初二一次函数压轴题复习精讲
专题08 一次函数与几何综合的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)
专题08一次函数与几何综合的五种考法类型一、等腰三角形存在性问题(1)求直线CB的解析式;(2)点E在x轴上,【答案】(1)12y x =+(2)(4,0)、(16,0)-、当10BE AB ==时,1E 点的坐标为(4,0),2E 点的坐标为当AB AE =时,点B 与点E 是关于y 轴对称,E 当EA EB =时,设点E 坐标为(,0)x ,则2228(6)x x +=+,解得:73x =4E 点的坐标为7(,0)3,(1)当点P 在线段BO 上时,①求证:AOP BOQ ≌△△;②若点P 为BO 的中点,求△(2)在点P 的运动过程中,是否存在某一位置,的坐标;若不存在,请说明理由.当点P 在线段OB 上时,若OC OQ =,由于OP OQ =,则有在OCP △中,OPC AOP ∠=∠+OC OP ∴>,即OC OQ =不可能;若CQ OQ =,由于OP OQ =,则有过点C 作CH x ⊥轴于点H ,显然即CQ OQ =不可能,∴当COQ 是等腰三角形时,只有当点P在BO的延长线上时,同理可得:(0,424)P--,综上所述:(0,424)P-或P【点睛】本题考查了一次函数与几何图形综合,图形是解题的关键.【变式训练2】如图,在平面直角坐标系中,一次函数分别交于点B、A,点P为y(1)求点A、B的坐标;(2)当点P在y轴负半轴上,且ABP的面积为6时,求点(3)是否存在点P使得ABP为等腰三角形?若存在,求出点设()()0,0P n n <,则2PA =-所以()22224PA n n n =-=-+所以224416n n n -+=+解得3n =-,所以此时点P 的坐标为(0,3-综上所述,存在点P 使得ABP 例.如图,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,点C 是OB 的中点.(1)求点C 的坐标:(2)在x 轴上找一点D ,使得ACD ABC S S = ,求点D 的坐标;(3)在x 轴上是否存在一点P ,使得ABP 是直角三角形?若存在,请写出点P 的坐标;若不存在,请说明理由.【答案】(1)()0,2C (2)点D 的坐标为()4,0-或()0,0(3)存在,满足条件的P 点的坐标为()0,0或()8,0(1)填空:b =,m =,k =;(2)如图2,点D 为线段BC 上一动点,将ACD 沿直线AD 翻折得到AED △,线段AE 交轴于点F .①求线段AE 的长度;②当点E 落在y 轴上时,求点E 的坐标;③若DEF 为直角三角形,请直接写出满足条件的点D 的坐标.【答案】(1)8,2-,12-(2)①45;②点E 的坐标为()0,4219-;③点D 的坐标为()20,或()254,0-【分析】(1)根据待定系数法求解即可;(2)①过点A 作AH y ⊥轴于点H ,作AG x ⊥轴于点G ,根据勾股定理得到()222262480AE AC ==++=,于是得到结论;②利用勾股定理求出219HE =,可得2194OE =-,即可得答案;③分两种情况讨论,当90EDF ∠=︒时,求出135ADC ∠=︒,得45ADO ∠=︒,得DG AD ==得点D 坐标;当90DFE ∠=︒时,设DF x =,则8DE DC x ==-,由勾股定理得:()()2228454x x -=+-,求出DF ,得点D 坐标.【详解】(1)解:把()40B -,代入2y x b =+,∵()024b =⨯-+,∴8b =,∴直线AB :28y x =+,把()4A m ,代入28y x =+,∴2m =-,∵ACD 翻折得到AED△∴()222262480AE AC ==++=,∴45AE =②当E 点落在y 轴上时,在Rt AHE △中,∵222AE AH HE -=∴222802HE AE AH =-=-=∴2194OE HE OH =-=-,∴点E 的坐标为()04219-,;③如下图,当90EDF ∠=︒时,由翻折得ADC ∠∴1359045ADO ∠︒︒=-=︒,∵4AG =,∴4DG AG ==,∴422OD DG OG =-=-=,∴点D 的坐标为()20,;如下图,当90DFE ∠=︒时,80AE AC ==设DF x =,则8DE DC x ==-,在Rt DEF △中,由勾股定理得:(解得:252x =-,∴254OD DF OF =-=-,∴点D 的坐标为()254,0-,综上,点D 的坐标为()20,或(2【点睛】本题考查了一次函数的综合题,勾股定理,角平分线的性质,直角三角形的性质和判定,翻折的性质,解题的关键是作辅助线.(1)如图1,求出AOP 的面积;(2)如图2,已知点C 是直线85y x =上一点,若APC △是以AP 为直角边的等腰直角三角形,求点C 的坐标.【答案】(1)AOP 的面积为40(2)点C 的坐标为()1016,或162,⎛⎫⎪∵直线l x ∥轴,点B ∴8PH OB ==,∴12AOP S OA PH == 故答案为:40;(2)设点(),8P n (n ≠过点P 作直线FE ,交APC 为等腰直角三角形,则90APE FPC ∴∠+∠=︒,APE FCP ∴∠=∠,90PEA CFP ∠=∠=︒ ,(AAS)PEA CFP ∴ ≌,同理可得:(AAS)AMP ANC ≌AM AM ∴=且MP NC =,8|10|m ∴=-或8105n m -=解得:2565m n =⎧⎪⎨=⎪⎩或181945m n =⎧⎪⎨=⎪⎩(1)求直线l 的解析式;(2)求证:ABC 是等腰直角三角形;(3)将直线l 沿y 轴负方向平移,当平移恰当的距离时,直线与在直线CD 上存在点P ,使得A △的坐标.【答案】(1)142y x =-+∴90DPE A PB ''∠=∠=︒,∴A PD B PE ''∠=∠,∵90A FP CEB ''∠=∠=︒,∴A FP CEB '' ≌,∴4,PE PF A F B E ''===,此时点P 的坐标为()44--,;如图,若以点P 为直角顶点时,过点同理此时点P 的坐标为()44-,;如图,若以点B '为直角顶点时,过点P 作同理A OB B GP ''' ≌,∴44OB PG OF t '====+,B '∴8t =-或0(舍去),∴8B G OA ''==,∴12OG =,∴此时点P 的坐标为()412--,;如图,若以点B '为直角顶点时,过点B '作B M CD '⊥轴于点M ,则4B M OF '==,OB MF '=,同理PB M A B O ''' ≌,∴44B M B O t ''===+,82PM OA t '==+,∴0=t (舍去);如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,∴,PF A O B O A F '''==,∴4482t t --=---,解得:8t =-,∴8PF =,此时点P 的坐标为()48-,;如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,∴,PF A O B O A F '''==,∴4824t t --=++,解得:163t =-,∴83PF =,∴此时点P 的坐标为84⎛⎫--,;(1)①A 的坐标是_____________②求直线AB 的表达式;(2)点P 是直线y =(3)当ABP 为等腰直角三角形时,请直接写出【答案】(1)①(0,3【分析】(1)把x(3)解:如图1,当点P 为顶点时,过点P 作PE x ⊥轴,过点A 作AF 垂直于PE 的延长线于点F ,∵ABP 是等腰直角三角形,AP PB ∴=,APB ∠=90︒,=90FAP APF +∠︒ ,=90APF BPE ∠+∠︒,=FAP BPE ∴∠∠,在AFP 和PEB △中,F E FAP EPB AP PB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFP PEB AAS ∴≅ ,AF PE ∴=,BE PF =,===90O F E ∠∠∠︒ ,∴四边形AOEF 是矩形,==AF PE OB BE ∴+,===AO FE FP PE BE PE ++,==2AO BE OB BE BE OB +++,()0,3A 、()1,0B ,=3AO ∴,1OB =,21=3BE ∴+,=1BE ∴,==31=2PE AO BE --,==11=2OE OB BE ∴++,∴点P 的坐标为()2,2;如图2,当点B 为顶点时,过点P 作PG x ⊥轴,ABP 是等腰直角三角形,AB BP ∴=,=90ABO OAB ∠+∠︒ ,=90ABO PBG ∠+∠︒,=OAB PBG ∴∠∠,在AOB 和BGP 中,O PGB OAB PBG AB BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOB BGP AAS ∴≅ ,=PG OB ∴,BG AO =,()0,3A 、()1,0B ,=3AO ∴,1OB =,==13=4OG OB BE ∴++,=1PG ,∴点P 的坐标为()4,1;如图3,当点A 为顶点时,过点P 作PM y ⊥轴,PAB △是等腰直角三角形,PA AB ∴=,=90PAB ∠︒,90MAP OAB ∠+∠=︒ ,90MAP MPA ∠+∠=︒,=MPA OAB ∴∠∠,在PMA △和AOB 中,M O MPA OAB AP AB ∠=∠⎧⎪∠=∠⎨⎪=⎩()PMA AOB AAS ∴≅ ,=MP AO ∴,=MA OB ,()0,3A 、()1,0B ,=3AO ∴,1OB =,3MP ∴=,==13=4OM MA AO ++,∴点P 的坐标为()3,4,故答案为:()2,2;()4,1;()3,4.【点睛】本题考查了一次函数的综合运用,等腰直角三角形的性质和矩形的性质及全等三角形的性质的判定,熟练求一次函数的解析式和构造全等三角形是解题的关键.类型四、全等问题(1)点A坐标为________,点B坐标为(2)当BOP△的面积是4时,求点(3)在y轴上是否存在点Q,使得以接写出所有符合条件的点P的坐标,否则请说明理由.【答案】(1)(3,0),(0,4),12 5(2)4(2,)20(2,)125OM OQ ==,12(0,)5Q 或12(0,)5-,6(5P ,12)5或24(5,12)5-;②如图3,图4,当OMP PQO ≌△△时,125PQ OM ∴==,12(5P ∴-,36)5或12(5,4)5;综上所述:P 点坐标为(65,12)5或24(5,12)5-或12(5-,36)5或12(5,4)5.【点睛】本题考查一次函数的图象及性质,判定及性质,分类讨论,数形结合是解题的关键.【变式训练1】如图,一次函数364y x =+的图象与于点C ,点P 在直线AB 上运动,点Q 在(1)求点A ,B 的坐标;(2)求OC 的长;(3)若以O ,P ,Q 为顶点的三角形与【答案】(1)()8,0A -,(B (3)Q 的坐标为120,5⎛⎫ ⎪⎝⎭或0,⎛ ⎝则OC PQ=,∴245PQ =,∴245m=-,∴33241266 4455m⎛⎫+=⨯-+=⎪⎝⎭,∵PQ OC=,∴245 PQ=.∴245=m,∴33244866 4455m+=⨯+=,∴48 0,5Q⎛⎫ ⎪⎝⎭;则245 OQ OC==,∴240,5Q⎛⎫ ⎪⎝⎭;综上所述,Q的坐标为12 0,5⎛⎫ ⎪⎝⎭或(1)求点B 的坐标及直线BC 的函数表达式;(2)在坐标系平面内,存在点D ,使以点A ,B ,D 为顶点的三角形与ABC 全等,画出ABD ,并求出点D 的坐标.【答案】(1)点B 的坐标为(0,3),33y x =-+;(2)图见解析,点D 的坐标为(4-,3)或(3-,4)或(0,1)-.【分析】(1)将点点(3A -,0)代入解析式得出3b =,继而得出点B 的坐标为(0,3),根据:3:1OB OC =得出1OC =,即点C 的坐标为(1,0),然后待定系数法求解析式即可求解;(2)分在x 轴上方:BAD ABC ≌和(ABD ABC ≌如图1)和点D 在y 轴上(如图②)两种情况,根据全等三角形的性质即可求解.【详解】(1)解:∵直线AB :y x b =+过点(3A -,0),03b ∴=-+,3b ∴=.当0x =时,3y x b b =+==,∴点B 的坐标为(0,3),即3OB =.OB :3OC =:1,1OC ∴=.点C 在x 轴正半轴,∴点C 的坐标为(1,0).设直线BC 的解析式为()0y kx c k =+≠,将(0B ,3)、(1C ,0)代入y kx c =+,得:30c k c =⎧⎨+=⎩,解得:33k c =-⎧⎨=⎩,∴直线BC 的函数表达式为33y x =-+.(2)分在x 轴上方:BAD ABC ≌和(ABD ABC ≌如图1)和点D 在y 轴上(如图②)两种情况考虑:如图①:①当BAD ABC ≌时,3OA OB == ,45BAC ∴∠=︒.BAD ABC ≌,45ABD BAC ∴∠=∠=︒,4BD AC ==,BD ∴∥AC ,∴点D 的坐标为(4-,3);②当ABD ABC ≌时,45BAD BAC ∠=∠=︒,4AD AC ==,90DAC ∴∠=︒,∴点D 的坐标为(3-,4).如图②当ABD BCA ≌时,4BD AC ==,1OD ∴=,∴点D 的坐标为(0,1)-.综上所述,点D 的坐标为(4-,3)或(3-,4)或(0,1)-.【点睛】本题考查了一次函数与几何图形,坐标与图形,全等三角形的性质与判定,数形结合是解题的关键.【变式训练3】如图①,已知直线24y x =-+与x 轴、y 轴分别交于点A 、C ,以OA OC ,为边在第一象限内作长方形OABC .类型五、角度之间关系过点P 作EF y ⊥轴于点E ,过点H 作∴45POG ∠=︒,∵()3,1P ,∴1,3EP OE ==∵OA OB =,45AOB ∠=︒∴AOB 是等腰直角三角形,∵45APO EOP ∠+∠=︒,PQO APO∠=∠∴45PQO EOP ∠+∠=︒又∵9045EOP GOQ POG ∠+∠=︒-∠=∴GOQ GQO∠=∠∴GQ GO =,即点G 在OG 的垂直平分线上,∵90OEP PFH OPH ∠=∠=∠=︒,∴90OPE FPH PHF ∠=︒-∠=∠,(1)求直线AB的关系式;(2)连接PD,当线段PD AB⊥时,直线AD上有一点动M∴1284,2525S ⎛⎫-- ⎪⎝⎭,∵45,DKR DAO KT RK ∠=∠=︒⊥∴45DKR DKT ∠=︒=∠,∴KT KP =,∴P ,T 关于直线AD 对称,连接TS 交AD 于M ,交x 轴于N 4y x =-+12x =-得y =∵3,4OB OA ==,∴34PH PH AH HW==,设3PH t =,则4AH HW t ==∴5PW t OW ==,∵4OW HW AH OA ++==,∵12POA BAO ∠=∠,∴2POA APO POA ∠+∠=∠∴APO POA ∠=∠,∴4AO AP ==,∵34PF OB AF AF ==,∴165AF =36(1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线于点Q .①若PQB △的面积为83,求点M 的坐标.②连接BM ,如图2,在点M 的运动过程中是否存在点P ,使∠求出点P 坐标,若不存在,请说明理由.则113(3)22PQ m m m =-+-+=,则PQB ∆的面积21122PQ BD m =⋅=故点M 的坐标为43(3,0)或4(-②如图,当点M 在y 轴的左侧时,点C 与点A 关于y 轴对称,AB BC ∴=,BAC BCA ∴∠=∠,BMP BAC ∠=∠ ,BMP BCA ∴∠=∠,90BMP BMC ∠+∠=︒ ,90BMC BCA ∴∠+∠=︒(1)求点A,B的坐标;(2)若直线AC⊥AB交y轴负半轴于点(3)在y轴上是否存在点P,使以求出点P的坐标;若不存在,请说明理由.【答案】(1)A(−1,0);B(0,2)(2)1.25;(3)y轴上存在点P,使以A,当BA=BP时,BP=∴点P1的坐标为(0,当PB=PA时,设OP ∴(2−x)2=1+x2,解得:∴点P3的坐标为(0,当AB=AP时,OP=∴点P4的坐标为(0,综上所述:y轴上存在点标为(0,2+5)或(0(1)填空:=a ______,b =______;(2)在射线CD 上有一动点E ,过点E 作EF 平行于y 轴交直线AB 时,求点E 的坐标;(3)点M 为直线AB 上一点,且45CDM ∠=︒,求点M 的坐标.【答案】(1)1,2-1112132⎛⎫∴90QCP QPC ∠+∠=︒,∵CP CD ⊥,∴90QCP DCL ∠+∠=︒∴QPC DCL ∠=∠,∴QPC LCP ≌△△,∵()1,1C -,()0,2D -,∴CG HK =,GH KD =,∵()1,1C -,()0,2D -,设(,H c d ∴2c =-,1d =-,∴()2,1H --,可得直线DH 的解析式为联立12213y x ⎧=--⎪⎪⎨,解得721x ⎧=-⎪⎪⎨(1)求点C的坐标;∥轴交AB于点(2)如图2,过点C作直线CD x①求线段CD的长;②在坐标平面内,是否存在点M(除点B外),全等?若存在,请直接写出所有符合条件的点M DC≌△BDC时,当△1M和点B关于直线则点1M的坐标为:(-1∴点1M CD≌△BDC时,当△2。
八年级下册----一次函数压轴题解析
八年级下册----一次函数压轴题一.选择题〔共17小题〕1.〔2021•平塘县二模〕如图,是一个下底小而上口大的圆台形容器,将水以恒速〔即单位时间内注入水的体积一样〕注入,设注水时间为t,容器内对应的水高度为h,那么h与t 的函数图象只可能是〔〕A.B.C.D.2.〔2021•XX〕如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x〔s〕,线段AP的长度为y〔cm〕,那么能够反映y与x之间函数关系的图象大致是〔〕A.B.C.D.3.〔2021秋•XX期末〕如下图.直线y=x+2与y轴相交于点A,OB1=OA,以OB1为底边作等腰三角形A1OB1,顶点A1在直线y=x+2上,△A1OB1记作第一个等腰三角形;然后过B1作平行于OA1的直线B1A2与直线y=x+2相交于点A2,再以B1A2为腰作等腰三角形A2B1B2,记作第二个等腰三角形;同样过B2作平行于OA1的直线B2A3与直钱y=x+2相交于点A3,再以B2A3为腰作等腰三角形A3B2B3,记作第三个等腰三角形;依此类推,那么等腰三角形A10B9B10的面积为〔〕A.3•48B.3•49C.3•410D.3•4114.〔2021春•海曙区校级期中〕如图,直线y=﹣x+3与x轴,y轴交于A,B两点.点P是线段OB上的一动点〔能与点O,B重合〕,假设能在斜边AB上找到一点C,使∠OCP=90°.设点P的坐标为〔m,0〕,那么m的取值X围是〔〕D.0≤m≤3A.3≤m≤4 B.2≤m≤4 C.0≤m≤5.〔2021•〕如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,那么以下图象中,能表示y与x的函数关系的图象大致是〔〕A.B.C.D.6.〔2021•大城县校级模拟〕如图,M是边长为4的正方形AD边的中点,动点P自A点起,由A⇒B⇒C⇒D匀速运动,直线MP扫过正方形所形成面积为y,点P运动的路程为x,那么表示y与x的函数关系的图象为〔〕A.B.C.D.7.〔2021•XX模拟〕如图,直线l是菱形ABCD和矩形EFGH的对称轴,C点在EF边上,假设菱形ABCD沿直线l从左向右匀速运动,运动到C在GH边上为止,在整个运动的过程中,菱形与矩形重叠局部的面积〔S〕与运动的路程〔x〕之间的函数关系的图象大致是〔〕A.B.C.D.8.〔2021•温岭市校级三模〕如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是〔﹣4,0〕,直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是〔〕C.y=﹣3x﹣2 D.y=﹣x+2A.y=﹣2x+1 B.y=﹣x+29.〔2021•延庆县一模〕如图:P是线段AB上的动点〔P不与A,B重合〕,分别以AP、PB 为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;点C、D 在线段AB上且AC=BD,当点P从点C运动到点D时,设点G到直线AB的距离为y,那么能表示y与P点移动的时间x之间函数关系的大致图象是〔〕A.B.C.D.10.〔2021•XX二模〕某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开场调出物资〔调进物资与调出物资的速度均保持不变〕.储运部库存物资w〔吨〕与时间t〔小时〕之间的函数关系如下图,这批物资从开场调进到全部调出需要的时间是〔〕A.4.5小时B.4.75小时C.5小时D.5小时11.〔2021•房山区一模〕如图,P是边长为1的正方形ABCD对角线AC上一动点〔P与A、C不重合〕,点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.那么能够正确反映y与x之间的函数关系的图象是〔〕A.B.C.D.12.〔2021•XX模拟〕四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,那么k的值为〔〕A.1或2 B.1或﹣2 C.﹣1或2 D.﹣1或﹣213.〔2021•东城区一模〕如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AB、AD的中点.动点R从点B出发,沿B→C→D→F方向运动至点F处停顿.设点R运动的路程为x,△EFR的面积为y,当y取到最大值时,点R应运动到〔〕A.B C的中点处B.C点处C.C D的中点处D.D点处14.〔2021•XX模拟〕某人匀速上坡一段时间后,由于有急事,又以更快的速度匀速地沿原路返回;这一情境中,速度V与时间t的关系,用图象可大致表示为〔〕A.B.C.D.15.〔2021•江干区模拟〕如图,直线l1:y=x+1与直线l2:相交于点P〔﹣1,0〕.直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…那么当动点C到达A n处时,运动的总路径的长为〔〕A.n2B.2n﹣1 C.2n﹣1+1 D.2n+1﹣216.〔2021•东阳市〕汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,假设把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是〔〕A.B.C.D.17.〔2021•新城区校级模拟〕甲、乙两人分别从相距25千米的A、B两地同时相向而行.甲步行,每小时行5千米,乙骑自行车,每小时行15千米,乙到达A地后立即原路返回,追上甲为止,他们所行时间x〔小时〕,与离A地的距离y〔千米〕的函数图象大致是〔〕A .B.C.D.二.选择题〔共5小题〕18.〔2007•随州〕在四边形ABCD中,AB边的长为4,设动点P沿折线B⇒C⇒D⇒A由点B向点A运动,设点P运动的距离为x,△PAB的面积为y,y与x的函数图象如下图.给出以下四个结论:①四边形ABCD的周长为14;②四边形ABCD是等腰梯形;③四边形ABCD是矩形;④当△PAB面积为4时,点P移动的距离是2.你认为其中正确的结论是.〔只填所有正确结论的序号例如①〕19.〔2007•XX〕一个水池有2个速度一样的进水口,1个出水口,单开一个进水口每小时可进水10立方米,单开一个出水口每小时可出水20立方米.某天0点到6点,该水池的蓄水量与时间的函数关系如下图〔至少翻开一个进水口〕.给出以下三个论断:〔1〕0点到3点只进水不出水;〔2〕3点到4点不进水只出水,〔3〕4点到6点不进水也不出水.那么错误的论断是.〔填序号〕20.〔2007•XX〕函数y=,那么x的取值X围是;假设x是整数,那么此函数的最小值是.21.〔2021•昌平区二模〕当光线射到x轴的点C后进展反射,如果反射的路径经过点A〔0,1〕和点B〔3,4〕,如图,那么入射线所在直线的解析式为.22.〔2021•萧山区模拟〕当k取不同整数时,经过第一、二、四象限的所有直线y=〔2k﹣1〕x+k+2与坐标轴在第一象限围成一个多边形,这个多边形的面积等于.三.解答题〔共8小题〕23.〔2021 •建邺区二模〕小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,小林到达图书馆花了20分钟.设两人出发x〔分钟〕后,小林离小华家的距离为y〔米〕,y与x的函数关系如下图.〔1〕小林的速度为米/分钟,a=,小林家离图书馆的距离为米;〔2〕小华的步行速度是40米/分钟,设小华步行时与家的距离为y1〔米〕,请在图中画出y1〔米〕与x〔分钟〕的函数图象;〔3〕小华出发几分钟后两人在途中相遇?24.〔2021 •峄城区校级模拟〕甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B 港出发逆流匀速驶向A港.救生圈漂流的速度和水流速度一样;甲、乙两船在静水中的速度一样.甲、乙两船到A港的距离y1、y2〔km〕与行驶时间x〔h〕之间的函数图象如下图.〔1〕写出乙船在逆流中行驶的速度;〔2〕求甲船在逆流中行驶的路程;〔3〕求甲船到A港的距离y1与行驶时间x之间的函数关系式;〔4〕求救生圈落入水中时,甲船到A港的距离.25.〔2021 •XX模拟〕一条笔直的公路上依次有A、B、C三地,甲、乙两车同时从B地出发,匀速驶往C地.乙车直接驶往C地,甲车先到A地取一物件后立即调转方向追赶乙车〔甲车取物件的时间忽略不计〕.两车间距离y〔km〕与甲车行驶时间x〔h〕的关系图象如图1所示.〔1〕求两车的速度分别是多少?〔2〕填空:A、C两地的距离是:,图中的t=〔3〕在图2中,画出两车离B地距离y〔km〕与各自行驶时间x〔h〕的关系图象,并求两车与B地距离相等时行驶的时间.26.〔2021 春•晋安区期末〕模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA.模型应用:〔1〕直线l1:y=x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.〔2〕如图3,矩形ABCO,O为坐标原点,B的坐标为〔8,6〕,A、C分别在坐标轴上,P 是线段BC上动点,设PC=m,点D在第一象限,且是直线y=2x﹣6上的一点,假设△APD 是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.27.〔2021•XX〕在平面直角坐标系中,O为原点,直线l:x=1,点A〔2,0〕,点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.〔Ⅰ〕假设点M的坐标为〔1,﹣1〕,①当点F的坐标为〔1,1〕时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P〔x,y〕,求y关于x的函数解析式.〔Ⅱ〕假设点M〔1,m〕,点F〔1,t〕,其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.28.〔2021•江阴市二模〕如图,A、B两点分别在x轴和y轴上,且OA=OB=,动点P、Q分别在AB、OB上运动,运动时,始终保持∠OPQ=45°不变,设PA=x,OQ=y.〔1〕求y与x的函数关系式.〔2〕点M在坐标平面内,是否存在以P、Q、O、M为顶点的四边形是菱形?假设存在,求出点M的坐标;假设不存在,说明理由.〔3〕点D在AB上,且AD=,试探究:当点P从点A出发第一次运动到点D时,点Q 运动的路径长为多少?29.〔2021•XX〕为了迎接“十•一〞小长假的购物顶峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价〔元/双〕m m﹣20售价〔元/双〕240 160:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量一样.〔1〕求m的值;〔2〕要使购进的甲、乙两种运动鞋共200双的总利润〔利润=售价﹣进价〕不少于21700元,且不超过22300元,问该专卖店有几种进货方案?〔3〕在〔2〕的条件下,专卖店准备对甲种运动鞋进展优惠促销活动,决定对甲种运动鞋每双优惠a〔50<a<70〕元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?30.〔2021•XX〕某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂方案生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x〔千克〕.〔1〕列出满足题意的关于x的不等式组,并求出x的取值X围;〔2〕该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?八年级下册----一次函数压轴题参考答案与试题解析一.选择题〔共17小题〕1.〔2021•平塘县二模〕如图,是一个下底小而上口大的圆台形容器,将水以恒速〔即单位时间内注入水的体积一样〕注入,设注水时间为t,容器内对应的水高度为h,那么h与t 的函数图象只可能是〔〕A.B.C.D.考点:函数的图象.专题:计算题;压轴题.分析:此题需先根据容器下底小而上口大的特点得出容器内对应的水高度h随时间t的增加而增加,但增加的速度越来越慢即可得出正确答案.解答:解:∵容器下底小而上口大,∴将水以恒速注入,那么容器内对应的水高度h随时间t的增加而增加,但增加的速度越来越慢∴h与t的函数图象只可能是D应选D点评:此题主要考察了函数的图象问题,在解题时要结合题意找出正确的函数图象是此题的关键.2.〔2021•XX〕如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x〔s〕,线段AP的长度为y〔cm〕,那么能够反映y与x之间函数关系的图象大致是〔〕A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一局部;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一局部;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,那么其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一局部.综上所述,A选项符合题意.应选:A.点评:此题考察了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进展解题.3.〔2021秋•XX期末〕如下图.直线y=x+2与y轴相交于点A,OB1=OA,以OB1为底边作等腰三角形A1OB1,顶点A1在直线y=x+2上,△A1OB1记作第一个等腰三角形;然后过B1作平行于OA1的直线B1A2与直线y=x+2相交于点A2,再以B1A2为腰作等腰三角形A2B1B2,记作第二个等腰三角形;同样过B2作平行于OA1的直线B2A3与直钱y=x+2相交于点A3,再以B2A3为腰作等腰三角形A3B2B3,记作第三个等腰三角形;依此类推,那么等腰三角形A10B9B10的面积为〔〕A.3•48B.3•49C.3•410D.3•411考点:一次函数综合题.专题:压轴题;规律型.分析:令x=0求解得到点A的坐标,然后求出OA的长,过点A1作A1C1⊥x轴于C1,根据等腰三角形三线合一的性质求出OC1,再根据直线解析式求出A1C1,然后判断出△A2B1B2∽△A1OB1,过点A2作A2C2⊥x轴于C2,根据相似三角形的性质用B1C2表示出A2C2,再根据A2在直线上列式求解得到第二个等腰三角形的底边与高,同理求出第三个等腰三角形的底边与高,然后根据规律判断出△A10B9B10的底边与高,再根据三角形的面积公式列式计算即可得解.解答:解:令x=0,那么y=2,∴点A的坐标为〔0,2〕,∴OA=2,∴OB1=OA=2,过点A1作A1C1⊥x轴于C1,那么OC1=OB1=×2=1,∵A1在直线y=x+2上,∴A1C1=x+2=1+2=3,∴A1C1=3OC1,由题意得,△A2B1B2∽△A1OB1,过点A2作A2C2⊥x轴于C2,那么A2C2=3B1C2,设B1C2=a,那么A2C2=3a,∵A2在直线y=x+2上,∴A2C2=x+2=〔2+a〕+2=3a,解得a=2,∴B1B2=2×2=4,同理可得B2B3=8=23,A2C3=12=3×22,…,△A10B9B10的底边B9B10=210,高为3×29,∴△A10B9B10的面积=×210×3×29,=3•49.应选B.点评:此题是一次函数综合题型,主要考察了等腰三角形的性质,一次函数图象上点的坐标特征,求出等腰三角形底边上的高等于底边一半的3倍是解题的关键,也是此题的难点.4.〔2021春•海曙区校级期中〕如图,直线y=﹣x+3与x轴,y轴交于A,B两点.点P是线段OB上的一动点〔能与点O,B重合〕,假设能在斜边AB上找到一点C,使∠OCP=90°.设点P的坐标为〔m,0〕,那么m的取值X围是〔〕A.3≤m≤4 B.2≤m≤4 C.D.0≤m≤30≤m≤考点:一次函数综合题.专题:压轴题.分析:令y=0求出点B的坐标,过点C作CD⊥x轴于D,设点C的坐标横坐标为a,那么OD=a,PD=m﹣a,求出△OCD和△CPD相似,利用相似三角形对应边成比例列式表示出m,然后求出m的最小值,再根据点P在线段OB上判断出OC⊥AB时,点P、B重合,m最大,然后写出m的取值X围即可.解答:解:令y=0,那么﹣x+3=0,解得x=4,所以,点B的坐标为〔4,0〕,过点C作CD⊥x轴于D,设点C的坐标横坐标为a,那么OD=a,PD=m﹣a,∵∠OCP=90°,∴△OCD∽△CPD,∴=,∴CD2=OD•DP,∴〔﹣a+3〕2=a〔m﹣a〕,整理得,m=a+﹣,所以,m≥2﹣=3,∵点P是线段OB上的一动点〔能与点O,B重合〕,∴OC⊥AB时,点P、B重合,m最大,∴m的取值X围是3≤m≤4.应选A.点评:此题是一次函数综合题型,主要利用了一次函数与坐标轴的交点的求法,相似三角形的判定与性质,难点在于列不等式求出m的最小值.5.〔2021•〕如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,那么以下图象中,能表示y与x的函数关系的图象大致是〔〕A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:作OC⊥AP,根据垂径定理得AC=AP=x,再根据勾股定理可计算出OC=,然后根据三角形面积公式得到y=x•〔0≤x≤2〕,再根据解析式对四个图形进展判断.解答:解:作OC⊥AP,如图,那么AC=AP=x,在Rt△AOC中,OA=1,OC===,所以y=OC•AP=x•〔0≤x≤2〕,所以y与x的函数关系的图象为A选项.应选:A.排除法:很显然,并非二次函数,排除B选项;采用特殊位置法;当P点与A点重合时,此时AP=x=0,S△PAO=0;当P点与B点重合时,此时AP=x=2,S△PAO=0;当AP=x=1时,此时△APO为等边三角形,S△PAO=;排除B、C、D选项,应选:A.点评:此题考察了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值X围.6.〔2021•大城县校级模拟〕如图,M是边长为4的正方形AD边的中点,动点P自A点起,由A⇒B⇒C⇒D匀速运动,直线MP扫过正方形所形成面积为y,点P运动的路程为x,那么表示y与x的函数关系的图象为〔〕A.B.C.D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:分别求出P在AB段,BC段,CD段的函数解析式或判断函数的类型,即可判断.解答:解:点P在AB段时,函数解析式是:y=AP•AM=×2x=x,是正比例函数;点P在BC段时:y=2x﹣4;这段的直线的斜率大于AB段的斜率.故A,B选项错误;点P在CD段时,面积是梯形ABCM的面积加上△MCP面积,梯形ABCM的面积不变,而△MCP中CP边上的高一定,因而面积是CP长的一次函数,因而此段的面积是x的一次函数,应是线段.故C错误,正确的选项是D.应选D.点评:此题主要考察了函数的性质,注意分段讨论是解决此题的关键.7.〔2021•XX模拟〕如图,直线l是菱形ABCD和矩形EFGH的对称轴,C点在EF边上,假设菱形ABCD沿直线l从左向右匀速运动,运动到C在GH边上为止,在整个运动的过程中,菱形与矩形重叠局部的面积〔S〕与运动的路程〔x〕之间的函数关系的图象大致是〔〕A.B.C.D.考点:动点问题的函数图象.专题:压轴题;分段函数.分析:要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中S随x变化的情况,解答:解:当0<x<2时,S=x2,当2≤x≤4时,S=×2×4﹣〔4﹣x〕×〔4﹣x〕,=﹣x 2+4x﹣4,由分析可知,应选D.点评:此题以动态的形式考察了分类讨论的思想,函数的知识和等腰三角形,具有很强的综合性.8.〔2021•温岭市校级三模〕如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是〔﹣4,0〕,直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是〔〕C.y=﹣3x﹣2 D.y=﹣x+2A.y=﹣2x+1 B.y=﹣x+2考点:一次函数综合题.专题:计算题;压轴题.分析:抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y 轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.解答:解:当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示,∵等腰直角△ABO的O点是坐标原点,A的坐标是〔﹣4,0〕,∴AO=4,∴BC=BE=AE=EO=GF=OA=2,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为〔﹣1,3〕;当C与原点O重合时,D在y轴上,此时OD=BE=2,即D〔0,2〕,设所求直线解析式为y=kx+b〔k≠0〕,将两点坐标代入得:,解得:.那么这条直线解析式为y=﹣x+2.应选D9.〔2021•延庆县一模〕如图:P是线段AB上的动点〔P不与A,B重合〕,分别以AP、PB 为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;点C、D 在线段AB上且AC=BD,当点P从点C运动到点D时,设点G到直线AB的距离为y,那么能表示y与P点移动的时间x之间函数关系的大致图象是〔〕A.B.C.D.考点:动点问题的函数图象.专题:压轴题;数形结合.分析:分别延长AE,BF交于点H,那么可证得四边形EPFH为平行四边形,利用平行四边形的性质:对角线相互平分,可得G为EF的中点,也是PH的中点,所以G的运动轨迹是三角形HCD的中位线,所以点G到直线AB的距离为y是一个定值,问题得解.解答:解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分,∴G为HP的中点,∵EF的中点为G,∴P从点C运动到点D时,G始终为PH的中点,∴G运动的轨迹是三角形HCD的中位线MN,又∵MN∥CD,∴G到直线AB的距离为一定值,∴y与P点移动的时间x之间函数关系的大致图象是一平行于x轴的射线〔x≥0〕.应选D.点评:此题考察了动点问题的函数图象,利用到的是三角形的中位线定理:三角形的中位线平行且等于第三边的一半.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.10.〔2021•XX二模〕某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开场调出物资〔调进物资与调出物资的速度均保持不变〕.储运部库存物资w〔吨〕与时间t〔小时〕之间的函数关系如下图,这批物资从开场调进到全部调出需要的时间是〔〕A.4.5小时B.4.75小时C.5小时D.5小时考点:函数的图象.专题:应用题;压轴题.分析:通过分析题意和图象可求调进物资的速度,调出物资的速度;从而可计算最后调出物资20吨所花的时间.解答:解:调进物资的速度是50÷2=25〔吨/时〕;当在第4小时时,库存物资应该有100吨,从图象上可知库存是20吨,所以调出速度是80÷2=40〔吨/时〕,所以剩余的20吨完全调出需要20÷40=0.5〔小时〕.故这批物资从开场调进到全部调出需要的时间是4+0.5=4.5〔小时〕.应选A.点评:主要考察了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.11.〔2021•房山区一模〕如图,P是边长为1的正方形ABCD对角线AC上一动点〔P与A、C不重合〕,点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.那么能够正确反映y与x之间的函数关系的图象是〔〕A.B.C.D.考点:动点问题的函数图象.专题:压轴题;数形结合.分析:过点P作PF⊥BC于F,假设要求△PBE的面积,那么需要求出BE,PF的值,利用条件和正方形的性质以及勾股定理可求出BE,PF的值.再利用三角形的面积公式得到y与x的关系式,此时还要考虑到自变量x的取值X围和y的取值X围.解答:解:过点P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD的边长是1,∴AC==,∵AP=x,∴PC=﹣x,∴PF=FC=〔﹣x〕=1﹣x,∴BF=FE=1﹣FC=x,∴S△PBE=BE•PF=x〔1﹣x〕=﹣x2+x,即y=﹣x2+x〔0<x<〕,∴y是x的二次函数〔0<x<〕,应选A.点评:此题考察了动点问题的函数图象,和正方形的性质;等于直角三角形的性质;三角形的面积公式.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.12.〔2021•XX模拟〕四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,那么k的值为〔〕A.1或2 B.1或﹣2 C.﹣1或2 D.﹣1或﹣2考点:一次函数的性质.专题:压轴题;探究型.分析:首先根据四条直线的解析式画出示意图,从而发现四边形是梯形,求得梯形的四个顶点的坐标,再进一步根据梯形的面积公式进展计算.解答:解:如下图,根据题意,得A〔1,3〕,B〔1,﹣1〕,C〔,﹣1〕,D〔,3〕.显然ABCD是梯形,且梯形的高是4,根据梯形的面积是12,那么梯形的上下底的和是6,那么有①当k<0时,1﹣+1﹣=6,∴2﹣=6,∴=﹣4,解得k=﹣2;②当k>0时,﹣1+﹣1=6,∴=8,解得k=1.综上所述,那么k=﹣2或1.应选B.点评:此题考察了用图象法表示函数、两条直线的交点坐标和梯形的面积公式,注意此题的两种情况.13.〔2021•东城区一模〕如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AB、AD的中点.动点R从点B出发,沿B→C→D→F方向运动至点F处停顿.设点R运动的路程为x,△EFR的面积为y,当y取到最大值时,点R应运动到〔〕A.B C的中点处B.C点处C.C D的中点处D.D点处考点:一次函数的应用.专题:几何动点问题;压轴题.分析:根据题意,△EFR的面积=边EF×其对应的高,当△EFR的面积最大时,边EF对应的高最大,从而转化为求点R运动到何处时,到线段EF的距离最大.解答:解:根据题意,△EFR的面积=边EF×其对应的高,当△EFR的面积最大时,边EF对应的高最大,从而将问题转化为求点R运动到何处时,到线段EF的距离最大.由所给图形可以看出当点R运动到C点时,点R到线段EF的距离最大.应选B.点评:此题考察了一次函数的应用,难度不大,将问题适当的转化是解答该题的关键.14.〔2021•XX模拟〕某人匀速上坡一段时间后,由于有急事,又以更快的速度匀速地沿原路返回;这一情境中,速度V与时间t的关系,用图象可大致表示为〔〕A.B.C.D.考点:函数的图象.专题:压轴题.分析:根据行驶速度是匀速,可知v在两段时间内分别不变,是一条平行于t轴的直线,可知匀速上坡后,又沿原路返回,所以路程是相等的,根据s=vt,由于返回是速度更快了,所以所用时间就短了.解答:解:∵某人匀速上坡一段时间,∴v在这段时间不变,是一条平行于t轴的直线,∵又以更快的速度匀速地沿原路返回,∴此时v增大,仍然是一条平行于t轴的直线,而且所用时间缩短,应选:A,点评:此题主要考察了实际问题与函数图象的结合,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.〔2021•江干区模拟〕如图,直线l1:y=x+1与直线l2:相交于点P〔﹣1,0〕.直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…那么当动点C到达A n处时,运动的总路径的长为〔〕A.n2B.2n﹣1 C.2n﹣1+1 D.2n+1﹣2考点:一次函数综合题.专题:压轴题;规律型.。
八上期末复习《一次函数》压轴题含答案解析
一次函数综合题选讲及练习例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是,BC=.(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM 的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP 时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。
一次函数易错题压轴题题型归纳及方法
一次函数易错题压轴题题型归纳及方法一次函数易错题压轴题题型归纳及方法一、基础概念梳理1.1 一次函数的定义和性质一次函数是指函数 f(x) = ax + b,其中 a 不等于 0。
其图像为一条直线,斜率为 a,截距为 b。
在直角坐标系中,表现为直线过原点或不过原点。
一次函数的性质包括斜率和截距等。
1.2 一次函数的图像和特征一次函数的图像呈线性关系,表现为直线。
斜率决定了直线的斜率和方向,截距决定了直线和 y 轴的交点。
掌握一次函数的图像和特征是解题的关键。
二、易错题分析2.1 斜率与线性关系易错点:部分学生对斜率的计算和理解存在困难,无法准确求解斜率或理解斜率的意义。
解决方法:要重点训练学生如何计算斜率,以及斜率对线性关系的影响。
可以通过练习题和实例来加深理解。
2.2 截距的求解易错点:学生在求解截距时常常出错,或者无法正确理解截距的含义。
解决方法:通过大量的实例练习,加深学生对截距的理解和运用能力。
可以设计一些生活中的例子来帮助学生理解截距的含义。
2.3 点斜式方程易错点:学生在转化为一般式方程时,容易出错或混淆概念。
解决方法:通过举例和练习,让学生掌握点斜式方程和一般式方程之间的转化,加深对一次函数的理解和掌握能力。
三、高级拓展题3.1 一次函数的应用在生活中,一次函数的应用非常广泛,包括经济学、物理学和工程学等领域。
这些应用题往往涉及到实际问题的建模和解决,需要学生有较强的数学建模和解题能力。
3.2 特殊题型及解法除了基本的一次函数题,还有一些特殊的题型需要引起重视,包括两条直线的关系、两个一次函数的综合运用等。
这些题型需要学生拓展思维,掌握各种解题方法。
四、总结回顾在学习一次函数这一题型时,学生需要注重基本概念的理解和掌握,加强实例练习,培养解题思维,拓展应用能力。
重点关注易错点,并采取有效的方法加以解决,提高学生对一次函数的理解和应用能力。
个人观点及理解对于一次函数的学习和掌握,我认为重在理解和应用。
初二数学一次函数压轴题分析
初二数学一次函数压轴题分析
线性函数的压轴题很多,主要分为两类。
第一类是给出一个实际情形,再配上一个函数图像,让做题人分析,考察的重点是做题人分析实际情形和运用各种公式的能力(更像物理题)
例题:
第二类是给出平面直角坐标系,给出点坐标并考察已知两点求直线解析式,求直线与x,y轴的交点,平行,对称等一次函数基本知识点。
有时会穿插几何的考查内容
例如:
这种题目等腰三角形和面积是特别热门的考点,重点和核心思想都是进行分类讨论
因为上面两个问题很简单,所以不做回答。
主要研究下面这道难度较大的压轴题
总结:这道题涵盖了比较多的知识点,前面两道题考察了基本的一次函数知识以及基本的面积求法,最后一道题形式新颖,利用全等和多次利用勾股定理列出方程和求出长度,辅助线的设计(尤其是平行线那一条)很大胆,看到45°毫不犹豫做等腰直角三角形
热门考点面积求法:
(1)普通的规则图形,例如三角形,使用底乘高÷2,矩形,使用长乘宽
(2)切割法,将一个三角形或一个四边形分成两个三角形,然后计算面积。
(3)补法,把一个三角形放在一个矩形里面,再通过矩形减去剩下的三个小三角形,就得出了面积(本题第二道题里面使用了这个方法)
热门考点等腰三角形:注意分三种情况,三条边a,b,c分别有a=b,b=c,a=c等情况,需要逐一讨论
如果这个点会移动,记得把点的坐标设为未知数,再通过线段加减或者勾股定理来求出这个线段关于x的表达式,再列出方程。
【常考压轴题】专题06 一次函数图像的五种考法(解析版)八年级数学上册压轴题攻略
专题06一次函数图像的五种考法类型一、图像的位置关系问题例.直线y kx k =-与直线y kx =-在同一坐标系中的大致图像可能是()A .B .C .D .【答案】A【分析】根据直线y kx k =-与直线y kx =-图像的位置确定k 的正负,若不存在矛盾则符合题意,据此即可解答.【详解】解:A 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以A 选项符合题意;B 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以B 选项不符合题意;C 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以C 选项不符合题意;D 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以D 选项不符合题意.故选A .【点睛】本题主要考查了一次函数的图像:一次函数0y kx b k =+≠()的图像为一条直线,当0k >,图像过第一、三象限;当0k <,图像过第二、四象限;直线与y 轴的交点坐标为()0b ,.【变式训练1】在同一坐标系中,直线1l :()3y k x k =-+和2l :y kx =-的位置可能是()A .B ...【答案】B【分析】根据正比例函数和一次函数的图像与性质,对平面直角坐标系中两函数图像进行讨论即可得出答案.k>,故由一次函数图像与【详解】A、由正比例函数图像可知0,即0点的上方,故选项A不符合题意;....【答案】B【分析】先根据直线1l,得出k然后再判断直线2l的k和b的符号是否与直线.B...【答案】C【分析】根据一次函数的图象性质判断即可;ab>,【详解】∵0同号,A .B .C .D .【答案】A【分析】分别分析四个选项中一次函数和正比例函数m 和n 的符号,即可进行解答.【详解】解:A 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn <,符合题意;B 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn >,不符合题意;C 、由一次函数图象得:0,0m n >>,由正比例函数图象得:0mn <,不符合题意;D 、由一次函数图象得:0,0m n ><,由正比例函数图象得:0mn >,不符合题意;故选:A .【点睛】本题主要考查了一次函数和正比例函数的图象,解题的关键是掌握一次函数和正比例函数图象与系数的关系.类型二、图像与系数的关系则13k≥或3k≤-,故答案为:【点睛】本题考查了一次函数的图象与性质,熟练掌握数形结合思想是解题关键.类型三、图像的平移问题例.将直线y kx b =+向左平移2个单位,再向上平移4个单位,得到直线2y x =,则()A .2k =,8b =-B .2k =-,2b =C .1k =,4b =-D .2k =,4b =【答案】A【分析】根据直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,然后结合得到直线2y x =,即可解出k 和b 的值.【详解】解:直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,得到直线2y x =,2k ∴=,240k b ++=,2k ∴=,8b =-,故选:A .【点睛】本题考查了一次函数图像平移变换,熟练掌握图象左加右减,上加下减的变换规律是解答本题的关键.【变式训练1】对于一次函数24y x =-+,下列结论错误的是().A .函数的图象与x 轴的交点坐标是(0,4)B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数值随自变量的增大而减小【答案】A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 选项:当0y =时,2x =,所以函数的图象与x 轴的交点坐标是(2,0),故A 选项错误;B 选项:函数的图象经过第一、二、四象限,不经过第三象限,故B 选项正确;C 选项:函数的图象向下平移4个单位长度,得到函数244y x =-+-,即2y x =-的图象,故C 选项正确;D 选项:由于20k =-<,所以函数值随x 的增大而减小,故D 选项正确.故选:C【点睛】本题考查一次函数的图象及性质,函数图象平移的法则,熟练运用一次函数的图象及性质进行判断是解题的关键.【变式训练2】把直线3y x =-先向右平移2个单位长度,再向下平移3个单位长度,平移后的新直线与x 轴的交点为()0m ,,则m 的值为()A .3B .1C .1-D .3-【答案】B【分析】由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,计算求解即可.【详解】解:由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,解得1m =,故选:B .【点睛】本题考查了一次函数图象的平移,一次函数与坐标轴的交点.解题的关键在于熟练掌握图象平移:左加右减,上加下减.类型四、规律性问题例.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O ,正方形2221A B C C ,…,正方形1n n n n A B C C -,使得点1A ,2A ,3A ,….在直线l 上,点1C ,2C ,3C ,…,在y 轴正半轴上,则点2023B 的坐标为()A .()202220232,21-B .()202320232,2C .()202320242,21-D .()202220232,21+【答案】A【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点11A B 、的坐标,同理可得出2A 、3A 、4A 、5A …及2B 、3B 、4B 、5B …的坐标,根据点的坐标变化可找出变化规律()12,21n n n B --(n 为正整数),依此规律即可得出结论.【详解】解:当0y =时,由10x -=,解得:1x =,∴点1A 的坐标为()1,0,111A B C O 为正方形,()11,1B ∴,同理可得:()22,1A ,()34,3A ,()48,7A ,()516,15A ,…,∴()22,3B ,()34,7B ,()48,15B ,()516,31B ,…,【答案】20222022(21,2)-【分析】先求出1A 、2A 、3A 、4A 的坐标,找出规律,即可得出答案.【详解】解: 直线1y x =+和y 轴交于1A ,1A ∴的坐标()0,1,即11OA =,四边形111C OA B 是正方形,111OC OA ∴==,【答案】()20222,0【分析】根据1A 的坐标和函数解析式,即可求出点34,A A 探究规律利用规律即可解决问题.【详解】∵直线3y x =,点1A 的坐标为∴()11,3B 在11Rt OA B △中,11131,OA A B ==,类型五、增减性问题.B...A .()15,53B .()15,63C .()17,53D 【答案】D【答案】40432【分析】根据已知先求出2OA ,3OA ,33A B ,44A B ,然后分别计算出1S ,2S 【详解】解:∵11OA =,212OA OA =,∴22OA =,∵322OA OA =,∴34OA =,∵432OA OA =,。
初二年级一次函数专题讲解
初二年级一次函数专题讲解一、考点、热点回顾考点1:一次函数的概念.一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.考点2:一次函数图象与系数一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.考点3:一次函数的增减性一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0<k 时,y 随x 的增大而减小.从图象上看只要图象经过一、三象限,y 随x 的增大而增大,经过二、四象限,y 随x 的增大而减小.考点4:图象的平移考点5:一次函数解析式的确定第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。
第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。
当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。
三. 两点型从几何的角度来看,“两点确定一条直线”,所以两个点的坐标确定直线的解析式;从代数的角度来说,一次函数的解析式y kx b =+中含两个待定系数k 和b ,所以两个方程确定两个待定系数,因此想方设法找到两个点的坐标是解决问题的关键。
考点6:与一次函数有关的几何探究问题二、典型例题例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32 m +(m-4)是一次函数?例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21 D .m >M例7 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.例8 已知y+a 与x+b (a ,b 为是常数)成正比例.(1)y 是x 的一次函数吗?请说明理由;(2)在什么条件下,y 是x 的正比例函数?例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x 分,两种通讯方式的费用分别为y 1元和y 2元.(1)写出y 1,y 2与x 之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P 点的坐标.例11 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例12 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.例15 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .三、课后练习1 某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2 已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。
初中八年级数学重点学习课件:压轴:一次函数综合(知识点串讲)(解析版)
专题16 压轴:一次函数综合典例1.(2018秋•太仓市期末)如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,.(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.【答案】见解析【解析】解:(1)∵,∴可设OC=x,则OA=2x,在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,∴x2+(2x)2=(4)2,解得x=4(x=﹣4舍去),∴OC=4,OA=8,∴A(8,0),C(0,4),设直线AC解析式为y=kx+b,∴,解得,∴直线AC解析式为y x+4;(2)由折叠的性质可知AE=CE,设AE=CE=y,则OE=8﹣y,在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,∴(8﹣y)2+42=y2,解得y=5,∴AE=CE=5,∵∠AEF=∠CEF,∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF=5,∴S△CEF CF•OC5×4=10,即重叠部分的面积为10;(3)由(2)可知OE=3,CF=5,∴E(3,0),F(5,4),设直线EF的解析式为y=k′x+b′,∴,解得,∴直线EF的解析式为y=2x﹣6.【点睛】(1)设OC=x,由条件可得OA=2x,在Rt△OAC中,由勾股定理可列方程,则可求得OC的长,可得出A、C的坐标,利用待定系数法可求得直线AC的解析式;(2)可设AE=CE=y,则有OE=8﹣x,在Rt△OEC中,可求得x的值,再由矩形的性质可证得CE=CF,则可求得△CEF的面积;(3)由(2)可求得E、F的坐标,利用待定系数法即可求得直线EF的函数解析式.本题为一次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及方程思想等知识.在(1)中求得A、C的坐标是解题的关键,在(2)中求得CF的长是解题的关键,在(3)中确定出E、F的坐标是解题的关键.典例2 .(2018春•黄陂区期末)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(____,___),B(___,___);(2)如图1,点E为直线y=x+2上一点,点F为直线y x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.【答案】见解析【解析】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y x,得到m+8(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y x中,m﹣4(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y x中,4﹣m(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:3.【点睛】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F (m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.典例3.(2018春•高新区期末)在直角坐标系中,点P(a,b)的“变换点”的坐标定义如下:当a≥b时,点P1的坐标为(a,﹣b);当a<b时,点P1的坐标为(b,﹣a).(1)直接写出点A(5,6)、B(3,2)、C(4,4)的变换点A1、B1、C1的坐标;(2)P(a,b)为直线y=﹣2x+6上的任一点,当a<b时,点P(a,b)的变换点在一条直线M上,求点M的函数解析式并写出自变量的取值范围;(3)直线y=﹣2x+6上所有点的变换点组成一个新的图形L,直线y=kx+1与图形L有两个公共点,求k的取值范围.【答案】见解析【解析】解:(1)A(5,6)的变换点坐标是(6,﹣5),B(3,2)的变换点坐标是(3,﹣2),C(4,4)的变换点坐标是(4,﹣4);(2)当a=b时,a=b=2,∵(2,2)的变换点为(2,﹣2),∵当a<b时,点P(a,b)的变换点坐标为(b,﹣a),∴x<2,∵(0,6)的变换点为(6,0),∴点P(a,b)的变换点经过(2,﹣2)和(6,0),设点M的函数解析式为y=kx+m,则有解得,∴y x﹣3(x<2).(3)由题意,新的图形L的函数解析式为y新图形L的拐点坐标为(2,﹣2),画出图形如图所示.当y=kx+1过点(2,﹣2)时,有﹣2=2k+1,解得:k;当y=kx+1与y=2x﹣6平行时,k=2;当y=kx+1与y x﹣3平行时,k.结合图形可知:直线y=kx+1与图形L有且只有两个公共点时,k.【点睛】(1)根据“变换点”的定义解答即可;(2)根据“变换点”的定义得出(2,2),(0,6)的变换点的坐标,进而得出解析式即可;(3)首先确定求出新的图形L的函数解析式,依照题意画出图形,并找出直线y=kx+1与图形L有且只有两个公共点的临界点,结合图形即可得出结论.本题考查了一次函数图象上点的坐标特征、平行线的性质以及一次函数图象,依照题意画出图形,利用数形结合解决问题是解题的关键.典例4.(2018春•郾城区期末)已知:直线y=2x+4与x轴交于点A,与y轴交于点B.(1)求△AOB的面积;(2)若点B关于x轴的对称点为C,点D为线段OA上一动点,连接BD,将BD绕点D逆时针旋转90°得到线段DE,求直线CE的解析式;(3)在(2)的条件下,直线CE与x轴交于点F,与直线AB交于点P,当点D在OA上移动时,直线AB上是否存在点Q,使以F,P,D,Q为顶点的四边形为平行四边形?若存在请直接写出Q,D的坐标;若不存在,说明理由.【答案】见解析【解析】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∴S△AOB•OA•OB2×4=4;(2)过E作EG⊥x轴于点G,如图,∵点B关于x轴的对称点为C,∴C(0,﹣4),∴可设直线CE解析式为y=kx﹣4,由题意可知BD=ED,∠EDB=90°,且∠DOB=∠EGA=90°,∴∠BDO+∠OBD=∠BDO+∠EDG=90°,∴∠OBD=∠EDG,在△BDO和△DEG中∴△BDO≌△DEG(AAS),∴GD=OB=4,EG=OD,设OD=a,则EG=a,OG=4+a,∴E(﹣a﹣4,a),∵点E在直线CE上,∴a=k(﹣a﹣4)﹣4,解得k=﹣1,∴直线CE解析式为y=﹣x﹣4;(3)要使以F、P、D、Q为顶点的四边形为平行四边形,则有DA=F A,P A=QA,即A为FD和PQ的中点,在y=﹣x﹣4中,令y=0可得x=﹣4,∴F(﹣4,0),且A(﹣2,0),∴D(0,0),联立直线AB和CE解析式可得,解得,∴P(,),∴Q(,).【点睛】(1)由直线解析式可求得A、B坐标,则可求得△AOB的面积;(2)过E作EG⊥x轴于点G,由C点坐标可设出CE的解析式,再由条件可证得△DEG≌△BDO,设OD=a,则可表示出EG和OG的长,则可表示出E点坐标,把E点坐标代入直线CE解析式可求得k 的值,则可求得直线CE的解析式;(3)由条件可知当四边形为平行四边形时,可得到DA=F A,P A=QA,则可求得D、Q的坐标.本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、全等三角形的判定和性质、待定系数法、平行四边形的性质等知识.在(1)中求得A、B坐标即可,在(2)中用OD的长表示出E点坐标是解题的关键,在(3)中确定出A为平行四边形的中心是解题的关键.本题考查知识点较多,综合性较强,难度适中.典例5.(2018春•随县期末)如图,在平面直角坐标系中,矩形OBEC的顶点E坐标为(12,6),直线l:y=x与对角线BC交于点A.(1)求出点A的坐标;(2)如果点D是线段OA上一动点,当△COD的面积为12时,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O,C,P,Q为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】见解析【解析】解:(1)∵直线l:y x,E(12,6)∴直线l经过点E∴点A是BC与OE的交点即点A是矩形OBEC对角线的交点∴A点的坐标是(6,3).(2)C(0,6),设D(a,a)∵S△COD6•a=12∴a=4∴D(4,2),设直线CD的函数表达式为y=kx+b∵C(0,6),D(4,2)∴,解得,∴直线CD的函数表达式为y=﹣x+6.(3)存在点Q,使以O,C,P,Q为顶点的四边形是菱形.如图所示,分三种情况考虑:①四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0).②当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,把y=3代入直线直线CD的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,3).③当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),∴x2+(﹣x+6﹣6)2=62解得x=3或x=﹣3(舍去),此时P3(3,﹣36),综上可知存在满足条件的点P坐标为(6,0)或(3,3)或(3,﹣36).【点睛】(1)只要证明点A是矩形的对角线的交点即可解决问题;(2)设D(a,a),利用三角形的面积公式构建方程求出a,可得点D坐标,再利用待定系数法即可解决问题;(3)分三种情形分别讨论求解即可;本题考查一次函数综合题、矩形的性质、菱形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.典例6.(2018春•武昌区期末)在平面直角坐标系xoy中,直线y=﹣x+m(m>0)与x轴,y轴分别交于A,B两点,点P在直线AB上.(1)如图1,若m1,点P在线段AB上,∠POA=60°,求点P的坐标;(2)如图2,以OP为对角线作正方形OCPD(O,C,P,D按顺时针方向排列),当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由;(3)如图3,在(1)的条件下,Q为y轴上一动点,连AQ,以AQ为边作正方形AQEF(A,Q,E,F 按顺时针方向排列),连接OE,AE,则OE+AE的最小值为_________.【答案】见解析【解析】解:(1)如图1所示:过点P作PG⊥OA,垂足为G.∵y=﹣x+m,∴A(m,0),B(0,m).∴OB=OA=m1.∴∠P AG=45°.又∵∠PGA=90°,∴PG=GA.∵∠POG=60°,∠PGO=90°∴PG OG.∴(1)OG1.∴OG=1,∴PG.∴点P的坐标为(1,).(2)的值不变.如图2所示,过点O作OM⊥OP交PC的延长线与M,连接BM.∵四边形OCPD是正方形,∴OC=PC,∠OCP=90°,∴∠OPC=45°.∵∠MOP=90°,∴∠OMP=∠OPM=45°,∴OP=OM.∵A(m,0)、B(0,m),∴OA=OB=m.∵∠BOA=∠MOP=90°,∴∠POA=∠MOB.∵OA=OB,∠POA=∠MOB,OP=OM,∴△POA≌△MOB,∴∠OAP=∠OBM=135°,∴∠MBP=90°,∵C为PM的中点,∴BC=CP OP,∴.(3)如图3所示:过E作EK垂直y轴与K,设A(0,a).可证明△OAQ≌△KQE.∴OQ=KE=a,AO=KQ1.∴E(a,a1).∴点E在直线y=x1上运动,∴点B在直线y=x1上.设直线y=x1交x轴与N.∴N(1,0).∴∠BNO=45°.作点O关于直线y=x1的对称点O1,连接AO1,交直线y=x1与E1,连接OE1、O1N、O1E.∴OE1=O1E1.∴OE1+AE1=O1A≤O1E+AE,∴OE+AE的最小值为线段O1A的长.∵∠BNO=∠BNO1=45°,ON=O1N,∴∠ANO1=90°在Rt△O1NA中,O1A.故答案为:.【点睛】(1)过点P作PG⊥OA,垂足为G.则OB=OA=m1,然后可证明PG=AG,然后再由特殊锐角三角函数值可知PG OG,最后由OG+AG=OA可求得OG的值,从而可求得点P的坐标;(2)过点O作OM⊥OP交PC的延长线与M,连接BM.接下来,再证明△POA≌△MOB,依据全等三角形的性质可得到∠OAP=∠OBM=135°,接下来,再证明∠MBP=90°,依据直角三角斜边上中线的性质可证明BC=CP,然后依据OP与CP的比值为定值可得到问题的答案;(3)过E作EK垂直y轴与K,设A(0,a).可证明△OAQ≌△KQE,则E(a,a1),设直线y=x1交x轴与N,则∠BNO=45°,作点O关于直线y=x1的对称点O1,连接AO1,交直线y=x1与E1,连接OE1、O1N、O1E,则OE+AE的最小值为线段O1A的长,最后,在Rt △O1NA中依据勾股定理求得O1A的长即可.本题主要考查的是一次函数的综合应用,解答本题主要应用了正方形的性质、全等三角形的性质和判定、轴对称的性质,确定出OE+AE取得最小值的条件是解题的关键.巩固练习1.(2018春•岚山区期末)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B 同时出发,运动时间为t秒.(1)请直接写出直线AB的函数解析式:______;(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.【答案】见解析【解析】解:(1)设直线AB的解析式为:y=kx+b(k≠0).把点A(3,0)、B(0,4)分别代入,得解得.故直线AB的函数解析式是:y x+3.故答案是:y x+3.(2)当t=4时,四边形BQPM是菱形.理由如下:当t=4时,BQ4,则OQ=4.当t=4时,OP,则AP.由勾股定理求得PQ BQ.∵PM∥OB,∴△APM∽△AOB,∴,即,解得PM.∴四边形BQPM是平行四边形,∴当t=4时,四边形BQPM是菱形.2.(2018春•中山区期末)如图,在平面直角坐标系xOy中,直线y x+8分别交x轴,y轴于点A,B,直线AB上有一点C(m,4).点D(0,n)是y轴上任意一点,连结CD,以CD为边在直线CD下方,作正方形CDEF.(1)填空:m=___;(2)若正方形CDEF的面积为S,求S关于n的函数关系式;(3)点A关于y轴的对称点为A′,连接A′B,是否存在n的值,使正方形的顶点E或F落在△ABA′的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.【答案】见解析【解析】解:(1)∵C(m,4)在直线y x+8上,∴4m+8,∴m=3,故答案为3.(2)∵D(0,n),C(3,4),∴S=CD2=32+(n﹣4)2=n2﹣8n+25.(3)①如图1中,当点F在直线BA′上时,作CN⊥y轴于N,FM⊥CN于M.则△CND≌△FMC,∴CN=FM=3,DN=CM=n﹣4,∴F(7﹣n,1),∵直线A′B的解析式为y x+8,∴1(7﹣n)+8,∴n.②如图2中,当点E落在直线A′B上时,连接EC交OB于R,此时点F在y轴上,DR=CR=3,OR =4,OD=7,∴n=7.③如图3中,当点E落在AA′上时,作CR⊥OB于R.则△CRD≌△DOE,∴DO=CR=3,∴n=3.④如图4中,当点F落在直线AB上时,作CR⊥OB于R,FN⊥CR于N.则△CRD≌△FNC,∴FN=CR=3,CN=DR=4﹣n,∴F(7﹣n,1),把F(7﹣n,1)代入y x+8得到,1(7﹣n)+8,∴n,综上所述,满足条件的n的值为或7或3或.3.(2018春•南安市期末)如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(12,0)、C(0,9),将矩形OABC的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB的长度为____;(2)求直线BD所对应的函数表达式;(3)若点Q在线段BD上,在线段BC上是否存在点P,使以D,E,P,Q为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】见解析【解析】解:(1)在Rt△ABC中,∵OA=12,AB=9,∴OB15.故答案为15.(2)如图,设AD=x,则OD=OA=AD=12﹣x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,∴OE=OB﹣BE=15﹣9=6,在Rt△OED中,OE2+DE2=OD2,即62+x2=(12﹣x)2,解得x,∴OD=OA﹣AD=12,∴点D(,0),设直线BD所对应的函数表达式为:y=kx+b(k≠0)则,解得,∴直线BD所对应的函数表达式为:y=2x﹣15.(3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,由•OE•DE•DO•EF,得EF,即点E的纵坐标为,又点E在直线OB:y x上,∴x,解得x,∴E(,),由于PE∥BD,所以可设直线PE:y=2x+n,∵E(,),在直线EP上∴2n,解得n=﹣6,∴直线EP:y=2x﹣6,令y=9,则9=2x﹣6,解得x,∴P(,9).4.(2018春•汶上县期末)已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y 轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:①若△P AO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.【答案】见解析【解析】解:(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)连接OP.∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△P AO OA×PE4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);(3)存在,理由:∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,∴四边形OEPF是矩形,∴EF=OP,当OP⊥AB时,此时EF最小,∵A(4,0),B(0,8),∴AB=4∵S△AOB OA×OB AB×OP,∴OP,∴EF的最小值=OP.5.(2018春•涵江区期末)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.(1)当点C横坐标为4时,求点E的坐标;(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.【答案】见解析【解析】解:(1)作CF⊥OA于F,EG⊥x轴于G.∴∠CFO=∠EGO=90°,令x=4,y=﹣4+6=2,∴C(4,2),∴CF=2,OF=4,∵四边形OCDE是正方形,∴OC=OE,OC⊥OE,∵OC⊥OE,∴∠COF+∠EOG=90°,∠COF+∠OCF=90°,∴∠EOG=∠OCF,∴△CFO≌△OGE,∴OG=OF=4,OG=CF=2,∴G(﹣2,4).(2)∵直线y=﹣x+6交y轴于B,∴令x=0得到y=6,∴B(0,6),令y=0,得到x=6,∴A(6,0),∴OA=OB=6,∠OAB=∠OBA=45°,∵∠AOB=∠EOC=90°,∴∠EOB=∠COA,∵OE=OC,∴△EOB≌△COA,∴BE=AC,∠OBE=∠OAC=45°,∴∠EBC=90°,即EB⊥AB,∵C(t,﹣t+6),∴BC t,AC=BE(6﹣t),∴S•BC•EB t•(6﹣t)=﹣t2+6t.(3)当点C在线段AB上运动时,由(1)可知E(t﹣6,t),设x=6﹣t,y=t,∴t=x+6,∴y=x+6.6.(2018春•广元期末)如图1,四边形ABCD是正方形,点A、B分别在两条直线y=﹣2x和y=kx上,点C、D是x轴上两点.(1)若正方形ABCD的边长为2,试求k的值;(2)若正方形ABCD的边长为m,则k的值是否会发生变化?若不会发生变化,请说明理由;若发生变化,试求出k的值;(3)如图2,在(1)的条件下直线y=kx沿y轴向下平移得到直线l:y=ax+b,使直线1经过点C,点P是直线l上的一个动点,当|P A﹣PB|的值最大时,求点P的坐标.【答案】见解析【解析】解:(1)∵正方形ABCD的边长为2,∴AD=CD=BC=AB,∴点A的横坐标为2,针对于直线y=﹣2x,令y=2,∴x=﹣1,∴点D(﹣1,0),∴C(﹣3,0),∴B(﹣3,2),将点B(﹣3,2)代入y=kx中,﹣3k=2,∴k;(2))k的值不会发生变化,理由:∵正方形ABCD的边长为m,∴AD=CD=BC=AB,∴点A的横坐标为m,针对于直线y═2x,令y=m,∴x m,∴点D(m,0),∴C(m,0),∴B(m,2m),将点B(m,2m)代入y=kx中,mk=m,∴k,∴k的值不会会发生变化;(3)由(1)知,k,∵直线1经过点C(﹣3,0),由平移知,直线l的解析式为y x﹣2,当|P A﹣PB|的值最大时,点,A,B,P在同一条直线上,∵AB∥x轴,B(﹣3,2),∴点P的纵坐标为2,∵点P是直线l上的一个动点,直线l的解析式为y x﹣2,∴x﹣2=2,∴x=﹣6,∴P(﹣6,2).。
第四章 一次函数压轴题考点训练(解析版)-2024年常考压轴题攻略(8年级上册北师大版)
第四章一次函数压轴题考点训练A ....【答案】A【分析】根据y 1,y 2的图象判断出k+b 的值,然后根据k-1、所求函数图象经过的象限即可.【详解】解:根据y 1,y 2的图象可知,,且当x=1时,y 2=0,即k+b=0.∴对于函数()1y k x b =-+,有b 时,y=k-1+b=0-1=-1<0.∴符合条件的是选项.故选:A.【点睛】本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关....()A.(-1,0)【答案】B【分析】由题意作A求的P点;首先利用待定系数法即可求得直线∵A(1,-1),∴C的坐标为(1,1连接BC,设直线BC∴123k bk b+-⎧⎨+-⎩==,解得⎧⎨⎩A .433B .233【答案】D【分析】根据题意利用相似三角形可以证明线段用o n AB B ∆∽AON ∆求出线段o n B B 的长度,即点【详解】解:由题意可知,2OM =,点则OMN ∆为顶角30度直角三角形,ON如图所示,当点P 运动至ON 上的任一点时,设其对应的点∵o AO AB ⊥,iAP AB ⊥∴o iOAP B AB ∠=∠又∵tan 30o AB AO =∙ ,tan i AB AP =∙∴::o i AB AO AB AP=∴o i AB B ∆∽AOP∆∴o i AB B AOP∠=∠【答案】32b -≤≤【分析】根据矩形的性质求得点D 的坐标,交,则交点在线段BD 之间,代入求解即可.【详解】解:矩形ABCD 中,点A 、根据矩形的性质可得:(1,3)D 根据图像得到直线y x b =+与矩形ABCD 将点(4,1)B 代入得:41b +=,解得b 将点(1,3)D 代入得:13+=b ,解得b 由此可得32b -≤≤【答案】0k <或01k <<【分析】分别利用当直线()430y kx k k =+-≠过点值范围,据此即可求解.【详解】解:当直线y =【点睛】本题主要考查等腰直角三角形的性质和两直线交点坐标的求法,加辅助线,构造等腰直角三角形和全等三角形,是解题的关键.评卷人得分三、解答题13.A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往运任务承包给某运输公司.已知C乡需要农机34台,两乡运送农机的费用分别为250元/台和200元/台,从别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为系式,并直接写出自变量x的取值范围;值.【答案】(1)W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30;(2)有三种调运方案:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)a 的值为200元.【分析】(1)设A 城运往C 乡x 台农机,可以表示出运往其它地方的台数,根据调运单价和调运数量可以表示总费用W ;(2)列出不等式组确定自变量x 的取值范围,在x 的正整数解的个数确定调运方案,并分别设计出来;(3)根据A 城运往C 乡的农机降价a 元其它不变,可以得出另一个总费用与x 的关系式,根据函数的增减性,确定当x 为何值时费用最小,从而求出此时的a 的值.【详解】解:(1)设A 城运往C 乡x 台农机,则A 城运往D 乡(30﹣x )台农机,B 城运往C 乡(34﹣x )台农机,B 城运往D 乡(6+x )台农机,由题意得:W =250x +200(30﹣x )+150(34﹣x )+240(6+x )=140x +12540,∵x ≥0且30﹣x ≥0且34﹣x ≥0,∴0≤x ≤30,答:W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30.(2)由题意得:1401254016460030x x +>⎧⎨⎩,解得:28≤x ≤30,∵x 为整数,∴x =28或x =29或x =30,因此有三种调运方案,即:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)由题意得:W =(250﹣a )x +200(30﹣x )+150(34﹣x )+240(6+x )=(140﹣a )x +12540,∵总费用最小值为10740元,∴140﹣a <0∴W 随x 的增大而减小,又∵28≤x ≤30,∴当x =30时,W 最小,即:(140﹣a )×30+12540=10740,【答案】(1)y=2x+4(2)1112-+【分析】(1)根据图像求出B的坐标,然后根据待定系数法求出直线(1)求m 的值;(2)点P 从O 出发,以每秒2个单位的速度,沿射线OA 方向运动.设运动时间为t ()s .①过点P 作PQ OA ⊥交直线AB 于点Q ,若APQ ABO ∆≅∆,求t 的值;②在点P 的运动过程中,是否存在这样的t ,使得POB ∆为等腰三角形?若存在,请求出所有符合题意的t 的值;若不存在,请说明理由.【答案】(1)6;(2)①2或8;②2.5或4或6.4.3【点睛】本题主要考查一次函数图象与几何图形的综合,形的性质,利用分类讨论的思想方法,是解题的关键.17.如图,在平面直角坐标系中,直线2y x =-+交于点C .(1)求点A ,B 的坐标.(3)存在.∵线段AB在第一象限,∴这时点P在x轴负半轴.∵==OA 2,OB 4,∴222224BP OP OB x =+=+,222222420AB OA OB =+=+=,222()(2)AP OA OP x =+=-.∵222BP AB AP +=,∴222420(2)x x ++=-,解得8x =-,∴当点P 的坐标为(8,0)-时,ABP 是直角三角形;③设AB 是直角边,点A 为直角顶点,即90BAP ∠= .∵点A 在x 轴上,P 是x 轴上的动点,∴90BAP ∠≠ .综上,当点P 的坐标为(0,0)或(8,0)-时,ABP 是直角三角形.【点睛】本题考查的是一次函数的图象与及几何变换、一次函数的性质及直角三角形的判定等知识点,掌握分类讨论思想和一次函数图像的性质是解答本题的关键.。
初二一次函数压轴题整理
(1)求点P的坐标;
(2)求S△OPA的值;
(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.
7.已知一次函数y=kx+b,y随x增大而增大,它的图象经过点(1,0)且与x轴的夹角为45°,
(1)确定这个一次函数的解析式;
(2)假设已知中的一次函数的图象沿x轴平移两个单位,求平移以后的直线及直线与y轴的交点坐标.
8.如图①所示,直线l1:y=3x+3与x轴交于B点,与直线l2交于y轴上一点A,且l2与x轴的交点为C(1,0).
(4)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.
4.如图,在平面直角坐标系 中,长方形 的顶点 的坐标分别为 , .(1)直接写出点 的坐标;
(2)若过点 的直线 交 边于点 ,且把长方形 的周长分为1:3两部分,求直线 的解析式;(3)设点 沿 的方向运动到点 (但不与点 重合),求△ 的面积 与点 所行路程 之间的函数关系式及自变量 的取值范围
初二一次函数压轴题整理
————————————————————————————————作者:
———————————————————————————————— 日期:
初二一次函数压轴题复习精讲
1.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积.
初二数学一次函数压轴难题专题汇总(含解析)(含解析)
初二数学一次函数压轴难题专题汇总(含解析)一.选择题(共12小题)1.已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±22.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.3.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<04.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.5.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣46.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.7.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.8.下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个9.直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.10.下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣111.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数12.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B.C.D.二.填空题(共11小题)13.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.14.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=.15.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是.16.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有.17.如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是.18.一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是.19.已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.20.如图,该直线是某个一次函数的图象,则此函数的解析式为.21.若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:.22.已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1y2.(填>、=或<)23.一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=.三.解答题(共17小题)24.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.25.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.27.已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.28.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.29.在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.30.已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.31.已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.32.如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?33.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB 为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.34.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标(8,0),点A的坐标为(6,0).点P(x,y)是第一象限内的直线上的一个动点(点P 不与点E,F重合).(1)求k的值;(2)在点P运动的过程中,求出△OPA的面积S与x的函数关系式.(3)若△OPA的面积为,求此时点P的坐标.35.课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.【阅读理解】小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式?老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.(1)将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6【解决问题】(2)已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.【拓展探究】(3)一次函数y=﹣2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为.(直接写结果)36.已知正比例函数y=kx的图象经过点P(1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向右平移4个单位,求出平移后的直线的解析式.37.如图,直线y=x+2分别与x轴、y轴交于点A、B,将直线AB沿y轴向下平移至点C(0,﹣1),与x轴交于点D,过点B作BE⊥CD,垂足为E.(1)求直线CD的解析式;(2)求S△BEC.38.(1)点(0,7)向下平移2个单位后的坐标是,直线y=2x+7向下平移2个单位后的解析式是.(2)直线y=2x+7向右平移2个单位后的解析式是.(3)如图,已知点C(a,3)为直线y=x上在第一象限内一点,直线y=2x+7交y轴于点A,交x轴于点B,将直线AB沿射线OC方向平移|OC|个单位,求平移后的直线解析式.39.某人从离家18千米的地方返回,他离家的距离s(千米)与时间t(分钟)的函数图象如图所示:(1)求线段AB的解析式;(2)求此人回家用了多长时间?40.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5).(1)直接写出B点坐标;(2)若过点C的一条直线把矩形OABC的周长分为3:5两部分,求这条直线的解析式.初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2015春•昌平区期末)已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±2【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解;由y=(m﹣3)x|m|﹣2+1是一次函数,得,解得m=﹣3,m=3(不符合题意的要舍去).故选A.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为12.(2016春•昌江县校级期末)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3.(2016春•河东区期末)关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<0【分析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.【解答】解:A、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.【点评】本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.4.(2016春•十堰期末)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).5.(2015秋•柘城县期末)已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选B.【点评】主要考查了用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.6.(2015春•澧县期末)在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.【分析】由于正比例函数的图象是一条经过原点的直线,由此即可确定选择项.【解答】解:∵k<0,∴﹣k>0,∴函数y=﹣kx(k<0)的值随自变量x的增大而增大,且函数为正比例函数,故选:C.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.(2014秋•深圳期末)两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.(2014春•临沂期末)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个【分析】根据一次函数的定义求解.【解答】解:(1)y=3πx (2)y=8x﹣6 (4)y=﹣8x是一次函数,因为它们符合一次函数的定义;(3)y=,自变量次数不为1,而为﹣1,不是一次函数,(5)y=5x2﹣4x+1,自变量的最高次数不为1,而为2,不是一次函数.故选B.【点评】解题关键是掌握一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1.注意正比例函数是特殊的一次函数,不要漏掉(1)y=3πx,它也是一次函数.9.(2015秋•西安校级期末)直线y=kx+b经过一、三、四象限,则直线y=bx﹣k 的图象只能是图中的()A.B.C.D.【分析】根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求b的符号,由b,k的符号来求直线y=bx﹣k所经过的象限.【解答】解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴﹣k<0,∴直线y=bx﹣k经过第二、三、四象限.故选C.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.(2015春•高密市期末)下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣1【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解:A、y=2x是正比例函数,故A错误;B、y=+2是反比例函数的变换,故B错误;C、y=﹣x是一次函数,故C正确;D、y=2x2﹣1是二次函数,故D错误;故选:C.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.11.(2015秋•招远市期末)函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数【分析】根据正比例函数的意义得出2﹣a≠0,b﹣1=0,求出即可.【解答】解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.【点评】本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a≠0和b﹣1=0是解此题的关键.12.(2015春•柘城县期末)当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B.C.D.【分析】利用正比例函数图象的性质结合自变量的取值范围得出符合题意的图象.【解答】解:∵当x>0时,y与x的函数解析式为y=2x,∴此时图象则第一象限,∵当x≤0时,y与x的函数解析式为y=﹣2x,∴此时图象则第二象限,故选:C.【点评】此题主要考查了正比例函数的图象,正确根据自变量取值范围得出图象是解题关键.二.填空题(共11小题)13.(2016秋•兴化市期末)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=﹣1.【分析】由正比例函数的定义可得m2﹣1=0,且m﹣1≠0.【解答】解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.【点评】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.14.(2016春•罗平县期末)若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=﹣3.【分析】根据一次函数的定义得到a=±3,且a≠3即可得到答案.【解答】解:∵函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.【点评】本题考查了一次函数的定义:对于y=kx+b(k、b为常数,k≠0),y称为x的一次函数.15.(2011秋•青田县期末)如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是k>m>n.【分析】根据函数图象所在象限可判断出k>0,m>0,n<0,再根据直线上升的快慢可得k>m,进而得到答案.【解答】解:∵正比例函数y=kx,y=mx的图象在一、三象限,∴k>0,m>0,∵y=kx的图象比y=mx的图象上升得快,∴k>m>0,∵y=nx的图象在二、四象限,∴n<0,∴k>m>n,故答案为:k>m>n.【点评】此题主要考查了正比例函数图象,关键是掌握正比例函数图象的性质:它是经过原点的一条直线,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.16.(2013秋•姜堰市校级期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有①③.【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:根据图示及数据可知:①k<0正确;②a>0错误;③方程kx+b=x+a的解是x=3,正确;④当x<3时,y1<y2错误.故正确的判断是①③.【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力,次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b <0时,函数y=kx+b的图象经过第二、三、四象限.17.(2015春•上海校级期末)如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是y=﹣x+2.【分析】根据矩形的性质及B点坐标可求C点坐标,设直线L的解析式为y=kx+b,根据“两点法”列方程组,可确定直线L的解析式.【解答】解:∵矩形ABCD中,B(3,2),∴C(0,2),设直线L的解析式为y=kx+b,则,解得∴直线L的解析式为:y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查用待定系数法确定函数的解析式,是常用的一种解题方法.18.(2013秋•长丰县校级期末)一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是x>0.【分析】直接根据一次函数的图象即可得出结论.【解答】解:由函数图象可知,当y<5时,x>0.故答案为:x>0.【点评】本题考查的是一次函数的图象,能利用数形结合求出不等式的解集是解答此题的关键.19.(2016春•简阳市校级期中)已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为25.【分析】根据一次函数图象上点的坐标特征,将点P(a,b)和Q(c,d)分别代入函数解析式,求得a﹣b、c﹣d的值;然后将其代入所求的代数式求值即可.【解答】解:∵一次函数y=x+5的图象经过点P(a,b)和Q(c,d),∴点P(a,b)和Q(c,d)满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴a(c﹣d)﹣b(c﹣d)=(a﹣b)(c﹣d)=(﹣5)×(﹣5)=25.故答案是:25.【点评】本题考查了一次函数图象上点的坐标特征.求代数式的值时,要先将其变形为含有a﹣b、c﹣d的因式的形式,然后求值.20.(2014秋•源城区校级期末)如图,该直线是某个一次函数的图象,则此函数的解析式为y=2x+2.【分析】根据图象写出该直线所经过的点的坐标,然后将其代入函数的解析式y=kx+b,列出关于k、b的一元二次方程,然后解方程求得k、b的值;最后将它们代入函数解析式即为所求.【解答】解:设该直线方程是:y=kx+b(k>0).根据图象知,该直线经过点(﹣1,0)、(0,2),则,解得,,∴此函数的解析式为y=2x+2.故答案是:y=2x+2.【点评】本题考查了待定系数法求一次函数的解析式.一次函数图象上的点的坐标都满足该函数的解析式.21.(2015秋•郓城县期末)若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:y=﹣x﹣1.【分析】先求出这两个函数的交点,然后根据一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,解答即可.【解答】解:∵两函数图象交于x轴,∴0=x+1,解得:x=﹣2,∴0=﹣2k+b,∵y=kx+b与y=x+1关于x轴对称,∴b=﹣1,∴k=﹣∴y=﹣x﹣1.故答案为:y=﹣x﹣1.【点评】本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.22.(2015秋•滨海县期末)已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1<y2.(填>、=或<)【分析】首先判断一次函数一次项系数为负,然后根据一次函数的性质当k<0,y随x的增大而减小即可作出判断.【解答】解:∵一次函数y=﹣x+3中k=﹣<0,∴y随x增大而减小,∵3>2,∴y1<y2.故答案为<.【点评】本题主要考查了一次函数图象上点的坐标特征的知识,解答本题要掌握一次函数的性质当k<0,y随x的增大而减小,此题难度不大.23.(2015春•淮南期末)一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=1或9.【分析】因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知,若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;然后结合题意利用方程组解决问题.【解答】解:∵因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;则有,解之得,∴k+b=9.若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;则有,解之得,∴k+b=1,综上:k+b=9或1.故答案为1或9.【点评】本题考查了一次函数与一次不等式的关系,此类题目需利用y随x的变化规律,确定自变量与函数的对应关系,然后结合题意,利用方程组解决问题.三.解答题(共17小题)24.(2016春•新疆期末)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【分析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.25.(2015春•大石桥市校级期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【分析】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.【点评】此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b 中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.26.(2016春•潮南区期末)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.【分析】(1)根据三角形的面积公式S△OPA=OA•y,然后把y转换成x,即可求得△OPA的面积S与x的函数关系式;(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).【点评】本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.27.(2014春•高安市期末)已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.【分析】当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.【解答】解:∵正比例函数y=(m﹣1),函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.【点评】此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.28.(2015春•荔城区期末)如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.(1)过点P作PF⊥y轴于点F,则PF=2.求出S△COP和S△COA,即OA×2=4,【分析】则A(﹣4,0),则|p|=3,由点P在第一象限,得p=3;(2)根据S△BOP=S△DOP,得DP=BP,即P为BD的中点,作PE⊥x轴,设直线BD的解析式为y=kx+b(k≠0),求得k,b.得出直线BD的函数解析式.【解答】解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.∵S△AOP=6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A(﹣4,0),∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;(2)过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP=S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E(2,0),F(0,3).∴OB=2PF=4,OD=2PE=6,∴B(4,0),D(0,6).设直线BD的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.【点评】本题考查了用待定系数法求一次函数的解析式,三角形面积的求法以及相交线、平行线的性质.29.(2016春•费县期末)在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为y=2x﹣2;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.【分析】(1)根据将直线y=2x向下平移2个单位后,所以所对应的解析式为y=2x ﹣2;(2)根据题意,得到方程组,求方程组的解,即可解答;(3)利用等腰直角三角形的性质得出图象,进而得出答案.【解答】解:(1)根据题意,得,y=2x﹣2;故答案为:y=2x﹣2.(2)由题意得:解得:∴点A的坐标为(2,2);(3)如图所示,∵P是x轴上一点,且满足△OAP是等腰直角三角形,P点的坐标为:(2,0)或(4,0).【点评】此题主要考查了一次函数平移变换以及等腰直角三角形的性质等知识,得出A点坐标是解题关键.30.(2015春•监利县期末)已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.【分析】用待定系数法求出函数的关系式,再把点(a,2)代入即可求得a的值.【解答】解:(1)∵y与x+2成正比例∴可设y=k(x+2),把当x=1时,y=﹣6.代入得﹣6=k(1+2).解得:k=﹣2.故y与x的函数关系式为y=﹣2x﹣4.(2)把点(a,2)代入得:2=﹣2a﹣4,解得:a=﹣3【点评】本题要注意利用一次函数的特点,列出方程,求出未知数从而求得其解析式.把所求点代入即可求出a的值.31.(2015春•闵行区期末)已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.【分析】(1)根据题意求出平移后解析式;(2)根据解析式进而得出图象与坐标轴交点,再利用勾股定理得出斜边长,进而得出答案.【解答】解:(1)直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5,可得:直线y=kx+b的解析式为:y=﹣2x+5﹣3=﹣2x+2;(2)在直线y=﹣2x+2中,当x=0,则y=2,当y=0,则x=1,∴直线l与两条坐标轴围成的三角形的周长为:2+1+=3+.【点评】此题主要考查了一次函数图象与几何变换以及一次函数与坐标轴交点求法,得出各边长是解题关键.32.(2016春•海珠区期末)如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?。
一次函数压轴题专题突破4:一次函数与等腰直角三角形(含解析)
一次函数压轴题之等腰直角三角形1.【模型建立】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】①已知直线l1:y=x+4与x轴交于点A,与y轴交于点B,将直线l1绕着点A逆时针旋转45°至直线l2,如图2,求直线l2的函数表达式;②如图3,在平面直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q是直线y=2x﹣6上的动点且在第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.2.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)若S△AOC=S△BCP,求点P的坐标.(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.3.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.4.如图1,在平面直角坐标系中,直线l1:y=x+b与直线l2:y=﹣x﹣8交于点A,已知点A的横坐标为﹣5,直线l1与x轴交于点B,与y轴交于点C,直线l2与y轴交于点D.(1)求直线l1的解析式;(2)将直线l2向上平移6个单位得到直线l3,直线l3与y轴交于点E,过点E作y轴的垂线l4,若点M为垂线l4上的一个动点,点N为x轴上的一个动点,当CM+MN+NA的值最小时,求此时点M的坐标及CM+MN+NA 的最小值;(3)在(2)条件下,如图2,已知点P、Q分别是直线l1、l2上的两个动点,连接EP、EQ、PQ,是否存在点P、Q,使得△EPQ是以点P为直角顶点的等腰直角三角形,若存在,求点P的坐标,若不存在,说明理由.5.如图,在平面直角坐标系中,已知直线BD:y=x﹣2与直线CE:y=﹣x+4相交于点A.(1)求点A的坐标;(2)点P是△ABC内部一点,连接PA、PB、PC,求PB+PA+PC的最小值;(3)将点D向下平移一个单位得到点D1,连接BD1,将△OD1B绕点O旋转至△OB1D2的位置,使B1D2∥x轴,再将△OB1D2沿y轴向下平移得到△O1B2D3,在平移过程中,直线O1D3与x轴交于点K,在直线x=3上任取一点T,连接KT,O1T,△O1KT能否以O1K为直角边构成等腰直角三角形?若能,请直接写出所有符合条件的T点的坐标;若不能,请说明理由.6.如图1,直线y=﹣x+3交x轴于点B,交y轴于点C.点A在x轴负半轴上且∠CAO=30°.(1)求直线AC的解析式;(2)如图2,边长为3的正方形DEFG,G点与A点重合,现将正方形以每秒1个单位地速度向右平移,当点G与点O重合时停止运动.设正方形DEFG与△ACB重合部分的面积为S,正方形DEFG运动的时间为t,求s关于t的函数关系式;(3)如图3,已知点Q(1,0),点M为线段AC上一动点,点N为直线BC上一动点,当三角形QMN为等腰直角三角形时,求M点的坐标.7.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C点的横坐标为1.(1)如图1,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标;(2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形?若存在,求出N点的坐标;若不存在,请说明理由.8.如图,在矩形ABCO中,点O为坐标原点,点B(4,3),点A、C在坐标轴上,点Q在BC边上,直线L1:y=kx+k+1交y轴于点A.对于坐标平面内的直线,先将该直线向右平移1个单位长度,再向下平移1个单位长度,这种直线运动称为直线的斜平移.现将直线L1经过2次斜平移,得到直线L2.(1)求直线L1与两坐标轴围成的面积;(2)求直线L2与AB的交点坐标;(3)在第一象限内,在直线L2上是否存在一点M,使得△AQM是等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.9.如图1,在平面直角坐标系中,直线l:y=与x轴交于点A,且经过点B(2,m),已知点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M 的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E 再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.10.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1,l2交于点C,且C点的横坐标为1.(1)求直线l1的解析式;(2)如图1,过点A作x轴的垂线,若点P为垂线上的一个动点,点Q(0,2),若S△CPQ=4,求此时点P 的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C逆时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M 点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由.11.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C点的纵坐标为﹣4.(1)求△ABC的面积;(2)如图1,过点A作x轴的垂线,若点P为垂线上的一个动点,点Q(0,2),若S△CPQ=2,求此时点P 的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E.过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M 点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标:若不存在,请说明理由.12.如图,直线y=kx+k分别交x轴、y轴于点A,C,直线BC过点C交x轴于点B,且OA=OC,∠CBA =45°,点P是直线BC上的一点.(1)求直线BC的解析式;(2)若动点P从点B出发沿射线BC方向匀速运动,速度为个单位长度/秒,连接AP,设△PAC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,并写出t的取值范围;(3)若点Q是直线AC上且位于第三象限图象上的一个动点,点M是y轴上的一个动点,当以点B、M、Q 为顶点的三角形为等腰直角三角形时,求点Q和点M的坐标.13.如图,在平面直角坐标系中,直线AB:y=﹣x+与直线AC:y=+8交于点A,直线AB分别交x轴、y轴于B、E,直线AC分别交x轴、y轴于点C、D.(1)求点A的坐标;(2)在y轴左侧作直线FG∥y轴,分别交直线AB、直线AC于点F、G,当FG=3DE时,过点G作直线GH ⊥y轴于点H,在直线GH上找一点P,使|PF﹣PO|的值最大,求出P点的坐标及|PF﹣PO|的最大值;(3)将一个45°角的顶点Q放在x轴上,使其角的一边经过A点,另一边交直线AC于点R,当△AQR为等腰直角三角形时,请直接写出点R的坐标.14.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED 于D,过B作BE⊥ED于E.求证:△BEC≌△CDA.模型应用:(1)已知直线l1:y=x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.15.如图,已知直线y=x+4与x轴、y轴分别相交于点A、B,点C从O点出发沿射线OA以每秒1个单位长度的速度匀速运动,同时点D从A点出发沿AB以每秒1个单位长度的速度向B点匀速运动,当点D到达B点时C、D都停止运动.点E是CD的中点,直线EF⊥CD交y轴于点F,点E′与E点关于y轴对称.点C、D的运动时间为t(秒).(1)当t=1时,AC=,点D的坐标为;(2)设四边形BDCO的面积为S,当0<t<3时,求S与t的函数关系式;(3)当直线EF与△AOB的一边垂直时,求t的值;(4)当△EFE′为等腰直角三角形时,直接写出t的值.16.如图1,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+m与x、y轴的正半轴分别相交于点A、B,过点C(﹣4,﹣4)画平行于y轴的直线交直线AB于点D,CD=10.(1)求点D的坐标和直线l的解析式;(2)求证:△ABC是等腰直角三角形;(3)如图2,将直线l沿y轴负方向平移,当平移适当的距离时,直线l与x、y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形.请直接写出所有符合条件的点P的坐标.(不必书写解题过程)17.如图,在平面直角坐标系中,直线y=﹣x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.(1)求点P的坐标.(2)当b值由小到大变化时,求S与b的函数关系式.(3)若在直线y=﹣x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值.18.如图,直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2﹣14x+4(AB+2)=0的两个根(OB>OA),P是直线l上A、B两点之间的一动点(不与A、B重合),PQ∥OB交OA 于点Q.(1)求tan∠BAO的值;(2)若S△PAQ=S四边形OQPB时,请确定点P在AB上的位置,并求出线段PQ的长;(3)当点P在线段AB上运动时,在y轴上是否存在点M,使△MPQ为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.1.【解答】解:(1)证明:∵△ABC为等腰直角三角形∴CB=CA,∠ACD+∠BCE=180°﹣90°=90°又∵AD⊥CD,BE⊥EC∴∠D=∠E=90°又∵∠EBC+∠BCE=90°∴∠ACD=∠EBC在△ACD与△CBE中,∠D=∠E,∠ACD=∠EBC,CA=BC,∴△ACD≌△CBE(AAS);(2)过点B作BC⊥AB交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°∴△ABC为等腰Rt△由(1)可知:△CBD≌△BAO∴BD=AO,CD=OB∵l1:,令y=0,则x=﹣3∴A(﹣3,0),令x=0,则y=4∴B(0,4)∴BD=AO=3,CD=OB=4∴OD=4+3=7.∴C(﹣4,7),设直线l2的解析式为y=kx+b,将点A(﹣3,0),C(﹣4,7)代入y=kx+b中,得解得,k=﹣7,b=﹣21,则l2的解析式:y=﹣7x﹣21;(3)如下图,设点Q(m,2m﹣6),当∠AQP=90°时,由(1)知,△AMQ≌△QNP(AAS),∴AM=QN,即|8﹣m|=6﹣(2m﹣6),解得:m=4或,故:Q(4,2),.2.【解答】解:(1)一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为:(8,0)、(0,6);(2)联立y=﹣x+6、y=x并解得:x=3,故点C(3,),S△AOC=8×=15=S△BCP=BP×(yP﹣yC)=BP×(6﹣),解得:BP=,故点P(,6)或(﹣,6)(3)设点E(m,m)、点P(n,6);①当∠EPA=90°时,如左图,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即|m﹣n|=6,m﹣6=8﹣n,解得:m=或16,故点E(,)或(16,20);②当∠EAP=90°时,如右图,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14,故点E(2,)或(14,);综上,E(,)或(14,)或;(2,)或(16,20).3.【解答】解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP=S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=y N=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).4.【解答】解:(1)∵点A的横坐标为﹣5,∴A(﹣5,﹣3),将点A代入y=x+b,∴b=4,∴直线l1的解析式y=x+4;(2)l2:y=﹣x﹣8与y轴的交点D(0,﹣8),∵将直线l2向上平移6个单位得到直线l3,直线l3与y轴交于点E,∴E(0,﹣2),∵过点E作y轴的垂线l4,点D是点C关于直线l4的对称点,作点A关于x轴的对称点A′(﹣5,3),连接AD′交x轴、l4于点N、M,则此时CM+MN+NA最小,最小值为:A′D,CM+MN+NA=MD+MN+A′N=A′D,A′D==;∴CM+MN+NA的值最小为;(3)存在,理由:设点P、Q的坐标分别为:(m,m+4)、(n,﹣n﹣8),当点E在点P右边时,过点Q作x轴的平行线交y轴于点M,过点P作PN⊥QM于点N,PN交l4于点K,则△PNQ≌△EKP(AAS),∴PN=KE,QN=PK,即:m+4+n+8=﹣m,m﹣n=m+4+2,解得:m=﹣3,∴点P(﹣3,﹣)当点E在点P的左侧时,同理可得:(﹣,﹣5),故答案为:(﹣3,﹣)或(﹣,﹣5),5.【解答】解:(1)直线,则点B、D的坐标分别为:(,0)、(0,﹣2);直线,则点C、E的坐标分别为:(4,0)、(0,4);联立BD、CE的表达式并解得:x=2,故点A(2,2);(2)如图,将△APB绕点C逆时针旋转60°得到△EFC,则△BFP是等边三角形,∠ECB=90°,BC=3,AC==CE,在Rt△EBC中,BE==,∵PA+PB+PC=EF+FP+PB≥BE,∴PA+PB+PC≥,∴PA+PB+PC的最小值为;(3)存在,理由:点D1(0,﹣3),点B(,0),则∠BD1O=30°,B1D2∥x轴,则直线OD2的倾斜角为30°,设直线O1K的表达式为:y=x+m,则点O1(0,m),点K(﹣m,0),则MO1=﹣m,MK=﹣m,KN=﹣m,TN=|﹣m﹣3|,则点T(3,﹣m)△O1KT能否以O1K为直角边构成等腰直角三角形,则O1K=TK,TK⊥O1K,过点K作y轴的平行线分别交过点O1、T与x轴的平行线于点M、N,∵∠NKT+∠NTK=90°,∠NKT+∠O1KM=90°,∴∠O1KM=∠NTK,∠KNT=∠O1MK=90°,O1K=TK,∴△KNT≌△O1MK(AAS),∴TN=KM,即:|﹣m﹣3|=﹣m,解得:m=,故点T(3,)或(3,).6.【解答】解:(1)直线y=﹣x+3交x轴于点B,交y轴于点C,则点B、C的坐标为(3,0)、(0,3),∵∠CAO=30°,则AC=2OC=6,则OA=3,将点A、C的坐标代入一次函数表达式:y=kx+b并解得:直线AC的表达式为:y=x+3;(2)如图2所示:①当0≤t≤3时,(左侧图),正方形的DA边交AC于点H,点A运动到点M处,则点M(﹣3+t,0),则点H(﹣3+t,t),S=S△AHM=×AM×HM=×t×t=t2,②当3<t≤3时,(右侧图),正方形的DA边交AC于点H,点A运动到点G处,E、F交直线AC于点R、S,AG=t,则AS=t﹣3,则RS=(t﹣3),同理HG=t,同理可得:S=S梯形RSHG=×3×(t+t﹣)=t﹣;故:S=;(3)∵点M为线段AC上一动点,经画图,∠MQN分别为90°时,点M不在线段AC上,①NMQ=90°时,三角形QMN为等腰直角三角形,过点M作y轴的平行线交x轴于点G,过点N作x轴的平行线交MG于点R、交y轴于点H,设点M、N的坐标分别为(m,m+3)、(n,3﹣n),∵∠NMR+∠RNM=90°,∠MNR+∠GMQ=90°,∴∠GMQ=∠RNM,∠NRM=∠MGO=90°,MR=MQ,∴△NRM≌△MGO(AAS),则MG=RN,GQ=RM,即:n﹣m=m+3,3﹣n﹣(m+3)=1﹣m,解得:m=﹣2,故点M的坐标为(﹣2,1);②当∠MNQ=90°时,同理可得:点M(﹣,2);综上,点M的坐标为:(﹣2,1)或(﹣,2).7.【解答】解:(1)直线l2:y=x﹣,令x=1,则y=﹣4,故C(1,﹣4),把C(1,﹣4)代入直线l1:y=﹣x+b,得:b=﹣3,则l1为:y=﹣x﹣3,所以A(﹣3,0),所以点P坐标为(﹣3,2),如图,设直线AC交y轴于点M,设y PC:y=mx+t得:,解得,∴y PC=﹣1.5x﹣2.5,即M(0,﹣2.5).S△CPQ=QM×(x C﹣x P)=(y Q+2.5)×4=5,解得:y Q=0或﹣5,∴Q的坐标为(0,0)或(0,﹣5);(2)确定C关于过A垂线的对称点C′(﹣7,﹣4)、A关于y轴的对称点A′(3,0),连接A′C′交过A点的垂线与点P,交y轴于点Q,此时,CP+PQ+QA的值最小,将点A′、C′点的坐标代入一次函数表达式:y=k′x+b′得:则直线A′C′的表达式为:y=x﹣,即点P的坐标为(﹣3,﹣),(3)将E、C点坐标代入一次函数表达式,同理可得其表达式为:y=﹣x﹣①当点M在直线l4上方时,设点N(n,﹣4),点M(s,﹣s﹣),点B(4,0),过点N、B分别作y轴的平行线交过点M与x轴的平行线分别交于点R、S,∵∠RMN+∠RNM=90°,∠RMN+∠SMR=90°,∴∠SMR=∠RNM,∠MRN=∠MSB=90°,MN=MB,∴△MSB≌△NRM(AAS),∴RN=MS,RM=SB,即,解得:,故点N的坐标为(﹣16,﹣4),②当点M在l4下方时,同理可得:N(﹣,﹣4),即:点N的坐标为(﹣,﹣4)或(﹣16,﹣4).8.【解答】解:(1)将点A(0,3)代入直线L1:y=kx+k+1并解得:k=2,故L1的表达式为:y=2x+3,设:L1与x轴交点坐标为D,则其坐标为(﹣,0),直线l1与两坐标轴围成的面积=OD×AO=×3=;(2)将直线L1经过2次斜平移,得到直线L2:y=2(x﹣2)+3﹣2=2x﹣3,当y=3时,x=3,即直线L2与AB的交点坐标为(3,3);(3)①当∠QAM为直角时,点M在第四象限,舍去;②当∠AQM为直角时,对于L2,当x=4时,y=5,故点M(4,5)(舍去);③当∠AMQ为直角时,AM=MQ,过点M作x轴的平行线分别交AO、BC于点G、H,设点M(m,2m﹣3),点Q(4,n),∵∠AMG+∠GAM=90°,∠AMG+∠QMH=90°,∴∠QMH=∠GAM,∠AGM=∠MHQ=90°,AM=MQ,∴△AGM≌△MHQ(AAS),∴AG=MH,即:|3﹣2m+3|=4﹣m,解得:m=2或,故点M(,)或(2,1),故点M(,)或(2,1).9.【解答】解:(1)将点B坐标代入直线l的表达式得:m==3,点B(2,3),令y=0,则x=﹣2,即点A(﹣2,0),将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得:,故:直线BC的表达式为:y=﹣3x+9;(2)过点O作OD∥AB交BC于点D,则D点为所求,直线AB表达式得k值为,则直线OD的表达式为y=x,将直线BC与OD表达式联立并解得:x=,即:点D的坐标为(,);(3)过点P作x轴的平行线分别于过点A、M与y轴的平行线于点G、H,设点P的坐标为(0,n)、点M(m,9﹣3m),∵∠GPA+∠GAP=90°,∠GPA+∠HPM=90°,∴∠HPM=∠GAP,又PA=PM,∠G=∠H=90°,∴△AGP≌△PHM(AAS),GP=HM=2,GA=PH,即:,解得:m=或,即点M的坐标为(,)或(,﹣);(4)t=+=BE+AE,过点A作倾斜角为45度的直线l2,过点E作EF⊥l2交于点F,则:EF=AE,即t=BE+EF,当B、E、F三点共线且垂直于直线l2时,t最小,即:t=BF′,同理,直线l2的表达式为:y=﹣x﹣2,直线BF表达式为:y=x+1,将上述两个表达式联立并解得:x=﹣,即:点F′(﹣,﹣),t=BF′==.10.【解答】解:(1)直线l2:y=,令x=1,则y=﹣4,故点C(1,﹣4),把点C(1,﹣4)代入直线l1:y=﹣x+b,得:b=﹣3,则直线l1的表达式为:y=﹣x﹣3,(2)对于直线y=﹣x﹣3,当y=0时,有﹣x﹣3=0,解得x=﹣3,即A(﹣3,0),如图,设直线AC交y轴于点M,设点P坐标为(﹣3,m),将点P、C的坐标代入一次函数表达式y=sx+t得:,解得,即M.S△CPQ=QM×(x C﹣x P)=•|2﹣+3|•(1+3)=4,解得:m=12或28,即点P的坐标为(﹣3,12)或(﹣3,28);(3)将E、C点坐标代入一次函数表达式,同理可得其表达式为①当点M在直线l4上方时,设点N(n,﹣4),点M(s,﹣s﹣),点B(4,0),过点N、B分别作y轴的平行线交过点M与x轴的平行线分别交于点R、S,∵∠RMN+∠RNM=90°,∠RMN+∠SMR=90°,∴∠SMR=∠RNM,∠MRN=∠MSB=90°,MN=MB,∴△MSB≌△NRM(AAS),∴RN=MS,RM=SB,即,解得.故点N的坐标为(﹣16,﹣4),②当点M在l4下方时,如图1,过点M作PQ∥x轴,与过点B作y轴的平行线交于Q,与过点N作y轴的平行线交于P,同①的方法得N(﹣,﹣4),③如图2中,当点N在y轴的右侧,△BMN是等腰直角三角形时,同法可得N(,﹣4)即:点N的坐标为(﹣,﹣4)或(﹣16,﹣4)或(,﹣4).11.【解答】解:(1)直线l2:y=x﹣,令y=4,则x=1,则点C(1,﹣4),令y=0,则x=4,即点B(4,0),把点C坐标代入直线l1:y=﹣x+b得:b=﹣3,则直线l1的表达式为:y=﹣x﹣3,令y=0,则x=﹣3,即点A(﹣3,0),S△ABC=AB×|y C|=7×4=14;(2)如下图,设直线AC交y轴于点M,设点P坐标为(﹣3,m),将点P、C的坐标代入一次函数表达式y=sx+t得:,解得:,即:点M坐标为(0,),S△CPQ=QM×(x C﹣x P)=(2﹣+3)×(1+3)=2,解得:m=16,即点P的坐标为(﹣3,16)当PC与y轴交于x轴上方时,同理可得:点P(﹣3,24),故点P(﹣3,16)或(﹣3,24);(3)将E、C点坐标代入一次函数表达式,同理可得其表达式为:y=﹣x﹣,设点N(n,﹣4),点M(s,﹣s﹣),点B(4,0),过点N、B分别作y轴的平行线交过点M与x轴的平行线分别交于点R、S,∵∠RMN+∠RNM=90°,∠RMN+∠SMR=90°,∴∠SMR=∠RNM,∠MRN=∠MSB=90°,MN=MB,∴△MSB≌△NRM(AAS),∴RN=MS,RM=SB,即:,解得:,故点N的坐标为(﹣16,﹣4).12.【解答】解:(1)直线y=kx+k分别交x轴、y轴于点A,C,则点A(﹣1,0),且OA=OC,则点C(0,3),则k=3,故直线AC的表达式为:y=3x+3,∵∠CBA=45°,∴OB=OC=3,∴点B(3,0),∵点C(0,3)、点B(3,0),则直线BC的表达式为:y=﹣x+3;(2)当点P在线段BC时,过点P作PH⊥x轴于点H,∵∠CBA=45°,PH=PBsin45°=t×=t,S=S△ABC﹣S△ABP=×BA×(OC﹣PH)=4×(3﹣t)=6﹣2t,(0≤t≤3);当点P在y轴右侧的射线BC上时,同理可得:S=S△ABP﹣S△ABC=2t﹣6,(t>3);故S=;(3)设点M(0,m),点Q(n,3n+3),①如图2(左侧图),当∠BMQ=90°时,(点M在x轴上方),分别过点Q、P作y轴的平行线QG、BH,过点M作x轴的平行线分别交GQ、BH于点G、H,∵∠GMQ+∠MQG=90°,∠GMQ+∠HMB=90°,∴∠HMB=∠GQM,∠MHB=∠QGM=90°,MB=MQ,∴△MHB≌△QGM(AAS),∴GQ=MH,BH=GM,即:m=﹣n,m﹣3n﹣3=3,解得:m=,n=﹣;故点M(0,)、点Q(﹣,﹣);同理当点M在x轴下方时,3n+3﹣m=3且﹣m=﹣n,解得:m=n=0(舍去);②当∠MQB=90°时,同理可得:﹣n=﹣3n﹣3,3n+3﹣m=3﹣n,解得:m=﹣6,n=﹣,故点M(0,﹣6)、点Q(﹣,﹣);③当∠QBM=90°时,同理可得:﹣3n﹣3=3,m=3﹣n解得:m=5,n=﹣2,点M(0,5)、点Q(﹣2,﹣3);综上,M(0,)、Q(﹣,﹣)或M(0,﹣6)、Q(﹣,﹣)或M(0,5)点Q(﹣2,﹣3).13.【解答】解:(1)联立,解得:,故点A的坐标为(﹣2,7);(2)由题意得:点E、D、B、C的坐标分别为(0,)、(0,8)、(,0)、(﹣16,0),过点A作MN∥x轴,分别交FG、DE于点M、N,则:AN=2,∵FG∥DE,∴△AFG∽△AED,∴=3,则AM=6,∴点M的横坐标为:﹣8,则点F、G的坐标分别为(﹣8,)、(﹣8,4),在y轴上找到点O关于直线GH的对称点O′(0,8),连接FO′并延长,交直线GH于点P,此时,|PF﹣PO|的值最大,最大值为PO′,直线O′F的表达式为:y=﹣x+8,当y=4时,x=,即点P坐标为(,4),|PF﹣PO|=FO′==,故:点P坐标为(,4),|PF﹣PO|=;(3)△AQR为等腰直角三角形,有如下图所示的两种情况,①当AQ⊥AC,当点R在点A下方时,∴直线AQ的表达式为:y=﹣2x+b,将点A坐标代入得:7=﹣2×(﹣2)+b,解得:b=3,故:直线AQ的表达式为:y=﹣2x+3,则点Q坐标为(,0),过点A作x轴的平行线,过点R作y轴的平行线,过点Q作y轴的平行线,围成矩形GMQH,∠GAR+∠QAH=90°,∠QAH+∠AQH=90°,∴∠AQH=∠GAR,∠AGR=∠QHA=90°,AR=AQ,∴△AGR≌△QHA(AAS),∴HQ=GA=7,GR=AH=2+=,OM=2+GA=9,∴RM=7﹣=故点R的坐标为(﹣9,),当点R在点A上方时,同理可得点R坐标为(5,);②当R′Q′⊥AC时,同理,点R′的坐标为(12,14)或(﹣,),故:点R的坐标为(﹣9,)或(5,)或(12,14)或(﹣,).14.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,又∵AD⊥CD,BE⊥EC,∴∠D=∠E=90°,∠ACD+∠BCE=180°﹣90°=90°,又∵∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴△ACD≌△EBC(AAS);(2)解:过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,如图1,∵∠BAC=45°,∴△ABC为等腰Rt△,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4,∴A(0,4),B(﹣3,0),∴BD=AO=4.CD=OB=3,∴OD=4+3=7,∴C(﹣7,3),设l2的解析式为y=kx+b(k≠0),∴,∴,∴l2的解析式:y=x+4;(3)当点D位于直线y=2x﹣6上时,分两种情况:①点D为直角顶点,分两种情况:当点D在矩形AOCB的内部时,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,2x﹣6);则OE=2x﹣6,AE=6﹣(2x﹣6)=12﹣2x,DF=EF﹣DE=8﹣x;则△ADE≌△DPF,得DF=AE,即:12﹣2x=8﹣x,x=4;∴D(4,2);当点D在矩形AOCB的外部时,设D(x,2x﹣6);则OE=2x﹣6,AE=OE﹣OA=2x﹣6﹣6=2x﹣12,DF=EF﹣DE=8﹣x;同1可知:△ADE≌△DPF,∴AE=DF,即:2x﹣12=8﹣x,x=;∴D(,);②点P为直角顶点,显然此时点D位于矩形AOCB的外部;设点D(x,2x﹣6),则CF=2x﹣6,BF=2x﹣6﹣6=2x﹣12;同(1)可得,△APB≌△PDF,∴AB=PF=8,PB=DF=x﹣8;∴BF=PF﹣PB=8﹣(x﹣8)=16﹣x;联立两个表示BF的式子可得:2x﹣12=16﹣x,即x=;∴D(,);综合上面六种情况可得:存在符合条件的等腰直角三角形;且D点的坐标为:(4,2),(,),(,).15.【解答】解:(1)如图1,过D作DH⊥AC于H,∵直线y=x+4与x轴、y轴分别相交于点A,A、B,∴A(﹣3,0),B(0,4),∴AO=3,BO=4,∴AB===5,当0≤t≤3时,如图1,∵CO=t,AD=t,∴AC=3﹣t,DH=AD•sin∠BAO=t,AH=ADcos∠BAO=t,当t=1时,AC=3﹣1=2,点D的坐标为(,);(2)∵AO=3,BO=4,AB=5∴sin∠BAO==,cos∠BAO==过D作DH⊥AC于H,当0≤t≤3时,如图1,∵CO=t,AD=t,∴AC=3﹣t,DH=AD•sin∠BAO=t,∴S=S△ABO﹣S△ADC=×3×4﹣•(3﹣t)•t,S=t2﹣t+6(0<t<3).(3)如图2,当EF⊥BO时,∵EF⊥CD,∴CD∥BO,∴∠ACD=90°,在Rt△ADC中,=cos∠BAO,∴=,t=,当EF⊥AB时,如图3,∵EF⊥CD,∴直线CD和直线AB重合,∴C点和A点重合,∴t=3.(4)①如图4,当0<t<,且且重叠部分为等腰梯形PEQM时,则∠PEQ=∠MQE,∵菱形CDMN,∴CD∥MN,∴∠MQE=∠CEQ,∵EF⊥CD,即∠CEF=90°,∴∠CEQ=45°,∴∠ACD=∠CEQ=45°,过D作DH⊥AC于H,则△DHC是等腰直角三角形,∴DH=HC,∴t=3﹣t﹣t,∴t=;②如图5,当<t<5,且重叠部分为等腰梯形EHNK时,同理可得∠CHE=45°,连接DHDH,∵EF垂直平分CD,∴CH=DH,∠DHE=∠CHE=45°,∴∠DHC=90°,∴DH=t,而CH=CO﹣HO=CO﹣(AO﹣AH)=t﹣(3﹣t),∴t﹣(3﹣t)=t,∴t=.16.【解答】解:(1)∵CD=10,点C的坐标为(﹣4,﹣4),∴点D的坐标为(﹣4,6),把点D(﹣4,6)代入得,m=4.∴直线l的解析式是;(2)∵,∴A(8,0),B(0,4),过点C画CH⊥y轴于H,则CH=OH=4,BH=8.在△AOB和△BHC中,∵AO=BH,∠AOB=∠BHC,BO=CH,∴△AOB≌△BHC,∴AB=BC,∠HBC=∠OAB,∴∠ABC=90°,∴△ABC是等腰直角三角形;(3)p(﹣4,﹣)或(﹣4,8)或(﹣4,﹣12)或(﹣4,﹣4)或(﹣4,4).17.【解答】解:(1)作PK⊥MN于K,则PK=KM=NM=2,∴KO=6,∴P(6,2);(2)①当点A落在线段OM上(可与点M重合)时,如图(一),此时0<b≤2,S=0;②当点A落在线段AK上(可与点K重合)时,如图(二),此时2<b≤3,设AC交PM于H,MA=AH=2b﹣4,∴S=(2b﹣4)2=2b2﹣8b+8,③当点A落在线段KN上(可与点N重合)时,如图(三),此时3<b≤4,设AC交PN于H,AN=AH=8﹣2b,∴S=S△PMN﹣S△ANH=4﹣2(4﹣b)2=﹣2b2+16b﹣28,④当点A落在线段MN的延长线上时,b>4,如图(四),S=4;(3)以OM为直径作圆,当直线y=﹣x+b(b>0)与圆相切时,b=+1,如图(五);当b≥4时,重合部分是△PMN,S=4设Q(x,b﹣x),因为∠OQM=90°,O(0,0),M(4,0)所以OQ2+QM2=OM2,即[x2+(b﹣x)2]+[(x﹣4)2+(b﹣x)2]=42,整理得x2﹣(2b+8)x+2b2=0,x2﹣(b+4)x+b2=0,根据题意这个方程必须有解,也就是判别式△≥0,即(b+4)2﹣5b2≥0,﹣b2+2b+4≥0,b2﹣2b﹣4≤0,可以解得 1﹣≤b≤1+,由于b>0,所以0<b≤1+.故0<b≤+1;(4)b的值为4,5,.∵点C、D的坐标分别为(2b,b),(b,b)当PC=PD时,b=4;当PC=CD时,b1=2(P、C、D三点共线,舍去),b2=5;当PD=CD时,b=8±2.18.【解答】解:(1)∵OA、OB的长分别是关于x的方程x2﹣14x+4(AB+2)=0的两个根,∴OA+OB=﹣=14,由已知可得,又∵OA2+OB2=AB2,∴(OA+OB)2﹣2OA•OB=AB2,即142﹣8(AB+2)=AB2,∴AB2+8AB﹣180=0,∴AB=10或AB=﹣18(不合题意,舍去),∴AB=10,∴x2﹣14x+48=0,解得x1=6,x2=8,∵OB>OA,∴OA=6,OB=8,∴tan∠BAO=.(2)∵S△PAQ=S四边形OQPB,∴S△PAQ=S△AOB,∵PQ∥BO,∴△PQA∽△BOA,∴,∴.∵AB=10,∴AP=5,又∵tan∠BAO=,∴sin∠BAO=,∴PQ=PA•sin∠BAO=.(3)存在,设AB的解析式是y=kx+b,则,解得:,则解析式是:y=﹣x+8,即4x+3y=24(*)①当∠PQM=90°时,由PQ∥OB且|PQ|=|MQ|此时M点与原点O重合,设Q(a,0)则P(a,a)有(a,a)代入(*)得a=.②当∠MPQ=90°,由PQ∥OB且|MP|=|PQ|设Q(a,0)则M(0,a),P(a,a)进而得a=247.③当∠PMQ=90°,由PQ∥OB,|PM|=|MQ|且|OM|=|OQ|=|PQ|设Q(a,0)则M(0,a)点P坐标为(a,2a)代入(*)得a=125.综上所述,y轴上有三个点M1(0,0),M2(0,247)和M3(0,125)满足使△PMQ为等腰直角三角形.。
一次函数压轴题经典知识讲解
练习1、如图,直线11过点A (0 , 4),点D (4 , C ,两直线h , I ?相交于点B 。
(1)、求直线l i 的解析式和点 B 的坐标; (2)、求△ ABC 的面积。
一次函数压轴题训练典型例题题型一、A 卷压轴题一、A 卷中涉及到的面积问题 一 2例1、如图,在平面直角坐标系xOy 中,一次函数 如 x 2与x 轴、y 轴分别相交于3点A 和点B ,直线y 2 =kx+b (k 鼻0)经过点C ( 1,0)且与线段AB 交于点P ,并把△ ABO 分成两部分.(1 )求厶ABO 的面积;(2 )若厶ABO 被直线CP 分成的两部分的面积相等,求点 P 的坐标及直线 CP 的函数表达式。
二、A卷中涉及到的平移问题例2、正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0 )。
4 8①直线y= 3X-3经过点C,且与x轴交与点E,求四边形AECD的面积;3 3②若直线l经过点E且将正方形ABCD分成面积相等的两部分求直线l的解析式,f 32③若直线h经过点F - - .0且与直线y=3x平行,将②中直线I沿着y轴向上平移一个单位I 2丿3交x轴于点M,交直线h于点N ,求NMF的面积.4练习1、如图,在平面直角坐标系中,直线l1 : y x与直线l2 : y =kx • b相交于3点A,点A的横坐标为3,直线I2交y轴于点B,且OA =-|OB。
2(1)试求直线12函数表达式。
(6分)若将直线丨1于占JC,交直线J(2) 求直线AD的解析式;(3) P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1、.如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m (m>0)的图象,直线PB是一次函数y = -3x n(n>m)的图象,点P是两直线的交点是两条直线与坐标轴的交点。
初中数学以一次函数为背景的中考压轴题 知识精讲
初中数学以一次函数为背景的中考压轴题 知识精讲刘久红一次函数是初中数学的重点内容之一,也是中考的主要考点。
现举几例以一次函数为背景的中考压轴题供同学们在中考复习时参考。
一、一次函数图象上的动点【例1】如图,已知直线l 的函数表达式为834+-=x y ,且x l 与轴、y 轴分别交于A 、B 两点,动点Q 从B 点开始在线段BA 上以每秒2个单位长度的速度向点A 移动,同时动点P 从A 点开始在线段AO 上以每秒1上单位长度的速度向点O 移动,设点Q 、P 移动的时间为t 秒。
(1)求出点A 、B 的坐标;(2)当t 为何值时,△APQ 与△AOB 相似?(3)求出(2)中当△APQ 与△AOB 相似时,线段PQ 所在直线的关系式。
分析 要求点A 、点B 的坐标时,分别令0,0==x y 即可。
由于△APQ 与△AOB 相似的对应关系未确定,因此要分类讨论。
对于第(3)小问可根据(2)中的讨论分别求出直线PQ 的函数表达式。
解 (1)由834+-=x y , 令0=x ,得8=y ;令0=y ,得6=x 。
∴A 、B 的坐标分别是(6,0),(0,8)。
(2)由BO=8,AO=6,得AB=10。
当移动的时间为t 时,AP=t ,AQ=t 210-。
∵∠QAP=∠BAO , ∴当BAQA OA PA =时,△APQ ∽△AOB , ∴102106t t -=,则1130=t (秒)。
∵∠QAP=∠BAO , ∴当AOAQ AB PA =是,△AQP ∽△AOB , ∴621010t t -=,则,1350=t (秒)。
经检验,它们都符合题意。
∴1130=t 秒或1350秒,此时△AQP 与△AOB 相似。
(3)当1130=t 秒时,PQ ∥OB ,PQ ⊥OA ,PA=1130,∴OP=1136,则P (1136,0)。
∴线段PQ 所在直线的关系式为1136=x 。
当1350=t 时,PA=1350,BQ=13100,OP=1328, ∴P (1328,0) 设Q 点的坐标为(x ,y ),则有BABQ OA x =, ∴10131006=x ,∴1360=x 。
一次函数压轴题题型归纳及方法
一次函数压轴题题型归纳及方法
一次函数压轴题是中学数学中的一个重要题型,旨在考察学生对于一次函数的掌握程度和运用能力。
在平时的学习过程中,我们可以通过分类归纳和方法总结来有效提升自己的解题能力和应试技巧。
首先,一次函数压轴题一般可以从三个方面入手:解析式、图形和实际问题。
对于解析式部分,常见的题型包括一次函数
$y=kx+b$ 的斜率、截距和特殊情况的判断,求直线与坐标轴的交点、两条直线的交点以及函数的定义域和值域等;对于图形部分,常见的题型包括画出一次函数的图像、确定斜率与截距的符号关系、求解方程组、计算面积和求距离等;对于实际问题部分,常见的题型包括经济问题、几何问题、物理问题以及运动问题等。
在解题的过程中,我们可以采用以下三种方法:代入法、变形法和组合法。
代入法指的是将已知条件和待求量依次代入公式中进行化简和推导,最终得出答案。
变形法指的是将已知条件和待求量按照一定的规律用代数式表示并移项求解,常用于解决复杂的方程组和不等式问题。
组合法则是综合应用以上两种方法,将题目按照逻辑关系分解成几个子问题,逐一解决最后合并答案。
在平时的学习过程中,我们应该多做多练,注重基础,掌握一次函数的定义和性质以及斜率与截距的意义和运用。
此外,我们还可以参加校园数学竞赛和线上数学大赛,在实践中不断提升自己的解题能力与应用水平。
总之,要想在一次函数压轴题中取得优异成绩,我们需要多方位进行思考和探索,做到理论联系实际,在解题过程中发掘自己的潜力和创造力,不断提高自己的解决问题的能力与思维水平。
北师大版八年级数学上册 一次函数压轴题分类归纳(超详细!!!)
一次函数压轴题专题类型一:一次函数与最值问题例题1.如图,平面直角坐标系中,直线轴交于点A,与直线交于点,,为直线上一点.求,的值;求线段AP的最小值,并求此时点P的坐标.例题2. 如图,直线:与x轴相交于点A,直线:经过点,,与x轴交于点,,与y轴交于点C,与直线相交于点D.求直线的函数关系式;点P是上的一点,若的面积等于的面积的2倍,求点P的坐标;设点Q的坐标为,,是否存在m的值使得最小?若存在,请求出点Q的坐标;若不存在,请说明理由.例题3. 如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系已知,,点E是AB的中点,在OA上取一点D,将沿BD翻折,使点A落在BC边上的点F处.Ⅰ直接写出点E、F的坐标;Ⅱ若M为x轴上的动点,N为y轴上的动点,当四边形MNFE的周长最小时,求出点M、N的坐标,并求出周长的最小值.1.变式练习:1.如图,正方形ABOD的边长为,在x轴上,OD在y轴上,且,,点C为AB的中点,直线CD交x轴于点F.求直线CD的函数关系式;过点C作且交于点E,求证:;求点E坐标;点P是直线CE上的一个动点,求的最小值.类型二一次函数与几何问题例题1.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点且OA、OB的长分别是一元二次方程的两个根,点C在x轴负半轴上,且AB::2求A、C两点的坐标;若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.例题2.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程的两个根.求点D的坐标.求直线BC的解析式.在直线BC上是否存在点P,使为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.例题3. 如图,已知函数的图象与y轴交于点A,一次函数的图象经过点,,与x轴以及的图象分别交于点C、D,且点D的坐标为,,则______ ,______ ,______ ;函数的函数值大于函数的函数值,则x的取值范围是______求四边形AOCD的面积;在x轴上是否存在点P,使得以点,,为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.变式练习:1.如图,在平面直角坐标系中,直线AB与x轴、y轴的正半轴分别交于点,,直线CD与x轴正半轴、y轴负半轴分别交于点,,与CD相交于点E,点,,,的坐标分别为,、,、,、,,点M是OB的中点,点P在直线AB上,过点P作轴,交直线CD于点Q,设点P的横坐标为m.求直线,对应的函数关系式;用含m的代数式表示PQ的长;若以点,,,为顶点的四边形是矩形,请直接写出相应的m的值.2.已知一次函数的图象经过点,、,直线MN与坐标轴相交于点A、B两点.求一次函数的解析式.如图1,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转得到线段DE,作直线CE交x轴于点F,求的值.如图2,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.类型三一次函数与面积问题例题1.如图,在平面直角坐标系中,直线AC:与x轴交于C点,与y轴交于A点,直线AB与x轴交于C点,与y轴交于A点,已知,.求直线AB的解析式.直线AD过点A,交线段BC于点D,把的面积分为1:2两部分;求出此时的点D的坐标.例题2.已知直线L:与x轴、y轴交于A、B两点,在y轴上有一个点,,动点M从A点出发,以每秒1个单位的速度沿x轴向左移动.求A、B两点的坐标.求的面积S与点M移动的时间t之间的函数关系式.当时,求直线CM所对应的解析式.问直线CM与直线L有怎样的位置关系?为什么?变式练习:2.平面直角坐标系xOy中,点P的坐标为,.试判断点P是否在一次函数的图象上,并说明理由;(2)如图,一次函数的图象与x轴、y轴分别相交于点A、B,若点P在的内部,求m的取值范围.3.如图,函数与的图象交于,.求出m、n的值;求出的面积.类型四、一次函数与方程不等式例题1.如图,已知函数和的图象交于点P,,这两个函数的图象与x轴分别交于点A、B.分别求出这两个函数的解析式;求的面积;根据图象直接写出不等式的解集.例题2.如图,函数与的图象交于,.求出m、n的值;直接写出不等式的解集;求出的面积.变式练习:1. 在同一坐标系中画出了三个一次函数的图象:, 和求 和 的交点A 的坐标;根据图象填空:当x ______ 时 ;当x ______ 时 ;对于三个实数 , , ,用 , , 表示这三个数中最大的数,如 , , , , , 当 时 当 时,请观察三个函数的图象,直接写出 , , 的最小值.。
初二一次函数所有知识点总结和常考题提高难题压轴题练习
初二一次函数所有知识点总结和常考题知识点:1.变量与常量:在一个变化过程中,数值发生变化的为变量,数值不变的是常量。
2. 函数:在一个变化过程中,假如有两个变量x 与 y,而且对于想x 的每一个确立的值, y 都有独一确立的值与其对应,则x 自变量, y 是 x 的函数。
3.函数分析式:用对于自变量的数学式子表示函数与自变量之间的关系的式子。
4.描绘函数的方法:分析式法、列表法、图像法。
5画函数图象的一般步骤:①列表:一次函数只需列出两个点即可,其余函数一般需要列出 5 个以上的点,所列点是自变量与其对应的函数值②描点:在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点③连线:挨次用光滑曲线连结各点。
6.正比列函数:形如 y=kx (k≠0)的函数, k 是比率系数。
7.正比列函数的图像性质:⑴y=kx(k≠0)的图象是一条经过原点的直线;⑵增减性:①当 k>0 时,直线y=kx经过第一、三象限 ,y 随x 的增大而增大;②当 k<0 时,直线 y=kx 经过第二、四象限 ,y 随x的增大而减小,8.一次函数:形如y=kx+b(k≠0)的函数,则称y是x的一次函数。
当 b=0 时, 称 y 是 x 的正比率函数。
9.一次函数的图像性质:⑴图象是一条直线;⑵增减性:①当 k>0 时, y 随 x 的增大而增大;②当k<0 时, y 随 x 的增大而减小。
b.01 k 0 b02b03(1)(2)(3)b.01k 0 b02b03(1)(2)(3)10.待定系数法求函数分析式:⑴设函数分析式为一般式;(2)把两点带入函数一般式列出方程组,求出待定系数;(3)把待定系数值再带入函数一般式,获得函数分析式11.一次函数与方程、不等式的关系:会从函数图象上找到一元一次方程的解(既与x 轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)常考题:一.选择题(共14 小题)1.以下函数中,自变量x 的取值范围是 x≥ 3 的是()A.y= B.y=C.y=x﹣ 3 D.y=2.以下各曲线中,不可以表示y是 x 的函数的是()A. B. C. D.3.一次函数 y=﹣3x﹣2 的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.若函数,则当函数值y=8 时,自变量 x 的值是()A.±B.4C.±或 4D.4 或﹣5.以下图形中,表示一次函数y=mx+n与正比率函数y=mnx(m,n 为常数,且mn≠0)的图象的是()A. B. C. D.6.假如一个正比率函数的图象经过不一样象限的两点A(2,m), B(n,3),那么必定有()A.m>0,n>0 B .m>0,n<0 C. m< 0, n> 0 D.m< 0, n< 07.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2 上,则y1,y2大小关系是()A.y1> y2 B.y1=y2 C.y1<y2 D.不可以比较8.一次函数 y=kx+b(k≠0)的图象以下图,当 y>0 时,x 的取值范围是()A.x<0B.x>0C.x<2D.x>29.如图,在矩形 ABCD中,动点 P 从点 B 出发,沿 BC、CD、DA运动至点 A 停止,设点 P 运动的行程为 x,△ ABP的面积为 y,假如 y 对于 x 的函数图象以下图,则△ ABC的面积是()A.10 B.16 C.18D.2010.如图 1,在矩形 MNPQ中,动点 R从点 N出发,沿 N→P→Q→M方向运动至点M处停止.设点 R 运动的行程为 x,△ MNR的面积为 y,假如 y 对于 x 的函数图象如图 2 所示,则当 x=9 时,点 R 应运动到()A.N处 B.P处 C.Q处 D.M处211.对于 x 的一次函数 y=kx+k +1 的图象可能正确的选项是()12.甲、乙两车从 A 城出发匀速行驶至 B 城.在整个行驶过程中,甲、乙两车离开 A 城的距离 y(千米)与甲车行驶的时间 t(小时)之间的函数关系以下图.则以下结论:① A, B 两城相距 300 千米;②乙车比甲车晚出发 1 小时,却早到 1 小时;③乙车出发后小时追上甲车;④当甲、乙两车相距 50 千米时, t=或.此中正确的结论有()A.1 个 B.2 个 C.3 个 D.4 个13.图象中所反应的过程是:张强从家跑步去体育场,在那边锻炼了一阵后,又去早饭店吃早饭,而后漫步走回家.此中 x 表示时间, y 表示张强离家的距离.根据图象供给的信息,以下四个说法错误的选项是()A.体育场离张强家千米B.张强在体育场锻炼了15 分钟C.体育场离早饭店 4 千米D.张强从早饭店回家的均匀速度是 3 千米 / 小时14.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步 500 米,先到终点的人原地歇息.已知甲先出发 2 秒.在跑步过程中,甲、乙两人的距离 y(米)与乙出发的时间 t (秒)之间的关系以下图,给出以下结论:① a=8;②b=92;③ c=123.此中正确的选项是()A.①②③B.仅有①②C.仅有①③D.仅有②③二.填空题(共13 小题)15.函数 y=中自变量 x 的取值范围是.16.已知点( 3,5)在直线 y=ax+b(a,b 为常数,且 a≠0)上,则的值为.17.已知直线 y=kx+b,若 k+b=﹣5,kb=6,那么该直线不经过第象限.18.一次函数 y=﹣2x+b 中,当 x=1 时, y<1,当 x=﹣1 时, y>0.则 b 的取值范围是.19.小明下学后步行回家,他离家的行程s(米)与步行时间t (分钟)的函数图象以下图,则他步行回家的均匀速度是米/ 分钟.20.已知直线 y=2x+(3﹣a)与 x 轴的交点在 A( 2, 0)、B(3,0)之间(包含A、B 两点),则 a 的取值范围是.21.“龟兔初次赛跑”以后,输了竞赛的兔子没有灰心,总结反省后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y1表示乌龟所行的行程,y2表示兔子所行的行程).有以下说法:①“龟兔再次赛跑”的行程为1000 米;②兔子和乌龟同时从起点出发;③乌龟在途中歇息了10 分钟;④兔子在途中 750 米处追上乌龟.此中正确的说法是.(把你以为正确说法的序号都填上)22.某水库的水位在 5 小时内连续上升,初始的水位高度为 6 米,水位以每小时米的速度匀速上升,则水库的水位高度y 米与时间 x 小时( 0≤ x≤5)的函数关系式为.23.以下图,购置一种苹果,所付款金额 y(元)与购置量 x(千克)之间的函数图象由线段 OA和射线 AB构成,则一次购置 3 千克这类苹果比分三次每次购买 1 千克这类苹果可节俭元.24.如图,在平面直角坐标系中,点P 的坐标为( 0,4),直线 y=x﹣3 与 x 轴、y 轴分别交于点A,B,点 M是直线 AB上的一个动点,则 PM长的最小值为.25.直线 y=3x+2 沿 y 轴向下平移 5 个单位,则平移后直线与y 轴的交点坐标为.26.把直线y=﹣ x﹣ 1 沿 x 轴向右平移 2 个单位,所得直线的函数分析式为.27.如图,直线 y=﹣ x+4 与 y 轴交于点 A,与直线 y=x+交于点 B,且直线 y=x+与 x 轴交于点 C,则△ ABC的面积为.三.解答题(共13 小题)28.如图,直线 l 1的分析表达式为: y=﹣3x+3,且 l 1与 x 轴交于点 D,直线 l 2经过点 A, B,直线 l 1, l 2交于点 C.(1)求点 D 的坐标;(2)求直线 l 2的分析表达式;(3)求△ ADC的面积;(4)在直线 l 2上存在异于点 C的另一点 P,使得△ ADP与△ ADC的面积相等,请直接写出点 P 的坐标.29.如图:在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点坐标.( 1)若点 D 与 A,B,C 三点构成平行四边形,请写出所有切合条件的点 D 的坐标;( 2)选择( 1)中切合条件的一点D,求直线 BD的分析式.30.如图, A( 0,1),M(3,2),N( 4,4).动点 P 从点 A 出发,沿 y 轴以每秒 1 个单位长的速度向上挪动,且过点 P 的直线 l :y=﹣x+b 也随之挪动,设挪动时间为 t 秒.(1)当 t=3 时,求 l 的分析式;(2)若点 M,N 位于 l 的异侧,确立 t 的取值范围;(3)直接写出 t 为什么值时,点 M对于 l 的对称点落在座标轴上.31.如图,直线 y=kx+6 分别与 x 轴、y 轴订交于点 E 和点 F,点 E 的坐标为(﹣8,0),点A 的坐标为(0,3).( 1)求 k 的值;( 2)若点 P( x, y)是第二象限内的直线上的一个动点,当点P 运动过程中,试写出△ OPA的面积 S 与 x 的函数关系式,并写出自变量x 的取值范围;( 3)研究:当 P 运动到什么地点时,△ OPA的面积为,并说明原由.32.某工厂投入生产一种机器的总成本为2000 万元.当该机器生产数目起码为10 台,但不超出 70 台时,每台成本 y 与生产数目 x 之间是一次函数关系,函数 y与自变量 x 的部分对应值以下表:x(单位:台)102030y(单位:万元∕台)605550( 1)求 y 与 x 之间的函数关系式,并写出自变量x 的取值范围;(2)求该机器的生产数目;(3)市场检查发现,这类机器每个月销售量 z(台)与售价 a(万元∕台)之间知足以下图的函数关系.该厂生产这类机器后第一个月按同一售价共卖出这类机器 25 台,请你求出该厂第一个月销售这类机器的收益.(注:收益 =售价﹣成本)33.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为 y1千米,出租车离甲地的距离为 y2千米,两车行驶的时间为 x小时, y1、y2对于 x 的函数图象以下图:(1)依据图象,直接写出 y1、y2对于 x 的函数图象关系式;(2)若两车之间的距离为 S 千米,请写出 S 对于 x 的函数关系式;(3)甲、乙两地间有A、B 两个加油站,相距200 千米,若客车进入A 加油站时,出租车恰巧进入 B 加油站,求 A 加油站离甲地的距离.34.某文具商铺销售功能同样的 A、B 两种品牌的计算器,购置 2 个 A 品牌和 3 个B 品牌的计算器共需 156 元;购置 3 个 A 品牌和 1 个 B 品牌的计算器共需 122 元.(1)求这两种品牌计算器的单价;(2)学校开学前夜,该商铺对这两种计算器展开了促销活动,详细方法以下: A 品牌计算器按原价的八折销售, B 品牌计算器 5 个以上高出部分按原价的七折销售,设购置 x 个 A 品牌的计算器需要 y1元,购置 x 个 B 品牌的计算器需要 y2元,分别求出y1、y2对于 x 的函数关系式;(3)小明准备联系一部分同学集体购置同一品牌的计算器,若购置计算器的数目超出 5 个,购置哪一种品牌的计算器更合算?请说明原由.35.为了响应国家节能减排的呼吁,鼓舞市民节俭用电,我市从2012 年7 月1 日起,居民用电推行“一户一表”的“阶梯电价”,分三个品位收费,第一档是用电量不超出180 千瓦时推行“基本电价”,第二、三档推行“提升电价”,详细收费状况如右折线图,请依据图象回答以下问题;( 1)当用电量是 180 千瓦不时,电费是元;( 2)第二档的用电量范围是;( 3)“基本电价”是元/千瓦时;( 4)小明家 8 月份的电费是元,这个月他家用电多少千瓦时?36.某县响应“建设环保节俭型社会”的呼吁,决定资助部分村镇修筑一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264 户村民,政府补贴村里34 万元,不足部分由村民集资.修筑 A 型、 B 型沼气池共 20 个.两种型号沼气池每个修筑花费、可供使用户数、修筑用地状况以下表:沼气池修筑费(万元 / 个)可供用户数(户 / 个)2占地面积( m/ 个)A 型32048B 型2362政府有关部门批给该村沼气池修筑用地 708m.设修筑 A 型沼气池 x 个,修筑两种型号沼气池共需花费 y 万元.(1)求 y 与 x 之间的函数关系式;(2)不超出政府批给修筑沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;( 3)若均匀每户村民集资700 元,可否知足所需花费最少的修筑方案.37.一手机经销商计划购进某品牌的 A 型、B 型、C型三款手机共 60 部,每款手机起码要购进 8 部,且恰巧用完购机款 61000 元.设购进 A 型手机 x 部, B 型手机 y 部.三款手机的进价和预售价以下表:手机型号 A 型 B 型 C 型进价(单位:元 / 部)90012001100预售价(单位:元 / 部)120016001300(1)用含 x,y 的式子表示购进 C 型手机的部数;(2)求出 y 与 x 之间的函数关系式;(3)假定所购进手机所有售出,综合考虑各样要素,该手机经销商在购销这批手机过程中需此外支出各样花费共 1500 元.①求出预估收益 P(元)与 x(部)的函数关系式;(注:预估收益 P=预售总数﹣购机款﹣各样花费)②求出预估收益的最大值,并写出此时购进三款手机各多少部.38.兰新铁路的通车,圆了全国人民的一个梦,坐上火车去赏析青海门源百里油菜花海,感觉大美青海独到的高原风光,暑期某校准备组织学生、老师到门源进行社会实践,为了便于管理,师生一定乘坐在同一列高铁上,依据报名人数,若都买一等座单程火车票需2340 元,若都买二等座单程火车票花费最少,则需 1650元:西宁到门源的火车票价钱以下表运转区间票价上车站下车站一等座二等座西宁门源36元30元(1)参加社会实践的学生、老师各有多少人?(2)因为各样原由,二等座火车票单程只好买x 张(参加社会实践的学生人数<x<参加社会实践的总人数),其余的须买一等座火车票,在保证每位参加人员都有座位坐而且总花费最低的前提下,请你写出购置火车票的总花费(单程) y 与 x 之间的函数关系式.39.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车半途泊车休整后加速行驶至乙地.货车的行程y1(km),小轿车的行程y2(km)与时间 x(h)的对应关系以下图.(1)甲乙两地相距多远?小轿车半途逗留了多长时间?(2)①写出 y1与 x 的函数关系式;②当 x≥5 时,求 y2与 x 的函数分析式;( 3)货车出发多长时间与小轿车初次相遇?相遇时与甲地的距离是多少?40.如图,在平面直角坐标系中,正方形 ABCD的极点 A 在 y 轴正半轴上,极点 B 在 x 轴正半轴上, OA、OB的长分别是一元二次方程 x2﹣7x+12=0 的两个根( OA >OB).(1)求点 D 的坐标.(2)求直线 BC的分析式.(3)在直线 BC上能否存在点 P,使△ PCD为等腰三角形?若存在,请直接写出点 P 的坐标;若不存在,说明原由.初二一次函数所有知识点总结和常考题提升难题压轴题练习 ( 含答案分析 )参照答案与试题分析一.选择题(共14 小题)1.(2012? 湘潭)以下函数中,自变量x 的取值范围是 x≥3 的是()A.y= B.y=C.y=x﹣ 3 D.y=【剖析】分式存心义,分母不等于 0;二次根式存心义:被开方数是非负数便可以求出 x 的范围.【解答】解: A、分式存心义, x﹣3≠0,解得: x≠3,故 A 选项错误;B、二次根式存心义, x﹣ 3> 0,解得 x> 3,故 B 选项错误;C、函数式为整式, x 是随意实数,故C选项错误;D、二次根式存心义, x﹣ 3≥ 0,解得 x≥ 3,故 D选项正确.应选: D.【评论】本题考察的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不可以为0;(3)当函数表达式是二次根式时,被开方数非负.y 是x 的函数的是()2.(2015 春? 营山县期末)以下各曲线中,不可以表示A. B. C. D.【剖析】依据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,假如不是,则不是函数.【解答】解: A、是一次函数,正确;B、是二次函数,正确;C、很显然,给自变量一个值,不是有独一的值对应,因此不是函数,错误;D、是二次函数,正确.应选: C.【评论】本题主要考察函数的自变量与函数值是一一对应的,即给自变量一个值,有独一的一个值与它对应.3.(2010? 綦江县)一次函数y=﹣3x﹣2 的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【剖析】依据一次函数的性质简单得出结论.【解答】解:∵分析式 y=﹣3x﹣2 中,﹣ 3<0,﹣ 2<0,∴图象过二、三、四象限.应选 A.k<0时, y 【评论】在直线 y=kx+b 中,当 k> 0 时, y 随 x 的增大而增大;当随 x 的增大而减小.y=8时,自变量x 的值是()4.(2015? 甘南州)若函数,则当函数值A.±B.4C.±或 4D.4 或﹣【剖析】把 y=8 直接代入函数即可求出自变量的值.【解答】解:把 y=8 代入函数,先代入上面的方程得x=,∵ x≤ 2, x=不合题意舍去,故x=﹣;再代入下面的方程x=4,∵x> 2,故 x=4,综上, x 的值为 4 或﹣.应选: D.【评论】本题比较简单,考察求函数值.(1)当已知函数分析式时,求函数值就是求代数式的值;( 2)函数值是独一的,而对应的自变量能够是多个.5.(2001? 常州)以下图形中,表示一次函数y=mx+n与正比率函数 y=mnx(m,n 为常数,且 mn≠0)的图象的是()A. B. C. D.mn的符号,【剖析】依据“两数相乘,同号得正,异号得负”分两种状况议论而后依据 m、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当 mn> 0, m, n 同号,同正时 y=mx+n过 1,3, 2 象限,同负时过 2,4,3 象限;②当 mn<0 时, m,n 异号,则 y=mx+n过 1,3,4 象限或 2,4,1 象限.应选 A.【评论】主要考察了一次函数的图象性质,要掌握它的性质才能灵巧解题.一次函数 y=kx+b 的图象有四种状况:①当 k>0,b>0,函数 y=kx+b 的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b 的图象经过第一、三、四象限;③当k<0,b>0 时,函数 y=kx+b 的图象经过第一、二、四象限;④当 k<0,b<0 时,函数 y=kx+b 的图象经过第二、三、四象限.6.(2013? 陕西)假如一个正比率函数的图象经过不一样象限的两点A( 2,m),B ( n, 3),那么必定有()A.m>0,n>0 B .m>0,n<0 C. m< 0, n> 0 D.m< 0, n< 0【剖析】依据正比率函数图象所在象限,可判断出m、n 的正负.【解答】解: A、m>0,n>0,A、B 两点在同一象限,故 A 错误;B、m>0,n<0,A、B 两点不在同一个正比率函数,故 B 错误;C、m<0,n>0,A、B 两点不在同一个正比率函数,故C错误;D、m<0,n<0,A、B 两点在同一个正比率函数的不一样象限,故D正确.应选: D.【评论】本题主要考察了正比率函数的性质,重点是掌握正比率函数图象的性质:它是经过原点的一条直线.当 k> 0 时,图象经过一、三象限, y 随 x 的增大而增大;当 k<0 时,图象经过二、四象限, y 随 x 的增大而减小.7.( 2014? 永嘉县校级模拟)已知点(﹣4,y1),(2,y2)都在直线 y=﹣x+2 上,则 y1,y2大小关系是()A.y1> y2B.y1=y2C.y1<y2D.不可以比较【剖析】先依据一次函数的分析式判断出函数的增减性,再依据两点横坐标的大小即可得出结论.【解答】解:∵ k=﹣< 0,∴y 随 x 的增大而减小.∵﹣ 4<2,∴y1>y2.应选: A.【评论】本题考察的是一次函数图象上点的坐标特色,先依据题意判断出一次函数的增减性是解答本题的重点.8.(2013? 娄底)一次函数y=kx+b( k≠ 0)的图象以下图,当y> 0 时, x 的取值范围是()A.x<0B.x>0C.x<2D.x>2【剖析】依据函数图象与 x 轴的交点坐标可直接解答.从函数图象的角度看,就是确立直线 y=kx+b<0 的解集,就是图象在 x 轴下方部分所有的点的横坐标所构成的会合.【解答】解:因为直线 y=kx+b 与 x 轴的交点坐标为( 2,0),由函数的图象可知当y>0 时,x 的取值范围是x<2.应选:C.【评论】本题考察一次函数的图象,运用察看法解一元一次不等式往常是从交点察看两边得解.9.(2008? 菏泽)如图,在矩形 ABCD中,动点 P 从点 B 出发,沿 BC、 CD、DA运动至点 A 停止,设点 P 运动的行程为 x,△ ABP的面积为 y,假如 y 对于 x 的函数图象以下图,则△ABC的面积是()A.10 B.16 C.18D.20【剖析】本题难点在于应找到面积不变的开始与结束,获得BC,CD的详细值.【解答】解:动点 P 从点 B 出发,沿 BC、CD、DA运动至点 A 停止,而当点 P 运动到点 C,D 之间时,△ ABP的面积不变.函数图象上横轴表示点 P 运动的行程,x=4 时, y 开始不变,说明 BC=4, x=9 时,接着变化,说明 CD=9﹣4=5.∴△ ABC的面积为 =×4×5=10.应选 A.【评论】解决本题应第一看清横轴和纵轴表示的量.10.(2009? 莆田)如图 1,在矩形 MNPQ中,动点 R从点 N出发,沿N→P→Q→M方向运动至点 M处停止.设点 R 运动的行程为 x,△ MNR的面积为 y,假如 y 关于 x 的函数图象如图 2 所示,则当 x=9 时,点 R 应运动到()A.N处 B.P处 C.Q处 D.M处【剖析】注意剖析y 随x 的变化而变化的趋向,而不必定要经过求分析式来解决.【解答】解:当点 R 运动到 PQ上时,△ MNR的面积 y 达到最大,且保持一段时间不变;到 Q点此后,面积 y 开始减小;故当 x=9 时,点 R 应运动到 Q处.应选 C.【评论】本题考察动点问题的函数图象问题,有必定难度,注意要认真剖析.11.( 2011? 张家界)对于 x 的一次函数 y=kx+k2 +1 的图象可能正确的选项是()A. B. C. D.【剖析】依据图象与 y 轴的交点直接解答即可.【解答】解:令 x=0,则函数 y=kx+k2+1 的图象与 y 轴交于点( 0,k2 +1),∵k2+1>0,∴图象与 y 轴的交点在 y 轴的正半轴上.应选 C.【评论】本题考察一次函数的图象,考察学生的剖析能力和读图能力.12.(2015? 鄂州)甲、乙两车从 A 城出发匀速行驶至 B 城.在整个行驶过程中,甲、乙两车走开 A 城的距离 y(千米)与甲车行驶的时间 t (小时)之间的函数关系以下图.则以下结论:①A, B 两城相距 300 千米;②乙车比甲车晚出发 1 小时,却早到 1 小时;③乙车出发后小时追上甲车;④当甲、乙两车相距 50 千米时, t= 或.此中正确的结论有()A.1 个 B.2 个 C.3 个 D.4 个【剖析】察看图象可判断①②,由图象所给数据可求得甲、乙两车走开A城的距离 y 与时间 t 的关系式,可求得两函数图象的交点,可判断③,再令两函数分析式的差为 50,可求得 t ,可判断④,可得出答案.【解答】解:由图象可知 A、B 两城市之间的距离为 300km,甲行驶的时间为 5 小时,而乙是在甲出发 1 小时后出发的,且用时 3 小时,即比甲早到 1 小时,∴①②都正确;设甲车走开 A 城的距离 y 与 t 的关系式为 y 甲 =kt ,把( 5,300)代入可求得 k=60,∴y 甲=60t ,设乙车走开 A 城的距离 y 与 t 的关系式为 y 乙 =mt+n,把( 1,0)和( 4,300)代入可得,解得,∴y 乙=100t ﹣100,令 y 甲 =y 乙可得: 60t=100t ﹣100,解得 t= ,即甲、乙两直线的交点横坐标为 t= ,此时乙出发时间为小时,即乙车出发小时后追上甲车,∴③不正确;令 |y 甲﹣y 乙 |=50 ,可得 |60t ﹣100t+100|=50 ,即 |100 ﹣ 40t|=50 ,当 100﹣40t=50 时,可解得 t= ,当100﹣40t= ﹣50 时,可解得 t= ,又当t= 时,y 甲=50,此时乙还没出发,当 t= 时,乙抵达 B 城, y 甲=250;综上可知当 t 的值为或或或 t= 时,两车相距 50 千米,∴④不正确;综上可知正确的有①②共两个,应选 B.【评论】本题主要考察一次函数的应用,掌握一次函数图象的意义是解题的重点,特别注意 t 是甲车所用的时间.13.( 2014? 德州)图象中所反应的过程是:张强从家跑步去体育场,在那边锻炼了一阵后,又去早饭店吃早饭,而后漫步走回家.此中x 表示时间, y 表示张强离家的距离.依据图象供给的信息,以下四个说法错误的选项是()A.体育场离张强家千米B.张强在体育场锻炼了 15 分钟C.体育场离早饭店 4 千米D.张强从早饭店回家的均匀速度是 3 千米/小时【剖析】联合图象得出张强从家直接到体育场,故第一段函数图象所对应的y 轴的最高点即为体育场离张强家的距离;从而得出锻炼时间以及整个过程所用时间.由图中能够看出,体育场离张强家千米;均匀速度=总行程÷总时间.【解答】解: A、由函数图象可知,体育场离张强家千米,故 A 选项正确;B、由图象可得出张强在体育场锻炼30﹣ 15=15(分钟),故 B 选项正确;C、体育场离张强家千米,体育场离早饭店距离没法确立,因为题目没说体育馆,早饭店和家三者在同向来线上,故 C 选项错误;D、∵张强从早饭店回家所用时间为95﹣ 65=30(分钟),距离为,∴张强从早饭店回家的均匀速度÷=3(千米 / 时),故 D 选项正确.应选: C.【评论】本题主要考察了函数图象与实质问题,依据已知图象得出正确信息是解题重点.14.( 2014? 黔西南州)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步 500 米,先到终点的人原地歇息.已知甲先出发 2 秒.在跑步过程中,甲、乙两人的距离 y(米)与乙出发的时间 t (秒)之间的关系以下图,给出以下结论:① a=8;② b=92;③ c=123.此中正确的选项是()A.①②③ B.仅有①②C.仅有①③D.仅有②③【剖析】易得乙出发时,两人相距8m,除以时间 2 即为甲的速度;因为出现两人距离为 0 的状况,那么乙的速度较快.乙 100s 跑完总行程 500 可得乙的速度,从而求得 100s 时两人相距的距离可得 b 的值,同法求得两人距离为 0 时,相应的时间,让两人相距的距离除以甲的速度,再加上 100 即为 c 的值.【解答】解:甲的速度为: 8÷2=4(米 / 秒);乙的速度为: 500÷100=5(米 / 秒);b=5× 100﹣4×( 100+2) =92(米);5a﹣4×( a+2) =0,解得 a=8,c=100+92÷4=123(秒),∴正确的有①②③.应选: A.【评论】考察一次函数的应用;获得甲乙两人的速度是解决本题的打破点;获得相应行程的关系式是解决本题的重点.二.填空题(共13 小题)15.( 2013? 内江)函数 y=中自变量 x 的取值范围是x≥﹣且 x≠1.【剖析】依据被开方数大于等于0,分母不等于 0 列式求解即可.【解答】解:依据题意得,2x+1≥0 且x﹣1≠0,解得 x≥﹣且 x≠1.故答案为: x≥﹣且 x≠ 1.【评论】本题考察了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不可以为0;(3)当函数表达式是二次根式时,被开方数非负.16.(2013? 成都)已知点(3,5)在直线y=ax+b(a,b 为常数,且a≠0)上,则的值为﹣.【剖析】将点( 3,5)代入直线分析式,可得出 b﹣5 的值,既而代入可得出答案.【解答】解:∵点( 3,5)在直线 y=ax+b 上,∴5=3a+b,∴b﹣ 5=﹣3a,则 ==.故答案为:﹣.【评论】本题考察了一次函数图象上点的坐标特色,注意直线上点的坐标知足直线分析式.17.( 2014? 梅州)已知直线 y=kx+b,若 k+b=﹣5,kb=6,那么该直线不经过第一象限.【剖析】第一依据 k+b=﹣5、kb=6 获得 k、b 的符号,再依据图象与系数的关系确立直线经过的象限,从而求解即可.【解答】解:∵ k+b=﹣5,kb=6,∴k< 0, b< 0,∴直线 y=kx+b 经过二、三、四象限,即不经过第一象限.故答案为:一.【评论】本题考察了一次函数图象与系数的关系,解题的重点是依据 k、b 之间的关系确立其符号.18.(2013? 潍坊)一次函数 y=﹣ 2x+b 中,当 x=1 时,y<1,当 x=﹣ 1 时,y>0.则b 的取值范围是﹣2<b<3.【剖析】将 x=1 时, y<1 及 x=﹣1 时, y> 0 分别代入 y=﹣2x+b,获得对于 b 的一元一次不等式组,解此不等式组,即可求出 b 的取值范围.【解答】解:由题意,得,解此不等式组,得﹣ 2<b<3.故答案为﹣ 2<b<3.【评论】本题考察了一次函数的性质,将已知条件转变为一元一次不等式组是解题的重点.19.( 2014? 益阳)小明下学后步行回家,他离家的行程s(米)与步行时间t (分钟)的函数图象以下图,则他步行回家的均匀速度是80米/分钟.【剖析】他步行回家的均匀速度 =总行程÷总时间,据此解答即可.【解答】解:由图知,他离家的行程为 1600 米,步行时间为 20 分钟,则他步行回家的均匀速度是: 1600÷20=80(米 / 分钟),故答案为: 80.【评论】本题考察利用函数的图象解决实质问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,便可以经过图象获得函数问题的相应解决.20.(2015? 株洲)已知直线 y=2x+(3﹣a)与 x 轴的交点在 A(2,0)、B(3,0)之间(包含 A、B 两点),则 a 的取值范围是 7≤ a≤9 .【剖析】依据题意获得 x 的取值范围是 2≤ x≤ 3,则经过解对于 x 的方程 2x+(3﹣a) =0 求得 x 的值,由 x 的取值范围来求 a 的取值范围.【解答】解:∵直线 y=2x+(3﹣a)与 x 轴的交点在 A( 2, 0)、B(3,0)之间(包含 A、 B 两点),∴2≤ x≤ 3,令 y=0,则 2x+(3﹣a)=0,解得 x=,则2≤≤ 3,解得 7≤a≤9.故答案是: 7≤a≤9.【评论】本题考察了一次函数图象上点的坐标特色.依据一次函数分析式与一元一次方程的关系解得 x 的值是解题的打破口.21.( 2013? 咸宁)“龟兔初次赛跑”以后,输了竞赛的兔子没有灰心,总结反思后,和乌龟商定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的行程, y2表示兔子所行的路程).有以下说法:①“龟兔再次赛跑”的行程为1000 米;②兔子和乌龟同时从起点出发;③乌龟在途中歇息了10 分钟;④兔子在途中 750 米处追上乌龟.此中正确的说法是①③④.(把你以为正确说法的序号都填上)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二一次函数压轴题复
习精讲
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
初二一次函数压轴题复习精讲
1.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.
(1)求直线l2的函数解析式;(2)求△ADC的面积.
2.如图,在平面直角坐标系中,点A的坐标为(2,3),点B在x轴的负
半轴上,△ABO的面积是3.
(1)求点B的坐标;(2)求直线AB的解析式;
(3)在线段OB的垂直平分线m上是否存在点M,使△AOM得周长最
短?若存在,直接写出点M的坐标;若不存在,说明理由.
(4)过点A作直线AN与坐标轴交于点N,且使AN=OA,求△ABN的
面积.
3.如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,
动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x
轴垂直.
(1)求点C的坐标,并回答当x取何值时y1>y2?
(2)求△COB的面积;
(3)是否存在点P,使CP将△COB分成的两部分面积之比为1:
2?若存在,请求出点P的坐标;若不存在,请说明理由.
(4)设△COB中位于直线m左侧部分的面积为s,求出s与x之
间函数关系式.
4.如图,在平面直角坐标系xOy
中,长方形OABC的顶点A C
、的坐标分别为
(3,0),(0,5).(1)直接写出点B的坐标;
(2)若过点C的直线CD交AB边于点D,且把长方形OABC的周长分为1:3两部分,求直线CD的解析式;(3)设点P沿O A B C
---的方向运动到点C
(但不与点O C
、重合),求△OPC的面积y与点P所行路程x之间的函数关系式及自变量x的取值范围
A
C B
x y
O
5.已知直线y kx b =+经过点223,5M ⎛⎫ ⎪⎝⎭、120,5N ⎛⎫ ⎪⎝
⎭.(1)求直线MN 的解析式; (2)当0y >时,求x 的取值范围;
(3)我们将横坐标、纵坐标均为整数的点称为整数点.直接写出此直线与两坐标轴围成的三角形的内部(不包含边界)的整数点的坐标.
6.在平面直角坐标系xoy 中,直线m x y +-=经过点)0,2(A ,交y 轴于点B ,
点D 为x 轴上一点,且1=∆ADB S
(1)求m 的值 (2)求线段OD 的长 (3)当点E 在直线AB 上(点E 与点B 不
重合),EDA BDO ∠=∠,求点E 的坐标
7.已知一次函数y=kx+b ,y 随x 增大而增大,它的图象经过点(1,0)且与x 轴的夹角为45°,
(1)确定这个一次函数的解析式;
(2)假设已知中的一次函数的图象沿x 轴平移两个单位,求平移以后的直线及直线与y 轴的交点坐标.
8.如图①所示,直线l1:y=3x+3与x 轴交于B 点,与直线l2交于y 轴上一点A ,且l2与x 轴的交点为C (1,0).
(1)求证:∠ABC=∠ACB ;
(2)如图②所示,过x 轴上一点D (-3,
0)作DE ⊥AC 于E ,DE 交y 轴于F 点,
交AB 于G 点,求G 点的坐标.
(3)如图③所示,将△ABC 沿x 轴向左平
移,AC 边与y 轴交于一点P (P 不同于
A 、C 两点),过P 点作一直线与A
B 的延
长线交于Q 点,与x 轴交于M 点,且CP=BQ ,在△ABC 平移的过程中,线段OM 的长度是否发生变化?若不变,请求出它的长度;若变化,确定其变化范围.
9.设关于x 一次函数y=a 1x+b 1与y=a 2x+b 2,我们称函数y=m (a 1x+b 1)+n (a 2x+b 2)(其中m+n=1)为这两个函数的生成函数.
(1)请你任意写出一个y=x+1与y=3x-1的生成函数的解析式;
(2)当x=c 时,求y=x+c 与y=3x-c 的生成函数的函数值;
(3)若函数y=a1x+b1与y=a2x+b2的图象的交点为P(a,5),当a1b1=a2b2=1时,求代数式m (a12a2+b12)+n(a22a2+b22)+2ma+2na的值.。