多元统计分析第4章作业题选讲

合集下载

多元统计分析课后习题解答_第四章

多元统计分析课后习题解答_第四章

多元统计分析课后习题解答_第四章(共12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章判别分析简述欧几里得距离与马氏距离的区别和联系。

答:设p维欧几里得空间中的两点X=和Y=。

则欧几里得距离为。

欧几里得距离的局限有①在多元数据分析中,其度量不合理。

②会受到实际问题中量纲的影响。

设X,Y是来自均值向量为,协方差为的总体G中的p维样本。

则马氏距离为D(X,Y)=。

当即单位阵时,D(X,Y)==即欧几里得距离。

因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。

试述判别分析的实质。

答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。

设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。

判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。

简述距离判别法的基本思想和方法。

答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。

其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。

①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是1和 2,对于一个新的样品X ,要判断它来自哪个总体。

计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X ,D2(X ,G1)D 2(X ,G 2)X,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ,W(X)X ,W(X)<0②多个总体的判别问题。

多元统计习题答案(第4到7章)

多元统计习题答案(第4到7章)

第四章4-1 设⎪⎩⎪⎨⎧++=+-=+=,2,2,332211εεεb a y b a y a y ).,0(~323321I N σεεεε⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(1)试求参数b a ,的最小二乘估计;(2)试导出检验b a H =:0的似然比统计量,并指出当假设成立时,这个统计量是分布是什么?解:(1)由题意可知.,,,211201321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=εεεεβ b a y y y Y C 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==--321'1''1'211201************)(ˆy y y Y C C C β .ˆˆ)2(51)2(6132321⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++b ay y y y y (2)由题意知,检验b a H =:0的似然比统计量为23202ˆ⎪⎪⎭⎫⎝⎛=σσλ 其中,])ˆ2ˆ()ˆˆ2()ˆ[(31ˆ2322212b a y b a y a y --++-+-=σ。

当0H 成立时,设0a b a ==,则⎪⎩⎪⎨⎧+=+=+=,3,,303202101εεεa y a y a y ,311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C 可得,ˆ)3y (111311311311)(ˆ0321321'1''1'a y y y y y Y C C C =++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==--β ],)ˆ3()ˆ()ˆ[(31ˆ20320220120a y a y ay -+-+-=σ 因此,当假设0H 成立时,与似然比统计量λ等价的F 统计量及其分布为).1,1(~ˆˆˆ2202F F σσσ-=第五章5-1 已知总体)1(=m G i 的分布为)2,1)(,(2)(=i N i i σμ,按距离判别准则为(不妨设21)2()1(,σσμμ<>)⎩⎨⎧≥≤∈<<∈,,,,**2**1μμμμx x G x x G x 或 若 若 其中 .,121221*211221*σσσμσμμσσσμσμμ--=++=)()()()( 试求错判概率)1|2(P 和)2|1(P 。

多元统计分析 第四章至第九章 课后题数据

多元统计分析 第四章至第九章 课后题数据

4.8 某超市经销十种品牌饮料,其中四种畅销,三种平销,三种滞销。

下表是这十种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分的平均数。

销售情况 产品序号销售价格 口味评分 信任度评分畅销1 2.2 5 8 2 2.5 6 73 3 3 94 3.2 8 6 平销5 2.8 76 6 3.5 87 7 4.89 8 滞销8 1.7 3 4 9 2.2 4 2 102.7 4 3(1) 根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。

(2) 现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味的评分平均为8,信任评分平均为5,试预测该饮料的销售情况。

4.9 银行的贷款部门需要判别每个客户的信用好坏(是否为履行还贷责任),以决定是否给予贷款。

可以根据贷款申请人的年龄(1X )、受教育程度(2X )、现在所从事工作的年数(3X )、未变更住址的年数(4X )、收入(5X )、负债收入比例(6X )、信用卡债务(7X )、其他债务(8X )等来判断其信用情况。

下表是从银行的客户资料中抽取的部分数据,(1)根据样本资料分别用距离判别法、贝叶斯判别法和费希尔判别法建立判别函数和判别规则。

(2)某客户的如上情况资料为(53,1,918,50,11.20,2.02,3.58),对其进行信用好坏的评。

目前信用好坏 客户序号X1 X2 X3 X4 X5 X6 X7 X8 已履行还贷责任1 23 1 72 31 6.6 0.34 1.71 2 34 1 173 59 8 1.81 2.91 3 42 2 7 23 41 4.6 0.94 0.94 4 39 1 195 48 13.1 1.93 4.36 5 35 1 9 1 34 5 0.4 1.3 未履行还贷责任6 37 1 1 3 24 15.1 1.8 1.82 7 29 1 13 1 42 7.4 1.46 1.65 8 32 2 11 6 75 23.3 7.76 9.72 9 28 2 2 3 23 6.4 0.19 1.29 1026 1 4 3 27 10.5 2.47 0.365.8 下表是15个上市公司2001年的一些主要财物指标,使用系统聚类法和K 均值法分别对这些公司进行聚类,并对结果进行比较分析。

多元统计分析第4章作业题选讲

多元统计分析第4章作业题选讲

多元统计分析
解:由已知可得,
1 (1) 1 6 2 4 (2) x x 2 2 2 1 0.5
^
4 3 1 9 3 1 =S p 27 3 4 3 9 ^ ^ ^ ^ 1 9 3 4 1 1 a 1 2 27 3 4 3 0 x1 4 ^ ^ x 1 1 x 4 记x , 则W ( x) a x 1 1 x 0 x 2 2 2 6 6 当x , 则W ( x) 6 4=2 0 ,所以,x 属于总体G1. 0 0

i


1 令 W x a x μ ,其中 μ 2 μ1 μ2

i


i

a Σ 1 μ1 μ2 ,则上述判别规则可简化为:
x G1 , 若W x 0 x G2 , 若W x 0 待判, 若W x =0

由s≤min(k−1,p)知,组数k=2时只有一个判别式,k=3时最
多只有两个判别式,判别式的个数不可能超过原始变量的个 数p。
多元统计分析
第三步 写出判别式 第一判别式:y1=t1′x; 第二判别式:y2=t2′x;
一般地,第i判别式:yi=ti′x,i=1,2,⋯,s。
多元统计分析
(2)判别规则 选取前r(≤s)个判别式y1,y2,⋯,yr,使累计贡献率:
k
k
使ECM达到最小的判别规则:
k
l 1 l i
x l , 若 q j f j x C l | j min q j f j x C i | j

多元统计分析课后练习答案

多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件

应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件

0
2
)
3 2

2
)
3 2
ˆ 2 ˆ 0 2
3
2
V
3 2
下列来讨论与V等价旳统计量分布:
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3

2bˆ)2
1 3
( y1
yˆ1 ) 2
( y2
yˆ2 )2
( y3
yˆ3 )2
1 3
(Y
Xˆ )(Y
Xˆ )
1Y 3
(I3
X
(
X
X
)1
Q(β)=(Y-Cβ) '(Y-Cβ) . 试证明β^=(C'C)-1C'Y是在下列四种意义下达最小:
(1) trQ(β^)≤trQ(β) (2) Q(β^)≤Q(β) (3) |Q(β^)|≤|Q(β)|
(4) ch1(Q(β^))≤ch1(Q(β)),其中ch1(A)表达A
旳最大特征值. 以上β是(m+1)×p旳任意矩阵.
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量旳分子为
L(aˆ0

2 0
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )

应用多元统计分析-第四章 均值向量和协差阵检验

应用多元统计分析-第四章 均值向量和协差阵检验

假设检验的过程-以妇女身高为例
形式上,上面的关于总体均值的H0 相对 于H1的检验记为:
H 0 : 160cm H1 : 160cm
我们将 H1 : 160cm 的假设称为双 尾检验 ,即前面说述的假设检验。
假设检验的过程-以妇女身高为例
如果备选假设为: H1 : 160cm
第三,确定显著性水平 根据样本所得的数据来拒绝零假设的概 率应小于0.05,当然也可能是0.01, 0.005,0.001等等。 显著性水平就是小概率水平,但小概率 并不能说明不会发生,仅仅是发生的概 率很小罢了。拒绝正确零假设的错误常 被称为第一类错误(type I error)。
假设检验的过程
有第一类错误,就有第二类错误; 那是备选假设正确时反而说零假设正确 的错误,称为第二类错误(type II error)。 在一般的假设检验问题中,由于备选假 设往往不是一个点,所以无法算出犯第 二类错误的概率。
假设检验的过程
第四,根据数据计算检验统计量的实现 值(t-值)和根据这个实现值计算p-值; 这一步一般都可由计算机软件来完成。 第五,进行判断:如果p-值小于或等于a, 就拒绝零假设,这时犯错误的概率最多 为 ;如果p-值大于 ,就不拒绝零假 设,因为证据不足。
这就是双尾概率,p值为0.045,即p=4.5%
假设检验的过程-以妇女身高为例
首先要提出一个原假设,如妇女身高的 均值等于160cm( 160cm )。这种原假 设也称为零假设(null hypothesis),记 为H0。 与此同时必须提出对立假设,如妇女身 高均值不等于160cm( 160cm )。对立 假设又称为备选假设或备择假设 (alternative hypothesis)记为H1。

应用多元统计分析课后习题答案详解北大高惠璇(第四章部分习题解答).ppt

应用多元统计分析课后习题答案详解北大高惠璇(第四章部分习题解答).ppt




1 2 1
201
a b



1 2 3

def


X

ˆ


aˆ bˆ


( X X )1
X Y


1 0
2 1
21
1 2 1
1
201

1 0
2 1
21
~ F(1,1)
3
因 V 2 ,
ˆ 2
V

ˆ
2 0
,
故 V 或V ,
1V
1
否定域为
{ } {V V } { f }
10
第四章 回归分析
4-2 在多元线性回归模型(4.1.3)中(p=1),试求出参数 向量β和σ2的最大似然估计.
解:模型(4.1.3)为

1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
7
第四章 回归分析

1 3
(Y

Zaˆ0
)(Y

Zaˆ0
)

1 3
Y
(I3

Z
(Z Z
)1 Z
)Y
1 Y BY
3
考虑
ˆ
2 0
ˆ
2

1 Y (B 3

A)Y
B A X ( X X )1 X Z (Z Z )1 Z
应用多元统计分析
第四章部分习题解答
第四章 回归分析
4-1

y1 y2

《应用多元统计分析》第04章-判别分析

《应用多元统计分析》第04章-判别分析
量。通过反复迭代,最终构建最优的判别函数。
04
判别分析的实例与演示
数据来源与预处理
数据来源
判别分析所使用的数据通常来源于实际研究或调查,这些数据可能涉及到多个 变量和观测样本。
数据预处理
在应用判别分析之前,需要对数据进行预处理,包括数据清洗、缺失值处理、 异常值检测与处理、数据标准化等步骤,以确保数据的质量和可靠性。
2. 建立判别模型
选择合适的变量,并进行数据清理和预处 理,包括缺失值处理、异常值检测与处理 等。
选择合适的判别分析方法,如线性判别分析 (LDA)或二次判别分析(QDA),并利用 已知分类的数据来估计判别函数。
3. 模型评估
4. 应用模型
使用诸如混淆矩阵、准确率、召回率等指 标来评估模型的性能,并可能进行交叉验 证。
目的
通过建立判别函数,使得不同类别之 间的差异尽可能大,而同一类别内的 差异尽可能小。
判别分析与聚类分析的区别
01
判别分析基于已知分类数据, 目标是建立预测分类的规则; 而聚类分析则是将未知分类的 数据进行归类。
02
判别分析要求对各变量之间的 相关性进行建模,而聚类分析 则更注重数据之间的距离或相 似性。
总结词
两总体判别分析是一种基本的判别分析方法,用于根据已知分类的数据集构建判别函数,从而对新数据进行分类。
详细描述
两总体判别分析通常用于解决二分类问题,其基本思想是通过选择一组特征变量,使得不同类别的样本在这组变 量上的均值差异最大,同时使同类样本之间的离散度最小。判别函数通常采用线性或非线性形式,通过最小化分 类错误率来构建。
对特征选择敏感
判别分析的特征选择可能对结果 影响较大,如果选择不合适的特 征,可能会导致分类效果不佳。

《多元统计分析讲义》第四章判别分析

《多元统计分析讲义》第四章判别分析

**
**
目录 上页 下页 返回 结束
§4.6 判别分析方法步骤及框 图 研究者首先应该关注被解释变量。被解释变量的组数可以是
两个或更多,但这些组必须具有相互排斥性和完全性。被解 释变量有时确实是定性的变量。然而也有一些情况,即使被 解释变量不是真的定性变量,判别分析也是适用的。我们可 能有一个被解释变量是顺序或者间隔尺度的变量,而要作为 定性变量使用。这种情况下我们可以创建一个定性变量。
*
*
目录 上页 下页 返回 结束
§4.1 判别分析的基本理

判别分析的假设之一,是每一个判别变量(解释变量)不 能是其他判别变量的线性组合。即不存在多重共线性问题。 判别分析的假设之二,是各组变量的协方差矩阵相等。判 别分析最简单和最常用的形式是采用线性判别函数,它们 是判别变量的简单线性组合。在各组协方差矩阵相等的假 设条件下,可以使用很简单的公式来计算判别函数和进行 显著性检验。 判别分析的假设之三,是各判别变量之间具有多元正态分 布,即每个变量对于所有其他变量的固定值有正态分布。 在这种条件下可以精确计算显著性检验值和分组归属的概 率。当违背该假设时,计算的概率将非常不准确。
**
目录 上页 下页 返回 结束
§4.3 Bayes判别
**
XXX
**
目录 上页 下页 返回 结束
§4.4 Fisher判别
**
**
目录 上页 下页 返回 结束
§4.4 Fisher判别
**
**
目录 上页 下页 返回 结束
§4.4 Fisher判别
**
**
目录 上页 下页 返回 结束
§4.4 Fisher判别
**
**

多元统计分析课后习题解答第四章

多元统计分析课后习题解答第四章
• 题目:简述主成分分析的步骤。 答案:主成分分析是一种降维技术,其步骤包括标准化原始数据、计算样本相关系数矩阵、计算 特征值和特征向量、选择主成分并解释其意义等。通过主成分分析,可以将多个变量简化为少数几个综合变量,便于分析和解释。 • 答案:主成分分析是一种降维技术,其步骤包括标准化原始数据、计算样本相关系数矩阵、计算特征值和特征向量、选择主成分并解 释其意义等。通过主成分分析,可以将多个变量简化为少数几个综合变量,便于分析和解释。
习题解析
• 题目:简述多元统计分析的基本思想 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关 系和规律,进而解决实际问题的方法。其基本思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
• 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关系和规律,进而解决实际问题的方法。其基本 思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
汇报人:XX
多元统计分析的 方法和技术广泛 应用于各个领域, 如心理学、经济 学、医学等。
多元统计分析的 基本步骤包括数 据收集、数据探 索、模型选择、 模型拟合和模型 评估等。
多元统计分析的基本思想
综合多个变量进行全面分析,以揭示数据之间的内在联系和规律 强调变量之间的交互作用和协同效应,以实现更准确的预测和推断 通过对数据的降维处理,简化复杂数据集,提取关键信息
• 题目:解释因子分析的基本思想。 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共 同因子来解释变量之间的相互关系。通过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。 • 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共同因子来解释变量之间的相互关系。通 过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。

《多元统计分析》第四章 聚类分析

《多元统计分析》第四章  聚类分析

类与类之间的距离定义为两类最远样品间的距离,即
DKL

max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
记G1={1},G2={2},G3={6},G4={8},G5={11},样品间采用绝对值 距离。

G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6

G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
xi*

xi
xi sii
,
i 1, 2,, p
其中 xi 和sii分别为xi的样本均值和样本方差。
4
绝对值距离
v
p
d x, y xi yi
i 1
v 常被形象地称作“城市街区”距离,
当我们对某城市(需考虑彼此之间
路程)的位置点进行聚类时,使用
绝对值距离一般是合适的。
5
马氏距离
3
《多元统计分析》
4.2 距离Байду номын сангаас相似系数

多元统计分析课后练习答案.doc

多元统计分析课后练习答案.doc

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

《应用多元统计分析》各章作业题及部分参考答案

《应用多元统计分析》各章作业题及部分参考答案

60.6
16.5
2 76
58.1
12.5
3 92
63.2
14.5
4 81
59.0
14.0
5 81
60.8
15.5
6 84
59.5
14.0
解:作如下假设 H0 : μ = μ0 , H1 : μ ≠ μ0
经计算,求的样本均值向量 x = (82.0, 60.2,14.5) ' ,x − μ0 = (−8, 2.2, −1.5) ' ,样本协差阵
x2
+
1 2
x3
+
1 2
x4 。
(2)第一主成分的贡献率为
λ1
+
λ2
λ1 +
λ3
+ λ4
= 1+ 3ρ 4
≥ 95% ,得 ρ
≥ 0.933 。
第 7 章 因子分析
1、设 x = (x1, x2 , x3 )′ 的相关系数矩阵通过因子分析分解为
⎛ ⎜
1

R
=
⎜ ⎜
−1 3
⎜ ⎜⎜⎝
2 3
−1 3 1
54.58
11.67
产品净值率 10.7
6.2
21.41
11.67
7.90
2、 设 G1, G2 , G3 三个组,欲判别某样品 x0 属于何组,已知 p1 = 0.05, p2 = 0.65, p3 = 0.3,
应用多元统计分析
pofeel@
3
f1 (x0 ) = 0.10, f2 (x0 ) = 0.63, f3 (x0 ) = 2.4 ,假定误判代价矩阵为:
⎢⎣ 4.5 ⎥⎦

多元统计分析课后练习答案

多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

多元统计分析应用 第四章课后习题

多元统计分析应用 第四章课后习题

第四章判别分析习题4.8(1)根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。

(2)现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味评分为8,信任度评分平均为5,试预测该饮料的销售情况。

将数据导入SPSS,分析得到以下结果:1.典型判别函数的特征函数的特征值表表1-1 特征值表表1-1所示是典型判别函数的特征值表,只有两个判别函数,所以特征值只有2个。

函数1的特征值为17.791,函数2的特征值为0.720,判别函数的特征值越大,说明函数越具有区别判断力。

函数1方差的累积贡献率高达96.1%,且典型相关系数为0.973,而函数2方差的贡献率仅为3.9%,典型相关系数为0.647。

由此,说明函数1的区别判断力比函数2的强,函数1更具有区别判断力。

2.Wilks检验结果表1-2 Wilks 的Lambda上表中判别函数1和判别函数2的Wilks’Lambda值为0.031,判别函数2的Wilks’Lambda值为0.581。

“1到2”表示两个判别函数的平均数在三个类间的差异情况,P值=0.002<0.05表示差异达到显著水平“2”表示在排除了第一个判别函数后,第二个判别函数在三个组别间的差异情况,P值=0.197>0.05表示判别函数2未达到显著水平。

3.建立贝叶斯判别函数表1-3 贝叶斯判别法函数系数上表为贝叶斯判别函数的系数矩阵,用数学表达式表示各类的贝叶斯判别函数为:第一组:F1=-81.843-11.689X1+12.97X2+16.761X3第二组:F2=-94.536-10.707X1+13.361X2+17.086X3第三组:F3=-17.499-2.194X1+4.960X2+6.447X3将新品牌饮料样品的自变量值分别代入上述三个贝叶斯判别函数,得到三个函数值为:F1=65.271,F2=65.661,F3=47.884比较三个值,可以看出F2=65.661最大,据此得出新品牌饮料样品应该属于第二组,即该饮料的销售情况为平销。

多元统计分析课后练习答案

多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

多元统计分析课后习题解答_第四章

多元统计分析课后习题解答_第四章

第四章 判别分析4、1 简述欧几里得距离与马氏距离得区别与联系。

答: 设p 维欧几里得空间中得两点X =与Y =。

则欧几里得距离为。

欧几里得距离得局限有①在多元数据分析中,其度量不合理。

②会受到实际问题中量纲得影响。

设X,Y 就是来自均值向量为,协方差为得总体G 中得p 维样本。

则马氏距离为D(X,Y)=。

当即单位阵时,D(X,Y)==即欧几里得距离。

因此,在一定程度上,欧几里得距离就是马氏距离得特殊情况,马氏距离就是欧几里得距离得推广。

4、2 试述判别分析得实质。

答:判别分析就就是希望利用已经测得得变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别得样本点尽可能地区别开来。

设R1,R2,…,Rk 就是p 维空间R p 得k 个子集,如果它们互不相交,且它们得与集为,则称为得一个划分。

判别分析问题实质上就就是在某种意义上,以最优得性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。

4、3 简述距离判别法得基本思想与方法。

答:距离判别问题分为①两个总体得距离判别问题与②多个总体得判别问题。

其基本思想都就是分别计算样本与各个总体得距离(马氏距离),将距离近得判别为一类。

①两个总体得距离判别问题设有协方差矩阵∑相等得两个总体G 1与G 2,其均值分别就是μ1与μ 2,对于一个新得样品X ,要判断它来自哪个总体。

计算新样品X 到两个总体得马氏距离D 2(X,G 1)与D 2(X,G 2),则X ,D 2(X ,G 1)D 2(X ,G 2)X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ记 则判别规则为X ,W(X) X ,W(X)<0②多个总体得判别问题。

《应用多元统计分析》第五版PPT(第四章)-简化版(SPSS24)-作为选读

《应用多元统计分析》第五版PPT(第四章)-简化版(SPSS24)-作为选读

82.0
x
60.2 14.5
,
8.0
x
μ0
2.2 1.5
31.600 8.040 0.500
S
8.040 0.500
3.172 1.310
1.310 1.900
4.3107 14.6210 8.9464
S
1
23.13848 1
14.6210 8.9464
59.7900 37.3760
❖ 首先得出丁商品对原假设H0的拒绝起到了很大的作 用。
❖ 剔除丁商品后再对其他三种商品进行三元方差分析 检验。
32
❖ 说明对甲、乙、丙这三种商品,销售方式Ⅰ,Ⅱ和Ⅲ 的总体均值向量之间无显著差异。
❖ 可认为甲商品对三种销售方式的差异无明显影响。
33
§4.6 协方差矩阵相等性的检验
❖ 该齐性检验的主要用途: ➢ (1)希望对多个总体均值向量进行比较检验; ➢ (2)考虑是否采用联合协方差矩阵。 ❖ 设k个总体π1,π2,⋯,πk的分布分别是Np (μ1, Σ1), Np (μ2, Σ2) ,⋯,
❖ 设有k个总体π1,π2,⋯,πk,它们的分布分别是Np(μ1,Σ),Np(μ2,Σ),
⋯,Np(μk,Σ),今从这k个总体中各自独立地抽取一个样本,取 自总体πi的样本为xi1, xi2 , , xini ,i=1,2,⋯,k。现欲检验
H0:μ1=μ2=⋯=μk,H1:μi≠μj,至少存在一对i≠j
H0:μ=μ0,H1:μ≠μ0
表4.2.1
某地区农村男婴的体格测量数据
编号 1 2 3 4 5 6
身高(x1) 78 76 92 81 81 84
胸围(x2) 60.6 58.1 63.2 59.0 60.8 59.5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x x1 , x2 ,, x p 的少数几个线性组合(称为判别式或
典型变量)
x , y2 a 2 x , , y r a r x y1 a1
(一般r明显小于p)来代替原始的p 个变量x1,x2, ⋯,xp , 以达到降维的目的,并根据这r 个判别式y1,y2, ⋯,yr对样品 观的几何图形上区别各总体。
多元统计分析
第4章 判别分析) 4.1 判别分析和聚类分析有何区别? 答:判别分析是根据一定的判别准则,判定一个样本归属于 哪一类。具体而言,设有n个样本,对每个样本测得p项指标 (变量)的数据,已知每个样本属于k个类别(或总体)中 的某一类,通过找出一个最优的划分,使得不同类别的样本 尽可能地区别开,并判别该样本属于哪个总体。聚类分析是 分析如何对样品(或变量)进行量化分类的问题。在聚类之 前,我们并不知道总体,而是通过一次次的聚类,使相近的 样品(或变量)聚合形成总体。通俗来讲,判别分析是在已 知有多少类及是什么类的情况下进行分类,而聚类分析是在 不知道类的情况下进行分类。

i 1 i i 1
r
s
i
达到了一个较高的比例(如75%~95%),则可采用这r个判别式做
判别。
判别规则为: x l , 若 y j ylj min y j yij
2 r r 2 j 1 1i k j 1
yij t j xi ,xi = 其中,
多元统计分析
②多个总体的距离判别问题

设有k个组π1,π2,⋯,πk,它们的均值分别是μ1,μ2,⋯,μk,协方差
矩阵分别是Σ1(>0),Σ2(>0),⋯,Σk(>0),x到总体πi的平方马氏距 离为 d 2 x, x μ Σ 1 x μ , i 1, 2,, k
多元统计分析
解:由已知可得,
1 (1) 1 6 2 4 (2) x x 2 2 2 1 0.5
^
4 3 1 9 3 1 =S p 27 3 4 3 9 ^ ^ ^ ^ 1 9 3 4 1 1 a 1 2 27 3 4 3 0 x1 4 ^ ^ x 1 1 x 4 记x , 则W ( x) a x 1 1 x 0 x 2 2 2 6 6 当x , 则W ( x) 6 4=2 0 ,所以,x 属于总体G1. 0 0
k
k
使ECM达到最小的判别规则:
k
l 1 l i
x l , 若 q j f j x C l | j min q j f j x C i | j
j 1 j l 1i k j 1 j i
k
多元统计分析
4.4 简述费希尔判别法的基本思想和方法。 费希尔判别的基本思想是投影(或降维):用p 维向量
P Gi | x
qi fi x
q f x
i 1 i i
k
, i 1, 2,, k
最大后验概率准则采用如下的判别规则:
x l , 若P l | x max P i | x
1i k
多元统计分析
2. 平均误判损失最小准则
C l | i P x Gi , x Rl ECM E C l i

多元统计分析
x G1 , 若d 2 x, G1 d 2 x, G2 2 2 x G , 若 d x , G d 1 x, G2 2 2 2 待判, 若 d x , G = d 1 x, G2 d 2 x, x μ Σ 1 x μ , i 1,2.
f1 x c 1| 2 p2 x 1 , 若 f 2 x c 2 |1 p1 x , 若 f1 x c 1| 2 p2 2 f 2 x c 2 |1 p1
多元统计分析
c 1| 2 e c 1| 2 p2 1 p2 0.5 1 = =1, = 4 3, 3; p1 0.5 c 2 |1 e c 2 |1 p1 e e
f1 (x), f2 (x),, f k (x) ,假设k个总体出现的概率分别为:
q1 , q2 ,,q k , qi 0

q
i 1
k
i
1 。
多元统计分析
将本来属于总体 Gi 的样品错判到总体 G j 时造成的损 失为 C ( j | i ) , i, j 1,2, , k 。 1. 最大后验概率准则 x属于总体Gi的后验概率为
1 ni
r
x ,i=1,2,⋯,k 。
j 1 ij
2 r 2
ni
该判别规则也可表达为:
j 1 1i k
x l , 若 t j x xl min t j x xi
j 1
多元统计分析
4.5 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
多元统计分析
(1)判别式的求法
第一步 计算样本组间离差阵和组内离差阵
多元统计分析
第二步 求特征值和特征向量 求矩阵E
− 1 B(或B − 1 E
)的特征值和对应的单位特征向量。
设全部非零特征值依次为λ 1≥λ 2≥⋯≥λ s>0,其中,非零特 征值个数:s≤min(k −1,p) 相应的特征向量依次记为t1,t2,⋯,ts(标准化为ti′Spti=1, i=1,2,⋯,s),称y1=t1′x为第一判别式,y2=t2′x为第二判 别式。一般地,称yi=ti′x为第i判别式,i=1,2,⋯,s。

i


1 令 W x a x μ ,其中 μ 2 μ1 μ2

i


i

a Σ 1 μ1 μ2 ,则上述判别规则可简化为:
x G1 , 若W x 0 x G2 , 若W x 0 待判, 若W x =0
3 当x 时, 5 f1 x = f2 x f1 x
1 exp 9(3 2) 2 2(3 2)(5 6) (5 6) 2 3 16 =e 4 1 exp 9(3 4) 2 2(3 4)(5 2) (5 2) 2 16

多元统计分析
f2 ( X ) 1 1 exp X 2 1 X 2 2 2 1 1
1 9 1 1 8 8 x1 4 exp x1 4, x 2 2 1 1 x 2 2 2 8 2 8 8 1 1 2 2 exp 9( x1 4) 2( x1 4)( x 2 2) ( x 2 2) 2 8 16 根据最小平均误判代价准则:
多元统计分析
第4章 判别分析) 4.2 简述距离判别法的基本思想和方法。 答:距离判别的基本思想是计算样品与各个总体之间的距离 (通常是马氏距离),把样品判别为样品到总体距离最小的 总体。距离判别问题分为①两个总体的距离判别问题和②多 个总体的距离判别问题。。 ①两个总体的距离判别问题 设有协方差矩阵∑相等的两个总体G1和G2,其均值分别是1 和2,对于一个新的样品X,要判断它来自哪个总体。计算 新样品X到两个总体的马氏距离d2(X,G1)和d2(X,G2),
1i k
多元统计分析
多元统计分析
4.3 简述贝叶斯判别法的基本思想和方法。 进行贝叶斯判别,通常有两大准则,一是依据后验概率最 大准则;二是依据平均误判损失最小准则;同时要求已知: (1)总体的概率密度函数; (2)各总体出现的先验概率; (3)各误判损失。
设k个总 G1 , G2 ,,G k 的概率密度函数分别为
判别规则为
x l , 若d 2 x, l min d 2 x, i
1i k
i
i
i
i
若Σ1=Σ2=⋯=Σk=Σ,则上述判别规则可作进一步简化。
d2(x,πi)=(x−μi)′Σ−1(x−μi)=x′Σ−1x−2μi′Σ−1x+μi′Σ−1μi =x′Σ−1x−2(Ii′x+ci) 1 1 1 I Σ μ , c μ Σ μi , i 1, 2, , k ,判别规则简化为 其中 i i i i 2 x l , 若I lx cl max I ix ci
(略)
4.6 设有两个二元总体G1和G2,从中分别抽取样本计算得
(1) 4 3 6 (2) 2 样本协方差阵: 到样本均值: S p= , x = , x = , 3 9 2 1 假设两总体协方差矩阵相等,试用距离判别法建立判别函数
6 和判别规则。 并判别样品 x= 0 应属于哪个总体?
i 1 l 1
k
k
C l | i P x Rl | x Gi P x Gi
i 1 l 1 k k
k
k
C l | i P l | i qi qi C l | i P l | i
i 1 l 1 i 1
^ 1
1
多元统计分析
4.7 设有两正态总体G1和G2,且已知总体均值向量和总体 协方差阵分别为: 2 4 1 1 1= , 2= , 1 =2 == , 6 2 1 9


两总体的先验概率为: q1 q2 0.5 ,
4 C 2 1 e , C 1 2 e ,试用贝叶斯判别法 误判损失为:
相关文档
最新文档