反馈放大电路设计实验报告模版

合集下载

负反馈放大电路 实验报告

负反馈放大电路 实验报告

负反馈放大电路实验报告负反馈放大电路实验报告引言:在电子学中,负反馈放大电路是一种常见且重要的电路配置。

通过引入负反馈,可以提高放大电路的稳定性、线性度和频率响应。

本实验旨在通过实际搭建负反馈放大电路并测量其性能参数,验证负反馈的作用和效果。

一、实验原理负反馈是指将放大电路的一部分输出信号与输入信号进行比较,并将差值反馈到放大电路的输入端,从而调节放大倍数和频率响应。

负反馈放大电路可以分为电压负反馈和电流负反馈两种类型。

二、实验过程1. 实验器材准备:准备好放大电路所需的电阻、电容等元件,以及信号发生器、示波器等测量设备。

2. 搭建电路:按照实验要求,搭建负反馈放大电路。

3. 测试输入输出特性:将信号发生器连接到放大电路的输入端,通过改变输入信号的幅值和频率,测量输出信号的幅值和相位。

4. 测试频率响应:保持输入信号的幅值不变,改变输入信号的频率,测量输出信号的幅值和相位随频率变化的情况。

5. 测试稳定性:通过改变负反馈电阻的值,观察输出信号的变化情况,验证负反馈对放大电路稳定性的影响。

三、实验结果与分析在实验中,我们搭建了一个基本的电压负反馈放大电路,并进行了一系列测试。

以下是实验结果的总结和分析:1. 输入输出特性:通过测量输入输出信号的幅值和相位,我们可以得到放大电路的增益和相位差。

实验结果显示,随着输入信号幅值的增加,输出信号的幅值也相应增加,但增益逐渐减小,这是负反馈的作用。

相位差也随着频率的变化而变化,但变化较为平缓,说明负反馈对相位稳定性的改善。

2. 频率响应:我们改变输入信号的频率,测量输出信号的幅值和相位随频率变化的情况。

实验结果显示,随着频率的增加,输出信号的幅值逐渐减小,相位差也有所变化。

这是因为负反馈对高频信号有一定的衰减作用,从而改善了放大电路的频率响应。

3. 稳定性:通过改变负反馈电阻的值,我们观察到输出信号的变化情况。

实验结果显示,当负反馈电阻增大时,输出信号的幅值减小,但增益变得更加稳定。

负反馈放大电路实验报告

负反馈放大电路实验报告

一、实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。

二、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、万用表5、晶体三极管3DG6×2(β=50~100)或9011×2 电阻器、电容器若干。

三、实验原理负反馈放大器有四种组态,即电压串联、电压并联、电流串联、电流并联。

本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。

1、图3-1为带有负反馈的两级阻容耦合放大电路,在电路中通过f R 把输出电压O U 引回到输入端,加在晶体管T1的发射极上,在发射极电阻1F R 上形成反馈电压f U 。

根据反馈的判断法可知,它属于电压串联负反馈。

带有电压串联负反馈的两级阻容耦合放大器主要性能指标如下①闭环电压放大倍数:u u uuf F A 1A A +=其中I O u U U A /=——基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。

u u F A +1——反馈深度,它的大小决定了负反馈对放大器性能改善的程度。

②反馈系数:F1f F1u R R R F +=③输入电阻:i u u if R F A R )1(+=,i R ——基本放大器的输入电阻④输出电阻:uuO Oof F A 1R R +=,of R :基本放大器的输出电阻 uo A :基本放大器∞=L R 时的电压放大倍数 ①在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令0=O U ,此时f R 相当于并联在1F R 上。

②在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1管的射极)开路,此时)1F f R R +(相当于并接在输出端。

可近似认为f R 并接在输出端。

根据上述规律,就可得到所要求的如图3-2所示的基本放大器。

四、实验步骤1、测量静态工作点数模实验箱按图3-3连接实验电路,模拟电子技术实验箱按图3-4连接实验电 路,首先取 适量,频率为1KHz 左右,调节电位器使放大器的输出不出现失真,然后使 (即断开信号源的输出连接线),用万用表直流电压档分别测量第一级、第二级的静态工作点,记入表3-1。

负反馈放大电路的实验报告

负反馈放大电路的实验报告

负反馈放大电路的实验报告负反馈放大电路的实验报告引言负反馈放大电路是电子工程领域中常见的一种电路结构,它通过将一部分输出信号反馈到输入端,以达到提高电路性能的目的。

本实验旨在通过搭建负反馈放大电路并进行实验验证,深入理解负反馈放大电路的原理和应用。

实验原理负反馈放大电路是通过将一部分输出信号反馈到输入端,形成一个反馈回路,从而改变电路的输入-输出关系。

其中最常见的一种负反馈方式是电压负反馈,它通过将输出电压与输入电压之间的差异进行放大,从而实现对电路增益的调节。

实验步骤1. 准备实验所需的电路元件和仪器设备,包括放大器、电阻、电容等。

2. 根据实验要求,搭建负反馈放大电路。

3. 连接信号源和示波器,确保电路正常工作。

4. 调节放大器的参数,如增益和带宽,观察输出信号的变化。

5. 测量并记录实验数据,包括输入信号的幅值、输出信号的幅值、增益等。

6. 对实验结果进行分析和总结,验证负反馈放大电路的性能。

实验结果与分析通过实验我们得到了一系列实验数据,并进行了分析和总结。

首先,我们观察到在负反馈放大电路中,输出信号的幅值相对于输入信号的幅值有所减小。

这是因为负反馈放大电路通过将一部分输出信号反馈到输入端,降低了电路的增益,从而实现了对信号的调节。

其次,我们还观察到在负反馈放大电路中,输出信号的频率响应更加平坦。

这是因为负反馈放大电路通过反馈回路,降低了电路的频率响应,使其更加稳定。

这对于一些需要稳定输出信号的应用场景非常重要。

此外,我们还发现负反馈放大电路可以提高电路的线性度。

通过调节反馈回路的参数,我们可以使输出信号更加接近输入信号,从而减小非线性失真。

这对于音频放大器等需要高保真度的应用非常重要。

结论通过本次实验,我们深入理解了负反馈放大电路的原理和应用。

负反馈放大电路通过将一部分输出信号反馈到输入端,实现了对电路增益、频率响应和线性度的调节。

这种电路结构在电子工程领域中具有广泛的应用,如音频放大器、运算放大器等。

负反馈放大电路实验报告

负反馈放大电路实验报告

负反馈放大电路实验报告一、实验目的。

本实验旨在通过搭建和测试负反馈放大电路,加深对负反馈原理的理解,掌握负反馈放大电路的基本特性和工作原理。

二、实验原理。

负反馈放大电路是在放大器的输出端和输入端之间加入反馈电路,使得输出信号的一部分反馈到输入端,从而抑制放大器的增益,降低失真,提高稳定性和线性度。

三、实验器材。

1. 信号发生器。

2. 示波器。

3. 电阻、电容。

4. 电压表。

5. 万用表。

6. 负反馈放大电路实验箱。

四、实验步骤。

1. 按照实验箱上的示意图连接负反馈放大电路。

2. 调节信号发生器的频率和幅度,观察输出端的波形变化,并用示波器观察输入输出波形的相位差。

3. 测量输入端和输出端的电压、电流,计算增益和带宽。

4. 调节反馈电路的参数,观察输出波形的变化。

五、实验结果与分析。

通过实验我们观察到,在负反馈放大电路中,输出波形的失真明显降低,相位差减小,增益稳定性提高。

当调节反馈电路的参数时,输出波形的变化也相对灵活,这说明负反馈放大电路具有较好的调节性能。

六、实验结论。

负反馈放大电路可以有效地降低失真,提高稳定性和线性度,是一种常用的放大电路结构。

掌握负反馈放大电路的基本特性和工作原理,对于电子工程技术人员来说具有重要的意义。

七、实验总结。

通过本次实验,我们深入了解了负反馈放大电路的工作原理和特性,并通过实际操作加深了对其的理解。

在今后的学习和工作中,我们将更加熟练地运用负反馈放大电路,为电子技术的发展贡献自己的力量。

八、参考文献。

1. 《电子技术基础》,XXX,XXX出版社,200X年。

2. 《电子电路设计与仿真》,XXX,XXX出版社,200X年。

以上为负反馈放大电路实验报告的内容,希望对大家有所帮助。

负反馈放大电路实验报告

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路一、实验目的1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。

二、实验任务设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。

结型场效应管的型号是2N5486,晶体管的型号是9011。

三、实验内容1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。

(1)静态和动态参数要求1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ;2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120;3)闭环电压放大倍数为10so sf -≈=U U A u 。

(2)参考电路1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。

图1 电压并联负反馈放大电路方框图2)两级放大电路的参考电路如图2所示。

图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。

考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。

图2 两级放大电路实验时也可以采用其它电路形式构成两级放大电路。

3.3k Ω(3)实验方法与步骤 1)两级放大电路的调试a. 电路图:(具体参数已标明)¸b. 静态工作点的调试实验方法:用数字万用表进行测量相应的静态工作点,基本的直流电路原理。

第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ< - 4V 。

记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告模拟电子技术作为电子学的重要分支,对于电子工程师的培养具有重要意义。

在模拟电子技术中,负反馈放大电路是一种常见且重要的电路。

本文将对负反馈放大电路进行实验报告,探讨其原理、实验过程以及实验结果。

一、实验目的负反馈放大电路是一种通过在放大器输出端与输入端之间引入负反馈电压,以改善放大器性能的电路。

本次实验的目的是通过搭建负反馈放大电路,了解其工作原理以及对电路性能的影响。

二、实验原理负反馈放大电路是通过将放大器输出信号与输入信号进行比较,并将差异信号进行反馈,从而抑制放大器的非线性失真、增加电路的稳定性和线性度。

在负反馈放大电路中,反馈网络的作用是将一部分输出信号引入到输入端,与输入信号相比较,产生差异信号进行反馈。

三、实验材料本次实验所需材料包括:运放、电阻、电容、示波器等。

四、实验步骤1. 按照实验电路图搭建负反馈放大电路,确保电路连接正确。

2. 将输入信号接入到放大器的非反相输入端,输出信号接入到示波器进行观测。

3. 调节电源电压,使其达到所需的工作电压。

4. 输入不同的信号幅值,观察输出信号的变化。

5. 测量输入信号幅值与输出信号幅值之间的关系,记录实验数据。

五、实验结果与分析通过实验观察和数据记录,我们可以得到输入信号幅值与输出信号幅值之间的关系曲线。

在负反馈放大电路中,输入信号经过放大后,输出信号的幅值相对于输入信号进行了衰减。

这是因为负反馈电路引入的反馈信号与输入信号相位相反,通过相位差的叠加,使得输出信号的幅值减小。

在实验中,我们还可以观察到负反馈放大电路对输入信号波形的改变。

通过引入反馈信号,负反馈放大电路可以抑制放大器的非线性失真,使得输出信号更加接近输入信号的波形。

这对于一些对波形要求较高的应用场景非常重要。

六、实验总结通过本次实验,我们对负反馈放大电路的原理、实验过程以及实验结果有了更深入的了解。

负反馈放大电路作为一种常见的电路结构,在电子工程中具有广泛的应用。

反馈放大电路设计实验报告模版

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路实验名称:负反馈放大电路设计学院:信息工程学院专业:信息工程班级:组号:指导教师:田明报告人:学号:实验地点N102 实验时间:实验报告提交时间:教务处制一.实验名称:负反馈放大电路设计二.实验目的:加深对负反馈放大电路原理的理解.学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法.三.实验仪器:双踪示波器一台/组信号发生器一台/组直流稳压电源一台/组万用表一台/组四.实验容:设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下:闭环电压放大倍:30---120输入信号频率围:1KHZ-------10KHZ.电压输出幅度≥1.5V输出电阻≤3KΩ五.实验步骤:1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集成运算负反馈放大电路.为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。

本设计可以采用共发射极-共基极-共集电极放大电路。

对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。

本设计采用电压并联负反馈形式。

2.设计电路,画出电路图.下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。

整体原理图如下:从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给第二级的共基极电路,因此两级直接的静态工作点会相互影响。

第二级放大电路通过电容输出给第三级。

第三级放大电路是共集电极电路,射极跟随输出到负载。

整体参数设计:假设输入电压峰峰值为50mv,输出电压峰峰值不小于1.5V,电压放大倍数>30 倍。

负反馈放大电路 实验报告

负反馈放大电路 实验报告

负反馈放大电路实验报告
本实验室使用的负反馈放大电路是LM741。

该IC可用于几乎所有的负反馈放大电路类型,从基本的非线性放大电路到模拟加法器,从积分电路到高电平门控放大器。

实验中使用一台型号为DS2202的示波器,并配备了实验适配器板及常见元器电路,
引入实验台。

同时,示波器上连接着实验板上的LM741电路。

实验运行电路图(忽略电源部分)可见下图:
实验的实质是测量LM741的功率放大特性,在实验之前我们应该熟悉LM741的模拟特性,也就是电路的元件如何产生多义性的电压变化特性。

实验中,数字三端口开关上调节振荡电压,改变输入信号,重复经过LM741的放大过程。

在实验过程中,同时观察和测量示波器上的输出Voltage Voltage电压波形。

操作完成后,由实验台上的数字表可看出,在实验中,示波器上的输出Voltage电压
可以随振荡电压的大小而发生变化,并能够通过增加调节电压去改变电路的功率放大系数,由此可以确定LM741的功率放大特性。

总而言之,本实验证明了LM741的功率放大特性,可以通过增加调节电压,改变电路
的功率放大系数,从而达到调节电路功率放大器的效果。

负反馈放大电路实验报告

负反馈放大电路实验报告

负反馈放大电路实验报告负反馈放大电路实验报告引言:负反馈放大电路是电子工程中常见的一种电路结构,通过引入负反馈,可以改善放大电路的性能,提高稳定性和线性度。

本实验旨在通过搭建负反馈放大电路并进行实际测量,验证其性能改善效果。

一、实验装置与原理本实验采用了基本的共射放大电路作为负反馈放大电路的实验对象。

该电路由三极管、电阻、电容等元件组成,其原理是通过负反馈将放大电路的输出信号与输入信号进行比较,并通过调节反馈电路的增益来实现性能的改善。

二、实验步骤1. 搭建电路:根据实验指导书上的电路图,依次连接三极管、电阻和电容等元件,确保电路连接正确无误。

2. 调整电路参数:通过调节电阻的值,使得电路的工作点达到最佳状态,以确保三极管能够正常工作。

3. 连接信号源:将信号源与输入端相连,确保输入信号正常输入。

4. 连接示波器:将示波器与输出端相连,以便观察输出信号的波形和幅度。

5. 测量输出信号:通过示波器观察输出信号的波形和幅度,并记录下相应的数值。

三、实验结果与分析在实验中,我们通过调节电阻的值,使得电路的工作点达到最佳状态。

在这个状态下,我们观察到输出信号的波形明显改善,失真减小,幅度更加稳定。

这说明负反馈放大电路能够有效地改善放大电路的性能。

此外,我们还通过改变输入信号的频率,观察输出信号的变化。

实验结果显示,随着频率的增加,输出信号的幅度有所下降,但波形仍然保持较好的线性度。

这说明负反馈放大电路对于不同频率的信号都能够进行有效放大,并保持较好的线性度。

四、实验总结通过本次实验,我们成功搭建了负反馈放大电路,并通过实际测量验证了其性能改善效果。

负反馈放大电路能够有效地改善放大电路的线性度和稳定性,使得输出信号更加稳定、准确。

在实际应用中,负反馈放大电路被广泛应用于音频放大器、功放等电子设备中,以提高音质和信号质量。

然而,负反馈放大电路也存在一些限制,如增加了电路的复杂性、引入了噪声等。

因此,在实际设计中需要综合考虑各种因素,选择合适的负反馈放大电路结构以及合适的参数。

负反馈放大电路设计实验报告

负反馈放大电路设计实验报告

负反馈放大电路设计实验报告
负反馈放大电路设计实验报告
本次实验的目的是设计,组装,安装并测试具有负反馈的放大电路。

实验操作序号、实验操作的具体内容以及实验结果分别如下所示。

1.确定放大器的最小特性和参量灵敏度:从设计仿真程序中获取所需参数。

2.组装放大器:通过给定的电路原理图以及所需元件组装放大器。

3.安装放大器:将放大器安装到实验板上,并对连接线及板上元件进行连接。

4.建立反馈网络:将负反馈装置根据电路板上的原理图连接到输出和输入部分。

5.测试放大器:根据电路板上的参量灵敏度,使用台架仪器测试实际放大器的最小特性以及负反馈网络 .
实验结果表明,负反馈放大器的最小特性与预期一致,参量灵敏度也符合实验要求,可知该放大器正常运行并实现预期功能。

通过本次实验,使用者可以了解负反馈放大器的结构、特性及其灵敏度,从而掌握放大器的基础知识,能够用此技术来设计更多更复杂的电路以满足不同应用的要求。

负反馈放大电路的设计与仿真实验报告-V1

负反馈放大电路的设计与仿真实验报告-V1

负反馈放大电路的设计与仿真实验报告-V1【正文】负反馈放大电路的设计与仿真实验报告一、引言负反馈是现代电子学中常用的一种技术手段,可用于提高放大电路的稳定性、增加带宽、降低失真等。

本实验旨在通过设计和仿真一个负反馈放大电路,比较其与未加负反馈的放大电路的性能差异,并验证负反馈对电路的改善作用。

二、设计与仿真1.设计要求本实验设计的放大电路要求如下:①输入阻抗大于10kΩ;②输出阻抗小于1kΩ;③增益要求10倍左右;④带宽大于10kHz。

2.电路设计本实验采用非反相输入的共射极放大电路(图1),电路由电压放大和电流放大两部分构成。

图1 非反相输入共射极放大电路其中,Vi为输入信号,C1为耦合电容,R1为输入电阻,R2为电路的DC偏压电阻,Q1为NPN晶体管,Rc为集电极负载电阻,C2为旁路电容,Re为发射极电阻,VCC为电源电压,RL为输出负载电阻。

为了实现负反馈,本实验在放大电路中串联了一个反馈电阻Rf(图2)。

图2 负反馈放大电路3.电路仿真为了验证电路设计的正确性,本实验通过仿真软件Multisim对放大电路进行仿真。

结果显示,电路有很好的放大效果,输入输出波形相位相同,且波形幅值增益约为10倍。

经过仿真后,输出信号稳定,未出现失真等问题。

三、实验结果为了验证负反馈对电路的改善作用,本实验对比了带负反馈和不带负反馈两种放大电路的性能差异。

实验结果如下:1.带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:17.5kΩ输出电压:19.5V输出阻抗:751Ω增益:9.752.不带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:16.8kΩ输出电压:10.2V输出阻抗:3.04kΩ增益:5.1通过以上测量参数可知,带负反馈电路与不带负反馈电路相比,具有更高的增益、更低的输出阻抗和更好的稳定性。

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告实验目的:为了深入理解负反馈放大电路的工作原理,通过实验掌握负反馈参数的计算方法以及负反馈放大电路的设计方法。

实验器材:集成电路LM741、电阻、电容、连线板等。

实验原理:在模拟电路中,负反馈放大器是一个重要的电路,在放大器的应用中具有极其广泛的应用。

本实验主要是通过实验学习负反馈放大电路的基本工作原理、参数的计算方法以及负反馈放大电路的设计方法。

实验步骤:1. 连接集成电路LM741和电路板上的电阻、电容。

按照连线图连接后注意检查是否正确连接。

2. 确认电压源为±15V,开机。

3. 利用函数发生器向输入端输入一定的正弦波作为输入信号,检测输出波形。

4. 检测输出波形的包络线,进行测量,计算增益。

5. 对电路进行负反馈处理,调整反馈电阻大小,通过计算得到反馈放大器的增益。

6. 比较带负反馈和不带负反馈的放大电路增益、输入电阻、输出电阻,分析和总结。

实验结果:在本实验中,我们应用了直接放大、电压跟随、电流跟随以及反相等多种负反馈放大电路。

通过实验,我们得到了一些基本的结果:1. 利用实验得到的数据计算增益,在不同的工作环境下,增益数值的大小也是不同的。

2. 对比不同的负反馈放大电路可见,带负反馈的电路系统具有较高的稳定性和抗干扰能力,同时其输出电阻和输入电阻大大提高,符合实际应用的需求。

3. 在电压跟随式负反馈放大电路中,反馈电阻Rf和输入电阻Rin之比即是增益倍数。

4. 在电流跟随式负反馈放大电路中,反馈电阻Rf可以影响输出电流变化,而输入电阻Rin对于电路操作几乎没有影响。

5. 在反向式负反馈放大电路中,反馈电压为反向反馈,具有削弱输出电压对于输入电压反应的效果。

实验结论:通过本实验,我们深入学习了负反馈放大电路的原理和设计方法,掌握了负反馈参数的计算方法以及负反馈放大电路的基本工作原理。

我们还了解到不同负反馈放大电路的优缺点,为今后实际应用提供了理论依据。

实验三负反馈放大电路

实验三负反馈放大电路
《电子技术实验》课程实验报告
实验三 负反馈放大电路
一、实验目的
1、研究负反馈对放大器性能的影响。
2、掌握反馈放大器性能的测试方法。
二、实验原理
反馈在电子技术中得到广泛应用。所谓反馈就是将放大器的输出信号(电压或电流)的一部分或全部,通过适当的电路(反馈网络)送回到放大电路的输入回路,使放大器获得某些性能的改善。在电子技术中,对反馈来说,有正反馈和负反馈两类。但如何判断电路的反馈是属哪一类呢?可以采用瞬时极性法。先假定输入信号处于某一个瞬时极性,然后逐级推出电路其他有关各点瞬时信号极性情况,最后判断反馈到输入端信号的瞬时极性是增强还是削弱了原来的输入信号。如果反馈回来的信号增强了原输入信号则为正反馈。相反,削弱了输入信号就是负反馈。
559
闭环

1
29.9
29.9
46.6
1.5K
1
29
29
Multisim仿真:
软件版本号:Multisim 14.2
三极管型号:2N1711
仿真步骤:
(1)开环电路
在Multisim中选择元器件,搭建图1所示电路,暂不接入反馈信号Rf与Cf,按照图1修改元器件参数,直流电压源为+12V。
选择交流电压源V1,频率设为10KHz,从R1处输入信号。在Vi处放置电压探针,调节V1幅值,直至Vi显示电压有效值为1mV.
图8反馈接入基极(仿真)
(4)总结反馈对失真改善的特点。
特点:引入电压串联负反馈后,电路在采集原始信号时其真度提高,与上一级电路的衔接性增强,可改善波形失真。对于同一放大电路,若引入负反馈,当输出波形刚出现失真时,对应的输入电压将远大于无负反馈时刚出现失真所对应的输入电压。
3.测放大器频率特性

反馈放大电路仿真实验报告

反馈放大电路仿真实验报告

电路仿真实验报告实验名称:反馈放大电路的设计、测试与调节一.实验目的1、握负反馈电路的设计原理,各性能指标的测试原理。

2、深理解负反馈对电路性能指标的影响。

3、握用正弦测试方法对负反馈放大器性能的测量。

二.实验原理1.负反馈放大器所谓的反馈放大器就是将放大器的输出信号送入一个称为反馈网络的附加电路后在放大器的输入端产生反馈信号,该反馈信号与放大器原来的输入信号共同控制放大器的输入,这样就构成了反馈放大器。

单环的理想反馈模型如下图所示,它是由理想基本放大器和理想反馈网络再加一个求和环节构成。

反馈信号是放大器的输入减弱成为负反馈,反馈信号使放大器的输入增强成为正反馈。

四种反馈类型分别为:电压取样电压求和负反馈,电压取样电流求和负反馈,电流取样电压求和负反馈,电流取样电流求和负反馈。

2.实验电路实验电路如下图所示,可以判断其反馈类型累电压取样电压求和负反馈。

3.电压取样电压求和负反馈对放大器性能的影响引入负反馈会使放大器的增益降低。

负反馈虽然牺牲了放大器的放大倍数,但它改善了放大器的其他性能指标,对电压串联负反馈有以下指标的改善。

(1) 可以扩展闭环增益的通频带放大电路中存在耦合电容和旁路电容以及有源器件内部的极间电容,使得放大器存在有效放大信号的上下限频率。

负反馈能降低L f 和提高H f ,从而扩张通频带。

(2) 电压求和负反馈使输入电阻增大当s v 一定,电压求和负反馈使净输入电压i v 减小,从而使输入电流i x 减小。

由s v 产生的i i 减小,意味着输入电阻增大。

由理想模型可得:i ifR AB R )1(+=(3) 电压取样负反馈使输出电阻减小当放大器的输出电阻较小时,负载变化引起输出电压的变化较小,即输出电阻小的放大器输出电压更稳定。

电压取样负反馈能使输出电压稳定,由此可以推断,电压取样负反馈会使输出电阻减小。

由理想模型可得:)1/(AB R R o of +=三.实验内容1、静态工作点的设置令cc V =+12V ,调节w R ,是放大器第一级工作点1E V =1.6V,用数字万用表测量各管脚电压并记录与下表中。

负反馈放大电路的设计与仿真实验报告

负反馈放大电路的设计与仿真实验报告

负反馈放大电路的设计与仿真实验报告一.实验报告1.掌握两种耦合方式的多级放大电路的静态工作点的调试方法。

2.掌握多级放大电路的电压放大倍数, 输入电阻, 输出电阻的测试方法。

3.掌握负反馈对放大电路动态参数的影响。

二.实验原理三.实际放大电路由多级组成, 构成多级放大电路。

多级放大电路级联而成时, 会互相产生影响。

故需要逐级调整, 使其发挥发挥放大功能。

四.实验步骤1.两级阻容耦合放大电路(无反馈)两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=107.323nA输入电压Ui=1mA输出电压Uo=107.306mV.则由输入电阻Ri=Ui/Ii=9.318kOhm.放大倍数Au=Uo/Ui=107.306(2)测输出电阻输出电阻测试电路由图可得输出电流Io=330.635nA.则输出电阻Ro=Uo/Io=3.024kOhm.(3)频率响应幅频响应与相频响应由左图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。

由下表可知, 中频对应的放大倍数是601.1943则上限频率或下限频率对应的放大倍数应为425.044左右。

故下限频率为f L=50.6330kHZ上限频率为f H=489.3901kHZ则频带宽度为438.7517kHZ(4)非线性失真当输入为10mA时开始出现明显失真, 输出波形如下图所示2.有串联电压负反馈的两级阻容耦合放大电路有串联电压负反馈的两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=91.581nA.输入电压Ui=1mA.输出电压Uo=61.125mV. 则由输入电阻Ri=Ui/Ii=10.919kOhm.放大倍数Au=Uo/Ui=61.125(2)测输出电阻由图可得输出电流Io=1.636uA.则输出电阻Ro=Uo/Io=611.247Ohm(3)频率响应幅频相应与相频相应由图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告模电负反馈放大电路实验报告引言模拟电子技术是电子工程学科中的重要组成部分,而负反馈放大电路是模拟电子技术中的重要内容之一。

负反馈放大电路具有稳定性好、增益可控等优点,在实际应用中得到广泛应用。

本实验旨在通过搭建负反馈放大电路并进行实验验证,深入了解负反馈放大电路的原理和特性。

实验目的1. 了解负反馈放大电路的基本原理;2. 掌握搭建负反馈放大电路的方法;3. 研究负反馈放大电路的特性,如增益、频率响应等。

实验原理负反馈放大电路是通过将放大电路的一部分输出信号反馈到输入端,以减小放大电路的非线性失真、提高频率响应和稳定性。

常见的负反馈电路有电压串联负反馈、电流串联负反馈和电压并联负反馈等。

实验步骤1. 搭建基本的负反馈放大电路,包括放大器、反馈电阻等元件;2. 连接信号源和示波器,调节信号源的频率和幅度;3. 测量输入电压、输出电压以及反馈电压,计算电压增益和反馈系数;4. 根据测量结果,绘制电压增益和频率响应曲线。

实验结果与分析通过实验测量,我们得到了负反馈放大电路的输入电压、输出电压以及反馈电压的数据。

根据这些数据,我们可以计算出电压增益和反馈系数,并绘制出相应的曲线。

首先,我们观察到随着输入信号的增加,输出信号也随之增加,但增加的幅度较小。

这是因为负反馈电路通过反馈电阻将一部分输出信号反馈到输入端,减小了放大电路的增益,从而实现了对输出信号的控制。

其次,我们可以通过计算得到电压增益和反馈系数的数值。

电压增益可以通过输出电压除以输入电压得到,而反馈系数可以通过反馈电压除以输出电压得到。

通过观察计算结果,我们可以发现电压增益随着频率的增加而减小,而反馈系数则相反。

这说明负反馈放大电路对不同频率的信号有不同的响应特性。

最后,我们绘制了电压增益和频率响应曲线。

从曲线上可以清晰地看出电压增益随着频率的增加而减小的趋势,而反馈系数则随着频率的增加而增大。

这与我们的实验结果相符,进一步验证了负反馈放大电路的特性。

模电实验报告负反馈放大电路

模电实验报告负反馈放大电路

模电实验报告负反馈放⼤电路实验三负反馈放⼤电路⼀、实验⽬的1、研究负反馈对放⼤器放⼤倍数的影响。

2、了解负反馈对放⼤器通频带和⾮线性失真的改善。

3、进⼀步掌握多级放⼤电路静态⼯作点的调试⽅法。

⼆、实验仪器1、双踪⽰波器2、信号发⽣器3、万⽤表三、预习要求1、认真阅读实验内容要求,估计待测量内容的变化趋势。

2、图3-1电路中晶体管β值为120.计算该放⼤器开环和闭环电压放⼤倍数。

3、放⼤器频率特性测量⽅法。

说明:计算开环电压放⼤倍数时,要考虑反馈⽹络对放⼤器的负载效应。

对于第⼀级电路,该负载效应相当于C F、R F与1R6并联,由于1R6≤Rf,所以C F、R F 的作⽤可以略去。

对于第⼆季电路,该负载效应相当于C F、R F与1R6串联后作⽤在输出端,由于1R6≤Rf,所以近似看成第⼆级内部负载C F、R F。

4、在图3-1电路中,计算级间反馈系数F。

四、实验内容1、连接实验线路如图3-1所⽰,将线连好。

放⼤电路输出端接Rp4,1C6(后⾯称为R F)两端,构成负反馈电路。

2、调整静态⼯作点⽅法同实验⼆。

将实验数据填⼊表3-1中。

表3-13、负反馈放⼤器开环和闭环放⼤倍数的测试(1)开环电路○1按图接线,R F先不接⼊。

○2输⼊端接如Ui=1mV,f=1kHZ的正弦波。

调整接线和参数使输出不是真且⽆震荡。

○3按表3-2要求进⾏测量并填表。

○4根据实测值计算开环放⼤倍数和输出电阻R0。

(2)闭环电路○1接通R F,按(1)的要求调整电路。

○2调节Rp4=3KΩ,按表3-2要求测量并填表,计算A uf和输出电阻R0。

○3改变Rp4⼤⼩,重复上述实验步骤。

○4根据实测值验证A uf≈1/F。

讨论负反馈电路的带负载能⼒。

表3-2由LOLOORUUR?-=)1(计算有:开环:Ro=5.586 KΩ。

闭环:Ro=0.629 KΩ。

4、观察负反馈对⾮线性失真的改善(1)将图3-1电路中的R F断开,形成开环,逐步加⼤Ui的幅度,使输出信号出现失真(注意不要过分失真)记录失真波形幅度及此事的出⼊信号值。

反馈放大电路设计实验报告模版

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路实验名称:负反馈放大电路设计学院:信息工程学院专业:信息工程班级:组号:指导教师:陈田明报告人:学号:实验地点 N102 实验时间:实验报告提交时间:教务处制一.实验名称:负反馈放大电路设计二.实验目的:加深对负反馈放大电路原理的理解.学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法.掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法.三.实验仪器:双踪示波器一台/组信号发生器一台/组直流稳压电源一台/组万用表一台/组四.实验内容:设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下:闭环电压放大倍:30---120输入信号频率范围:1KHZ-------10KHZ.电压输出幅度≥输出电阻≤3KΩ五.实验步骤:1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集成运算负反馈放大电路.为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。

本设计可以采用共发射极-共基极-共集电极放大电路。

对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。

本设计采用电压并联负反馈形式。

2.设计电路,画出电路图.下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。

整体原理图如下:从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给第二级的共基极电路,因此两级直接的静态工作点会相互影响。

第二级放大电路通过电容输出给第三级。

第三级放大电路是共集电极电路,射极跟随输出到负载。

整体参数设计:假设输入电压峰峰值为50mv,输出电压峰峰值不小于,电压放大倍数>30 倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学实验报告课程名称:模拟电路
实验名称:负反馈放大电路设计
学院:信息工程学院
专业:信息工程班级:
组号:指导教师:田明
报告人:学号:
实验地点 N102 实验时间:
实验报告提交时间:
教务处制
一.实验名称:
负反馈放大电路设计
二.实验目的:
加深对负反馈放大电路原理的理解.
学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法.
三.实验仪器:
双踪示波器一台/组
信号发生器一台/组
直流稳压电源一台/组
万用表一台/组
四.实验容:
设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下:
闭环电压放大倍:30---120
输入信号频率围:1KHZ-------10KHZ.
电压输出幅度≥1.5V
输出电阻≤3KΩ
五.实验步骤:
1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集
成运算负反馈放大电路.
为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。

本设计可以采用共发射极-共基极-共集电极放大电路。

对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。

本设计采用电压并联负反馈形式。

2.设计电路,画出电路图.
下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。

整体原理图如下:
从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给
第二级的共基极电路,因此两级直接的静态工作点会相互影响。

第二级放大电路通过电容输出给第三级。

第三级放大电路是共集电极电路,射极跟随输出到负载。

整体参数设计:
假设输入电压峰峰值为50mv,输出电压峰峰值不小于1.5V,电压放大倍数>30 倍。

因为存在负反馈,为达到设计要求,所以电压开环总放大倍数为1000倍左右。

第一、第二级的开环电压放大倍数将近需要30-40倍。

下面,对各级放大进行分析:
第一级:
如图,TP3和TP4为信号输入接入点,信号通过C1耦合输入到Q1基极。

Q1 型号9013为NPN三极管,电流增益带宽积Ft为60MHZ
以上,电流增益β为100左右,满足设计要求。

前级采用共发射极组态,R1和R2设定基极静态工作点,使TP5电压为1.2V左右,那么TP7的静态电压为0.55V左右。

设定集电极电阻R3,使得集电极静态电压TP6为4V左右。

理论值计算:
U BQ=VCC*R2/(R1+R2)=1.25V
U EQ=U BQ-V BE (on)=1.25-0.65=0.6V
I EQ=U EQ/R5=0.6mA
U CQ=VCC-I CQ*R3= VCC-I EQ*R3= VCC-0.6*3.9K=2.95V
r be1=r bb’+(1+β)26(mV)/I EQ=300+4.2K=4.5K
A U1=U O1/U i=-βR’L/r be1= -β(R3//R4//r be2)/r be1=-32
第二级:
如图, Q2 型号9012为PNP三极管,电流增益带宽积Ft为
50MHZ以上,电流增益β为100左右,满足设计要求。

前级采用共基极组态,这里要注意的是,R4是这一级的输入电阻。

通过R6和R7设定基极静态工作点,使TP8电压为3.8V左右,使TP12电压为4.5V左右再调节R8,使得集电极电压TP9为2V左右,这样,不容易出现失真。

理论值计算:
U BQ2=VCC*R7/(R6+R7)=3.75V
U EQ2=U BQ2+V BE (on)= 3.75V +0.7=4.45V
I EQ2=(VCC-U EQ2)/R4=0.55/4=0.14mA
U CQ2= I CQ2*R8= I EQ2*R8= 0.14*15K=2.1V
r be2=r bb’+(1+β)26(mV)/I EQ2=300+18.3K=18.6K
A U2=U O2/U O1=βR’L2/r be2
第二级交流负载R’L2= R8//R i3
第三级输入电阻R i3=[r be3+(1+β)R’e3]//R9
R’e3=R10//R11=260欧
r be3=r bb’+(1+β)26(mV)/I EQ3
由后面的计算得I EQ3=1.1mA
因此r be3=r bb’+(1+β)26(mV)/I EQ3=300+2.8K=3.1K
R i3=[r be3+(1+β)R’e3]//R9=34.3K//240K=30K
因此,第二级R’L2= R8//R i3=15K//30K=10K
第二级放大倍数A U2=U O2/U O1=βR’L2/r be2
=100*10/22.6=40
中间级的电压放大倍数约为40倍,输出同相。

第三级:
如图,中间级通过耦合电容输出到输出级,输出级Q3同样采用9013三极管,输出功率有1W ,最大集电极电流IC=500mA,满足设计需求。

通过设计R9和R10使得Q3基极静态电压TP10为3V左右,发射极电压V E为2.3V左右,输出幅度可以达到最大。

TP1和TP2为输出测试点,C5为交流输出耦合电容R11为输出电阻,300欧姆。

理论值计算:
β*I BQ3*R10+ I BQ3*R9=VCC- V BE (on)
得出I BQ3=0.009mA
I EQ3=1.1mA
U EQ3=R10* I EQ3=2.2V
U BQ3=2.2+ V BE (on)=2.9V
由上面的分析可以得到,开环放大倍数
A U= A U1* A U2=32*40=-1280
负反馈电路:
由上图可见,C4、R12和J3(J3为跳线帽接口,方便测量开环增益倍数)为负反馈电路,连接到第一级的基极TP5处,可见,反馈形式为电压并联负反馈。

由负反馈基本公式:A f=A/1+AF
本实验电路:F iu=1/R12
在深度负反馈条件下:A uf=U o/U i=1/F iu*R i1=100/3.1=33 六、静态工作点测量及性能测试:
开环增益测量(跳线帽J3不连接)
闭环增益测量(跳线帽J3连接)
3.性能测试误差分析
通过测量,发现静态工作点会与计算值有一定的差别,这是因为理论计算的时候,假设了三极管有很大的输入阻抗,忽略了流进去的电流造成了。

但是,误差在允许的围。

开环工作状态,输出波形时大时小,不稳定,其原因是信号发生器输出不稳定所致。

放大倍数绝对值相差47,误差在4%以,加入负反馈后的增益绝对值相差为2,误差为6%。

说明设计及调试非常正确,误差的原因是三极管参数、电阻误差引起的。

通过测试,实验误差在允许围,达到设计要求。

七、总结与体会
完成本设计性实验项目的收获.
这是一个设计性实验项目,应用了很多方面的知识,如PNP和NPN两种三极管的使用,共发射极电路、共基极电路、共集电极电路静态工作点的设置,放大倍数的计算,负反馈放大电路反馈系数和闭环增益的计算等,本次试验对电路的设计和操作要求很高,遇到了很多问题,也通过老师和同学的指导解决了。

此设计性实验最关键的部分还是反馈电路的设计,采用了电压并联负反馈的方式,因为加入了负反馈,虽然放大电路的放大倍数有所下降,但稳定性提高了,减少了失真。

满足深度负反馈
.. ..
条件的公式:Af=A/1+AF,得到了验证,加深了对负反馈放大电路概念的理解。

本次实验自己选择器件,焊接电路板,测试相关数据。

让我的模拟电路的知识提高了很多。

更熟悉了焊接技术和发生器、示波器的使用。

... . .。

相关文档
最新文档