过程控制课程设计 加热炉出口温度控制系统的设计解析
管式加热炉温度前馈-反馈控制系统设计解析
过程控制课程设计报告管式加热炉温度前馈-反馈控制系统设计学生:专业:自动化班级:重庆大学自动化学院2012年10目录前言 (1)1 管式加热炉系统描述 (1)1.1 管式加热炉的一般结构 (1)1.2 管式加热炉传热方式 (2)1.3 管式加热炉工艺流程 (2)1.4 主要控制参数、操作参数及影响因素 (2)2 方案设计 (3)2.1 方案一 (3)2.2 方案二 (4)3 管式加热炉温度控制系统模型的建立 (4)3.1 前馈-反馈控制系统传递函数 (4)3.2 过程响应分析 (6)3.3 PID控制算法 (7)3.4 PID 控制各参数的作用 (8)4 MATLAB/Simulink仿真 (8)4.1 用ITAE 方法设计控制器 (8)4.2 用Ziegler-Nichols方法设计控制器 (10)5 基于MATLAB/Simulink的仿真 (12)5.1 前馈-反馈控制与单回路控制模型的比较 (12)5.2 基于ITAE方法的仿真模型 (13)5.2.1 ITAE的PI控制模型仿真 (13)5.2.2 ITAE的PID控制模型仿真 (14)5.3基于Ziegler-Nichols方法的仿真模型 (14)5.3.1 Ziegler-Nichols的PI控制仿真模型 (14)5.3.2 Ziegler-Nichols的PID控制仿真模型 (15)6 报告总结 (15)参考文献 (16)前言管式加热炉是石油炼制、化纤工业、石油化工和化学行业主要的工艺设备之一,作用是将物料加热至工艺所要求的温度,具有操作方便, 自动化水平高, 加工成本低, 传热效率高等优点。
1967年4月,世界上第一台步进梁式加热炉由美国米兰德公司设计而成,之后,日本中外炉公司设计的世界上第二座步进梁式加热炉于1967年5月投产。
70年代末,发达工业国家己经进入大型连续加热炉计算机控制的实用阶段,但控制策略还主要局限于燃烧控制。
加热炉温度控制系统设计
加热炉温度控制系统设计一、引言加热炉是一种常见的工业设备,用于将物体加热至一定温度。
在许多工业过程中,加热炉的温度控制至关重要,它直接影响到产品的质量和生产效率。
因此,设计一个稳定可靠的温度控制系统对于提高工业生产的效益十分重要。
本文将介绍一个基于控制理论的加热炉温度控制系统的设计。
二、控制系统设计原理1.温度传感器:温度传感器是测量加热炉内部温度的重要组成部分。
常用的温度传感器包括热电偶和热敏电阻。
传感器将温度信号转换为电信号,并将其发送给控制器。
2.控制器:控制器接收温度传感器发送的信号,并与设定值进行比较。
根据比较结果,控制器将控制信号发送给加热器以调整加热功率。
控制器通常使用PID控制算法,它根据偏差、积分和微分项来计算控制信号。
3.加热器:加热器是加热炉温度控制系统中的执行器。
根据控制信号,加热器可以调整加热功率,从而控制加热炉的温度。
三、温度传感器选择温度传感器的选择对于温度控制系统的性能至关重要。
常见的温度传感器有热电偶和热敏电阻。
在选择传感器时需要考虑以下因素:1.测量范围:根据加热炉的工作温度范围选择合适的传感器。
不同的传感器有不同的工作温度范围。
2.精度:传感器的精度对于控制系统的准确性非常重要。
一般来说,热电偶的精度比热敏电阻高。
3.响应时间:加热炉温度的变化通常需要快速响应。
因此,传感器的响应时间也是一个重要的考虑因素。
四、控制器设计1.控制算法选择:常见的控制算法有比例控制、积分控制和微分控制。
PID控制算法结合了这三种控制算法,被广泛应用于温度控制系统。
2. 参数调节:根据具体的应用场景和系统性能要求,需要对PID控制器进行参数调节。
常见的调节方法有Ziegler-Nichols方法和临时增减法。
3.控制信号输出:控制信号输出给加热器,影响加热功率。
一般来说,控制信号越大,加热功率越高,温度升高的速度越快。
五、系统测试和优化完成控制系统的设计后,需要进行系统测试和优化。
课程设计--加热炉温度串级控制系统(设计部分)
加热炉温度串级控制系统设计摘要:生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中.结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性.关键词:串级控制干扰主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade co ntrol system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLA B-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (5)2.3方案选择 (5)3、串级控制系统的特点 (6)4. 温度控制系统的分析与设计 (7)4.1控制对象的特性 (7)4.2主回路的设计 (8)4.3副回路的选择 (8)4.4主、副调节器规律的选择 (8)4.5主、副调节器正反作用方式的确定 (8)5、控制器参数的工程整定 (10)6 、MATLAB系统仿真 (10)6.1系统仿真图 (11)6.2副回路的整定 (12)6.3主回路的整定 (14)7.设计总结 (16)【参考文献】 (16)1.前言加热炉是炼油、化工生产中的重要装置之一。
过程控制课程设计报告—管式加热炉温度控制
课程设计报告课题名称:管式加热炉温度控制学院:电气信息工程学院专业:测控技术与仪器姓名:刘英皓学号:13指导教师:曹艳2010年12月16日课题要求:管式加热炉要求出口温度为4003℃。
1.由于燃料热值频繁变化,为此设计串级控制系统画出工艺流程图。
2.选择自动化设备,列出自动化设备表。
3.通过仿真验证方案可行性。
一、管式加热炉简介管式加热炉一般由四个主要部分组成:烟囱、对流室、辐射室及燃烧器,示意图如图1.1所示:图1.1 管式加热炉通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。
对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。
辐射室:通过火焰或高温烟气进行辐射传热的部分。
这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。
燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。
管式加热炉的特征:(1)被加热物质在管内流动,故仅限于加热气体和液体。
而且,这些气体或液体通常都是易燃易爆的烃类物质,同锅炉加热水和蒸汽相比,危险性大,操作条件要苛刻得多。
(2)加热方式为直接受火式,加热温度高,传热能力大。
(3)只烧气体或液体燃料。
(4)长周期连续运转,不间断操作,便于管理。
二、管式加热炉温度控系统工艺流程及控制要求管式加热炉的主要任务是把原油或重油加热到一定温度,以保证下一道工序(分馏或裂解)的顺利进行。
加热炉的工艺流程图如图 2.1所示。
燃料油经过蒸汽雾化后在炉膛中燃烧,被加热油料流过炉膛四周的排管中,就被加热到出口温度T1。
在燃料油管道上装设一个调节阀,用它来控制燃油量以达到调节温度T1的目的。
图2.1 管式加热炉工艺流程图引起温度T1改变的扰动因素很多,主要有:(1)燃料油方面(它的组分和调节阀前的油压)的扰动D2;(2)喷油用的过热蒸汽压力波动D4;(3)被加热油料方面(它的流量和入口温度)的扰动D1;(4)配风、炉膛漏风和大气温度方面的扰动D3;其中燃料油压力和过热蒸汽压力都可以用专门的调节器保持其稳定,以便把扰动因素减小到最低限度。
管式加热炉出口温度串级控制系统设计说明
课程设计任务书目录1 管式加热炉概述 (1)1.1管式加热炉在石油工业中的重要性 (1)1.2管式加热炉的基本构成与组成 (1)1.3管式加热炉出口温度控制系统设计目的及意义 (1)2 管式加热炉温度控制系统工作原理及控制要求 (2)2.1 管式加热炉出口温度控制系统工作原理..................... ........ . (2)2.2 管式加热炉出口温度控制系统控制要求 (2)3 管式加热炉出口温度控系统工艺流程设计 (2)3.1 管式加热炉出口温度影响因素的扰动分析 (2)3.2 管式加热炉出口温度控制系统的工艺流程设计 (2)4 管式加热炉出口温度控系统现场仪表的选型与连线图 (3)4.1 控制系统中温度检测元件的选型 (3)4.2 控制系统中变送器的选型 (4)4.3 控制系统中执行器(调节阀)的选型 (4)4.4 控制系统中调节器的选型 (5)4.5 控制系统中的连锁保护与接线图 (6)5管式加热炉出口温度串级控制系统分析 (7)5.1 控制系统方框图与工作过程 (7)5.2 主、副调节器规律选择 (7)5.3 主、副调节器正反作用方式确定 (7)5.4 控制器参数工程整定 (8)6 管式加热炉出口温度串级控制系统的MATLAB SIMULINK仿真与分析 (9)6.1传递函数的选择 (9)6.2系统的参数的选择 (9)6.3系统的仿真分析 (10)7 感受与体会 (11)8参考文献 (11)1 管式加热炉概述1.1管式加热炉在石油工业中的重要性⑴加热温度高(火焰温度1000℃以上),传热速率快。
⑵是整个石油加工和石油化工过程中能耗最大的设备之一。
⑶是控制运转周期及自动化及自动化程度的关键设备。
1.2管式加热炉的基本构成与组成管式加热炉是一种直接受热加热设备主要用于加热气体或液体化工原料,所用燃料通常有燃料油和燃料气。
管式加热炉的传热方式以辐射传热为主。
管式加热炉一般由辐射室、余热回收系统、对流室、燃烧器和通风系统等五部分组成,如图1所示。
过程控制课程设计 加热炉出口温度控制系统的设计
二○一三~二○一四学年第一学期信息科学与工程学院课程设计报告书课程名称:过程控制与集散系统课程设计班级:自动化2010级4班学号:201004134140姓名:肖翔指导教师:万恒二○一三年十一月一.设计题目和设计要求;设计题目:加热炉出口温度控制系统的设计图1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料图1 加热炉出口温度系统但是,由于炉子时间常数大,而且扰动的因素多,单回路反馈控制系统不能满足工艺对炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
设计要求:1.绘制加热炉出口温度单回路反馈控制系统结构框图。
2.以加热炉出口温度为主变量,选择滞后较小的炉膛温度的副变量,构成炉出口温度对炉膛温度的串级控制系统,要求绘制该串级控制系统结构图。
3.假设主对象的传递函数为0140()(1)(2)G s s s =++,副对象的传递函数为02()(1)G s s =+40,主、副控制器的传递函数分别为sK s G c c 21)(11+=,22)(c c K s G =,1)()(21==s G s G m m ,请确定主、副控制器的参数(要求写出详细的参数估算过程)。
4.利用simulink 实现单回路系统仿真和串级系统仿真,分别给出系统输出 响应曲线。
二.设计任务分析(包括系统建模、控制方案);单回路反馈控制系统(温度):单回路反馈控制系统结构框图管式加热炉的控制目标是保证原料的出口温度达到设定值并维持在工艺要求范围内。
在加热炉工作的过程中,原料出口温度To受进入管式加热炉原料的初始温度和进入流量,燃料的流量和燃烧值的影响。
过程控制课程设计-加热炉出口温度控制系统的设计
二○一三~二○一四学年第一学期信息科学与工程学院课程设计报告书课程名称:过程控制与集散系统课程设计班级:自动化2010级4班学号: 2姓名:肖翔指导教师:万恒二○一三年十一月一.设计题目和设计要求;设计题目:加热炉出口温度控制系统的设计图1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料图1 加热炉出口温度系统但是,由于炉子时间常数大,而且扰动的因素多,单回路反馈控制系统不能满足工艺对炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
设计要求:1.绘制加热炉出口温度单回路反馈控制系统结构框图。
2.以加热炉出口温度为主变量,选择滞后较小的炉膛温度的副变量,构成炉出口温度对炉膛温度的串级控制系统,要求绘制该串级控制系统结构图。
3.假设主对象的传递函数为0140()(1)(2)G s s s =++,副对象的传递函数为02()(1)G s s =+40,主、副控制器的传递函数分别为sK s G c c 21)(11+=,22)(c c K s G =,1)()(21==s G s G m m ,请确定主、副控制器的参数(要求写出详细的参数估算过程)。
4.利用simulink 实现单回路系统仿真和串级系统仿真,分别给出系统输出 响应曲线。
二.设计任务分析(包括系统建模、控制方案);单回路反馈控制系统(温度):单回路反馈控制系统结构框图管式加热炉的控制目标是保证原料的出口温度达到设定值并维持在工艺要求范围内。
在加热炉工作的过程中,原料出口温度To受进入管式加热炉原料的初始温度和进入流量,燃料的流量和燃烧值的影响。
其中,原料的流量和燃料的流量是影响原料出口温度的主要因素。
过程控制课程设计加热炉出口温度控制系统的设计
通过合理的控制策略和算法设计,成功实现了对加热炉出口温度的精确控制,提高了生产过程的稳定性和产品质量。
实现了加热炉出口温度的稳定控制
通过参数整定和算法优化,提高了控制系统的响应速度和稳定性,减少了温度波动和误差,提高了生产效率。
优化了控制性能
尽管已经实现了对加热炉出口温度的稳定控制,但在某些极端情况下,控制精度仍可能受到一定影响,需要进一步优化控制算法以提高控制精度。
利用热电效应测量温度,具有测量范围广、精度高、稳定性好等特点。适用于高温环境,可将温度变化转换为电信号输出。
热电阻传感器
基于电阻随温度变化的原理,具有测量精度高、稳定性好、响应速度快等优点。适用于中低温测量,输出信号为电阻值变化。
红外温度传感器
通过测量目标物体辐射的红外能量来推算温度,具有非接触式测量、响应速度快、适用于远距离测量等特点。但受环境因素影响较大,测量精度相对较低。
控制器根据设定的控制算法对温度信号进行处理,计算出控制量,并输出相应的控制信号。
采用比例、积分、微分控制算法,对加热炉出口温度进行精确控制,具有响应快、精度高的特点。
PID控制
结合人工智能、神经网络等先进技术,对加热炉出口温度进行智能预测和控制,提高系统的自适应能力和智能化水平。
智能控制
利用模糊数学理论对加热炉出口温度进行模糊推理和控制,适用于难以建立精确数学模型的复杂系统。
仿真模型搭建
在仿真平台上,根据系统模型搭建仿真模型,包括各组成部分的模型、控制算法的实现等。
仿真参数设置
设置仿真参数,如仿真时间、步长、初始条件等,以确保仿真的准确性和有效性。
仿真平台选择
选择合适的仿真平台,如MATLAB/Simulink、LabVIEW等,用于实现系统仿真。
加热炉温度串级控制系统设计
加热炉温度串级控制系统设计引言:加热炉是工业生产中常用的设备之一,用于加热物体到目标温度。
为了确保加热炉的温度能够稳定地达到所需温度并且尽量减小温度误差,本文将就一种串级控制系统的设计进行阐述。
串式控制系统使用了两组控制器,一个主控制器 (Master Controller) 和一个从控制器 (Slave Controller),通过对系统的不同层次进行控制,实现了温度的快速、准确地调节。
本文将针对主控制器和从控制器的设计进行详细说明。
一、主控制器设计:主控制器的作用是通过对从控制器的输出进行调节,以实现加热炉温度的稳定。
主控制器采用PID控制算法,其中P代表比例控制,I代表积分控制,D代表微分控制。
PID控制算法充分考虑了温度调节系统的动态和静态特性,并能够在不同的工作条件下自动调整参数,以保证系统的稳定性和快速响应。
在主控制器设计中,首先需要确定温度传感器的位置,将温度传感器安装在加热炉的合适位置,以获取准确的温度信息。
接下来,需要对主控制器的参数进行设置。
主控制器的参数设置对系统的稳定性和响应时间有着重要影响。
在设置主控制器的参数时,可以采用经验法或者试探法。
经验法是根据历史数据和经验对主控制器参数进行初始化,然后通过不断实际运行和调节参数,直到系统达到理想状态。
试探法则是在实际运行过程中,逐步调节参数,观察系统响应并作出相应调整。
两种方法都可以达到主控制器参数的最优化,但试探法的调试过程可能会相对较长。
二、从控制器设计:从控制器的作用是根据主控制器的输出对加热炉的加热功率进行调节。
从控制器也采用PID控制算法来实现。
从控制器的设计需要考虑如下因素:1.从控制器对主控制器的输出进行调节,以实现稳定的加热功率控制。
根据实际需要和经验,设置从控制器的参数,使得从控制器能够快速、准确地响应主控制器的输出。
2. 考虑到加热炉的动态特性,可以利用先进的控制算法,如模型预测控制 (Model Predictive Control)等,将从控制器的参数调整为非线性和时变的。
加热炉出口温度控制
内蒙古科技大学过程控制工程课程设计说明书题目:高炉热风炉出口温度控制系统设计学生姓名:======学号:======专业:测控技术与仪器班级:======指导教师:======目录引言 (2)1 高炉炼铁概述 (3)1.1 高炉炼铁的工艺过程 (3)1.2 高炉炼铁的主要组成部分 (4)1.3热风炉的工作原理 (4)2 热风炉出口温度过程控制设计 (4)2.1 被控参数与控制参数的选择 (4)2.2 出口温度控制方案设计 (5)2.2.1 单回路控制系统结构与原理 (5)2.2.2 出口温度单回路控制方案 (6)2.3 仪器仪表的选用 (7)2.3.1 检测仪表的选型 (7)2.3.2 执行器的选型 (8)2.3.3 调节器的选用 (9)3 课程设计总结与心得 (11)参考文献 (12)引言近年来,随着我国经济的快速发展,在基础实施行业的带动下我国炼铁控制也处于高速发展阶段。
我国高炉现有1300多座,大于1000m3以上容积的高炉有150多座,高炉大型化的进程步伐加快,建设了四座4000 m3级的高炉,五座3200 m3级的高炉。
现在存在的炼铁方法有:高炉炼铁、冲天炉炼铁、电化铁路炼铁、感应炉炼铁等,但现代大型工业中普遍采用高炉炼铁,因为高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,高炉炼铁方法生产的铁占世界铁总产量的95%以上。
在炼铁产量不断增长的同时,我国高炉炼铁技术也取得了很大的进步,入炉焦比和炼铁工序能耗不断下降,喷煤比、热风温度和利用系数不断提高,高炉操作技术也日趋成熟,各项技术经济指标得到进一步改善。
高炉在钢铁厂生产中处于十分重要的位置,高炉冶炼过程是一个连续的、大规模的、高温生产过程,高炉炼铁主要有五大系统组成:送风系统、渣铁处理系统、喷吹系统、煤气系统、上料系统。
送风系统是高炉最重要的部分之一,风是高炉冶炼过程的物质基础之一,同时又是高炉行程的运动因素。
高炉送风系统是由风机、冷风管道、热风炉、热风管道及相关的各种阀门和烟囱、烟道等所组成。
管式加热炉出口温度串级控制系统设计报告
管式加热炉出口温度串级控制系统设计报告本文将详细介绍管式加热炉出口温度串级控制系统的设计方案。
1.系统结构管式加热炉出口温度串级控制系统的结构由两个级联的控制回路组成。
第一个回路为内环控制回路,负责控制燃烧系统的燃气量和进气量,以达到对加热炉温度的快速调节。
第二个回路为外环控制回路,负责控制进料速度和加热炉的出口温度。
2.内环控制回路设计内环控制回路采用比例-积分(PI)控制器。
控制器的输入信号为加热炉温度偏差,输出信号为燃气量和进气量的调节量。
采用PI控制的主要原因是为了避免过度调节,保证系统的稳定性。
3.外环控制回路设计外环控制回路以内环控制回路的调节量作为输入信号,输出信号为进料速度的调节量。
为了达到出口温度的稳定性,可以采用模糊控制器。
模糊控制器的输入信号为加热炉温度偏差和燃气量的调节量,输出信号为进料速度的调节量。
4.控制算法设计内环控制回路采用PI控制算法。
PI控制器的参数调节可以根据系统的响应速度和稳定性进行优化。
外环控制回路采用模糊控制算法。
模糊控制器的参数调节可以通过模糊化和解模糊化的方式进行,以适应不同的工况。
5.控制器实现控制器可以采用嵌入式系统实现。
嵌入式控制器可以根据实时的温度和燃气量数据进行计算和控制,以实现对加热炉温度的稳定控制。
6.系统优化系统的优化可以通过参数调节和控制策略的优化来实现。
参数调节可以通过系统的建模和仿真分析来进行,以找到最优的控制参数。
控制策略的优化可以通过实时监测和调整来实现,以适应不同的工况和控制要求。
总结:通过设计一个管式加热炉出口温度串级控制系统,可以实现对加热炉温度的稳定控制。
内环控制回路负责快速调节温度,外环控制回路负责稳定控制温度。
通过控制算法的设计和优化,可以实现系统的稳定性和响应速度的改善。
通过嵌入式控制器的实现,可以实时计算和控制温度的调节量。
最后,通过参数调节和控制策略的优化,可以进一步提高系统的效果。
课程设计基于PLC的电加热炉温度控制系统设计
第一章绪论1.1选题背景及意义加热炉是利用电能来产生蒸汽或热水的装置。
因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。
而传统的加热炉普遍采用继电器控制。
由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。
随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。
二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。
在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。
在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。
由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。
虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。
1.2国内外研究现状及发展趋势一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。
直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。
与欧美、日本,德国等先进国家相比,其差距较大。
目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。
对于一些过程复杂的,时变温度系统的场合往往束手无策。
而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。
并且普遍采用自适应控制、模糊控制及计算机技术。
近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及性能的不断提升,人工智能理论的实用化。
因此,高精度、智能化、人性化必然是国内外必然的发展趋势。
列管式换热器出口温度控制系统的设计讲解
目录摘要 (1)1换热器过程控制概述、组成及特点 (2)1.1 概述 (2)1.2 换热器的组成 (2)1.3 系统控制过程的特点 (3)1.4 引起换热器出口温度变化的扰动因素 (3)2 换热器出口温度控制系统方案图 (4)2.1 换热器出口温度控制系统流程图 (4)2.2换热器出口温度控制系统方框图 (5)3 换热器过程控制系统分析 (4)3.1 系统介绍 (4)3.2 两极Smith预估补偿器 (6)3.3模糊控制器 (7)4 方案比较 (9)4.1 换热器一般温控系统 (9)4.2 Smith预估器的控制机理 (9)5 控制器的选择 (10)5.1 LDG型系列电磁流量计 (10)5.2 HR-WP-201TR/TC22W智能热电阻/热电偶温度变送器 (10)5.3 LWGB系列涡轮流量变送器 (11)5.4 KVHV电动V型调节球阀 (11)5.5 AI-7048型4路PID 温度控制器 (12)5.6 流量控制器:型号TLS11-LC (13)参考文献 (13)摘要换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。
这个对象的特点是:热流体和冷流体通过对流热传导进行换热,从而使换热器物料出口温度满足工业生产的需求。
本设计采用一带有Smith预估补偿的模糊串级控制器的控制系统,主控变量为换热管出口温度,副变量为冷水流量。
对换热器出口温度偏差、偏差变化率和冷流体的流量值模糊化,使换热器热流体出口温度控制过渡过程平稳,具有较传统PID串级控制算法过渡时间缩短,超调量减少,抗干扰能力强等特点。
列管式换热器出口温度控制系统的设计1换热器过程控制概述、组成及特点1.1 概述换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。
这个对象的特点是:热流体和冷流体通过对流热传导进行换热,从而使换热器物料出口温度满足工业生产的需求。
本设计采用一带有Smith预估补偿的模糊串级控制器的控制系统,主控变量为换热管出口温度,副变量为冷水流量。
过程控制课程设计-加热炉炉温控制系统设计
内蒙古科技大学过程控制课程设计说明书题目:加热炉炉温控制系统设计学生姓名:学号:专业:测控技术与仪器班级:2012-1指导教师:2016年 9 月 8 日目录第一章加热炉概述 (3)1.2加热炉自动控制发展与现状 (3)第二章控制方案论证 (4)2.1加热炉控制影响因素及基本要求 (4)2.2 系统控制方案选择 (5)2.3系统控制参数确定 (5)2.3.1 被控参数选择 (5)2.3.2 控制参数选择 (6)第三章加热炉控制基本原理及系统设计 (6)3.1炉温控制基本原理 (6)3.2加热温度控制系统总体结构图 (7)3.3加热炉温度单回路反馈控制系统结构框图 (7)3.4加热炉串级控制系统 (8)3.5 控制仪表的选型及配置 (9)3.5.1测温元件 (9)3.5.2一体化温度变送器 (9)3.5.3 DX2000型无纸记录仪: (9)3.5.4 调节器 (10)3.5.5执行器选型 (11)3.5.6 电/气阀门定位器ZPD-01 (12)3.5.7安全栅 (12)3.5.8 配电器 (12)3.5.9 薄膜气动调节阀ZMBS-16K (13)第四章设计总结 (14)参考文献引言目前在我国钢铁冶金行业中,能源问题日益严峻以及企业面临越来越激烈的市场竞争,节能增效就显得尤为重要。
这就需要对钢铁冶金行业中的主要耗能设备——加热炉的运行状态进行及时和准确的分析并进行优化,以提高加热炉的运行效率,达到节能降耗的目的。
近年来,随着自动化程度的不断提高,轧钢加热炉燃烧控制已实现串级控制。
加热炉的主要技术经济指标为加热温度和能耗两项。
轧钢加热炉控制质量的好坏直接关系到经济效益,特别是炉温控制对杜绝粘钢现象,提高加热炉寿命,降低钢坯烧损、提高成材率、节能降耗、减少环境污染等具有重要意义。
因此,本设计先根据加热炉结构特点设计控制系统,并介绍和比较其它相关的控制系统,选定了加热炉燃料流量控制系统,并阐述了PID控制思想应用于加热炉燃烧过程控制的情况和特点。
管式加热炉出口温度及炉膛温度串行控制系统设计解析
第1章绪论1.1 设计要求综合运用过程控制系统及自动控制原理课中所学到的理论知识,联系工程实际,选择合理的主变量、副变量,选择合理的控制方式,设计一个符合要求的串级控制系统。
1.1.1 设计题目和设计指标设计题目:管式加热炉出口温度与炉膛温度串级控制系统技术指标:1. 选择控制器与调节阀的作用方式;2.画出控制系统框图;3.采用两步整定法整定主、副控制器PID的参数。
求出比例度与衰减振荡周期;4.按照经验公式且适当修正分别求得主、副控制器的最佳参数值;5.求出系统的阶跃响应曲线;6.求出设定值位0时,施加幅值为30%的一次阶跃扰动信号,系统的输出曲线;7.分析系统特点。
8.撰写设计说明书及注意事项。
1.1.2 设计功能主要功能:选择加热炉出口温度为主变量,炉膛温度为副变量,设计串级控制系统。
第2章系统总体设计方案2.1工艺流程图管式加热炉是工业生产中的常用设备之一,其工艺流程图如图2-1所示:图2-1 管式加热炉工艺流程图2.2方框图和工艺流程的介绍此次管式加热炉出口温度与炉膛温度串级控制系统的设计采用主副回路的串级控制方案,即选取炉口温度为主被控参数,选取炉膛温度为副被控参数,把炉口温度调节器的输出作为炉膛温度调节器的给定值。
其系统框图如图2-2所示:图2-2 管式加热炉出口温度串级控制系统框图管式加热炉简介:管式加热炉一般由四个主要部分组成:烟囱、对流室、辐射室及燃烧器管式加热炉示意图如图2-3所示:图2-3 管式加热炉 通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。
主调节器 管壁 调节阀 副测量变送器物料主测量变送器炉膛 副调节器对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。
辐射室:通过火焰或高温烟气进行辐射传热的部分。
这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。
燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。
加热炉出口温度控制系统设计17页word
吉林建筑大学城建学院课程设计报告题目名称加热炉出口温度控制系统设计院(系)电气工程及其自动化课程名称过程控制工程课程设计班级电气13-1学号学生姓名指导教师起止日期2019.6.20-2019.7.1成绩目录摘要 (Ⅰ)ABSTRACT (Ⅱ)第1章绪论 (1)1.1 设计目的 (1)1.2 设计任务 (1)1.3 加热炉温度控制系统简介 (1)1.4 加热炉温度控制系统的发展 (2)第2章对象模型建立 (4)2.1 建立数学模型 (4)2.2 控制系统分析 (5)第3章系统设备选型 (6)3.1 测量变送器和传感器的选择 (6)3.2 执行器的选择 (6)3.3 控制器的选择 (6)第4章控制器参数整定及Simulink仿真 (9)4.1 控制器参数整定 (9)4.2 Simulink仿真 (11)结论 (12)致谢 (13)参考文献 (14)摘要随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。
随着网络技术的发展和整个工厂完全实现两级自动化管理,在过程级上通过相应的终端了解任何一个设备或任何一个装置的控制情况以及生产情况。
过程控制系统在加热炉系统中得到广泛的应用,它是加热炉控制系统的重要部分,是对以及控制系统的一个总领和扩充。
现代加热炉的生产过程可以实现高度的过程控制,以保证在加热过程中温度的准确控制,这就为工业生产提供了有利条件。
加热炉是工业生产中的一个重要装置,它的任务是把原料加热到一定温度,以保证下道工序的顺利进行。
因此加热炉的温度控制起着举足轻重的作用。
关键词:加热炉;过程控制系统;温度控制ABSTRACTWith the rapid development of China's national economy, the use of heating furnace is more and more extensive. With the development of network technology and the whole factory to achieve two level of automation management, in the process level through the corresponding terminal to understand any equipment or any one of the control of the device and the production situation. Process control system has been widely used in the heating furnace system, it is heating furnace control system is an important part of, and the control system of a consul general and expand. The production process of modern heating furnace can realize high process control, so as to ensure the accurate temperature control during the heating process, which provides favorable conditions for industrial production. Heating furnace is an important device in industrial production, it is the task of heating raw materials to a certain temperature, in order to ensure the smooth progress of the next process. So the temperature control of the heating furnace plays an important role.Keywords:Reheating furnace; process control system; temperature control第1章绪论1.1设计目的通过过程控制工程课程设计能从中学会从工程角度思考问题,熟悉本专业领域的过程控制仪表系统设计,学会过程控制系统各环节额的组合作用,学会对温度控制仪表的正确接口、温度信号调理、线性化、校准及常用的控制方法。
实用文档之加热炉出口温度控制系统设计
实用文档之加热炉出口温度控制系统设计实用文档之"吉林建筑大学城建学院"课程设计报告题目名称加热炉出口温度控制系统设计院(系)电气工程及其自动化课程名称过程控制工程课程设计班级电气13-1学号学生姓名指导教师起止日期2016.6.20-2016.7.1 成绩目录摘要(Ⅰ)ABSTRACT (Ⅱ)第1章绪论 (1)1.1设计目的 (1)1.2设计任务 (1)1.3加热炉温度控制系统简介 (1)1.4加热炉温度控制系统的发展 (2)第2章对象模型建立 (4)2.1建立数学模型 (4)2.2控制系统分析 (5)第3章系统设备选型 (6)3.1测量变送器和传感器的选择 (6)3.2执行器的选择 (6)3.3控制器的选择 (6)第4章控制器参数整定及S i m u l i n k仿真 (9) 4.1控制器参数整定 (9)4.2S i m u l i n k仿真 (11)结论…………………………………………………………………………………1 2致谢………………………………………………………………………………1 3参考文献…………………………………………………………………………1 4摘要随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。
随着网络技术的发展和整个工厂完全实现两级自动化管理,在过程级上通过相应的终端了解任何一个设备或任何一个装置的控制情况以及生产情况。
过程控制系统在加热炉系统中得到广泛的应用,它是加热炉控制系统的重要部分,是对以及控制系统的一个总领和扩充。
现代加热炉的生产过程可以实现高度的过程控制,以保证在加热过程中温度的准确控制,这就为工业生产提供了有利条件。
加热炉是工业生产中的一个重要装置,它的任务是把原料加热到一定温度,以保证下道工序的顺利进行。
因此加热炉的温度控制起着举足轻重的作用。
关键词:加热炉;过程控制系统;温度控制第第ABSTRACTWith the rapid development of China's national economy, the use of heating furnace is more and more extensive. With the development of network technology and the whole factory to achieve two level of automation management, in the process level through the corresponding terminal to understand any equipment or any one of the control of the device and the production situation. Process control system has been widely used in the heating furnace system, it is heating furnace control system is an important part of, and the control system of a consul general and expand. The production process of modern heating furnace can realize high process control, so as to ensure the accurate temperature control during the heating process, which provides favorable conditions for industrial production. Heatingfurnace is an important device in industrial production, it is the task of heating raw materials to a certain temperature, in order to ensure the smooth progress of the next process. So the temperature control of the heating furnace plays an important role.Keywords:Reheating furnace; process control system; temperature control第Ⅱ第Ⅱ第1章绪论1.1设计目的通过过程控制工程课程设计能从中学会从工程角度思考问题,熟悉本专业领域的过程控制仪表系统设计,学会过程控制系统各环节额的组合作用,学会对温度控制仪表的正确接口、温度信号调理、线性化、校准及常用的控制方法。
过程控制课程设计 燃油加热炉温度控制系统
《过程控制》课程设计题目:燃油加热炉温度控制系统班级:学号:姓名:同组人员:任课教师:张虹1.,具体设计要求如下:(1)根据实验数据选择一定的辨识方法建立对象的模型;(2)根据辨识结果设计符合要求的控制系统(给出带控制点的控制流程图,控制系统原理图等,选择控制规律);画出控制系统SAMA图;(3)根据设计方案选择相应的控制仪表(DDZ-Ⅲ),绘制原理接线图;(4)对设计系统进行仿真设计,首先按对象特性法求出整定参数,然后按4:1衰减曲线法整定运行参数。
(5) ★用MCGS 进行组态设计。
二、被控对数学模型建模及对象特性分析 2.1对象数学模型的计算及仿真验证根据矩形脉冲响应数据,得到阶跃响应数据,并进行相应的归一化处理,得:figure;plot(t,ym);%画出归一化阶跃响应输出曲线 grid on ;脉冲响应及阶跃响应输出曲线归一化输出曲线从图中取y*(t1)=0.4,y*(t2)=0.8,得: t1=382s,t2=882s因为t1/t2=0.433<0.46,所以选用2阶传函。
又因为:1212122(1.740.55)()TT t T T t ≈-+,12121()2.16T T t t +≈+。
求得T1=166s ,T2=419s 得到对象传递函数为:对象仿真图如下: 2.2对象特性分析为二阶自衡对象,没有纯延迟环节。
自衡率ρ==K11.88,响应速度ε=TK=0.0021, 三、控制系统设计 3.1而炉内温用事实说话。
(1 100%0%-:根据广义对象画出输出曲线见图5,程序:clc;读图可知:τ=60,T=700最终整定参数如下:δ=0.85ετ=0.112;kc=;Ti=2τ=120;Td=0.5τ=30;参数带入PID 控制器之后震荡剧烈,稳定性差,所以kc 减小,适当增加Td ,经过多次调节之后取kc=3,Ti=120,Td=200;SIMULINK 仿真图(带扰动)如下:很明显,调节速度慢,而且超调过大,所以舍弃这种方法。
加热炉出口温度与炉膛温度串级控制系统设计
第一章系统分析与控制方案的确立1.系统分析图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料图1.1加热炉出口温度系统由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
2.串级控制系统的设计加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。
图1.2加热炉出口温度串级控制系统结构图串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的过渡过程。
由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如图1.3所示。
(1) 主被控参数的选择应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量的参数。
在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料温度维持在某给定值上下。
过程控制课程设计 加热炉温度控制
目录1 系统简介 (2)2 设计方案及仪表选型 (3)2.1 设计方案 (3)2.2 仪表选型 (4)2.2.1 调节器 (6)2.2.2 执行器 (8)2.2.3 变送器 (9)2.2.4 检测元件 (11)3 控制系统仪表配接图及说明 (12)3.1 控制系统仪表配接图 (12)3.2 控制系统仪表配接说明 (12)4 仪表型号清单 (13)5 参考文献 (14)附录控制系统仪表配接图 (15)1 系统简介电加热炉被广泛应用于工业生产和科学研究中。
由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。
在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定性已成为产品质量的决定性因素。
对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。
在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。
在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。
为此,可靠的温度的监控在工业中是十分必要的。
加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。
随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。
加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。
本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。
物料被加热后,温度达到生产要求后,进入下一个工艺环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二○一三~二○一四学年第一学期信息科学与工程学院
课程设计报告书
课程名称:过程控制与集散系统课程设计班级:自动化2010级4班
学号:201004134140
姓名:肖翔
指导教师:万恒
二○一三年十一月
一.设计题目和设计要求;
设计题目:加热炉出口温度控制系统的设计
图1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料
图1 加热炉出口温度系统
但是,由于炉子时间常数大,而且扰动的因素多,单回路反馈控制系统不能满足工艺对炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
设计要求:
1.绘制加热炉出口温度单回路反馈控制系统结构框图。
2.以加热炉出口温度为主变量,选择滞后较小的炉膛温度的副变量,构成炉出口温度对炉膛温度的串级控制系统,要求绘制该串级控制系统结构图。
3.假设主对象的传递函数为0140()(1)(2)
G s s s =++,副对象的传递函数为02()(1)
G s s =+40,主、副控制器的传递函数分别为s K s G c c 21)(11+=,22)(c c K s G =,1)()(21==s G s G m m ,
请确定主、副控制器的参数(要求写出详细的参数估算过程)。
4.利用simulink 实现单回路系统仿真和串级系统仿真,分别给出系统输出 响应曲线。
二.设计任务分析(包括系统建模、控制方案);
单回路反馈控制系统(温度):
单回路反馈控制系统结构框图
管式加热炉的控制目标是保证原料的出口温度达到设定值并维持在工艺要求范围内。
在加热炉工作的过程中,原料出口温度To受进入管式加热炉原料的初始温度和进入流量,燃料的流量和燃烧值的影响。
其中,原料的流量和燃料的流量是影响原料出口温度的主要因素。
在原料流量一定的情况下,在燃料的入口处安装一个调节阀,控制进入管式加热炉的燃料流量,调节阀的开度大小由原料出口温度值控制,构成管式加热炉出口温度单回路反馈控制系统。
该控制方案简单,实现方便,但是在实际应用过程中,控制效果很差,达不到工艺要求。
主要原因是加热炉内管有数百米长,离出口较远,且热容较大,是一个典型的一阶加纯滞后过程。
单回路反馈控制系统(流量):
针对上述问题,为了及时检测到燃料流量的变化,采用管式加热炉出口温度间接控制方案,选择燃料流量作为副被控量,通过操纵燃料流量控制出口温度。
但是,控制系统对温度不能控制,当负荷发生自扰时,进料出口温度将发生变化,流量单回路控制系统无法保证温度恒定。
串级控制系统:
通过以上分析,上述两种单回路控制系统的控制效果较差,很难达到满意的效果。
因此采用串级控制系统,加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度对炉膛温度的串级控制系统。
串级控制系统结构框图
串级控制系统中,由于引进了副回路,不仅能迅速克服作用于副回路内的干扰,也能加速克服主回路的干扰。
副回路具有先调、初调、快调的特点;主回路具有后调、细调、慢调的特点,对副回路没有完全克服干扰的影响能彻底加以消除。
由于主副回路相互配合,使控制质量显著提高。
与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器但控制效果却有显著的提高。
其原因是在串级控制系统中增加了一个包含二次扰动的副回路,使系统①改善了被控过程的动态特性,提高了系统的工作频率;②对二次扰动有很强的克服能力;③减少了对象的时间常数,提高了系统的响应速度;④提高了对一次扰动的克服能力和对回路参数变化的自适应能力。
故而本次设计采用出口温度对炉膛温度的串级控制系统。
三.设计步骤如下
在串级控制系统中,主副调节器所起的作用是不同的。
主调节器起定值控制作用,而副调节器起随动控制作用。
主参数不允许有余差,同时又由于要控制的工业过程有较大的容量滞后,所以主调节器通常选择PI型调节器以实现主参数的无差控制。
而在串级控制系统中,控制副参数是为了保证和提高主参数的控制质量,对副参数的要求一般没有像主参数那样的严格,可以在一定的范围内变化,允许有余差。
因此,副调节器一般选P调节器。
为了能够快速的跟踪主调节器的输出,一般不引入积分环节,因为积分环节会延长调节过程,减弱副回路的快速
特性。
副调节器一般也不引入微分环节,因为当调节器有微分环节时,主调节器输出稍有变化,就容易引起调节阀有较大的开度变化,对系统的稳定性能不利。
综上所述,主调节器应选用PI型调节器,副调节器选用P型调节器。
Go1(s)=40/(S+1)(S+2) Go2(s)=40/(S+1)
Gc1(s)=Kc1+1/2S Gc2(s)=Kc2
Gm1(s)=1 Gm2(s)=1
串级控制系统的参数整定原则是:先副回路,后主回路。
一般而言,副回路的控制要求不高,可以参照经验法一次整定,主回路的控制器参数整定与单回路整定方法类似,主要有以下三种方法:
1.逐次逼近法:
依次整定主回路、副回路,然后循环进行,逐步接近主副回路最佳整定整定方法繁琐,很少使用。
2.两步整定法:
按照串级控制系统主、副回路的情况,先整定副控制器,后整定主控制器。
比逐次逼近法简单,但还是要做两次4:1衰减曲线法的实测。
3.一步法:
根据经验先将副控制器一次放好,不再变动,然后按照一般单回路孔控制系统的整定方法直接整定主控制器。
所以,本次设计采用一步整定法。
具体步骤如下:
1.根据副对象的特性或经验整定副控制器的比例带,使副回路按纯比例控
制运行,常见副控制器比例带取值如下表所示:
2.将系统投入串级控制状态运行,按照单回路控制系统的参数整定方法对
主控制器进行参数整定,使主变量的控制品质最佳。
选取Kc2=4(整定时可以再做适当调整)。
然后在副回路已经闭合的情况下
按单回路控制器参数整定方法整定主控制器,
步骤如下:
1.置调节器积分时间Ti到最大值,微分时间Td为0,比例带为较大值,并将系统
投入运行
2.待系统稳定后,作设定值阶跃扰动,并观察系统的响应,若系统响应衰减太
快,则减少比例带,反之,增大比例带。
如此反复,直到系统出现4:1衰减振荡过程,记下此时的比例带和振荡周期的数值。
3.
四.Simulink建模与仿真;
1.单回路控制系统阶跃响应
框图和simulink仿真结果如下:
根据以上所示仿真结果,该系统的单回路系统阶跃响应发散,即系统是不稳定的。
而对于特征方程D(s)=S^3+4S^2+5S+1600=0,用劳斯判据,这是不稳定的,与所得仿真结果是一致的。
2.串级控制系统阶跃响应:
由于该题中积分环节参数已经设定好,为0.5,故只需整定Kc1
取Kc2=4,如下图当Kc1=0.55时,在t1=1.68s,出现第一个峰值,为1.5,在t2=3.07s,出现第二个峰值为1.13,最后曲线稳定在1
0.52/0.13≈4:1 符合4:1衰减曲线
所以ts=3.07-1.5=1.57s
Ti=2ts=3.14s
方块图如下:
输出响应下:
3.单回路系统与串级回路的比较
比较上述两种系统的阶跃响应可很看出,当单回路系统不稳定时,若采用串级控制系统,可以改善系统的稳定性,还可改善系统的动态性能。
所以,可看出串级控制系统可改善系统的控制质量;同时由于副回路的存在,减小了对象的时间常数,提高了系统的响应速度。
实验小结
通过本次试验,对过程控制系统中的建模方法及控制系统参数的的选择有了一定了解,特别是对于串级控制系统的应用范围,以及串级控制系统对于改善系统稳态与动态性能的影响有了较深刻的认识,我也更加清楚通过串级控制可以将一个不稳定的单闭环回路改善为一个动态性能与稳态性能良好的双闭环系统。
同时,对PID参数整定有了更好的了解,也了解到在进行PID参数整定,尤其是利用4:1衰减振荡法进行整定时的整定步骤,以及对于调节PID过程中根据其响应曲线确定其参数趋势的变化。
最后,让我对过程控制理论知识在实际应用中有了更加深刻的认识,使我明白,串级控制系统在实际应用中是很有应用价值的。