(整理)MinitabDOE操作说明全因子实验范例.

合集下载

Minitab实验设计DOE操作步骤(PPT 64张)

Minitab实验设计DOE操作步骤(PPT 64张)

• • • • • • • • • • • • • • • • • • • •
1、想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不到,又何必抱怨这个世界都和你作对?人生的道理很简单,你想要什么,就去付出足够的努力。 2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就立刻行动,因为现在过的每一天,都是余生中最年轻的一天。 3、无论正在经历什么,都请不要轻言放弃,因为从来没有一种坚持会被辜负。谁的人生不是荆棘前行,生活从来不会一蹴而就,也不会永远安稳,只要努力,就能做独一无二平凡可贵的自己。 4、努力本就是年轻人应有的状态,是件充实且美好的事,可一旦有了表演的成分,就会显得廉价,努力,不该是为了朋友圈多获得几个赞,不该是每次长篇赘述后的自我感动,它是一件平凡而自然而然的事,最佳的努力不过是:但行好事,莫问前程。愿努力,成就更好的你! 5、付出努力却没能实现的梦想,爱了很久却没能在一起的人,活得用力却平淡寂寞的青春,遗憾是每一次小的挫折,它磨去最初柔软的心智、让我们懂得累积时间的力量;那些孤独沉寂的时光,让我们学会守候内心的平和与坚定。那些脆弱的不完美,都会在努力和坚持下,改变模样。 6、人生中总会有一段艰难的路,需要自己独自走完,没人帮助,没人陪伴,不必畏惧,昂头走过去就是了,经历所有的挫折与磨难,你会发现,自己远比想象中要强大得多。多走弯路,才会找到捷径,经历也是人生,修炼一颗强大的内心,做更好的自己! 7、“一定要成功”这种内在的推动力是我们生命中最神奇最有趣的东西。一个人要做成大事,绝不能缺少这种力量,因为这种力量能够驱动人不停地提高自己的能力。一个人只有先在心里肯定自己,相信自己,才能成就自己! 8、人生的旅途中,最清晰的脚印,往往印在最泥泞的路上,所以,别畏惧暂时的困顿,即使无人鼓掌,也要全情投入,优雅坚持。真正改变命运的,并不是等来的机遇,而是我们的态度。 9、这世上没有所谓的天才,也没有不劳而获的回报,你所看到的每个光鲜人物,其背后都付出了令人震惊的努力。请相信,你的潜力还远远没有爆发出来,不要给自己的人生设限,你自以为的极限,只是别人的起点。写给渴望突破瓶颈、实现快速跨越的你。 10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。 11、失败不可怕,可怕的是从来没有努力过,还怡然自得地安慰自己,连一点点的懊悔都被麻木所掩盖下去。不能怕,没什么比自己背�

MinitabDOE操作说明全因子实验范例

MinitabDOE操作说明全因子实验范例

Minitab DOE操作說明:範例:全因子實驗設計法3因子2水準實驗設計:因子—A.時間 ,B.溫度 ,C.催化劑種類Step 1:決定實驗設計開啟Minitab R14版1.選擇Stat > DOE > Factorial > Create Factorial Design2.點擊因所要討論的因子有三個 , 由表中可以作二種選擇:選擇Ⅲ作4次實驗選擇Full作8次實驗一個三因子2水準的設計共有23 (或8)種可能的組合 , 一個包含所有可能組合的設計 , 即稱之為全因子設計(Full Factorial Design) ,好處是可避免交絡(Confounding)的情況 ,也就是所有因子的效應無法與其它的效應明確分辨出來 ; 然而 ,使用較少的組合設計稱之為部份因子設計(Fractional Factorial Design)此範例決定是全因子設計 , 因在化學工廠內 , 要控制這些因子(時間/壓力/催化劑種類)並不耗費時間及成本 , 且實驗可在非尖峰時間進行 , 避免打斷生產線的進度 , 如果這實驗所需成本很高或困難執行 , 你可能需做不同決定。

3.點擊回到主對話框中4.選擇5.點擊,選取Full factorial6.在Number of replicates選項中選2 ,按Step 2:因子命名與因子水準的設定因子水準的設定可以是文字或數值若因子為連續性→使用數值水準設定 ,可為量測的任意值(ex.反應時間)若因子為類別變數→使用文字水準設定 ,為有限的可能值(ex.催化劑種類)就一個2水準的因子設計 , 因子水準設定為兩個值 , 建議數值儘可能分開:1.點擊Factors按鈕2.輸入因子名稱及水準 , 完成後按Create Factorial Design主對話框1.按Options選項鈕2.在Base for random data generator的欄位 , 輸入9 ,可控制隨機化的結果 ,讓每次3.確定有選取Store design in worksheet的選項後 ,並按4.回到Create Factorial Design主對話框按,就會產生設計的內容並儲存在工作表單Step 4:瀏覽設計的內容(直交表形成)若要切換工作表單以RanOrder/StdOrder 以及Coded/Uncoded 的呈現 ,可由功能表Stat →DOE →Display Design 來選擇另外若要修改因子名稱或設定 , 有兩種方式:(1)可由功能表Stat →DOE →Modify Design 來選擇(2)直接修改資料視窗中相對的因子列Step 5:資料收集與輸入1.在資料視窗中C8的變數名稱位置輸入Yield2.可將此實驗工作表列印出來並收集數據結果Step 6:篩選實驗目的是利用效應圖來選取對於提高產能較大效應的因子配置一個模型(Fit a model)1.在功能表點選Stat→DOE→Factorial→Analyze Factorial Design2.在3.點取4.繪製Normal(常態機率圖)及Pareto(柏拉圖) ,協助找到顯著因子5.按OK 鍵 ,回到Analyze Factorial Design 主對話框 ,再按主對話框OK 鍵 ,即會將分析 結果及繪圖在視窗中 效應圖(Effect Plots)Normal(常態機率圖) Pareto(柏拉圖) 確認重要的效應在圖中偏離直線較遠的點(紅色)為顯著因子 , 即為依圖中影響效應程度大小排列並數值因使用為全因子設計 ,故包含3個單一之主效應、3個二次的(two-way)交互作用及1個三次的(three-way)交互作用Step 7:配置一個較簡單的模型接下來 ,要由全因子模型所找到的重要因子再重新設定一個較簡單的模型 ,也就是去除不顯著之因子 ,評估適合度、圖示解析及殘差分析1.Start→DOE→Factorial→Analyze Factorial Design2.選取Terms選項鈕3.設定內容將原本在Selected Terms欄位中的不顯著因子移到Available Terms欄位中4.按OK鍵 ,回到Analyze Factorial Design主對話框5.點取Graphs選項鈕 ,取消勾選Normal與Pareto圖6.勾選Four in one相關分析圖 ,按OK鍵回主對話框7.按Analyze Factorial Design的主對話框分析的結果會列在程序視窗中 ,主效應是否選取適當??設定的模型是否恰當??Step 8:評估調整後的模型而殘差分析圖的結果也是令人滿意的Step 9:結論之描述因子圖(Factorial Plots)以繪製主效應圖(Main Effect Plot)及交互作用圖(Interaction Plot)可以用目視的方法來決定效應分析1.點選功能表Stat→DOE→2.勾選Main Effects Plot ,再按下Setup3.在Response輸入Yield4.將顯著因子B(Pressure)及C(Catalyst)自Available欄位中2.勾選Interaction Plot ,再按下,重複3與4步驟檢視繪圖內容在繪圖視窗中會個別列出主效應圖及交互作用圖--主效應圖(Main Effects Plot)分析壓力圖催化劑圖(Catalyst Plot)→比較催化劑在兩種類別的差異(1)由圖中顯示 ,差異性比較:催化劑主效應>壓力主效應 ,也就是說催化劑斜率的絕對值 大於壓力斜率的絕對值 ,由於Yield 為望大值(越大越好) ,故壓力在4大氣壓較1大氣 壓有較高的良率 ; 催化劑的種類使用A 較B 有較高的良率(2)若因子之間沒有交互作用存在 ,由主效應圖即可找到使良率較高的最佳組合 ,此範例 有BC 交互作用顯著差異存在 ,故接下來再由交互作用圖來分析--交互作用圖(Interaction Plot)分析交互作用圖可看出因子間水準設定互相造成之衝擊性 ,有加乘或抵消作用(1)由圖中顯示 ,不論壓力值在1大氣壓或4大氣壓 ,使用A 催化劑的Yield 皆大於B 催化 劑 ;但是以A 催化劑而言 ,壓力設定在4大氣壓比1大氣壓有明顯Yield 變化 (2)綜合以上分析 ,使Yield 最大的最佳組合為壓力4大氣壓與A 催化劑。

MiniTab-DOE操作说明

MiniTab-DOE操作说明
7
Unit-1: 田口品質工程簡介
產品/制程之參數:
信號因子(signal factor)
由設計工程師依據所開發產品的工程知識來選擇,以表達所想 的回應值。當y 的目標值改變時,我們可調整信號因子,使y 的平均值與目標值一致。
例如: 1.電風扇轉速設定是一信號因子,藉由轉速的設定可改 變風量的大小。2.射出成型時,藉由壓力的增加,可使產品的 尺寸更接近模具尺寸。3.汽車方向盤的轉向角度,可以指示汽車 的迴轉半徑。
日本廠產品大部分集中在目標值附近,亦即靠近m (變異較小,性能較佳)的產品,美國廠產品遠離m (變異較大,性能較差),超出產品規格機會較大。
6
Unit-1: 田口品質工程簡介
產品/制程之參數: 對任一個產品或製程,我們可以繪出參數圖,如圖3
所示,其中y 表示所欲探討的品質特性或回應值 (response)。影響y 的參數可以分為信號因子 (M)、控制因子(Z)和雜音因子(X)三類。
品質是指產品出廠後所帶給社會的損失,但不包括機能 本身所引起的損失。
田口博士認為,一產品的品質為該產品因未能充分發揮 其原有的機能而產生的損失,而因機能本身所發生的損 失除外。
品質特性有以下三種類型:
望小品質函數:
使目標逼近于0,如週期時間,不良率,成本;
望大品質函數:
使目標持續提高,如參量、利潤、強度;
24
Unit-3: 直交表設計
直交試驗表結構:
该表为7因素,2水平,运行8次的正交试验表,具有以下特点:
1、有8个行,表示8种试验运行的不同因素水平组合。
2、有7个列,表示最多可允许有7个因素。
3、表中心的“1”、“2”表示各因素的两种水平。
4、每个因素的每个水平各出现4次,出现机会完全均等。

MINITAB在DOE试验中的使用方法

MINITAB在DOE试验中的使用方法

45.89 48.66 48.12 47.32 49.36 54.33 52.13 52.64 53.64 51.26
1 45.36 46.33 45.87 46.98 51.23 55.33 54.63 52.11 54.32 48.61 49.11 2 47.81 45.21 48.99 48.35 46.56 46.31 48.51 49.32 47.27 55.67 55.98 2 52.31 48.79 55.61 59.68 62.34 57.18 49.62 48.31 49.2 45.1 49.32 3 58.96 58.62 54.36 55.1 51.23 50.31 49.13 46.52 62.34 65.19 48.67 1 50.12 51.23 53.67 59.32 61.22 58.76 58.97 56.37 52.34 54.31 57.21
MINITAB在DOE试验中的使用方法 在 试验中的使用方法
Author : LF Yang
Date
: Oct 15 .2008
步骤一: 步骤一:
1.当试验因子和试验因子的设置水平确定后如何使用 当试验因子和试验因子的设置水平确定后如何使用MINITAB 进行正交分组,假定 进行正交分组, 当试验因子和试验因子的设置水平确定后如何使用 试验因子为4个分别为 个分别为: 水平, 试验因子为 个分别为:USG、 Force、 Time、 C/V,且均为 水平,如下表: 、 、 、 ,且均为3水平 如下表:
优先等级排序
Author : LF Yang
Date
: Oct 15 .2008
Author : LF Yang
Date
: Oct 15 .2008

DOE案例(minitab实验设计)

DOE案例(minitab实验设计)
从(c)可以看出强度的最大值为574.5MPa,它对应的各因素水平分别是:热处理温度860℃、处理时间1.6h、升温时间3min、恒温时间60min;即:当选择热热处理温度860℃、处理时间1.6h、升温时间3min、恒温时间60min,可获得较好的强度结果。
(5)作标准化效应的Pareto图和正态图,如图1-2(a)、(b)所示。
(3)按计划表完成试验并将试验结果填入表中。
(4)利用Minitab软件,对结果做因子主效图、交互效应图和立方图。如图1-1(a)、(b)、(c)所示:
从(a)图可以看出:A(热处理温度)、B(升温时间)及D(恒温时间时间)主效应显著。
从(b)图可以看出B(升温时间)跟D(恒温时间)存在明显交互作用。
图1-5
(9)对修订回归方程再做残差诊断,残插图如图1-6所示。
从下图可以看出残差服从正态分布,无异状。
图1-6修订后残插图
P值=0.935>0.05,残插符合正态分布。
(10)调优找出因子最佳方案。
当热处理温度=860℃,升温时间=3min,处理时间=1.6h,恒温时间=60min,强度最大值
Y=573Leabharlann 6.8(1)确定响应变量、试验因子和因子水平,编制因子水平表,见表1-1.
因子
水平
-1
+1
A(恒温时间)/min
50
60
B(热处理温度)/(°)
820
860
C(升温时间)/min
2
3
D(处理时间)/h
1.4
1.6
表1-1
(2)按4因子2水平的全因子试验编制试验计划表(考虑中心点重复和随机化)得到下述试验计划(采用Minitab软件)见表1-2。

Minitab实验设计DOE操作步骤

Minitab实验设计DOE操作步骤
值影响较小
23
点击编辑上一对话框图标
24
先选中交互作用图
第二步点击设置
25
点击确定
显示此图形
再点击确定
26
图示解析:前半平面度和门磁角 度对于漏波值的大小无交互作用
27
点击编辑上一对话框图标 先选中立方图
显示出以下对话框 第二步点击设置
28
双击此标识处
显示出以下对话框单击标识处显示到此对话框最后点击设计
选中因 子数3
37
出现此 对话框, 选择设

点击确

38
出现此对 话框,点 击显示可
用设计
39
1、点击全 因子
2、点击确定 40
点击确定
41
须选中类型是数 字还是文本
在右对话框中输入 因子名称和选中水
平高低
然后点击确定
42
然后点击确定
43
然后点击选项
44
取消勾选后,标准序C1 可以按照顺序排列
64
感谢阅读
感谢阅读
50
1、勾选主效应图 2、再点击设置
51
双击C8距离,点 选到下面的响应
框中
点击双箭头的标识,把 上面的三个因子选入到
右边的空白框中
52
点击确定
53
点击确定
54
点击:编辑上一对话框图标
1、生成距离主效 应图,进行分析
分析图示结果:
55
56
57
58
59
60
61
62
63
操作演示完
然后点击确定
45
点击结果
46
3、再点 击确定
2、出现 此对话框
1、点击 确定

DOE(Minitab)全

DOE(Minitab)全
实验设计
DOE的定义
DOE: Design of Experiment 实验设计,收集数据的过程,这种过程主动的 改变流程输入(X)的设置,并且考察这些X的 改变对流程的输出(Y)有何影响。
y = f(x)
响应 因子 输出 输入
DOE研究的对象
受控因子 (Factor)
过程
噪音因子 (Noise)
在另一天将所有的实
件,使用三次测量的
验条件重新运行。
平均作为运行的响应。 彷行比重复好(通常成
本更高)
实验中的样本量通过防 行来控制
随机化
对于我们知道的噪音变量可以用Block降低其对实 验的影响。
对于我们不知道的噪音变量如湿度,电压变化这 一类潜伏变量可以用随机化,即打乱实验的顺序 降低其对实验的影响。
为什么随机化:示例
假设印刷电路板上的镀层厚度是您关心的响应。 在一个月内这个值趋向于下降。 如何解释这种下降趋势?(某种潜伏变量影响)
厚度与每月的第几天
为什么随机化:示例(续)
假设要在实验中评估浸泡温度的效果,小组首先 测试了50摄氏度,然后测试70摄氏度。(直观判 断70摄氏度的输出较小)
如果因子的数目很多,要运行全因子实验将变得 很困难,为了达到筛选关键因子的目的,可以按 照一定的方法从所有的处理中挑选出一部分运行, 这种实验方法很多,其中之一叫做部分因子实验 (Fractional Factorial Experiment)。
全因子实验--例子
在注塑成型工具中,注塑件表面的强度是个关键 质量指标,对其的要求是越高越好。
响应(Y) (Response)
DOE的目的
因子的显著性分析 确定对响应Y有重要影响的因子X
确定最佳条件 确定关键输入因子的设置从而使得响应Y最佳

Minitab实验设计DOE操作步骤

Minitab实验设计DOE操作步骤

精品文档
42
然后点击确定
精品文档
43
然后点击选项
精品文档
44
取消勾选后,标准序C1 可以按照顺序排列
然后点击确定
精品文档
45
点击结果
精品文档
46
3、再点击 确定
2、出现此 对话框
1、点击 确定
精品文档
47
在工作表中输入每次试验 的结果“距离”
全因子试验次数
1、出现此对话
为8次,共自动
框,全因子试验
30
图示解析:通过实验设计分析, 试验结果显示出门磁角度在92, 前半平面度在0.3时,漏波值是最
小的,所以选定此组工艺参数
精品文档
31
2、二水平/三因子设计 抛球试验
精品文档
32
点击统计
输入试验设计方案
精品文档
33
创建因子设计
精品文档
34
依次选中红色标识框
精品文档
35
出现此对话框
精品文档
精品文档
25
点击确定
显示此图形
再点击确定
精品文档
26
图示解析:前半平面度和门磁角 度对于漏波值的大小无交互作用
精品文档
27
点击编辑上一对话框图标 先选中立方图
显示出以下对话框 第二步点击设置
精品文档
28
双击此标识处
显示出以下对话框
单击标识处
显示到此对话框
精品文档
最后点击确定
29
再点击确定
精品文档
36
选中此标识:两水 平因子
选中因 子数3
精品文档
最后点击设计
37
出现此 对话框, 选择设

DOE案例(minitab实验设计)

DOE案例(minitab实验设计)
从(c)可以看出强度的最大值为574.5MPa,它对应的各因素水平分别是:热处理温度860℃、处理时间1.6h、升温时间3min、恒温时间60min;即:当选择热热处理温度860℃、处理时间1.6h、升温时间3min、恒温时间60min,可获得较好的强度结果。
(5)作标准化效应的Pareto图和正态图,如图1-2(a)、(b)所示。
(1)确定响应变量、试验因子和因子水平,编制因子水平表,见表1-1.
因子
水平
-1
+1
A(恒温时间)/min
50
60
B(热处理温度)/(°)
820
860
C(升温时间)/min
2
3
D(处理时间)/h
1.4
1.6
表1-1
(2)按4因子2水平的全因子试验编制试验计划表(考虑中心点重复和随机化)得到下述试验计划(采用Minitab软件)见表1-2。
(3)按计划表完成试验并将试验结ቤተ መጻሕፍቲ ባይዱ填入表中。
(4)利用Minitab软件,对结果做因子主效图、交互效应图和立方图。如图1-1(a)、(b)、(c)所示:
从(a)图可以看出:A(热处理温度)、B(升温时间)及D(恒温时间时间)主效应显著。
从(b)图可以看出B(升温时间)跟D(恒温时间)存在明显交互作用。
从上两图可以看出A、B、D显著,C不显著,BD交互作用处于临界点,做显著处理。
(6)作残差图,如图1-3所示。
从上图可以看出:残差满足正态分布和随机波动的要求。无异常现象。
(7)增加B*D项,对实验结果最方差和回归分析。如图1-4所示。
图1-4
从上图可以看出C(处理时间)不显著,需重新修订。
(8)去掉C项,作再次回归分析。如图1-5所示。

Minitab实验设计DOE操作步骤(精选)

Minitab实验设计DOE操作步骤(精选)

然后点击选项
Minitab实验设计DOE操作步骤
44
取消勾选后,标准序C1 可以按照顺序排列
然后点击确定
Minitab实验设计DOE操作步骤
45
点击结果
Minitab实验设计DOE操作步骤
46
2、出现此
1、点击
3、再点击
对话框
确定
Minitab实验设计DOE操作步骤
47
确定
在工作表中输入每次试验 的结果“距离”
27
点击编辑上一对话框图标 先选中立方图
显示出以下对话框 第二步点击设置
Minitab实验设计DOE操作步骤
28
双击此标识处
显示出以下对话框
单击标识处
显示到此对话框
最后点击确定
Minitab实验设计DOE操作步骤
29
再点击确定
Minitab实验设计DOE操作步骤
30
图示解析:通过实验设计分析, 试验结果显示出门磁角度在92, 前半平面度在0.3时,漏波值是最
再点击确定
Minitab实验设计DOE操作步骤
22
图示解析:门磁 角度越大漏波值 越小;反之,门 磁角度越小漏波 值越大,且门磁 角度的大小对漏
波值影响很大
图示解析:前半平面 度越大漏波值越小; 反之,前半平面度越 小漏波值越大,前半 平面度的大小对漏波
值影响较小
Minitab实验设计DOE操作步骤
23
点击编辑上一对话框图标
Minitab实验设计DOE操作步骤
24
先选中交互作用图
第二步点击设置
Minitab实验设计DOE操作步骤
25
点击确定
显示此图形
再点击确定

DOE基础知识(minitab软件操作实例讲解DOE)

DOE基础知识(minitab软件操作实例讲解DOE)
适合特性化/最适合化的阶段
通过相对少的实验获取因子的全部资料并掌握因子的特性和符合最适合化
分析相对简单
DOE基础知识
完全要因实验的特性
实验因子的所有组合 可以对主效果和交互作用效果全部评价 在定义的实验领域内所有可能点上可以推断输出(反应)
值 实验的误差(偏差)可在反复中获取
(Screening DOE) (Fractional
(Full factorial
Factorial Design) Dssign)
反应表面实验
(Response Surface
Methodology)
因子(X)数
6以上
4-10
1-5
2-3
目的
重要因子的识别
局部交互作用
因子之间关系 因子间最适条件 的设定
完全要因实验使用Minitab操作步骤
阶段1 实际问题记述 阶段2 记述关心的要因和水准,使用MINITAB来制订实验数据表,尽
可能把所有的反应值在一列中记录,所有的输入变量(要因)的水准记入 记录已知道的值的列中。
Stat/DOE/Create Factorial Design
阶段3 决定适当的标本的大小
--依据2因子以上的特定因子水准的组合而引起的效果
DOE基础知识
实验计划法概要
实验的类型
● 试行与事故试验(Trial and Error) ● 一次一个的要因(One-Factor-at-a Time:OFAT) ● 部份要因实验( Fractionl Factorial Designs ) ● 完全要因实验( Full Factorial Designs ) ● 反应表面实验(Response Surface Methodology) ● EVOP调优试验设计 (Evolutionary Operation)

MiniTab DOE操作说明

MiniTab DOE操作说明

MiniTab DOE操作说明MiniTab DOE操作说明1、简介1.1 MiniTab DOE是什么?MiniTab DOE(Design of Experiments)是一种统计工具,可以帮助进行实验设计和数据分析。

它通过精心设计的实验,可以帮助研究人员确定影响目标过程或产品的变量,从而获得准确和可靠的结果。

1.2 为什么使用MiniTab DOE?MiniTab DOE具有以下优点:- 提供全面的实验设计选项,包括正交、鲁棒、Taguchi等方法。

- 能够标识影响目标变量的主要因素和交互作用。

- 可以通过优化实验设计来减少试验数量并最大化实验效果。

- 提供可视化工具和统计分析,能够迅速发现实验结果和趋势。

2、实验设计步骤2.1 确定目标在进行实验之前,需要明确目标并定义所要研究的变量。

这些变量可以是输入因素、输出响应或其他与实验相关的参数。

2.2 选择实验设计根据目标和实验要求,选择适当的实验设计方法。

MiniTab DOE提供了多种实验设计选项,如全因子设计、分数因子设计、响应曲面设计等。

2.3 构建实验设计使用MiniTab DOE工具构建实验设计方案。

根据选定的实验设计方法,输入因素和其水平,确定试验数量和试验顺序。

2.4 进行实验按照实验设计方案进行实验并记录数据。

确保实验过程的准确性和一致性。

2.5 数据分析使用MiniTab DOE工具对实验数据进行分析。

通过统计方法和图表分析,识别主要因素和交互作用,并评估其对目标变量的影响。

2.6 优化实验设计根据数据分析结果,在保证实验效果的同时,尽可能减少试验数量。

根据实验结果调整实验设计并再次进行实验。

3、实例分析3.1 实验目标:研究不同参数对产品质量的影响。

3.2 实验设计:使用全因子设计,选择3个影响因素,每个因素有2个水平。

3.3 实验过程:按照实验设计方案进行实验,并记录数据。

3.4 数据分析:使用MiniTab DOE工具进行数据分析,识别主要因素和交互作用。

DOE-全因子试验设计及Minitab操作

DOE-全因子试验设计及Minitab操作
行拉力測試並記錄數據.
2.2 Pulling Test Machine
設備編號:54W0600144 保養日期:2009/02/29 校驗日期:2009/06/06 效驗編號:830179
Stage-2:Measure
2.3 Pulling Test method:
2.4 Test Flow CCuhpaperrt: Top View Ni-tab Side View
200
200
5.6
4
3
80
80
180
200
4.6
5
2
80
100
200
230
6
6
3
100
80
180
230
6.2
7
2
80
100
180
200
5.4
8
3
80
80
200
230
6.4
9
2
100
80
200
230
6
10
2
100
100
180
230
5.6
11
3
100
80
180
230
6
12
2
80
80
180
230
5.8
13
2.5 Gage R&R Chart:
G age R & R (N ested) for D ata
Gage name: Pulling force machine Date of study: 2009/04/15
R eported by: Tolerance: M isc:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Minitab DOE操作說明:
範例:
全因子實驗設計法
3因子2水準實驗設計:
因子—A.時間 ,B.溫度 ,C.催化劑種類
Step 1:決定實驗設計
開啟Minitab R14版
1.選擇Stat > DOE > Factorial > Create Factorial Design
2.點擊
因所要討論的因子有三個 , 由表中可以作二種選擇:
選擇Ⅲ作4次實驗
選擇Full作8次實驗
一個三因子2水準的設計共有23 (或8)種可能的組合 , 一個包含所有可能組合的設計 , 即稱之為全因子設計(Full Factorial Design) ,好處是可避免交絡(Confounding)的情況 ,也就是所有因子的效應無法與其它的效應明確分辨出來 ; 然而 ,使用較少的組合設計稱
之為部份因子設計(Fractional Factorial Design)
此範例決定是全因子設計 , 因在化學工廠內 , 要控制這些因子(時間/壓力/催化劑種類) 並不耗費時間及成本 , 且實驗可在非尖峰時間進行 , 避免打斷生產線的進度 , 如果這
實驗所需成本很高或困難執行 , 你可能需做不同決定。

3.點擊回到主對話框中
4.選擇
5.點擊,選取Full factorial
6.在Number of replicates選項中選2 ,按
Step 2:因子命名與因子水準的設定
因子水準的設定可以是文字或數值
若因子為連續性→使用數值水準設定 ,可為量測的任意值(ex.反應時間) 若因子為類別變數→使用文字水準設定 ,為有限的可能值(ex.催化劑種類)
, 建議數值儘可能分開:
1.點擊按鈕
2.輸入因子名稱及水準 , 完成後按OK回到Create Factorial Design主對話框
1.按Options選項鈕
2.在Base for random data generator的欄位 , 輸入9 ,可控制隨機化的結果 ,讓每次
3.確定有選取Store design in worksheet的選項後 ,並按
4.回到Create Factorial Design主對話框按,就會產生設計的內容並儲存在工作表單
Step 4:瀏覽設計的內容(直交表形成)
若要切換工作表單以RanOrder/StdOrder 以及Coded/Uncoded 的呈現 , 可由功能表Stat →DOE →Display Design 來選擇
另外若要修改因子名稱或設定 , 有兩種方式: (1)可由功能表Stat →DOE →Modify Design 來選擇 (2)直接修改資料視窗中相對的因子列
Step 5:資料收集與輸入
1.在資料視窗中C8的變數名稱位置輸入Yield
2.可將此實驗工作表列印出來並收集數據結果
Step 6:篩選實驗
目的是利用效應圖來選取對於提高產能較大效應的因子
配置一個模型(Fit a model)
1.在功能表點選Stat→DOE→Factorial→Analyze Factorial Design
2.在
3.點取
4.繪製Normal(常態機率圖)及Pareto(柏拉圖) ,協助找到顯著因子
5.按OK鍵 ,回到Analyze Factorial Design主對話框 ,再按主對話框OK鍵 ,即會將分析 效應圖(Effect Plots)
Normal(常態機率圖) Pareto(柏拉圖)
31
個三次的(three-way)交互作用
Step 7:配置一個較簡單的模型
接下來 ,要由全因子模型所找到的重要因子再重新設定一個較簡單的模型 ,也就是去除不顯著之因子 ,評估適合度、圖示解析及殘差分析
1.點選功能表選單Start→DOE→Factorial→Analyze Factorial Design
2.選取Terms選項鈕
3.設定內容
4.按Analyze Factorial Design主對話框
5. ,取消勾選Normal與Pareto圖
6.勾選Four in one相關分析圖 ,按OK鍵回主對話框
7.按Analyze Factorial Design的主對話框
分析的結果會列在程序視窗中 ,
主效應是否選取適當??
設定的模型是否恰當??
Step 8:評估調整後的模型
而殘差分析圖的結果也是令人滿意的
Step 9:結論之描述
因子圖(Factorial Plots)
以繪製主效應圖(Main Effect Plot)及交互作用圖(Interaction Plot)可以用目視的方法來決定效應分析
1.點選功能表Stat→DOE→
2.勾選Main Effects Plot ,再按下Setup
3.在Response輸入Yield
4.將顯著因子B(Pressure)及C(Catalyst)自Available
欄位中
2.勾選Interaction Plot ,再按下
Setup ,重複3與4步驟
檢視繪圖內容
在繪圖視窗中會個別列出主效應圖及交互作用圖
--主效應圖(Main Effects Plot)
分析
壓力圖(Pressure Plot)→比較壓力在高及低水準設定的差異
催化劑圖(Catalyst Plot)→比較催化劑在兩種類別的差異
(1)
(2)由圖中顯示 ,差異性比較:催化劑主效應>壓力主效應 ,也就是說催化劑斜率的絕對值
大於壓力斜率的絕對值 ,由於Yield 為望大值(越大越好) ,故壓力在4大氣壓較1大氣 壓有較高的良率 ; 催化劑的種類使用A 較B 有較高的良率
(3)若因子之間沒有交互作用存在 ,由主效應圖即可找到使良率較高的最佳組合 ,此範例 有BC 交互作用顯著差異存在 ,故接下來再由交互作用圖來分析
--交互作用圖(Interaction Plot)
分析
交互作用圖可看出因子間水準設定互相造成之衝擊性 ,有加乘或抵消作用
(1)由圖中顯示 ,不論壓力值在1大氣壓或4大氣壓 ,使用A 催化劑的Yield 皆大於B 催化
劑 ;但是以A 催化劑而言 ,壓力設定在4大氣壓比1大氣壓有明顯Yield 變化
(2)綜合以上分析 ,使Yield 最大的最佳組合為壓力4大氣壓與A 催化劑。

相关文档
最新文档