单杆切割磁感线模型

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R 1

R 2

l

a b

M

N

P Q

B v 一、单杆+竖直导轨

1、图中MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计。导轨

所在平面与磁感应强度B 为0.50T 的匀强磁场垂直。质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1。当杆ab 达到稳定状态时以速率v 匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2

,试求速率v 和滑动变阻器接入电路部分的阻值R 2。(4.5m/s ,6.0Ω)

二、单杆+水平导轨

2、如图1所示,一对平行光滑轨道放置在水平面上,两轨道间距l=0.20m ,电阻R=1.0Ω,有一导体杆静止放在轨道上,与两轨道垂直,杆及轨道的电阻可忽略不计,整个装置处于磁感强度B=0.50T 的匀强磁场中,磁场方向垂直轨道面向下,现用一外力F 沿轨道方向拉杆,使之做匀加速直线运动,测得力F 与时间t 的关系如图2所示,求杆的质量m 和加速度a.

3、如图所示,质量m 1=0.1kg ,电阻R 1=0.3Ω,长度l=0.4m 的导体棒ab 横放在U 型金属框架上。框架质量m 2=0.2kg ,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2,相距0.4m 的MM ’、NN ’相互平行,电阻不计且足够长。电阻R 2=0.1Ω的MN 垂直于MM ’。整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T 。垂直于ab 施加F=2N 的水平恒力,ab 从静止开始无摩擦地运动,始终与MM ’、NN ’保持良好接触,当ab 运动到某处时,框架开始运动。设框架与水平面间最大静摩擦力等于滑动摩擦力,g 取10m/s 2.(1)求框架开始运动时ab 速度v 的大小;(2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量Q=0.1J ,求该过程ab 位移x 的大小。(6m/s ;1.1m)

4、如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距L=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg ,电阻r=0.1Ω的金属棒MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T 。棒在水平向右的外力作用下,由静止开始a=2m/s 2的加速度做匀加速运动,当棒的位移x=9m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1:Q 2=2:1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。求:(1)棒在匀加速运动过程中,通过电阻R 的电荷量q ;(2)撤去外力后回路中产生的焦耳热Q 2;(3)外力做的功W f 。(4.5c ;1.8J ;5.4J )

5、如图,质量为M 的足够长金属导轨abcd 放在光滑的绝缘水平面上。一电阻不计,质量为m 的导体棒PQ 放置在导轨上,始终与导轨接触良好,PQbc 构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱。导轨bc 段长为L ,开始时PQ 左侧导轨的总电阻为R ,右侧导轨单位长度的电阻为R 0。以ef 为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B 。在t =0时,一水平向左的拉力F 垂直作用于导轨的bc 边上,使导轨由静止开始做匀加速直线运动,加速度为a 。(1)求回路中感应电动势及感应电流随时间变化的表达式;(BLat;BLat /(R +R 0at 2 )(2)某一过程中回路产生的焦耳热为Q ,导轨克

服摩擦力做功为W ,求导轨动能的增加量。( Ma

μmg

(W -μQ )

三、单杆+倾斜导轨

6、如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 0、M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。(1)由b 向a 方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值。

(mR v L B g a 22sin -=θ;2

2sin L B mgR v m θ

=)

B

b e Q a

F B

7、如图17所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属轨道上。导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直与导轨平面向上的匀强磁场中,左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻。(1)调节R x =R ,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I 及棒的速率v 。(2)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x 。(22

2sin MgR v B l

θ=;sin x mldB R Mq θ=)

8、如图,MN 、PQ 两条平行的光滑金属轨道与水平面成θ角固定,轨距为d 。空间存在匀强磁场,磁场方向垂直轨道平面向上,磁感应强度为B 。P 、M 间所接阻值为R 的电阻。质量为m 的金属杆ad 水平放置在轨道上,其有效电阻为r 。现从静止释放ab ,当它沿轨道下滑距离s 时,达到最大速度。若轨道足够长且电阻不计,重力加速度为g 。求:(1)金属杆ab 运动的最大速度;(2)金属杆ab 运动的加速度为时,电阻R 上电功率;(3)金属杆ab 从静止到具有最大速度的过程中,克服安培力所做的功。

9、如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B 。将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率为P ,导体棒最终以2v 的速度匀速运动。导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项正确的是:(AC) A .2sin P mg θ=v B .3sin P mg θ=v C .当导体棒速度达到

2v 时加速度为sin 2

g

θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功

相关文档
最新文档