短纤工艺知识

合集下载

锦纶短纤维生产工艺

锦纶短纤维生产工艺

锦纶短纤维生产工艺
锦纶短纤维是一种合成纤维,具有高强度、耐磨、耐腐蚀等优点,广泛应用于纺织、汽车、建筑等领域。

下面是锦纶短纤维的生产工艺。

首先,锦纶短纤维的原料是锦纶长丝。

锦纶长丝经过加热、熔化后,变成熔融状态的塑料状物质。

接下来,经过熔融的锦纶被挤出细孔的喷丝板。

喷丝板上有很多微小的孔,通过这些孔将熔融的锦纶挤出。

然后,挤出的锦纶丝会被高速的风流拉直。

这个过程称为拉伸,目的是使锦纶丝的直径更细,形成更细的纤维。

接着,通过引进一股高速的气流,将喷丝板上挤出的锦纶丝切断成锦纶短纤维,这个过程称为切丝。

最后,将切断的锦纶短纤维经过冷却,然后通过风力集装袋或者其他装置收集起来。

此外,在锦纶短纤维的生产过程中,还需要控制一些参数,如熔化温度、挤出速度、拉伸比等。

这些参数的调整可以影响锦纶短纤维的质量和性能。

总之,锦纶短纤维的生产工艺包括熔化、挤出、拉伸、切丝和冷却等过程。

通过控制参数和调整工艺,可以获得高质量的锦纶短纤维。

粘胶短纤生产工艺

粘胶短纤生产工艺

粘胶短纤生产工艺
粘胶短纤是一种合成纤维,以纤维素为主要原料,经过酸解、碱化、再酸解和再碱化等工序,最终制得的纤维。

下面将介绍粘胶短纤的生产工艺。

首先,取得纤维素原料,如木浆或棉浆。

这些原料经过粉碎、筛选等处理后得到纤维素浆液。

接下来,将纤维素浆液进行酸解。

将纤维素浆液与硫酸混合,在适当的温度和时间下进行反应,将纤维素分解成纤维素酸。

然后,将纤维素酸溶液进行碱化反应。

将纤维素酸溶液与氢氧化钠混合,在适当的温度和时间下进行反应,将纤维素酸中的硫酸中和,生成碱性纤维素。

再次,将碱性纤维素进行再酸解。

将碱性纤维素与硫酸混合,在适当的温度和时间下进行反应,将碱性纤维素分解成纤维素酸。

最后,将纤维素酸溶液进行再碱化反应。

将纤维素酸溶液与氢氧化钠混合,在适当的温度和时间下进行反应,将纤维素酸中的硫酸中和,生成粘胶。

生产工艺中的温度、时间、反应条件等参数需要根据实际情况进行调整和控制,以确保产品的质量和性能。

此外,还需要进行一系列的后续处理步骤,如纤维素的洗涤、漂白、纺纱等,最终得到成品的粘胶短纤。

总的来说,粘胶短纤的生产工艺包括纤维素的酸解、碱化、再酸解和再碱化等步骤。

这些步骤需要严格控制各项参数,以确保产品的质量。

粘胶短纤作为一种合成纤维,在纺织、医疗、建筑等领域有着广泛的应用。

涤纶短纤维后加工生产工艺流程解析

涤纶短纤维后加工生产工艺流程解析

3、热定型:
消除纤维内应力,提高纤维的尺寸稳定性, 并且进一步改善其物机
械性能。使拉伸,卷曲效果固定,并使成品 纤维符合要求。
4、卷曲
目的:通过卷曲,增加纤维间的抱合力 方法:在热水或水蒸汽加热下,通过机械 挤压获得卷曲效果。
一般棉型纤维5-7个曲/厘米,毛型3-5个 曲/厘米
5、切断和打包
涤纶短纤后加工工艺流程
• 集束→拉伸→热定形(紧张)→卷曲 →定形(松弛)→切断→打包
1、初生纤维的存放和集束
• 存放的目的:刚成形的初生纤维,起结构不 太稳定,需一段时间存放平衡使内应力减 小和消失,并使卷绕时所上的油剂,得到 均匀扩散,从而改善拉伸性能。一般在恒 温恒湿下存放8小时以上。
2、拉伸
短纤维切断长度由纤维品种而定: 棉型纤维:38mm 毛型纤维:90~120mm 中长纤维:51~76mm 打包是涤纶短纤维生产的最后一道工序, 将送短出纤厂维。打成一定规格和重量的包,以便运
1)设备:导丝机,拉伸机,加热机 2)拉伸工艺:分两级拉伸 • ① 温度:
第一级Tg以上, 70℃~90℃ 第二级:150℃~180℃ • ② 拉伸速度:一般出丝速度为140180m/min • ③ 拉伸倍数:纺丝速度为1000m/min时, 拉伸总倍数是4倍左右。其中第一段控制在 3.5-3.8之间,第二段控制在1.2倍左右。 纺丝速度增加时,总拉伸倍数应适当降低。

短纤维生产工艺

短纤维生产工艺

短纤维生产工艺
短纤维是指长度在1.5-4.5毫米之间的纤维,主要用于制作各
种纺织品和非织造布。

下面将介绍短纤维的生产工艺。

首先,短纤维的生产工艺主要分为湿法和干法两种。

湿法生产工艺是将植物纤维或化学纤维通过加工设备处理成湿浆,再通过旋转筛分机将湿浆脱水除杂,得到湿糊状的短纤维。

然后将湿糊状的短纤维进行分散和脱水,使其含水率降低到15%以下。

最后通过烘干设备将湿糊状的短纤维烘干,使其含
水率低于5%。

干法生产工艺则是直接将原纤维送入预处理机械,通过强大的离心力和废气抽吸机的作用,分离出纤维和杂质。

然后通过制粉机将纤维打破成短纤维,最后利用气力输送系统将短纤维输送到后续的加工设备中。

在上述的湿法和干法生产工艺中,还存在着一系列的辅助加工过程。

比如,对植物纤维进行浸渍处理,可以改变其物理性质和纤维结构,提高纤维的柔软性和强度。

同时还可以通过添加化学药剂,对纤维进行漂白和染色加工,使纤维具有更好的颜色和光泽。

此外,为了提高短纤维的加工效率和产品的质量,还需要采用纤维预处理技术。

比如,在短纤维生产过程中可以采用卷曲、撕裂和剥离等预处理技术,以增加纤维的拉伸度和强度,提高产品的稳定性和可靠性。

总的来说,短纤维的生产工艺主要包括湿法和干法两种。

在这两种工艺中,还需要进行一系列的辅助加工和预处理,以提高短纤维的质量和性能。

通过不断的技术创新和工艺改进,短纤维的生产工艺将会越来越高效和环保。

涤纶短纤维纺丝工艺与质量控制(直接纺)—涤纶短纤维的纺丝

涤纶短纤维纺丝工艺与质量控制(直接纺)—涤纶短纤维的纺丝
13
涤纶短纤维纺丝工艺及其影响因素
14
• 工艺参数影响归纳为三个方面: • (1)可纺性:纺丝是否顺利进行; • (2)卷绕丝的均匀性和后加工均匀性:与成品
纤维质量有关; • (3)纺丝机产量。 • 参数主要有温度、压力、冷却条件、泵供量等。
15
• (一)纺丝工艺控制
• 1.熔体输送
• 弯管区:输送熔体和保温,较长,1.5min,粘度降。 T7=Tm +(14~20)℃ → 275~280℃(接近或低于熔体 温度)
24
(五)纺丝工艺影响因素
熔体清洁
机械杂质含量
熔体粘度
原料相对分子质量
熔融温度
干燥粘度降
纺丝温度
干切片含水率
纺丝压力
孔径 长径比
孔的形状
卷绕速度 吐出量
形变速率
可纺性
25
冷却均匀性
纺丝温度变动 吹风不匀
风温、风速、风量变动
吐出量波动 卷速波动
线密度波动
组件压力 使用时间
喷孔排列方式
组件结构
卷绕丝 均匀性
• (3)熔体过滤器压差异常,如异常上升应重点检查熔体特性黏度和聚酯熔 体杂质含量。但当熔体过滤器压差连续降低,如果排除熔体黏度下降的情 况下,可能是滤芯被击穿了,应跟踪组件压力是否异常上升,若组件压力 上升异常,应及时切换熔体过滤器。
• (4)熔体过滤器切换后,过滤器上盖或底部发现少量漏浆,可能熔体进出 口垫片紧固不到位,可对上盖或熔体进出口重新进行一次热紧固。如果过 滤器投用后,发现24h内上盖或底部有大量漏浆,应立即将熔体过滤器切 换到备台。
箱体温度,平衡在260℃左右。 • (6)当空调故障排除后按开车步骤进行操作。
31

短纤生产工艺

短纤生产工艺

短纤生产工艺
短纤生产工艺是指将晶体聚合物压榨成带有不同断面形状的连续纤维条,然后通过张力控制、加热拉伸、涤纶预处理和切割等工序处理后,得到不同规格和性能的短纤产品的过程。

短纤生产工艺主要包括以下几个步骤:
1. 晶体聚合物压榨:将聚合物根据不同的配方混合后,通过挤出机将熔融的聚合物压榨出来,形成连续纤维状的物料。

2. 张力控制:短纤生产过程中,为了保持纤维的连续性和稳定性,需要通过张力控制装置对纤维进行张力调整,以避免纤维断裂或拉伸过度。

3. 加热拉伸:将短纤经过张力控制后,送入预热器进行加热处理,然后通过拉伸机进行拉伸,使原本粗糙的纤维形成细长的纤维丝,提升纤维的均匀性和拉伸性能。

4. 涤纶预处理:短纤的表面常常附着有一些杂质和油脂,为了改善纤维表面的性能,需要进行涤纶预处理。

预处理工序通常包括涤纶预处理液的浸泡、洗涤和干燥等步骤。

5. 切割:对经过加热拉伸和涤纶预处理的纤维进行切割,将其切成适合客户需求的长度。

6. 包装和质检:将切割好的短纤按照规格和包装要求进行分装和包装,并进行质量检验,确保产品的质量达到标准要求。

短纤生产工艺的关键环节在于加热拉伸和涤纶预处理。

加热拉伸可以改善纤维形态和性能,提高纤维的强度、延伸性和抗断裂性能。

涤纶预处理可以去除纤维表面的杂质和油脂,提高纤维与其他材料的粘附性能,使短纤在后续的加工和应用中更加稳定和可靠。

总之,短纤生产工艺是一个复杂而精细的过程,需要通过严格的工艺控制和质量检验,确保生产出符合客户需求和标准要求的短纤产品。

涤纶短纤维后加工生产工艺流程解析

涤纶短纤维后加工生产工艺流程解析
1)设备:导丝机,拉伸机,加热机 2)拉伸工艺:分两级拉伸 • ① 温度: 第一级Tg以上, 70℃~90℃ 第二级:150℃~180℃ • ② 拉伸速度:一般出丝速度为140180m/min • ③ 拉伸倍数:纺丝速度为1000m/min时, 拉伸总倍数是4倍左右。其中第一段控制在 3.5-3.8之间,第二段控制在1.2倍左右。 纺丝速度增加时,总拉伸倍数应适当降低。
涤纶短纤后加工工艺流程
• 集束→拉伸→热定形(紧张)→卷曲 →定形(松弛)→切断→打包
1、初生纤维的存放和集束
• 存放的目的:刚成形的初生纤维,起结构不 太稳定,需一段时间存放平衡使内应力减 小和消失,并使卷绕时所上的油剂,得到 均匀扩散,从而改善拉伸性能。一般在恒 温恒湿下存放8小时以上。
2、拉伸
短纤维切断长度由纤维品种而定: 棉型纤维:38mm 毛型纤维:90~120mm 中长纤维:51~76mm 打包是涤纶短纤维生产的最后一道工序, 将短纤维打成一定规格和重量的包,以便运 送出厂。
ห้องสมุดไป่ตู้
3、热定型:
消除纤维内应力,提高纤维的尺寸稳定性, 并且进一步改善其物理机 械性能。使拉伸,卷曲效果固定,并使成品 纤维符合要求。
4、卷曲
目的:通过卷曲,增加纤维间的抱合力 方法:在热水或水蒸汽加热下,通过机械 挤压获得卷曲效果。 一般棉型纤维5-7个曲/厘米,毛型3-5个 曲/厘米
5、切断和打包

涤纶短纤维工艺设计流程设计

涤纶短纤维工艺设计流程设计

涤纶短纤维工艺设计流程设计
一、原料准备:
1.选择适合的涤纶短纤维原料,如聚对苯二甲酸乙二醇酯(PET)或
聚醋酸乙酯(PEA)。

2.按照生产需求控制原料的比例、粒度、颜色等特性。

3.将原料送入熔融设备进行熔融处理,使其变为可纺丝的熔体。

二、纺丝:
1.将熔融的原料通过纺丝装置进行纺丝。

2.确定纺丝口的孔径和形状,以控制纤维的直径和长度。

3.调整纺丝压力和速度,确保纤维的均匀性和质量。

三、预拉伸:
1.将纺丝得到的短纤维经过预拉伸设备进行预拉伸,以消除内部应力,增强纤维的拉伸性能和强度。

2.控制预拉伸的温度、拉伸比和速度,以获取期望的纤维质量。

四、切割:
1.将预拉伸后的短纤维通过切割设备进行切割,使其长度达到预定要求。

2.确保切割后的纤维长度均匀、一致。

五、清洗:
1.将切割后的短纤维放入清洗设备中进行清洗,去除掉细颗粒物和杂质等。

2.使用适当的清洗剂和工艺参数,保证短纤维的干净度和质量。

六、干燥:
1.将清洗后的短纤维送入干燥设备进行干燥,去除其表面和内部的水分。

2.控制干燥设备的温度、湿度和通风,以确保短纤维的干燥程度。

七、包装:
1.将干燥好的短纤维进行包装,以便储存、运输和销售。

2.选择适当的包装材料和方式,保护短纤维的质量和外观。

以上是涤纶短纤维工艺设计流程的基本环节和步骤。

在实际设计中,还需考虑工艺参数的选择、设备的选择与调试、质量检测与控制等因素,以确保生产出符合需求的优质涤纶短纤维产品。

非织造材料 第3章 短纤维成网工艺和原理

非织造材料 第3章  短纤维成网工艺和原理
• 精开松机用于对纤维的进一步开松。通过气流接受 已经预开松的纤维原料,经由弹簧加压的沟槽罗拉与 给棉板形成的握持状态下接受开松,且梳针打手上梳 针的配置密度较高,故开松作用更强烈,可以进一步 将已预开松的纤维开松成小块或束纤维状态,为下一 步在梳理机上分梳成单纤维创造条件。
• ⑶喂料机:
• 对于纤维成网来说,均衡、稳定地供给筵棉对纤网 的品质至关重要。所以纤维原料经混合、开松后,要 通过一喂料系统来为后道梳理加工供应原料,喂入按 其方式又可分成定容喂入和定重喂入两种类型。
量,防止纤维产生静电,以达到加柔、平滑而又有良好抱合性
的要求。油剂的组成成分中一般包含润滑剂、柔软剂、抗静电
剂和乳化剂等。• 3.Fra bibliotek合与开松:•
混合与开松工艺是将各种成分的纤维原料进行松解,使
大的纤维块、纤维团分解,同时使原料中的各种纤维成分获得
均匀的混合。要求是混合均匀、开松充分并尽量避免损伤纤维。
棉机、开松机、棉箱以及成卷机组成。这种配置比较灵活, 适用于同种原料、多品种非织造材料产品的生产要求,其 加工的纤维范围为1.67~6.67 dtex,长度38~65 mm。
• ⑵称量式开混联合工艺路线:
• 属连续生产的工艺流程,生产线由抓棉机、回料输送机、 称量装置、开松机、棉箱以及气流配送系统组成。这种工 艺流程适用于加工的纤维范围为1.67~16.5 dtex,长度 38~65 mm。
• 1.配料成分的计算:
• 采用整包纤维混合时,配料成分可按质量用下式计算:
某种纤维原料配料成份
某种纤维包平均重量 混料纤维包平均总重量
100%
• 采用秤见重量混和时,秤见重量可用下式计算:
• 某种纤维秤见重量(kg)=混料纤维总重量(kg)×某种纤维配料成份(%)

涤纶短纤生产工艺

涤纶短纤生产工艺

涤纶短纤生产工艺涤纶短纤(Polyester Staple Fiber,简称PSF)是以涤纶切片为主要原料,经过一系列的加工工艺制成的纤维产品。

涤纶短纤广泛应用于纺织、填充、包装等领域。

以下是涤纶短纤的生产工艺。

1. 切片制备:涤纶短纤的原料是涤纶切片,切片制备是整个生产工艺的第一步。

涤纶切片是由涤纶原料经过熔融、挤出、拉伸、切断等工序制成的。

2. 干法纺丝:将切片放入熔体粘度控制装置中,通过加热熔化切片,然后经过过滤、加压、挤出等工序,将熔体从纺孔中注入到喷嘴中,并通过高速度的气流将熔体拉伸成纤维。

纤维冷却后进入收纤盘。

3. 液体法纺丝:将切片与混合溶剂混合,在高速旋转的离心机中,通过离心力将溶剂分离出去,留下湿态纤维。

然后通过热风烘干将湿态纤维干燥,得到涤纶短纤。

4. 纤维拉伸:将收集到的湿态纤维进行定向拉伸,增加纤维的强度和断面形状的均匀性。

拉伸过程中,控制拉伸比例和速度,充分发挥纤维的机械性能。

5. 切断:将拉伸后的纤维通过切断机进行切断,使其达到所需的长度。

切断长度的选择根据应用领域的不同而有所差异。

6. 热定型:通过热定型工艺,使涤纶短纤具有一定的回弹性和形状稳定性。

热定型时,将纤维暴露在高温的热风中,使其快速升温并保持一段时间。

通过控制温度和时间,使纤维达到所需的热定型效果。

7. 降线:将经过热定型的涤纶短纤通过降线机构进行降线,形成一定的线密度,并通过卷绕机将纤维卷绕成卷筒状。

8. 成品检验:对生产出的涤纶短纤进行成品检验,检测纤维的光泽度、断裂强度、断裂伸长率等物理性能指标,并对纤维外观进行检查,确保符合产品标准。

以上是涤纶短纤的生产工艺,通过以上一系列的加工工序,涤纶短纤可以得到高品质的纤维产品,广泛应用于各个领域。

涤纶短纤维后加工工艺与质量控制—集束和拉伸

涤纶短纤维后加工工艺与质量控制—集束和拉伸
熔纺卷绕丝分子量↑,断裂强度和断裂伸长↑
聚合物结构对应力—应变行为的影响
25
• ④熔纺卷绕丝其它结构因素的影响
• 卷绕丝内含较大的气泡或固体粒子时,
• 卷绕丝内出现裂缝或纤度波动时
可拉伸性↓
• ⑤湿纺冻胶体凝固丝网络结构的影响
• 凝固丝网络骨架越细密
最大拉伸比↑
• 凝固丝的溶胀度↑
最大拉伸比↑

可拉伸性先↑后↓
聚丙烯纤维在60℃下拉伸时,密度ρ和熔融热Hc对拉伸比的关系 A—经热处理的试样 b—拉伸前骤冷的试样
34
• (2)强度、拉伸模量和屈 服应力
• 纤维的强度、拉伸模量和 屈服应力随拉伸倍数而↑, 增大速度不同
各种纤维的强度对拉伸倍数R的依赖关系
1—粘胶纤维 2—聚乙烯醇纤维 3—聚甲醛纤维 4—PVA与乙烯基己内酰 5—聚酰胺和聚酯纤维 6—聚丙烯腈纤维 7—乙烯醇与N-乙烯基吡咯烷
(t)
1
2
3
e
E1
e
E2
(1 e t / 2 ) t
3
e
(1)普弹形变1
1=e/E1
• 普弹形变是大分子主链的键角和键长受力后发生形变的反映
• 普弹形变与应力同相位,瞬间发生和瞬间回复
• 普弹形变的弹性模量E1很大,形变量1很小 • 总形变的1%,与时间无关
12
• (2)高弹形变2
2 (t)
初生纤维线密度的影响 线密度↓等效于T ↑ 线密度↑ σ*↑N ↑,等效于T ↓
29
(三) 拉伸过程中纤维结构与性能的变化
• 1. 拉伸过程中纤维超分子结构的变化 • (1) 取向度的提高 • ①不同取向结构单元
非晶态高聚物的拉伸作用 大尺寸取向

短纤工艺知识

短纤工艺知识

涤纶短纤应用知识一、纤维概述在现代生活中,纤维的应用无处不在,有些功能,貌似简单,但其科技含量很高。

导弹需要防高温,江堤需要防垮塌,水泥需要防开裂,血管和神经需要修补,等等。

纤维的作用无处不在。

穿得舒服,御寒防晒,是我们对衣服的最初要求,如今这个要求已很容易达到。

现在人们不仅要求穿得暖和,还增加了许多新要求,纤维都能一一满足。

海藻碳纤维做成衣服后,穿着时能长期使人体分子磨擦产生热反应,促进身体血液循环,因此能蓄热保温,而防紫外线辐射的纤维制成衣服便可减少我们夏日撑伞的麻烦。

过去曾经流行过“涤盖棉”、“丙盖棉”,面料外涤里棉,是因为棉和肌肤的亲和性好,而涤纶与丙纶结实耐磨,方便洗涤。

现在的新材料有了颠覆性的转变,可以“棉盖涤”、“棉盖丙”,新型的抗菌导湿纤维,比通常的纤维直径10ym〜100ym还要小,织成的面料可以使汗液透过,却不附着,这样汗液便被排到外层的棉布层,衣服贴身面便可随时保持干爽……千变万化,只为了帮我们穿着更舒适。

二、化学纤维的基本概念1、化学纤维的品种及分类化学纤维:由人们用天然的或合成的聚合物为原料,经过化学方法加工制得的纤维。

再生纤维:用天然高分子化合物为原料,经化学处理和机械加工而制得的纤维。

合成纤维:用石油、天然气、煤及农副产品等为原料经一系列化学反应,合成高分子化合物,再经加工而制得的纤维。

化学纤维再生纤维无机纤维合成纤维纤维素纤维蛋白纤维醋酸纤维碳纤维金属纤维玻璃纤维杂链纤维碳链纤维锦纶氨纶涤纶丙纶腈纶氯纶2、化学纤维的性状(1)长丝在化学纤维生产过程中,将纺丝流体从喷丝空挤出,在纺丝套筒中冷却或在凝固浴中成形,成为连续不断的细流。

直接进行后加工,得到长度以千米计的光滑而有光泽的丝称为长丝。

(2)短纤维为了与其他纤维混纺,往往把化纤产品切成几厘米至十几厘米的短段,这种短纤维通常称为“短纤维”。

(3)丝束丝束可以由几百根至百万根单丝条汇成一束,用来切断成短纤维,或经牵切而制成条子。

涤纶短纤维纺丝工艺及其影响因素.

涤纶短纤维纺丝工艺及其影响因素.

• (2)风湿: 65~85%;风湿对卷绕丝双折射率和纺丝稳定性 影响大 影响:冷却风带湿度→卷绕丝在纺丝甬道中的带电↓→飘丝↓
→空气比热和热焓↑→纺丝甬道中冷却风和丝束温度恒定
8
• (三)丝条冷却固化条件 • (3)风速(风量) :0.3~0.7m/s,与熔体吐出量有 关 • (4)吹出距离(缓冷区):吹风窗(环)与板面距 离 ,15cm;吹风面距丝束外缘距离1cm;高度20cm;环吹 头内经比喷丝板直径大2cm;风经倾斜多孔板到阻尼 层(由金属网、金属毡等材料制成)再送入纺丝筒 • (5)纺丝甬道:保护纤维并继续冷却。3.2-7m,圆 管Φ280mm。一般3.5m,甬道长,气流紊乱,湍流 严重,丝的摆动幅度大,碰撞摩擦
线密度波动
组件结构
13
7
• (孔分配板-纺 丝筒 • 2.工艺控制: • (1)风温:范围:20~30℃,±1 ℃,组件调换率、卷绕丝 双折射率、卷绕丝条干不匀率最低
影响: 风温↑→熔体丝条冷却不充分→并丝、粘结丝↑→卷绕丝条干不匀率↑ 风温↓→熔体在喷丝孔处快速冷却→拉伸应力↑→初生纤维预取向度↑,径向 双折射率差异大→纺丝性↓→能耗大
4
• 3.熔体均匀性 • (1)粘度:切片结构不匀或有凝胶粒子使粘
度不匀,从而使丝条结构不匀,出现硬头丝, 导致拉伸不匀 • (2)杂质:会阻塞喷丝孔,造成滤层压力升 高和使用周期缩短
• 熔体粘度不匀或存在胶粒会导致纺丝断头、线密度 不匀、产生硬头丝、后拉伸困难、染色不匀等缺陷
• 原因: • 原料差异;干燥均匀;熔融和纺丝过程杜绝与 氧气接触,防止氧化降解;控制加热区温度, 减少波动
10
• 2.纺丝(卷绕)速度:指牵引辊1000m/min • 影响:纺速↑→纺丝线上速度梯度↑、丝束与冷空气的摩擦阻 力↑→ 卷绕丝预取向度↑(双折射↑)、后拉伸倍数↓(初生 纤维内应力增大,沸水收缩率增大) 纺速↓→丝束张力↓→卷绕时发生跳动→纺丝稳定性↓、并丝↑ 喂入轮的速度:约提高1% • 3.喷丝头拉伸比:第一导丝盘速度与熔体喷出速度之比 • 影响:喷丝头拉伸比↑→后拉伸倍数↓→对卷绕丝预取向度影 响小 • 4.卷绕车间温湿度:夏20~27℃,冬20℃ ;相对湿度 60~75%

涤纶短纤的生产工艺

涤纶短纤的生产工艺

涤纶短纤的生产工艺
涤纶短纤是一种合成纤维,广泛应用于纺织、服装、家居用品等领域。

涤纶短纤的生产工艺主要包括原料准备、聚合、纺丝、拉伸、切割等环节。

首先是原料准备。

涤纶短纤的主要原料是聚对苯二甲酸乙二醇酯(PET),其通过与苯二甲酸和乙二醇反应得到。

在原料准
备阶段,需要准备PET片材和乙二醇溶液。

接着是聚合过程。

将PET片材经过切碎、干燥等处理后,与
乙二醇溶液一起放入聚合釜中进行反应。

聚合反应需要在一定的温度和压力下进行,通常需要控制反应时间和加热速度。

完成聚合反应后,得到的聚合物溶液需要经过过滤和脱色等处理。

这是为了去除杂质和不纯物质,使聚合物溶液的质量更好。

接下来是纺丝过程。

将聚合物溶液经过加热、过滤等处理后,送入纺丝机内。

纺丝过程中,将聚合物溶液通过纺丝嘴或纺丝孔挤出成一股断面为圆形或其他形状的连续纤维流。

在纺丝过程中,控制纺丝速度和拉伸速度,可以得到不同长度的涤纶短纤。

纺丝结束后,需要进行拉伸和定型处理。

拉伸是通过拉力使纤维延展,改变其物理性质和外观。

定型是将拉伸的纤维暴露在高温下,使其形状和尺寸固定。

拉伸和定型处理可增加纤维的强度和弹性,提高纤维的品质。

最后是切割。

拉伸定型后的纤维根据需求经过切断和整理,得到所需要的涤纶短纤。

切割时需要控制纤维的长度和粗细,以满足不同产品的要求。

总的来说,涤纶短纤的生产工艺包括原料准备、聚合、纺丝、拉伸、定型和切割等环节。

通过这些工艺步骤,可得到质量优良的涤纶短纤,并进一步应用于各个领域。

无纺布用短纤维生产工艺

无纺布用短纤维生产工艺

无纺布用短纤维生产工艺
无纺布是一种不织布,不同于传统的布料,它不需要经过纺织或
编织的过程,而可以通过将短纤维聚合成网状结构来制造。

本文将从
短纤维的选择、制作、粘合和成型等方面介绍无纺布的生产工艺。

第一步是选择合适的短纤维。

一般来说,无纺布中使用的短纤维
通常来自于聚酯、聚丙烯、聚酰胺等树脂类物质,其长度通常控制在
1-2.5厘米之间。

短纤维的选择直接关系到无纺布的质量和性能。

第二步是将选好的短纤维进行加工。

首先需要对短纤维进行开端
处理,去除其中的杂质和纤维团。

随后,将开端后的短纤维进行混合,通过卡棉机或其他预并设备,使其纤维间充分交织和混合。

之后,对
混合后的短纤维进行无纺网形成工艺。

第三步是粘合。

在无纺网形成后,需要通过热轧、化学粘合、针
刺等方式将其内部结构稳定起来,防止出现分层、脱丝以及拉断的情况。

目前,市面上广泛采用的粘合方法主要是化学粘合和热力粘合两种。

第四步是成型。

按照无纺布的使用需求,可以通过不同的技术手
段进行成型,包括走纱法、涂覆法、热合法等。

无论哪一种成型方法,都需要保证无纺布的尺寸、厚度和密度等参数符合要求。

总之,无纺布是一种新型的纺织品材料,其生产工艺相对简单,
但也需要针对其特殊性质进行一定的调整和过程优化才能获得高质量
的产物。

相信随着材料科学不断的深入发展,无纺布在日常生活和工
业领域的应用会越来越广泛。

粘胶短纤维生产工艺.doc

粘胶短纤维生产工艺.doc

第1章绪论1.1概述粘胶纤维是以天然纤维素(浆粕)为基本原料,经纤维素磺酸酯溶液纺制而成的再生纤维素纤维。

粘胶纤维是一类历史悠久、技术成熟、产量较大,品种繁多,用途广泛的化学纤维。

根据纤维的结构和性能不同,粘胶纤维分成普通纤维、高湿模量类纤维、强力纤维、特殊纤维等不同品种。

粘胶纤维仅迟于纤维素硝酸酯纤维,是最古老的化学纤维品种之一。

在1891年,克罗斯、贝文和比德尔等首先制成纤维素磺酸酯钠溶液,由于这种溶液的粘度很大,因而命名“粘胶”。

粘胶遇到酸后,纤维素又重新析出。

根据这个原理,在1893年发展成为一种制备化学纤维的方法,这种纤维叫做“粘胶纤维”到1905年,米勒尔等发明了一种稀硫酸盐组成的凝固浴,实现了粘胶纤维的工业化生产。

一百多年来,粘胶纤维生产不断发展和完善。

在上世纪的三十年代末期,出现了强力粘胶纤维;五十年代初期,高性能(高湿模量类)粘胶实现了工业化;六十年代初期,粘胶纤维的发展达到了高峰,其产量曾占化学纤维总产量的80%以上。

从六十年代开始,因合成纤维的发展,其发展速度趋于平缓。

到九十年代以后,随着人们对衣着服用性能的改变,这种既有与棉相似的性质的纤维重新受到人们的青睐。

又进入一个新的发展时期。

1.2粘胶纤维的发展前途与应用1.2.1粘胶纤维的发展前途粘胶纤维的发展,有无限的原料基础。

它的基本原料---纤维素的贮备量很大,并有巨大的回复量。

大自然每年都在同化着以兆亿吨计的碳,将其变为含纤维素的各种植物资源。

只要有阳光和水源,数目、野生植物和各种含丰富纤维素的农作物就能生长并不断再生。

而合成纤维所以赖发展的原料(石油、煤、天然气等)随着人们的不断开发利用,已渐进枯竭。

所以纤维素纤维从原料意义上具有长远的发展意义。

粘胶纤维具有一系列可贵的物理机械性能和符合卫生要求的性质。

粘胶纤维最大的特点是与天然纤维---棉的某些性质极为类似,如吸湿性好、容易染色、抗静电、交易于纺织加工,制成品的织物花色鲜艳,穿着舒适尤其适合在气候炎热的地区穿着。

短纤维模压料制备工艺流程

短纤维模压料制备工艺流程

短纤维模压料制备工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classicarticles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!短纤维模压料制备是一种将短纤维和树脂通过模具加热压制成型的工艺。

短纤工艺知识

短纤工艺知识

涤纶短纤应用知识一、纤维概述在现代生活中,纤维的应用无处不在,有些功能,貌似简单,但其科技含量很高.导弹需要防高温,江堤需要防垮塌,水泥需要防开裂,血管和神经需要修补,等等。

纤维的作用无处不在.穿得舒服,御寒防晒,是我们对衣服的最初要求,如今这个要求已很容易达到.现在人们不仅要求穿得暖和,还增加了许多新要求,纤维都能一一满足.海藻碳纤维做成衣服后,穿着时能长期使人体分子磨擦产生热反应,促进身体血液循环,因此能蓄热保温,而防紫外线辐射的纤维制成衣服便可减少我们夏日撑伞的麻烦。

过去曾经流行过 “涤盖棉"、“丙盖棉”,面料外涤里棉,是因为棉和肌肤的亲和性好,而涤纶与丙纶结实耐磨,方便洗涤。

现在的新材料有了颠覆性的转变,可以“棉盖涤”、“棉盖丙”,新型的抗菌导湿纤维,比通常的纤维直径10μm~100μm还要小,织成的面料可以使汗液透过,却不附着,这样汗液便被排到外层的棉布层,衣服贴身面便可随时保持干爽……千变万化,只为了帮我们穿着更舒适。

二、化学纤维的基本概念1、化学纤维的品种及分类化学纤维:由人们用天然的或合成的聚合物为原料,经过化学方法加工制得的纤维。

再生纤维:用天然高分子化合物为原料,经化学处理和机械加工而制得的纤维。

合成纤维:用石油、天然气、煤及农副产品等为原料经一系列化学反应,合成高分子化合物,再经加工而制得的纤维.再生纤维纤维素纤维蛋白纤维 醋酸纤维碳纤维 金属纤维 玻璃纤维 杂链纤维 碳链纤维锦纶 氨纶 涤纶 丙纶 腈纶 氯纶2、化学纤维的性状合成纤维 化学纤维无机纤维(1)长丝在化学纤维生产过程中,将纺丝流体从喷丝空挤出,在纺丝套筒中冷却或在凝固浴中成形,成为连续不断的细流。

直接进行后加工,得到长度以千米计的光滑而有光泽的丝称为长丝。

(2)短纤维为了与其他纤维混纺,往往把化纤产品切成几厘米至十几厘米的短段,这种短纤维通常称为“短纤维"。

(3)丝束丝束可以由几百根至百万根单丝条汇成一束,用来切断成短纤维,或经牵切而制成条子.后者又称做牵切纤维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

涤纶短纤应用知识一、纤维概述在现代生活中,纤维的应用无处不在,有些功能,貌似简单,但其科技含量很高。

导弹需要防高温,江堤需要防垮塌,水泥需要防开裂,血管和神经需要修补,等等。

纤维的作用无处不在。

穿得舒服,御寒防晒,是我们对衣服的最初要求,如今这个要求已很容易达到。

现在人们不仅要求穿得暖和,还增加了许多新要求,纤维都能一一满足。

海藻碳纤维做成衣服后,穿着时能长期使人体分子磨擦产生热反应,促进身体血液循环,因此能蓄热保温,而防紫外线辐射的纤维制成衣服便可减少我们夏日撑伞的麻烦。

过去曾经流行过 “涤盖棉”、“丙盖棉”,面料外涤里棉,是因为棉和肌肤的亲和性好,而涤纶与丙纶结实耐磨,方便洗涤。

现在的新材料有了颠覆性的转变,可以“棉盖涤”、“棉盖丙”,新型的抗菌导湿纤维,比通常的纤维直径10μm~100μm还要小,织成的面料可以使汗液透过,却不附着,这样汗液便被排到外层的棉布层,衣服贴身面便可随时保持干爽……千变万化,只为了帮我们穿着更舒适。

二、化学纤维的基本概念1、化学纤维的品种及分类化学纤维:由人们用天然的或合成的聚合物为原料,经过化学方法加工制得的纤维。

再生纤维:用天然高分子化合物为原料,经化学处理和机械加工而制得的纤维。

合成纤维:用石油、天然气、煤及农副产品等为原料经一系列化学反应,合成高分子化合物,再经加工而制得的纤维。

再生纤维纤维素纤维蛋白纤维 醋酸纤维碳纤维 金属纤维 玻璃纤维 杂链纤维 碳链纤维锦纶 氨纶 涤纶 丙纶 腈纶 氯纶2、化学纤维的性状合成纤维 化学纤维无机纤维(1)长丝在化学纤维生产过程中,将纺丝流体从喷丝空挤出,在纺丝套筒中冷却或在凝固浴中成形,成为连续不断的细流。

直接进行后加工,得到长度以千米计的光滑而有光泽的丝称为长丝。

(2)短纤维为了与其他纤维混纺,往往把化纤产品切成几厘米至十几厘米的短段,这种短纤维通常称为“短纤维”。

(3)丝束丝束可以由几百根至百万根单丝条汇成一束,用来切断成短纤维,或经牵切而制成条子。

后者又称做牵切纤维。

(4)异形截面纤维在合成纤维成形过程中,采用非圆形喷丝孔仿制的各种不同截面形状的纤维或中空纤维,以改善纤维的手感、回弹性、起球性、光泽等性能,这种纤维称为异形截面纤维,简称异形纤维。

(5)复合纤维复合纤维又称双组分纤维。

它的制造原理是将两种或两种以上组分、配比、粘度或品种不同的成纤高聚物的容体或溶液,分别输人同一个纺丝组件,在组件中的适当部位汇合,从同一纺丝孔中喷出而成为一根纤维。

(6)变形丝将长丝经不同的变形加工方法,改变其外观、几何形状、内部结构与性能而形成的丝叫变形丝。

(7)差别化纤维化学纤维向高级化、多样化和特殊功能方面发展。

三、化学纤维的性能及其表示方法1、线密度:表示纤维粗细程度的指标。

国际通用单位特(tex)或分特(dtex)。

1000m 长纤维的质量的克数称为“特”十分之一特则称为分特。

化纤界过去采用“旦”作为线密度单位:1旦≈1.1dtex2、断裂强度:单位线密度的纤维在受恒速连续增加的负荷作用下,直至断裂时所能承受的最大负荷,称为纤维的断裂强度。

单位有N/tex、cN/dtex等3、断裂伸长率(延伸度):延伸度一般用相对伸长率(%)表示,它是纤维伸长至断裂时的长度比原来长度增加的百分数。

4、短纤维的附加品质指标切断长度:根据纺纱设备的型式和纺织品要求而选择切断长度,棉型产品要求长度在40mm以下,严格控制超长纤维(比名义长度长7mm 以上的纤维称为超长纤维)。

5、卷曲度和卷曲数表征纤维的卷曲程度。

为了满足纺织加工的要求,增加纱线的抱合力,利于改善织物的手感,所以聚酯短纤维需进行卷曲加工。

卷曲效果的衡量标准是卷曲数、卷曲度、卷曲的均匀性和稳定性。

卷曲的均匀性可分为横向均匀性和纵向均匀性。

横向均匀性取决于丝束厚薄是否均匀一致。

纵向均匀性取决于喂入丝束张力是否均匀以及填塞箱压力的稳定。

卷曲度(卷曲率):纤维被拉直时表观长度的增加部分占直挺纤维长度的百分比。

卷曲数:25mm 长纤维所含的卷曲个数。

四、聚酯的结构与物理性能1、聚酯的化学式聚对苯二甲酸乙二醇酯 H[-OCH2CH 2OOC --CO -]n OCH 2CH 2OH2、聚酯分子结构的特征⑴聚酯是具有对称性芳环结构的线型大分子,没有长大的支链,因此大分子易于沿着纤维拉伸方向相互平行排列。

⑵聚酯熔体迅速冷却时就形成无定型聚合体。

⑶结晶的聚酯在加热熔融时结晶就会熔化,但晶核大约要加热到290℃以上方能完全消失。

⑷聚酯分子间没有特别强大的定向作用力,相邻分子的原子间距是正常的范德华距离。

⑸由于缩聚过程的副反应生成羧基(—COOH )和醚键以致破坏聚酯分子结构的规整性,减弱分子间结合力,使熔点降低。

3、聚酯的物理性能⑴分子量 192×n ﹢62 (n 为聚合度,通常为100左右)⑵比重 固体PET 的比重与结晶度有关,熔体比重:270℃为1.22克/㎝3,295℃为1.17克/㎝3⑶熔点 工业产品 256℃~265℃ 纯结晶品271℃4、二甘醇含量对熔点的影响5、粘结温度 无定型聚酯粘结温度为230~240℃6、开始软化温度为248℃。

7、玻璃化温度无定形聚酯67℃结晶聚酯81℃结晶和取向聚酯125℃8、吸水率聚酯在温度为25℃,相对湿度为65%的大气中放置一星期,吸水率为0.4%9、电阻率25℃1018Ω/㎝150℃1013Ω/㎝五、涤纶的主要特性1、形态结构:截面基本为圆形,现已开发出多种异型截面的纤维;2、吸湿性、染色性:因其为对称的苯环结构的线性大分子,且分子链上官能团排列整齐,因此密度大,吸湿性、染色性差;3、机械性质:强度高,耐磨性仅次于锦纶,但易起毛起球;4、化学稳定性:对氧化剂稳定,但在高温下容易发生裂解,可利用该性质染色;耐酸,但不耐强酸,只能耐弱碱(含酯基46%);5、热学性质:涤纶的耐热性优良,热稳定性好。

150℃左右处理1000h仅稍有变色,强度损失不超过50%,而其他常用纤维在该温度下200~300h 即完全破坏;6、电学性质:比电阻高,是优良的绝缘材料,但易产生静电,吸附灰尘;7、光学性质:耐光性好,仅次于腈纶;8、密度:小于棉,大于羊毛,为1.39g/cm3左右。

六、涤纶短纤维分类1、按线密度分(1)棉型:线密度为1.5~2.1 dtex的普通棉型和高强棉型,高强棉型的断裂强度≥4.80 cN/dtex。

(2)中长型:线密度为2.2~3.2dtex。

(3)毛型:线密度为3.3~6.0 dtex。

2、按长度分(1)棉型:长度为31~38mm。

(2)中长型:长度为51~76mm。

(3)毛型:用于粗梳长度为64~76mm,用于精梳长度为76~114mm。

3、产品等级:涤纶短纤维的产品等级分为优等品、一等品、合格品、等外品四个等级。

七、公司主要短纤产品简介德赛化纤产品1.56dtex×38.0mm涤纶短纤维主要用于纺织业,纯纺或与棉花混纺织成的涤纶布料或涤棉布料,由这两种面料制成的服装已为人们普遍使用。

纯纺涤纶因其吸湿性较差,极少被用作内衣面料,但作为外衣,挺括美观,其强度高,耐磨性好,耐酸和弱碱,享有“洗可穿”的美誉。

涤棉布料中涤纶和棉花的含量可根据使用要求进行不同的配比,但为了使其强度达到最佳,一般使用65:35配比。

这种面料兼具棉花的柔软、吸湿透气功能和涤纶挺括耐皱的风格,作为内外衣面料均可,如衬衫、薄型夹克等。

此外,还可与粘胶、毛、锦纶等材料混纺,以获得不同用途、不同风格的面料。

0.89dtex×38.0mm涤纶短纤维与上述产品用途基本相同,但因纤维线密度更小,在不影响使用强度的情况下,纯纺或混纺时可纺得较细的纱线,使织成的面料更加平滑、细腻,同时由于纤维表面积的增加,透气、吸汗性能也有所改善,是高档衬衫的首选。

此外,还可作为无纺布的原料,制成品可用于服装衬里、或婴儿尿不湿辅材等。

0.89dtex涤纶仿羽绒短纤维主要用于皮衣、保暖内衣的填充料,更可作为羽绒的替代产品,轻薄滑爽,保暖性能优良,且具备天然羽绒所缺乏的防蛀抗菌的优点,还可反复洗涤,成本低于羽绒,其优越性显而易见。

6.67dtex×64.0mm三维卷曲中空涤纶短纤维主要用于絮棉制品,如被子、枕头、靠垫、棉衣及填充玩具等用途。

由于纤维有空腔,可包含较多的死空气,其保暖性能明显优于普通纤维,三维卷曲又使其比普通平面卷曲纤维更为优越的膨松性能和压缩弹性,其上硅产品手感滑爽,膨松性能更佳。

由于三维卷曲中空涤纶短纤维优良的使用性能,现在已广泛应用于絮制品行业。

此外,中空纤维还可作为人造毛皮的原料,该产品造价低廉,色彩丰富,不仅具有类似天然毛皮的外观,且具有天然毛皮的柔软、膨松的触觉。

制成的毛毯轻薄柔软,保暖性好;用于时装领子、袖口等处装饰时,搭配灵活,美丽华贵,清洗方便。

这种纤维制成喷胶棉后,可用作沙发、床垫等物品的填充料,亦可用作空调等设备的过滤网,成本低廉。

八、熔体直纺工艺技术聚酯的熔融纺丝成形过程是聚合物熔体在一定压力下定量喷出喷丝孔、冷却固化及受力形变的过程。

聚合物熔体在高于其熔点20℃左右的温度下喷出喷丝孔后,马上和周围介质接触,由于辐射热及周围介质的导热,开始冷却。

随后,聚合物细流的温度逐渐下降,粘度增大,特别是在熔点附近,粘度随温度的变化特别敏感。

聚合物细流随其离喷丝板的距离增大而变细,经一定距离后细流不再变细,此点一般称为固化点。

固化后聚合物细流不再呈流动状态,称为丝条。

固化点的位置和聚合物的玻璃化温度、熔体温度、粘度、冷却速度、卷绕速度等有关。

纺丝过程中纤维的结构变化主要发生在固化点之前,因此严格控制固化点位置不变是保证丝条的关键。

1、工艺流程简介聚酯熔体→熔体冷却器→增压泵→静态混合器→纺丝箱体→计量泵→纺丝组件→丝束冷却成形→卷绕上油→卷绕落桶→往复横动(1)熔体纺丝熔体直接纺丝主要包括:①、熔体分配计量;②、纺丝丝条挤出;③、丝条冷却成形。

(2)纺丝组件纺丝组件是纺丝的心脏部件,它直接关系到喷丝状况和产品质量。

主要零部件有头套、供给板、分流板、喷丝板、底座圈等,其它易损零部件则有五层过滤网、板前过滤网、紧固螺栓、铝垫圈、盘形垫片、保护板等。

组件头套是组件中最大的部件,主要完成初步分配、过滤等任务;供给板主要起熔体初步分配作用,分流板最终完成熔体的供给、分配、混合均匀的作用,两者必须结合使用,给喷丝板提供熔体。

五层过滤网是组件中主要起过滤作用的装置,从上到下金属网规格一般为:200目、350目、200目、50目和20目,上面的200目滤网可阻挡过滤砂的挤压,防止承担过滤作用的350目滤网被击穿。

下面三层200目、50目和20目滤网均起加强、支撑作用。

板前过滤网为二层圆环形过滤网,上面的200目滤网起过滤作用,过滤供给板、分流板上带有的杂质,下面的20目滤网起加强、支撑作用。

相关文档
最新文档