大学物理复习题(气体动力论)
2022大学物理B-第7章气态动理论答案
第7章 气体动理论练习题一、选择题1、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,R 是摩尔气体常量,k 称为玻耳兹曼常量,则该理想气体的分子数为[ B ](A) pV/m. (B) pV/(kT).(C) pV/(RT). (D) pV/(mT).2、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,mol M 为摩尔质量,A N 为阿伏加得罗常量)[ A ] (A)pV M m 23. (B) pV M M mol 23. (C) npV 23. (D) pV N MM A 23mol . 3、根据经典的能量按自由度均分原理,每个自由度的平均能量为[ C ](A) kT /4. (B)kT /3.(C) kT /2. (D)kT.4、在20℃时,单原子理想气体的内能为[ D ](A)部分势能和部分动能. (B)全部势能. (C)全部转动动能.(D)全部平动动能. (E)全部振动动能.5、如果氢气和氦气的温度相同,摩尔数也相同,则[ B ](A)这两种气体的平均动能相同. (B)这两种气体的平均平动动能相同.(C)这两种气体的内能相等. (D)这两种气体的势能相等.6、在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为[D ](A) 3 p 1. (B) 4 p 1.(C) 5 p 1. (D) 6 p 1.7、在容积V =4×10-3 m 3的容器中,装有压强P =5×102 Pa 的理想气体,则容器中气体分子的平动动能总和为[B ](A) 2 J . (B) 3 J .(C) 5 J . (D) 9 J .8、若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了[B ](A) 0.500. (B) 400.(B) 900. (D) 2100.9、麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示[ D ](A) 0v 为最概然速率.(B) 0v 为平均速率.(C) 0v 为方均根速率.(D) 速率大于和小于0v 的分子数各占一半.0 v二、填空题 1、有一个电子管,其真空度(即电子管内气体压强)为1.0×10-5 mmHg ,则27 ℃ 时管内单位体积的分子数为_________________ .(玻尔兹曼常量k =1.38×10-23 J/K , 1 atm=1.013×105 Pa =76 cmHg )解:nkT p =故3001038.176010013.1100.12355⨯⨯⨯⨯⨯⨯==--kT p n =3.2×1017 /m 32、图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
《大学物理》第8章气体动理论练习题及答案
《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。
3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。
大学物理气体动理论习题
大学物理气体动理论习题第十一章气体动理论一、基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
二、基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即6 最概然速率速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用表示,8 方均根速率各个分子速率的平方平均值的算术平方根,用表示,9 平均碰撞频率和平均自由程平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或三、基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M= pV NkT =或p nkT =2 理想气体的压强公式3 理想气体的温度公式4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律(1)速率分布函数()dN f Nd υυ= 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
大学物理第十一章 气体动理论习题详细答案
第十一章气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v的统计意义即可得出。
()f v表示速率以v为中心的单位速率区间内的气体分子数占总分子数的比例,而dvvNf)(表示速率以v为中心的dv速率区间内的气体分子数,故本题答案为B。
2、答案:A解:根据()f v的统计意义和pv的定义知,后面三个选项的说法都是对的,而只有A不正确,气体分子可能具有的最大速率不是pv,而可能是趋于无穷大,所以答案A正确。
3、答案:Armsv=据题意得222222221,16H O H HH O O OT T T MM M T M===,所以答案A正确。
4、由理想气体分子的压强公式23kp nε=可得压强之比为:Ap∶Bp∶Cp=n A kAε∶n B kBε∶n C kCε=1∶1∶15、氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RTν=代入内能公式2iE RTν=可得2iE pV=,所以氧气和氦气的内能之比为5 : 6,故答案选C。
6、解:理想气体状态方程PV RTν=,内能2iU RTν=(0mMν=)。
由两式得2U iPV=,A、B两种容积两种气体的压强相同,A中,3i=;B中,5i=,所以答案A正确。
7、由理想气体物态方程'mpV RTM=可知正确答案选D。
8、由理想气体物态方程pV NkT=可得气体的分子总数可以表示为PVNkT=,故答案选C。
9、理想气体温度公式21322k m kTευ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
温度越高,分子的平均平动动能越大,分子热运动越剧烈。
因此,温度反映的是气体分子无规则热运动的剧烈程度。
由于k ε是统计平均值,因而温度具有统计意义,是大量分子无规则热运动的集体表现,对个别分子或少数分子是没有意义的。
故答案选B 。
10、因摩尔数相同的氢气和氦气自由度数不同,所以由理想气体的内能公式2i E RT ν=可知内能不相等;又由理想气体温度公式21322k m kT ευ==可知分子的平均平动动能必然相同,故答案选C 。
大学物理复习-第五六章
E与(1) 相同.
W = Q E=417 J
4分
(3)
Q =0,E与(1) 同
W = E=623 J (负号表示外界作功)
3分
28
10、一定量的理想气体,由状态a经b到达c. (如图,abc为一直线)求此过程中 (1) 气体对外作的功; (2) 气体内能的增量; (3) 气体吸收的热量.(1 atm=1.013×105 Pa)
件___0 _f_(__) _d___1__,此条件的物理意义是:
分子速率处于(0~∞ )区间的分子数占总分子数
的百分比为1 .
2.若f()为气体分子速率分布函数,N为气体分子
总数,m为分子质量,则
2 1m 2Nf ( )d的物理
1 2
意义为速__率__在__速_率__间__隔___1~___2_之_内__的__分__子_平__均__动__能_之__和_。
到50%,若低温热源保持不变,则高温热源的温度应增加
___K.
500
100
8、1 mol 理想气体(设 Cp/CV为已知)的循环过程如T -V图所示,其中CA为绝热过程,A点状态参量(T1, V1)和B点的状态参量(T2,V2)为已知.试求C点的状 态参量:
Vc=____V,2
Tc=___(_V1_/ V_2_) _1 T_1 _____,
解: N22N, M1 2M2, T2 5T1
E2 E1
m
M2 m
M1
3 2
RT2
5 2
RT1
3 5
M1T2 M 2T1
6
第六章 热力学基础
一、热力学第一定律
二、四个过程
内能增量
E
m' M
(完整版)《大学物理》习题册题目及答案第6单元 气体动理论
第6单元 气体动理论 序号 学号 姓名 专业、班级一 选择题[ C ]1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10[ B ]2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT)(C) pV/(RT) (D) pV/(mT)[ D ]3.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 )(21221v Nf mv v v ⎰ d v 的物理意义是 (A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。
(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和。
(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能。
(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和。
[ D ]4.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为 1n ,它产生的压强为 1p ,B 种气体的分子数密度为 12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p(C)51p (D)61p二 填空题1.在定压下加热一定量的理想气体,若使其温度升高1K 时,它的体积增加了0.005倍,则气体原来的温度是_________200k__________。
2.用总分子数N 、气体分子速率v 和速率分布函数f(v),表示下列各量:(1)速率大于0v 的分子数= ⎰∞0)(v dv v Nf ;(2)速率大于0v 的那些分子的平均速率=⎰⎰∞∞00)()(v v dv v f dv v vf ;(3)多次观察某一分子的速率,发现其速率大于0v 的概率=⎰∞0)(v dv v f 。
大学物理气体动理论热力学基础复习题及答案详解
第12章 气体动理论一、填空题:1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为×510pa .则在温度变为37℃,轮胎内空气的压强是 ;设内胎容积不变2、在湖面下50.0m 深处温度为4.0℃,有一个体积为531.010m -⨯的空气泡升到水面上来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 ;取大气压强为50 1.01310p pa =⨯3、一容器内储有氧气,其压强为50 1.0110p pa =⨯,温度为27.0℃,则气体分子的数密度为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均距离为 ;设分子均匀等距排列4、星际空间温度可达,则氢分子的平均速率为 ,方均根速率为 ,最概然速率为 ;5、在压强为51.0110pa ⨯下,氮气分子的平均自由程为66.010cm -⨯,当温度不变时,压强为 ,则其平均自由程为1.0mm;6、若氖气分子的有效直径为82.5910cm -⨯,则在温度为600k,压强为21.3310pa ⨯时,氖分子1s 内的平均碰撞次数为 ;7、如图12-1所示两条曲线1和2,分别定性的表示一定量的某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的是 .8、试说明下列各量的物理物理意义: 112kT , 232kT , 32i kT , 42i RT , 532RT , 62M i RT Mmol ; 参考答案:1、54.4310pa ⨯ 2、536.1110m -⨯ 3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----⨯⋅⨯⨯ 4、2121121.6910 1.8310 1.5010m sm s m s ---⨯⋅⨯⋅⨯⋅ 图12-15、6.06pa6、613.8110s -⨯ 7、2 ,28、略二、选择题:教材习题12-1,12-2,12-3,12-4. 见课本p207~208参考答案:12-1~12-4 C, C, B, B. 第十三章热力学基础一、选择题1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气均可看成刚性分子它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是A 6 JB 5 JC 3 JD 2 J2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定:1该理想气体系统在此过程中作了功;2在此过程中外界对该理想气体系统作了正功;3该理想气体系统的内能增加了;4在此过程中理想气体系统既从外界吸了热,又对外作了正功;以上正确的是:A 1,3B 2,3C 3D 3,43、摩尔数相等的三种理想气体H e 、N 2和CO 2,若从同一初态,经等压加热,且在加热过程中三种气体吸收的热量相等,则体积增量最大的气体是:AH e BN 2CCO 2 D 三种气体的体积增量相同4、如图所示,一定量理想气体从体积为V 1膨胀到V 2,AB,AC为等温过程AD 为绝热过程;则吸热最多的是: A AB 过程 B AC 过程 C AD 过程 D 不能确定 5、卡诺热机的循环曲线所包围的面积从图中abcda 增大为ab’c’da ,那么循环abcda 与ab’c’da 所作的净功和热机效率的变化情况是:A 净功增大,效率提高;B 净功增大,效率降低;C 净功和效率都不变;D 净功增大,效率不变;6、根据热力学第二定律判断下列哪种说法是正确的是:A 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体;B 功可以全部变为热,但热不能全部变为功;C 气体能够自由膨胀,但不能自由压缩;D 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量;7、 理想气体向真空作绝热膨胀A 膨胀后,温度不变,压强减小.VB 膨胀后,温度降低,压强减小.C 膨胀后,温度升高,压强减小.D 膨胀后,温度不变,压强不变.8、1mol 的单原子分子理想气体从状态A 变为状态B ,如果不知是什么气体,变化过程也不知道,但A 、B两态的压强、体积和温度都知道,则可求出:A 气体所作的功.B 气体内能的变化.C 气体传给外界的热量.D 气体的质量.9、 有人设计一台卡诺热机可逆的.每循环一次可从 400 K 的高温热源吸热1800 J,向 300 K 的低温热源放热 800 J .同时对外作功1000 J,这样的设计是A 可以的,符合热力学第一定律.B 可以的,符合热力学第二定律.C 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.D 不行的,这个热机的效率超过理论值.10、 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出,气体将进行自由膨胀,达到平衡后A 温度不变,熵增加.B 温度升高,熵增加.C 温度降低,熵增加.D 温度不变,熵不变.二、 填充题1、要使一热力学系统的内能变化,可以通过 或 两种方式,或者两种方式兼用来完成;热力学系统的状态发生变化时,其内能的改变量只决定于 ,而与 无关;2、将热量Q 传给一定质量的理想气体;1若体积不变,热量转化为 ;2若温度不变,热量转化为 ;3、卡诺循环是由两个 过程和两个 过程组成的循环过程;卡诺循环的效率只与 有关,卡诺循环的效率总是 大于、小于、等于1;4、一定量理想气体沿a →b →c 变化时作功abc W =615J,气体在b 、c 两状态的内能差J E E c b 500=-;那么气体循环一周,所作净功=WJ ,向外界放热为=Q J ,等温过程中气体作功=ab WJ ;5、常温常压下,一定量的某种理想气体可视为刚性双原子分子,在等压过程中吸热为Q,对外作功为W,内能增加为E ∆,则W Q =_ _,E Q∆=_________; 6、p V -图上封闭曲线所包围的面积表示 物理量,若循环过程为逆时针方向,则该物理量为 ;填正或负7、一卡诺热机低温热源的温度为27C,效率为40% ,高温热源的温度T 1 = .8、设一台电冰箱的工作循环为卡诺循环,在夏天工作,环境温度在35C,冰箱内的温度为0C,这台电冰箱的理想制冷系数为e = .9、一循环过程如图所示,该气体在循环过程中吸热和放热的情ab coVT况是a →b 过程 ,b →c 过程 ,c →a 过程 ;10、将1kg 温度为010C 的水置于020C 的恒温热源内,最后水的温度与热源的温度相同,则水的熵变为 ,热源的熵变为 ;水的比热容为34.1810ln1.03530.035J kg K ⨯⋅=,参考答案:一、1、C 2、C 3、A 4、A 5、D6、C7、A8、B9、D 10、A二、1、作功,传热,始末状态,过程 2、理想气体的内能,对外作功 3、绝热,等温, 4、115J ,500J ,615J 5、27,576、功,负7、 500K8、9、吸热,放热,吸热 10、11146.3,142.7J K J K --⋅-⋅自测题5一、选择题1、一定量某理想气体按2pV =恒量的规律膨胀,则膨胀后理想气体的温度 A 将升高 B 将降低 C 不变 D 不能确定;2、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 A pV m B ()pV kT C ()pV RT D ()pV mT3、如题5.1.1图所示,两个大小不同的容器用均匀的细管相连,管中有一水银作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大 A 氧气的密度大; B 氢气的密度大; C 密度一样大; D 无法判断;4、若室内生起炉子后温度从015C 升高到027C ,而室内气压不变,则此时室内的分子数减少了A 0.5%B 4%C 9%D 21%5、一定量的理想气体,在容积不变的条件下,当温度升高时,分子的平均碰撞次数Z 和平均自由程λ的变化情况是 A Z 增大,λ不变; B Z 不变,λ增大; C Z 和λ都增大; D Z 和λ都不变;6、一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线如题5.1.2图所示,则①,②两过程中外界对系统传递的热量12,Q Q 是A 120,0Q Q >> B 120,0Q Q << C 120,0Q Q >< D 120,0Q Q <>7、如题5.1.3图,一定量的理想气体经历acb 过程时吸热200J ;则经历acbda 过程时,吸热为 A 1200J - B 1000J - C 700J - D 1000J8、一定量的理想气体,分别进行如题5.1.4图所示的两个卡诺循环abcda 和a b c d a ''''';若在P V -图上这两个循环曲线所围面积相等,则可以由此得知这两个循环 A 效率相等; B 由高温热源处吸收的热量相等;C 在低温热源处放出的热量相等;D 在每次循环中对外做的净功相等;9、“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功;”对此说法,有如下几种评论,哪种是正确的A 不违反热力学第一定律,但违反热力学第二定律;B 不违反热力学第二定律,但违反热力学第一定律;C 不违反热力学第一定律,也不违反热力学第二定律;D 违反热力学第一定律,也违反热力学第二定律;10、一定量的理想气体向真空作绝热自由膨胀,体积由1V 增至2V ,在此过程中气体的A 内能不变,熵增加;B 内能不变,熵减少;C 内能不变,熵不变;D 内能增加,熵增加;二、填空题:1、在推导理想气体压强公式中,体现统计意义的两条假设是1 ;2 ;2、在定压下加热一定量的理想气体;若使其温度升高1K 时,它的体积增加了倍,则气体原来的温度是 ;3、在相同的温度和压强下,各为单位体积的氢气视为刚性双原子分子气体与氦气的内能之比为 ;4、分子物理学是研究 的学科,它应用的基本方法是 方法;①②题5.1.2图 1 41 4 题5.1.3图o 题5.1.4图5、解释名词:自由度 ;准静态过程 ;6、用总分子数N ,气体分子速率v 和速率分布函数()f v 表示下列各量:1速率大于0v 的分子数= ;2速率大于0v 的那些分子的平均速率= ;3多次观察某一分子的速率,发现其速率大于0v 的概率= ;7、常温常压下,一定量的某种理想气体可视为刚性分子、自由度为i ,在等压过程中吸热为Q ,对外做功为A ,内能增加为E ∆,则A Q = ;8、有一卡诺热机,用29kg 空气为工作物质,工作在027C 的高温热源与073C -的低温热源之间,此热机的效率η= ;若在等温膨胀过程中气缸体积增大倍,则此热机每一循环所做的功为 ;空气的摩尔质量为312910kg mol--⨯⋅ 自测题5参考答案一、选择题1、B2、B3、A4、B5、A6、A7、B8、D9、C 10、A二、填空题1、1沿空间各方向运动的分子数目相等; 2222x y z v v v ==;2、200K3、53;1034、物质热现象和热运动规律; 统计;5、确定一个物体在空间的位置所需要的独立坐标的数目;系统所经历的所有中间状态都无限接近于平衡状态的过程;6、0000()()/()()v v v v Nf v dv vf v dv f v dv f v dv ∝∝∝∝⎰⎰⎰⎰ 7、2;22i i i ++ 8、533.3%;8.3110J ⨯;另外添加的题目:一、选择题:1、双原子理想气体,做等压膨胀,若气体膨胀过程从热源吸收热量J 700,则该气体对外做功为 DA J 350B J 300C J 250D J 2002、在V P -图图1中,mol 1理想气体从状态A 沿直线到达B ,B A V V =2,则此过程系统的功能和内能变化的情况为 CA 0,0>∆>E AB 0,0<∆<E AC 0,0=∆>E AD 0,0>∆<E A3、某理想气体分别经历如图2所示的两个卡诺循环:)(abcd I 和)(d c b a ''''I I ,且两条循环曲线所围面积相等;设循环I 的效率为η,每次循环在高温热源处吸收的热量为Q ,循环II 的效率为η',每次循环在高温Q ',则BA Q Q '<'<,ηη;B Q Q '>'<,ηη;C Q Q '<'>,ηη;D Q Q '>'>,ηη4、一热机在两热源12400,300T K T K ==之间工作,一循环过程吸收1800J ,放热800J ,作功1000J ,此循环可能实现吗 BA 可能;B 不可能;C 无法判断;5、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气均可看成刚性分子它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高相同的温度,则应向氦气传递的热量是CA 6JB 5JC 3JD 2J6、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定:1该理想气体系统在此过程中作了功;2在此过程中外界对该理想气体系统作了功;3该理想气体系统的内能增加了;4在此过程中理想气体系统既从外界吸了热,又对外作了正功;以上正确的是 CA 1,3B 2,3C 3 D3,4 E47、对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作的功三者均为负值: DA 等容降压过程B 等温膨胀过程C 绝热膨胀过程D 等压压缩过程8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比/A Q 等于: DA 1/3B 1/4C 2/5D 2/79、摩尔数相等的三种理想气体e H 、2N 和2CO ,若从同一初态,经等压加热,且在加热过程中三种气体吸收的热量相等,则体积增量最大的气体是: AA e HB 2NC 2COD 三种气体的体积增量相同10、如图所示,一定量理想气体从体积为1V 膨胀到2V ,AB 为等压过程,AC 为等温过程,AD 为绝热过程,则吸热最多的是:AA AB 过程 B AC 过程 C AD 过程 D 不能确定11、根据热力学第二定律判断下列哪种说法是正确的是:CA 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体;B 功可以全部变为热,但热不能全部变为功;C 气体能够自由膨胀,但不能自由压缩;D 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量;12、汽缸内盛有一定的理想气体,当温度不变,压强增大一倍时,该分子的平均碰撞频率和平均自由程的变化情况是:C A Z 和λ都增大一倍; B Z 和λ都减为原来的一半; C Z 增大一倍而λ减为原来的一半;D Z 减为原来的一半而λ增大一倍;13、在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为CA Z 与T 无关;B Z 与T 成正比;C Z 与T 成反比;D Z 与T 成正比;14、一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们: CA 温度相同、压强相同;B 温度、压强相同;C 温度相同,但氦气的压强大于氮气的压强;D 温度相同,但氦气的压强小于氮气的压强;15、已知氢气与氧气的温度相同,请判断下列说法哪个正确A 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强;B 氧分子的质量比氢分子大,所以氧气密度一定大于氢气的密度;C 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大;D 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大;16、按2PV =恒量规律膨胀的理想气体,膨胀后的温度为: CA 升高;B 不变;C 降低;D 无法确定17、下列各式中哪一种式表示气体分子的平均平动动能式中M 为气体的质量,m 为气体分子的质量,N 为气体分子总数目,n 为气体分子密度,0N 为阿伏加德罗常数,mol M 为摩尔质量;A 32m PV M ;B 32mol M PV M ;C 32nPV ;D 032mol M N PV M18、一定量的理想气体可以:DA 保持压强和温度不变同时减小体积;B 保持体积和温度不变同时增大压强;C 保持体积不变同时增大压强降低温度;D 保持温度不变同时增大体积降低压强;19、设某理想气体体积为V ,压强为P ,温度为T ,每个分子的质量为μ,玻尔兹曼常数为k ,则该气体的分子总数可以表示为:C A PV k μ B PT V μ C PV kT D PT kV19、关于温度的意义,有下列几种说法:1气体的温度是分子平均平动动能的量度;2气体的温度是大量气体分子热运动的集体表现,具有统计意义;3温度的高低反映物质内部分子运动剧烈程度的不同;4从微观上看,气体的温度表示每个气体分子的冷热程度;上述说法中正确的是:BA1,2,4 B1,2,3 C2,3,4 D1,3,420、设某种气体的分子速率分布函数为()f v ,则速率在12v v →区间内的分子平均速率为:CA 21()v v vf v dv ⎰B 21()v v v vf v dv ⎰ C 2121()()v v v v vf v dv f v dv ⎰⎰ D 210()()v v vf v dv f v dv∝⎰⎰ 21、两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,如果它们温度和压强相同,则两气体:CA 单位体积内的分子数必相同;B 单位体积内的质量必相同;C 单位体积内分子的平均动能必相同:D 单位体积内气体的内能必相同;22、在标准状态下,体积比为1:2的氧气和氦气均视为理想气体相混合,混合气体中氧气和氦气的内能之比为:CA 1:2B 5:3C 5:6D 10:3填空题:1、要使一热力学系统的内能增加,可以通过传热或作功两种方式,或者两种方式兼用来完成;热力学系统的状态发生变化时,其内能的改变量只决定于初末状态,而与过程无关;2、16g 氧气在400K 温度下等温压缩,气体放出的热量为1152J ,则被压缩后的气体的体积为原体积的12倍,而压强为原来压强的2倍;3、一热机从温度为727o C 的高温热源吸热,向温度为527oC 的低温热量放热,若热机在最大效率下工作,且每一循环吸热2000J ,则此热机每一循环作功为400J ;4、一卡诺热机在每次循环中都要从温度为400K 的高温热源吸热418J ,向低温热源放热334.4J ,低温热源的温度为320K ;5、汽缸内有单原子理想气体,若绝热压缩使体积减半,问气体分子的平均速率变为原来速率的 倍若为双原子理想气体又为 倍6、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程; 1()mol PdV M M RdT =表示等压过程; 2()mol VdP M M RdT =表示等容或者等体过程;30PdV VdP +=表示等温过程;7、容积为10升的容器中储有10克的氧气;1600m s -=⋅,则此气体的温度T =462K ;压强P = 51.210⨯ Pa ;8、在室温27o C 下,1mol 氢气和1mol 氧气的内能比为1:1;1g 氢气和1g 氧气的内能比为16:19、理想气体的内能是温度的单值函数; 2i kT 表示分子的平均动能; 2i RT 表示1mol 气体分子的内能 2m i RT M 表示m 千克气体分子的内能 10、氮气在标准状态下的分子平均碰撞次数为311.310s -⨯,分子平均自由程为6610cm -⨯,若温度不变,气压降为0.1atm ,则分子平均碰撞次数变为211.310s -⨯;分子平均自由程变为5610cm -⨯。
大学物理(气体动理论)习题答案
大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。
(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。
(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。
[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。
《大学物理学》气体的动理论部分练习题(马解答)
《大学物理学》气体的动理论学习材料可能用到的数据:8.31/R J mol =; 231.3810/k J K -=⨯; 236.0210/A N mol =⨯。
一、选择题12-1.处于平衡状态的一瓶氮气和一瓶氦气的分子数密度相同,分子的平均平动动能也相同,则它们( C )(A )温度,压强均不相同; (B )温度相同,但氦气的压强大于氮气的压强; (C )温度,压强都相同; (D )温度相同,但氦气的压强小于氮气的压强。
【分子的平均平动动能3/2kt kT ε=,仅与气体的温度有关,所以两瓶气体温度相同;又由公式P nkT =,n 为气体的分子数密度,知两瓶气体的压强也相同】2.容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为:(根据理想气体分子模型和统计假设讨论)( D )(A )x υB )x υC )x υ=m kT 23;(D )x υ=0。
【大量分子在做无规则的热运动,某一的分子的速度有任一可能的大小和方向,但对于大量分子在某一方向的平均值应为0】3.若理想气体的体积为V ,压强为P ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( B )(A )m PV /; (B ))/(kT PV ; (C ))/(RT PV ; (D ))/(mT PV 。
【由公式P nkT =判断,所以分子数密度为Pnk T=,而气体的分子数为N nV=】4.根据气体动理论,单原子理想气体的温度正比于( D ) (A )气体的体积; (B )气体分子的压强; (C )气体分子的平均动量;(D )气体分子的平均平动动能。
【见第1题提示】5.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( A )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。
大学物理习题集(气体动力论_热力学基础)11 (2)
第六章热力学第二定律6-1 一致冷机工作在t2=-10℃和t1=11℃之间,若其循环可看作可逆卡诺循环的逆循环,则每消耗1.00KJ的功能由冷库取出多少热量?解:可逆制冷机的制冷系数为ε=Q2/A=T1/(T1-T2)∴从冷库取出的热量为:Q2=AT2/(T1-T2)=103×263/(284-263)=1.25×104J6-2 设一动力暖气装置由一热机和一致冷机组合而成。
热机靠燃料燃烧时放出热量工作,向暖气系统中的水放热,并带动致冷机,致冷机自天然蓄水池中吸热,也向暖气系统放热。
设热机锅炉的温度为t1=210℃,天然水的温度为t2=15℃,暖气系统的温度为t3=60℃,燃料的燃烧热为5000Kcal·Kg-1,试求燃烧1.00Kg燃料,暖气系统所得的热量。
假设热机和致冷机的工作循环都是理想卡诺循环。
解:动力暖气装置示意如图,T1=273+210=483K,T3=273+60=333K,T2=273+15=288K。
I表热机,Ⅱ表致冷机。
热机效率η=A/Q1=1-T3/T1=0.31∴ A=ηQ1=0.31Q1致冷机的致冷系数ε=Q2/A=T2/(T3-T2)∴Q2=A·T2/(T3-T2)=0.31Q1288/(333-288)=1.984Q1而Q1=qM=5000×1Kcal ∴暖气系统得到的热量为:Q=Q3+Q4=(Q1-A)+(A+Q2)=Q1+Q2=Q1+1.984Q1=2.984×5000=1.492×104 Kcal=6.24×104 KJ6-3 一理想气体准静态卡诺循环,当热源温度为100℃,冷却器温度为0℃时,作净功800J,今若维持冷却器温度不变,提高热源温度,使净功增加为 1.60×103 J,则这时:(1)热源的温度为多少?(2)效率增大到多少?设这两个循环都工作于相同的两绝热线之间。
气体动力学基础试题与答案(汇编)
复习神器解释下列各对名词并说明它们之间的区别与联系 1.轨线和流线2.马赫数M 和速度系数λ 5.膨胀波和激波一、 回答下列问题1.膨胀波在自由表面上反射为什么波?为什么?4.收敛喷管的三种流动状态分别是什么?各有何特点? 三、(12分)已知压气机入口处的空气温度T1=280K,压力P1=1.0bar ,在经过压气机进行可逆绝热压缩以后,使其压力升高了25倍,即增压比P2/P1=25,试求压气机出口处温度和比容,压气机所需要的容积功。
设比热容为常数,且比热比k=1.4。
四、空气沿如图1所示的扩散管道流动,在截面1-1处空气的压强5110033.1⨯=p N/m 2,温度 151=t C,速度2721=V 米/秒,截面1-1的面积1A =10厘米2,在截面2-2处空气速度降低到2V =72.2米/秒。
设空气在扩散管中的流动为绝能等熵流动,试求:(1)进、出口气流的马赫数1M 和2M ;(2)进、出口气流总温及总压;(3)气流作用于管道内壁的力。
六、(15分)在超声速风洞的前室中空气的滞止温度为T *=288K,在喷管出口处空气的速度V 1=530米/秒,当流过试验段中的模型时产生正激波(如图1所示),求激波后空气的速度。
图 1 第四题示意图图2 第五题示意图一、解释下列各对名词并说明它们之间的区别与联系(共20分,每题4分)1.轨线和流线答:轨线是流体质点运动的轨迹;流线是一条空间曲线,该曲线上任一点的切线与流体在同一点的速度方向一致。
区别:轨线的是同一质点不同时刻的位置所连成的曲线;流线是同一时刻不同质点运动速度矢量所连成的曲线。
联系:在定常流动中轨迹线和流线重合。
2.马赫数M和速度系数λ答:马赫数M是气体运动速度与当地声速的比值;速度系数λ是气体运动速度与临界声速的比值。
区别:速度相同时气体的马赫数与静温有关,最大值为无限大,而速度系数于总温有关,其最大值为有限值。
联系:已知马赫数可以计算速度系数,反之亦然。
大学大学物理物习题册解答-6 气体动理论
20XX年复习资料大学复习资料专业:班级:科目老师:日期:第五章 大量粒子系统(一)气体动理论序号 学号 姓名 专业、班级一 选择题[C ]1.如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程(A)是平衡过程,它能用p-V 图上的一条曲线表示。
(B)不是平衡过程,但它能用p-V 图上的一条曲线表示。
(C)不是平衡过程,它不能用p-V 图上的一条曲线表示。
(D)是平衡过程,但它不能用p-V 图上的一条曲线表示。
[B ]2.两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等。
现将6 J 热量传给氦气,使之升高到一定温度。
若使(改为氢气)也升高同样的温度,则应向氢气传递热量:(A) 6 J (B) 20XXXX J (C) 20XXXX (D) 5 J [ C ]3.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121 V V ,则其内能之比21/E E 为:(A) 1/2 (B) 5/3 (C) 5/6 (D) 3/20XXXX[ B ]4.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 (A) pV/m (B) pV/(kT)(C) pV/(RT) (D) pV/(mT)[D]5.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 )(21221v Nf mv v v ⎰ d v 的物理意义是(A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。
(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和。
(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能。
(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和。
[D ]6.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为 1n ,它产生的压强为 1p ,B 种气体的分子数密度为 12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为 (A)31p(B)41p(C)51p (D)61p二 填空题1.在定压下加热一定量的理想气体,若使其温度升高1K 时,它的体积增加了0.020XXXX 倍,则气体原来的温度是________20XX0K___________。
(完整版)大学物理习题集(气体动力论热力学基础)
气体的动理论 姓名学号一. 选择题1.关于温度的意义,有下列几种说法: [ ](1)气体的温度是分子平均平动动能的量度。
(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。
(3)温度的高低反映物质内部分子运动剧烈程度的不同。
(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是(A )(1)、(2)、(4); (B )(1)、(2)、(3); (C )(2)、(3)、(4); (D )(1)、(3)、(4);2.若室内生起炉子后温度从15︒C 升高到27︒C ,而室内气压不变,则此时室内的分子数减少了[ ]。
(A )0.5% (B )4% (C )9% (D )21%3.一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 [ ] )2523)(( (A)21kT kT N N ++ )2523)(( 21(B)21kT kT N N ++ kT N kT N 2523 (C)21+ kT N kT N 2325 (D)21+ 4.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几?(不计振动自由度)(A )66.7% (B )50% (C )25% (D )0 [ ]5.在标准状态下,体积比为1:2的的氧气和氦气(均视为刚性分子理想气体)相混合,混合气体中氧气和氦气的内能之比为 [ ]2:1 (A) 3:5 (B) 6:5 (C) 3:10 (D) 6.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系(A )ε和w 都相等。
(B )ε相等,而w 不相等。
[ ](C )w 相等,而ε不相等。
(D )ε和w 都不相等。
7.1mol 刚性双原子分子理想气体,当温度为T 时,其内能为 [ ] RT 23 (A) kT 23 (B) RT 25 (C) kT 25 (D) 8.在一容积不变的封闭容器内,理想气体分子的平均速率若提高为原来的2倍,则[ ](A )温度和压强都提高为原来的2倍。
气体动力学课后习题答案
气体动力学课后习题答案【篇一:气体动力学复习题】、单位体积流体所具有的质量称为流体的密度。
2、流体运动时内部产生切应力的这种性质叫做流体的黏性。
3、牛顿内摩擦定律表明,流体中的内应力与速度梯度成正比,比例系数即为与流体种类相关的动力粘度。
4、流体静压力是一个有大小、方向、合力作用点的矢量,它的大小和方向都与其受压面密切相关。
5、流体静压强的两个重要特性包括:①流体静压强的方向总是垂直且指向该作用面的,即沿着平面的内法线方向;②流体静止内部任一点处流体静压强在各方向等值。
6、流体中压强相等的各点组成的面称为等压面。
7、等压面具有以下几个重要特性:①等压面也是等势面;②在平衡的流体中通过每一点的等压面必与该点所受的质量力互相垂直;③两种不想混合平衡流体的交界面必然是等压面。
8、流体静力学基本方程的物理意义是,在静止的不可压缩均质重力流体中,任何一点的压强势能和位置势能之和是常数,即总势能保持不变。
9、流体静力学基本方程的几何意义是,在重力作用下的连续、均质、不可压缩流体中,静水头线和计示静水头线均为水平线。
10、以完全真空为基准计量的压强为绝对压强。
11、以当地大气压为基准计量的压强为计示压强。
12、静止液体中,作用在平面上的合力,等于作用在该平面几何中心点处的静压强与该平面面积的乘积。
13、液体作用在曲面上总压力的垂直分力等于压力体的液体重力。
14、请写出静止液体作用在曲面上总压力的水平分力和垂直分力的表达式,并说明每个符号的意义。
15、液体作用在沉没物体上的总压力方向垂直向上,大小等于沉没物体所排开的重量,称它为浮力。
16、流动参量不随时间变化的流动就是定常流动。
17、在不可压缩流体中,流线皆为平行直线的流动为均匀流。
18、均匀流具有下列性质:①各质点的流速相互平行,有效断面为一平面;②位于同意流线上的各个质点速度相等;③沿流程各有效断面上流速分布相同,但同一有效断面上各点的流速并不相等;④各质点的迁移加速度皆为零,如流动是均匀的定常流,那么各质点的加速度为零;⑤有效断面上压强分布规律与静止流体相同。
《大学物理》气体动理论练习题及答案解析
《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。
对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。
当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。
由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。
换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。
2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。
3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。
答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。
(2)微观量:描述个别分子运动状态的物理量。
(3)宏观量:表示大量分子集体特征的物理量。
4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。
其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。
可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。
大学物理 气体分子动理论 试题(附答案)
om
解: v1 ~ v2 区间的分子数为
∆ N v1 ~ v2 = N ∫
v2
v1
f (v )dv
该区间内分子速率之和为 vdN = N
∫
∫
v2
v1 v2
vf (v )dv ,所以该区间分子的平均速率为
∫ vdN
∆N v1 → v2
=
N ∫ vf (v )dv
v1
v2
1பைடு நூலகம்
v1
(A)
(B)
O
f (v )
v
ww
w. z
率为 v 0 ,分子平均碰撞次数为 Z0 ,平均自由程为 λ0 。当气体温度升高为 4T0 时,气体分 子的平均速率为 v ,平均碰撞次数 z 和平均自由程 λ 分别为: [ B ] (A) v = 4 v 0 , Z = 4 Z 0 , λ = 4λ0 。 (B) v = 2v 0 , Z = 2Z0 , λ = λ0 。 (C) v = 2v 0 , Z = 2Z0 , λ = 4λ0 。 (D) v = 4v 0 , Z = 2Z0 , λ = λ0 。
解:因为
∆N v1 → v2
N
∫ f (v )dv
v1
v2
由题意
∫0 f (v )dv = ∫v f (v )dv ,
0
v0
∞
说明
∆ N 0 → v0 = ∆ N v0 → ∞ =
ww
4. 设某种气体分子的速率分布函数为 f (v ) , 则速率在 v1 ~ v 2 区间内的分子的平均速率为 ] (A) (C)
µ = M mol =
MRT ρRT 11.3 × 10 −3 × 8.31 × 300 = = pV p 1.0 × 10 −2 ×1.013 × 105
规范作业D(下)17气动论
3
260 K
由于氧气的平动自由度i=3,氧气分子的平均平动动能
3kT 31.38 10 23 260 5.38 10 21 J
2
2
4
2.图示是相同温度下的氢气和氧气的麦克斯韦速率分布曲线,则 该温度下氧气分子的最概然速率为__5_0_0_________m/s,氢气分子 的平均速率为 _2_2_5_7_________m/s 。
水蒸气的自由度i=6 ,1mol温度为T的水分子的内能为:
6 E(H2O) 2 RT 3RT
1mol的氢气(i=5)和0.5摩尔的氧气( i=5)在温度为T时的内 能之和为:
5
5 15
E(H2 O2 )
RT 0.5 RT
2
2
4
RT
所以 内能的增量为: E 15 RT 3RT 3 RT
4
该气体的密度__1__.8__7_5_k_g__/_m__3___ 。
解:由气体压强公式
P
1 3
nm0 v2
1 3
v2
得气体的密度为(n是粒子数密度,ρ是质量密度)
3P
v2
3 10 5 400 2
1.875 kg / m3
7
4.在容积为2.0×10-3m3的容器中,有内能为675J的刚性双原子分 子理想气体。气体的压强为____1_._3_5__1_0_5_P_a___;设分子总数为
v
2v0
11
说明:粒子速率在0-v0间的分子的速率之和为
v0
a v0
Nvf (v)dv N v vdv
0
0 v0
粒子速率在0-v0间的分子的个数之和为
v0
a v0
Nf (v)dv N vdv
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章
一、填空题
1.有两种不同的理想气体,同压、同温而体积不等,则分子数密度相同;气体质量密度不
相同;单位体积内气体分子总平动动能相同;单位体积内气体分子的总动能不一定.(相同、不同或不一定)
2.质量相等的氯与氖放在两个容积相等的容器里,它们的温度相同,用脚码1代表氯,用脚码2代表氖,则质量密度之比ρ1:ρ2=___1:1__;分子数密度之比
n 1:n 2=__20:71___;压强之比P 1:P 2=___20:71__;分子平均动能之比εk1:εk2=_5:3___;总内能之比E 1:E 2=__100:213__;最可几速率之比
v p1:v p2=___71
20
________。
3.说明下列各量的物理意义.
(1)kT 2
3
1摩尔自由度为3分子组成的系统的内能,或者说热力学体系内,1摩尔分子的平
均平动动能之总和.
()21
()d Nf υυυυ⎰ 表示分布在υ1~υ2区间内的分子数.
4.图9-15所示的两条f (υ)~υ曲线分别表示氢气和氧气在同一温度下的麦克斯韦速率分布曲线.由此可得氢气分子的最概然速率为___________;氧气分子的最概然速率为___________.
[
答案:由p υ=,及M M <mol 氢mol 氧可知,υp 氢=2000 m·s -1
; 又
p p υυ=
氧氢
p p υυ=氧s -1
]
图9-15 麦克斯韦分布曲线
-1)
二、选择题
1.一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们
( )
(A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强.
[答案:C 。
由3
2
w kT =,w w =氦氮,得T 氦=T 氮 ; 由mol
pM RT
ρ=,ρρ=氦氮,T 氦=T 氮 ,而M M <mol 氦mol 氮,故p p >氦氮。
]
2.在标准状态下,氧气和氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为( )
(A) 3 / 10. (B) 5 / 6 (C) 1 / 2.. (D) 5 / 3.
[答案:B 。
由2mol M i E RT M =
2
i
pV =,得111112222256E i pV i V E i pV i V ==⋅=。
]
3.在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为( ) (A) Z 与T 无关. (B).Z 与T 成正比 . (C)
Z 与T 成反比. (D) Z 与T 成正比.
[答案:C。
2Z
d n υ
=2p d kT =∝。
] 答案:
1.1 不相同,相同,不一定1.2 1:1,20:71,20:71,5:3,100:213,7120 1.3 1摩尔自由度为3分子组成的系统的内能,或者说热力学体系内,1摩尔分子
的平均平动动能之总和;表示分布在υ1~υ2区间内的分子数. 1.4 2000 m·s -1,500 m·s -1 2.1C;2.2B;2.3C
三、计算题:
1.有一水银气压计,当水银柱为0.76m 高时,管顶离水银柱液面 0.12m ,管的截面积为
2.0×10-4m 2,当有少量氦(He)混入水银管内顶部,水银柱高下降为0.6m ,此时温度为27℃,试计算有多少质量氦气在管顶(He 的摩尔质量为0.004kg/mol)? 解:由理想气体状态方程RT M M
pV mol
=
得
RT
pV
M M mol = 汞的重度 5
1033.1⨯=Hg d N·m -3 氦气的压强 Hg (0.760.60)p d =-⨯
氦气的体积 4100.2)60.088.0(-⨯⨯-=V m 3
4Hg (0.760.60)(0.28 2.010)
0.0048.31(27327)
d M --⨯⨯⨯⨯=⨯
⨯+61091.1-⨯=Kg
2. 1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少? 解:理想气体分子的能量
RT i
E 2
υ= 平动动能 t=3 5.373930031.823
=⨯⨯=
t E J 转动动能 r=2 249330031.822
=⨯⨯=r E J
内 能 i=5 5.623230031.82
5
=⨯⨯=i E J
3.贮于体积为10-3
m 3
容器中某种气体,气体总数N =1023,每个分子的质量为5×10-26
kg ,分子方均速率为400m/s 。
求气体的压强和气体分子的总平动动能以及气体的温度.
解 由压强公式 )2
1(32)21(3222v V N v n P μμ==
得 Pa 1067.22
10340010510253
2
2623⨯=⨯⨯⨯⨯⨯⨯=--P 气体分子的总平动动能为
J 4002
400105102226232
=⨯⨯⨯===-v N w N E k μ
由nkT P =,得气体的温度
K 1931038.110101067.223
233
5=⨯⨯⨯⨯===--Nk PV nk P T
4.图9-16中是2kg 氢气的等温线,其中
P 1=4×105Pa ,
P 2=1.2×105Pa ,V 1=2.5m 3,试求:
(1)该等温线对应的温度. (2)b 、d 两状态的内能E b 和E d .
解 (1)由理想气体的状态方程,所
求温度为
图9-16
1
V
2
mR
M
V P T a 12=
K 361= (2)由内能的定义 RT i
M m E 2= 和理想气体的状态方程 RT M
m
PV = 有 PV i
E 2
=
所以 112
V P i E d =
J 105.26⨯= 又由等温过程 1221V P V P = 有 1122/P V P V =
得 2/22V iP E b =)2/(1122P V iP =J 1025.27
⨯=
5. 1mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间(1)气体分子方均根速率之比;(2) 分子平均自由程之比。
解:(1)由气体状态方程
2
2
11T p T p = 及 3322V p V p = 方均根速率公式
=
=
== (2)对于理想气体,nkT p =,即 kT
p n = 所以有 p
d kT 2
2πλ=
12
12
1==T p p T 末初λλ
6.飞机起飞前机舱中的压力计指示为1.0atm(1.013×105Pa),温度为27℃;起飞后压力计指示
为5
Pa),温度仍为27℃,试计算飞机距地面的高度。
解:气体压强随高度变化的规律:由nkT p =及kT
mgz
e
n n 0=
RT
gz M kT
mgz kT
mgz e
p e
p kTe
n p mol 000-
-
-
===
p
p g M RT
z 0mol ln =
31096.18
.01ln 8.90289.030031.8⨯=⨯⨯=
z m
7.在标准状态下,氦气的粘度η=1.89×10-5 Pa·s ,摩尔质量M mol =0.004 kg /mol ,分子平均速率υ=1.20×103 m/s .试求在标准状态下氦分子的平均自由程.
解:据 1
3
η
ρυλ= 得
33mol V M ηη
λρυ
υ
=
=
= 2.65×10 m
8.已知空气分子的有效直径d =3.5×10-10m ,空气分子的摩尔质量为M =29×10-3 kg/mol ,计算空气分子在标准状态下的几个物理量。
(1)单位体积分子数; (2)平均速率; (3)平均平动动能。
解 (1)由 n k T P = 有 kT P n /=
2731038.1/10013.1235⨯⨯⨯=--3
25m 1069.2-⨯=
或由 00/V N n =
323104.22/1002.6-⨯⨯=325m 1069.2-⨯=
(2)由定义
M RT v /60.1⨯=
31029/27331.860.1-⨯⨯=-1
s m 448⋅=
(3)由定义
kT t )2/3(=ε2731038.1)2/3(23⨯⨯⨯=-J 1065.521-⨯=。