0 L 23 24 47 24 47 0 0 M154762 47 62 0 0 N 12 47 59506233(4)关键路线及对应的关键工序关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:B,E,G ,H,K,M 第二条:①→④→⑧→⑨→○11→○12;关键工序:C,F,L,M (5)项目的完工期为62天。

运筹学教材编写组《运筹学》章节题库-线性规划与单纯形法(圣才出品)

运筹学教材编写组《运筹学》章节题库-线性规划与单纯形法(圣才出品)

约束条件应引入( )。[北京交通大学 2010 研]
A.可控变量
B.环境变量
C.人工变量
D.松弛变量
【答案】D
【解析】约束方程为“≥”不等式,则可在“≥”不等式左端减去一个非负剩余变量(也
可称松弛变量)。
2.单纯形法中,关于松弛变量和人工ห้องสมุดไป่ตู้量,以下说法正确的是( )。[中山大学 2008 研]
A.在最后的解中,松弛变量必须为 0,人工变量不必为 0 B.在最后的解中,松弛变量不必为 0,人工变量必须为 0 C.在最后的解中,松弛变量和人工变量都必须为 0 D.在最后的解中,松弛变量和人工变量都不必为 0 【答案】B 【解析】如果人工变量不为 0,则原问题无可行解。
【答案】√ 【解析】基解且可行才有可能是最优解。
6.若 X1,X2 分别是某一线性规划问题的最优解,则 X=λ1X1+λ2X2 也是该线性规划问 题的最优解,其中 λ1,λ2 为正实数。[南京航空航天大学 2011 研]
【答案】×
【解析】 1,2 不但应该是正实数,还应该满足 1+2 =1
7.如果线性规划问题有最优解,则它一定是基可行解。[东北财经大学 2008 研] 【答案】√ 【解析】基解且可行才有可能是最优解。
圣才电子书 十万种考研考证电子书、题库视频学习平台


C
m n
个。[暨南大学
2011
研]
【答案】×
【解析】其基解的个数最多是
C
m n
个,且一般情况下,基可行解的数目小于基解的个数。
5.若线性规划问题的可行解为最优解,则该可行解必定是基可行解。[南京航空航天大 学 2011 研]
【答案】C
【解析】当某些 σj>0 时,xj 增加则目标函数值还可以增大,这时要将某个非基变量 xj

运筹学基础课后练习答案(项目四 图与网络分析)

运筹学基础课后练习答案(项目四  图与网络分析)

项目四图与网络分析任务八图与网络的应用练习1、求下图的最小支撑树。

用破圈法求该图的最小支撑树:(1)(2)(3)(4)2、分别用破圈法和避圈法求下列各个图的最小支撑树。

a-1:用破圈法求图a的最小支撑树:a-2:用避圈法求图a的最小支撑树:b-1:用破圈法求图b 的最小支撑树:b-2:用避圈法求图b 的最小支撑树:3、用标号法求下图中1v 至7v 的最短路。

1)标号过程(1)初始化;令起点v 1的标号为P ,记做P(1) =0;令其余各点的标号为T ,记做T(i)=∞;(2)计算T标号:刚得到P标号的点为v1,考虑所有与v1相邻的T标号点v 2、v3、v5,修改v2、v3、v5的T标号为:T(2)=min[T(2),P(1)+d12]=min[+∞,0+4]=4T(3)=min[T(3),P(1)+d13]=min[+∞,0+3]=3T(5)=min[T(5),P(1)+d15]=min[+∞,0+5]=5 (3)确定P标号:在所有的T标号点中,找出标号值最小的点标上P标号。

T(2)= 4 T(3) =3 T(4) =+∞T(5)=5 T(6)= +∞ T(7)= +∞令P(3)=3。

(4)计算T标号:刚得到P标号的点为v3,考虑所有与v3相邻的T标号点v 6,修改v6的T标号为:T(6)=min[T(6),P(3)+d36]=min[+∞,3+2]=5 (5)确定P标号:在所有的T标号点中,找出标号值最小的点标上P标号。

T(2)= 4 T(4) =+∞ T(5)=5 T(6)= 5 T(7)= +∞令P(2)=4。

(6)计算T标号:刚得到P标号的点为v2,考虑所有与v2相邻的T标号点v 5,修改v5的T标号为:T(5)=min[T(5),P(2)+d25]=min[5,4+1]=5(7)确定P标号:在所有的T标号点中,找出标号值最小的点标上P标号。

T(4) =+∞ T(5)=5 T(6)= 5 T(7)= +∞令P(5)=5。

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(运输问题)

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(运输问题)

第3章 运输问题3.1 复习笔记1.运输问题的数学模型运输问题:已知有m 个生产地点,1,2,,i A i m =…,可供应某种物资,其供应量(产量)分别为i a ,1,2,,i m =…,有n 个销地j B ,1,2,,j n =…,其需要量分别为j b ,1,2,,j n =…,从i A 到j B 运输单位物资的运价(单价)为ij c 。

如何安排运输,能使得总运输成本最小?(1)产销平衡运输问题的数学模型1111min ,1,2,,..,1,2,,0m nij iji j mij j i nij i j ijz c x x b j n s t x a i mx =====⎧==⎪⎪⎪==⎨⎪⎪≥⎪⎩∑∑∑∑ 模型特点:①该模型包含m n ⨯个变量,()m n +个约束方程;②该系数矩阵中对应于变量ij x 的系数向量ij P ,其分量中除第i 个和第m j +个为1外,其余的都为零。

即(01010)T ij i m j P e e +==+…………③对于产销平衡的运输问题,有以下关系式存在:111111n m n n m m j ij ij i j i j j i i b x x a ======⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑∑ 所以模型最多只有m+n-1个独立约束方程。

即系数矩阵的秩≤m+n -1。

注意:运输问题的基变量一定是m+n-1个,m+n-1个变量构成基变量的充要条件是它们不构成闭回路。

闭回路的特点:在运输产销平衡表中,每一条边都是水平或垂直的;每一行或每一列至多只有两个闭回路的顶点。

(2)产销不平衡运输问题的数学模型当产大于销,即11m n i j i j a b ==>∑∑时,运输问题的数学模型可写成:1111min ,1,2,,..,1,2,,0m n ij iji j mij j i nij i j ijz c x x b j n s t x a i mx =====⎧==⎪⎪⎪≤=⎨⎪⎪≥⎪⎩∑∑∑∑ 当产小于销,即11m n i j i j a b ==<∑∑时,运输问题的数学模型可写成:11min m n ij ij i j z c x ===∑∑11, (1,2,,), (1,2,,)0nij i j mij j i ij x a i m x b j n x ==⎧==⎪⎪⎪≤=⎨⎪⎪≥⎪⎩∑∑……2.表上作业法表上作业法是单纯形法在求解运输问题时的一种简化方法,其实质是单纯形法。

运筹学教材习题答案详解

运筹学教材习题答案详解
X(2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根
显然用料最少的方案最优。
1.4A、B两种产品,都需要经过前后两道工序加工,每一个单位产品A需要前道工序1小时和后道工序2小时,每一个单位产品B需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案










十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
《运筹学》
第1章线性规划
第2章线性规划的对偶理论
第3章整数规划
第4章目标规划
第5章运输与指派问题
第6章网络模型
第7章网络计划
第8章动态规划
第9章排队论
第10章存储论
第11章决策论
第12章对策论
习题一
1.1讨论下列问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章网络计划
11.1 已知下列资料(表11-1)。

表11-1
要求:(1)绘制网络图;
(2)用图上计算法计算各项时间参数(除外);
(3)确定关键路线。

解:(1)由题意绘制网络图如图11-1所示。


2)
事项最早时间见图11-1中“□”中的数字,事项最迟时间见图11-1中“△”中的数字。

图11-1
(3)总时差为零的工序为关键工序,所以关键路线为①→③→④→⑤→⑥→⑦→⑩→⑪,对应的工序为。

11.2 已知下列资料,如表11-2所示。

r
H B G A F K
→→→→→
要求:(1)绘制网络图;
(2)计算各项时间参数;
(3)确定关键路线。

表11-2
解:(1)由题意绘制网络图如图11-2所示。

(2)事项最早时间见图11-2“□”中的数字,事项最迟时间见图11-2中“△”中的数字。

图11-2
(3)总时差为零的工序为关键工序,所以关键路线为,如图11-2所示。

11.3 已知下列资料,如表11-3所示:
表11-3
求出这项工程的最低成本日程。

解:由表11-3中的已知条件和数据,绘制如图11-3所示的网络图。

图11-3
各事项的最早时间为:
各事项最迟时间为:
()()()()()()()
{} 6max44,6,33,6,55,6
E E E E
T T T T T T T
=+++
{}
max84,45,11012
=+++=
()()()()()
{}{} 7max22,7,66,7max86,12315 E E E
T T T T T
=++=++=
将各事项的最早时间与最迟时间分别记入该事项右下角的“□”和“△”内,如图11-4所示。

图11-4
总时差为零的工序为关键工序,从图11-4可以看出关键路线为
又已知工程项目每天的间接费用为500元,按图11-4及表11-3中的已知资料,若按图11-4安排,易知工程总工期为l5天,工程的直接费用(各工序直接费用之和)为
(20+30+15+5+18+40+10+15)×100=15300元 工程间接费用15×500=7500元 工程总费用为15300+7500=22800元
如果要缩短工期,应该首先缩短关键线路上赶一天进度所需费用最小的工序的作业时间。

工序B ,G ,H 中,G 赶一天进度所需费用最小,为300元,且小于一天的工程间接费用
()715L T =()()()676,715312L L T T T =−=−=()()()464,61248L L T T T =−=−=()()()()(){}{}2min 72,7,42,4min 156,808L L L T T T T T =−−=−−=()()()565,612012L L T T T =−=−=()()()()()()(){}3min 43,4,63,6,53,55L L L L T T T T T T T =−−−=()()()()(){}{}1min
21,2,31,3min 88,540L L L T T T T T =−−=−−=
500元。

缩短G工序1天,此时总费用为22800+(300-500)=22600元。

此时,关键路线有三条,分别为B,G,H;B,C和A,D,G,H。

此时,如果再缩短工程工期,赶进度所需费用将超过因缩短工期而节约的间接费用,从而导致工程总费用的增加。

所以,最低成本日程为14天,此时工程总费用为22600元。

相关文档
最新文档