热力学基础计算题
(完整)热力学第一定律——计算题
第一章热力学第一定律四、简答1.一隔板将一刚性绝热容器分为左右两侧,左室气体的压力大于右室气体的压力。
现将隔板抽去,左右气体的压力达到平衡。
若以全部气体作为体系,则ΔU、Q、W为正?为负?或为零?答:以全部气体为系统,经过指定的过程,系统既没有对外做功,也无热量传递。
所以ΔU、Q、W均为零。
2.若一封闭体系从某一始态变化到某一终态.(1)Q、W、Q-W、ΔU是否已完全确定;答:ΔU=Q-W能够完全确定,因内能为状态函数,只与系统的始态和终态有关。
Q、W不能完全确定,因它们是与过程有关的函数。
(2)若在绝热条件下,使系统从某一始态变化到某一终态,则(1)中的各量是否已完全确定,为什么!答:Q、W、Q-W、ΔU均完全确定,因绝热条件下Q=0,ΔU=Q+W=W。
五、计算题1.计算下述两个过程的相关热力学函数。
(1)若某系统从环境接受了160kJ的功,热力学能增加了200kJ,则系统将吸收或是放出了多少热量?(2)如果某系统在膨胀过程中对环境作了100kJ的功,同时系统吸收了260kJ的热,则系统热力学能变化为多少?解析:(1)W=-160kJ,ΔU = 200kJ,根据热力学第一定律:Q=ΔU+W得:Q=200—160=40 kJ(2)W =100kJ,Q =260 kJΔU =Q -W =260-100=160 kJ2.试证明1mol 理想气体在等压下升温1K 时,气体与环境交换的功等于摩尔气体常数R. 解:2111W p p p p n mol T T K W R===-==2121外外外nRT nRT (V -V )=(-)p p3. 已知冰和水的密度分别为0.92×103kg/m 3和1。
0×103kg/m 3,现有1mol 的水发生如下变化:(1)在100℃、101.325kPa 下蒸发为水蒸气,且水蒸气可视为理想气体; (2)在0℃、101。
325kPa 下变为冰。
试求上述过程系统所作的体积功。
热力学练习题全解
热力学练习题全解热力学是研究热能转化和热力学性质的科学,它是物理学和化学的重要分支之一。
在热力学中,我们通过解决一系列练习题来巩固和应用所学知识。
本文将为您解答一些热力学练习题,帮助您更好地理解和应用热力学的基本概念和计算方法。
1. 练习题一题目:一个理想气体在等体过程中,吸收了50 J 的热量,对外界做了30 J 的功,求该气体内能的变化量。
解析:根据热力学第一定律,内能变化量等于热量和功之和。
即ΔU = Q - W = 50 J - 30 J = 20 J。
2. 练习题二题目:一摩尔理想气体从A状态经过两个等温过程和一段绝热过程转变为B状态,A状态和B状态的压强和体积分别为P₁、P₂和V₁、V₂,已知 P₂ = 4P₁,V₁ = 2V₂,求这个过程中气体对外界做的总功。
解析:由两个等温过程可知,气体对外界做的总功等于两个等温过程的功之和。
即 W = W₁ + W₂。
根据绝热过程的特性,绝热过程中气体对外做功为零。
因此,只需要计算两个等温过程的功即可。
根据理想气体的状态方程 PV = nRT,结合已知条件可得:P₁V₁ = nRT₁①P₂V₂ = nRT₂②又已知 P₂ = 4P₁,V₁ = 2V₂,代入式①和式②可得:8P₁V₂ = nRT₁③4P₁V₂ = nRT₂④将式③和式④相减,可得:4P₁V₂ = nR(T₁ - T₂) ⑤由于这两个等温过程温度相等,即 T₁ = T₂,代入式⑤可得:4P₁V₂ = 0所以,这个过程中气体对外界做的总功 W = 0 J。
通过以上两个练习题的解答,我们可以看到在热力学中,我们通过应用热力学第一定律和理想气体的状态方程等基本原理,可以解答各种热力学问题。
熟练掌握这些计算方法,有助于我们更深入地理解热力学的基本概念,并应用于实际问题的解决中。
总结:本文对两道热力学练习题进行了详细解答,分别涉及了等体过程和等温过程。
通过这些例题的解析,读者可以理解和掌握热力学的基本计算方法,并将其应用于实际问题的求解中。
7-热力学基础(题库)
三、 简答题
1、卡诺循环的效率与哪些因素有关?试写出其效率表达式。 2、什么是准静态过程?
四、计算题
1、一氧气瓶的容积为 V,充了气未使用时压强为 p1,温度为 T1;使用后瓶内氧气的质量减少为原来 的一半,其压强降为 p2,试求此时瓶内氧气的温度 T2 。
2、理想气体做卡诺循环,设热源温度为 100℃,冷却器温度为0℃时,每一循环做净功 8kJ,今维持
(A) 0.5%
(B)4%
(C)9%
(D )21%
10、一定量的理想气体,分别进行如图所示的两个卡诺循环 abcda 和 abcda。若在 P V 图上这两个循环曲线所围面积相等,则可以由此得知
这两个循环
(A)效率相等。
(B)由高温热源处吸收的热量相等。
(C)在低温热源处放出的热量相等。 (D)在每次循环中对外做的净功相
尔热容 CV ,m 12.46J mol1K 1,CP,m 20.78J mol1K 1 )
4、一定量的某种理想气体进行如图所示的循环过程.已知气体在 状态 A 的温度为 TA=300 K,求
(1) 气体在状态 B、C 的温度;
p (Pa)
300
A
200
100
C
(2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热
7、一卡诺热机低温热源的温度为 27C,效率为 40% ,高温热源的温度 T1 =
.
8、设一台电冰箱的工作循环为卡诺循环,在夏天工作,环境温度在 35C,冰箱内的温度为 0C,这台电冰
箱的理想制冷系数为 e=
.
9、将 1kg 温度为100 C 的水置于 200 C 的恒温热源内,最后水的温度与热源的温度相同,则水的熵变
热力学习题
热力学基础习题练习一、选择题1. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对2. 热力学第一定律表明[ ] (A) 系统对外做的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所做的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(V p . 一次是等温压缩到2V,外界做功A ;另一次为绝热压缩到2V, 外界做功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较(C) ?A -?W -?Q (D) ?Q +?A -?W4. 理想气体由初状态( p 1, V 1, T 1)绝热膨胀到末状态( p 2, V 2, T 2),对外做的功为 [ ] (A))(12T T C M m V - (B) )(12T T C M m p - (C) )(12T T C M m V --(D) )(12T T C Mmp -- 5. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2 .在上述三过程中, 气体的[ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同 (C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同 6. 一定质量的理想气体从某一状态经过压缩后, 体积减小为原来的一半, 这个过程可以是绝热、等温或等压过程.如果要使外界所做的机械功为最大, 这个过程应是 [ ] (A) 绝热过程 (B) 等温过程(C) 等压过程 (D) 绝热过程或等温过程均可7. 一定量的理想气体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V ,如图9-1-34所示.在这个循环中, 气体必然[ ] (A) 内能增加 (B) 内能减少 (C) 向外界放热 (D) 对外界做功8. 在下面节约与开拓能源的几个设想中, 理论上可行的是 [ ] (A) 在现有循环热机中进行技术改进, 使热机的循环效率达100%(B) 利用海面与海面下的海水温差进行热机循环做功 (C) 从一个热源吸热, 不断作等温膨胀, 对外做功 (D) 从一个热源吸热, 不断作绝热膨胀, 对外做功9. 卡诺循环的特点是[ ] (A) 卡诺循环由两个等压过程和两个绝热过程组成 (B) 完成一次卡诺循环必须有高温和低温两个热源 (C) 卡诺循环的效率只与高温和低温热源的温度有关 (D) 完成一次卡诺循环系统对外界做的净功一定大于0 10. 热力学第二定律表明[ ] (A) 不可能从单一热源吸收热量使之全部变为有用功 (B) 在一个可逆过程中, 工作物质净吸热等于对外做的功 (C) 摩擦生热的过程是不可逆的(D) 热量不可能从温度低的物体传到温度高的物体11. 图9-1-50所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在理论上可能实现的循环过程的图的符号. [ ]I a II 和I b II 况是 [ I b II 负功 I b II 负功 (C) I a II 过程吸热,做正功;I b II 过程吸热,做负功(D) I a II 过程放热,做正功;I b II 过程吸热,做正功二、填空题1. 各为1 mol 的氢气和氦气, 从同一状态(p ,V )开始作等温膨胀.若氢气膨胀后体积变为2V , 氦气膨胀后压强变为2p, 则氢气和氦气从外界吸收的热量之比为 .(C)(A)(B)图9-1-502. 一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外做功300 J . 若冷凝器的温度为7?C, 则热源的温度为 .3. 1mol 理想气体(设VPC C =γ为已知)的循环过程如图9-2-11所示,其中CA 为绝热过程,A 点状态参量(11,V T ),和B 点的状态参量(21,V T )为已知.则C 点的状态参量为:=C V , =C T ,=C p .9-2-12所4. 一定量的理想气体,从A 状态),2(11V p 经历如图做功示的直线过程变到B 状态)2,(11V p ,则AB 过程中系统___________, 内能改变△E =_________________.的封闭容5. 质量为m 、温度为0T 的氦气装在绝热的容积为V器中,容器一速率v 作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为 .6. 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3) 绝热过程.其中:__________过程气体对外做功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.7. 一定量的理想气体,从状态a 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试在图9-2-17中示意地画出这三种过程的p -V 图曲线.在上述三种过程中:(1) 气体的内能增加的是__________过程;(2) 气体的内能减少的是__________过程. 8. 将热量Q 传给一定量的理想气体,(1) 若气体的体积不变,则其热量转化为 ;T 12T2p 1112(2) 若气体的温度不变,则其热量转化为 ;(3) 若气体的压强不变,则其热量转化为 . 三、计算题1. 1 mol 刚性双原子分子的理想气体,开始时处于Pa 1001.151⨯=p 、331m 10-=V 的状态,然后经图9-3-1所示的直线过程I 变到Pa 1004.452⨯=p 、332m 102-⨯=V 的状态.后又经过方程为C pV=21(常量)的过程II 变到压强Pa 1001.1513⨯==p p 的状态.求:(1) 在过程I 中气体吸的热量; (2) 整个过程气体吸的热量.2. 一卡诺热机(可逆的),当高温热源的温度为C 127 、低温热源温度为C 27 时,其每次循环对外做净功8000 J .今维持低温热源的温度不变,提高高温热源的温度,使其每次循环对外做净功10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环热机的效率; (2) 第二个循环的高温热源的温度.3. 如图9-3-6所示,一金属圆筒中盛有1 mol 刚性双原子分子的理想气体,用可动活塞封住,圆筒浸在冰水混合物中.迅速推动活塞,使气体从标准状态(活塞位置I)压缩到体积为原来一半的状态(活塞位置II),然后维持活塞不动,待气体温度下降至0℃,再让活塞缓慢上升到位置I ,完成一次循环.(1) 试在p ?V 图上画出相应的理想循环曲线;(2) 若作100 次循环放出的总热量全部用来熔解冰,则有多少冰被熔化? (已知冰的熔解热=λ 3.35×105 J · kg -1,普适气体常量 R= 8.31 J · mol -1 · K -1)4. 比热容比=γ 1.40的理想气体,进行如图9-3-7所示的abca 循环,状态a 的温度为300 K . (1) 求状态b 、c 的温度; (2) 计算各过程中气体所吸收的热量、气体所做的功和气体内能的增量; (3) 求循环效率.5. 绝热壁包围的汽缸被一绝热的活塞分成A ,B两室,活塞在汽缸内可无摩擦自由滑动,每室内部有1mol 的理想气体,定容热容量R C V 25=.开1p V图9-3-1)3始时,气体都处在平衡态),,(000T V p .现在对A 室加热,直到A 中压强变为20p 为止.(1) 求加热之后,A 、B 室中气体的体积和温度; (2) 在这过程中A 室中的气体做了多少功? (3) 加热器传给A 室的热量多少?6. 图9-3-19所示为一循环过程的T -V 曲线.该循环的工质的物质的量为mol n 的理想气体,其中V C 和γ均已知且为常量.已知a 点的温度为1T ,体积为V 1,b 点的体积为V 2,ca 为绝热过程.求:(1) c 点的温度; (2) 循环的效率.7. 设一动力暖气装置由一台卡诺热机和一台卡诺制冷机组合而成.热机靠燃烧时释放的热量工作并向暖气系统中的水放热;同时,热机带动制冷机.制冷机自天然蓄水池中吸热,也向暖气系统放热.假定热机锅炉的温度为C 2101 =t ,天然蓄水池中水的温度为C 152 =t ,暖气系统的温度为C 603 =t ,热机从燃料燃烧时获得热量2.1×107J ,计算暖气系统所得热量.热力学基础 答案一、选择题1. A2. C3. C4. C5. B6. A7. C8. B9. C 10. C 11. B 12. B 二、填空题1. 1:12. 127 ?C3. 2V , 1121T VV -⎪⎪⎭⎫ ⎝⎛γ,12121-⎪⎪⎭⎫ ⎝⎛γV V V RT4. 0,2311V p A = 5. R M T 32v =∆6. 等压,等压,等压7. 过程曲线如解图9-2-17所示,其中ab 为等压过程, ac 为等温过程, ad 为绝热过程.(1) 等压; (2) 绝热.8. (1) 气体内能;(2) 气体对外做功;(3) 内能和对外做功三、计算题1. 解:(1) 在过程Ⅰ中气体对外做功为内能增量为图9-3-191pOV12由热力学第一定律,此过程气体吸收的热量为(2) 在过程II 中气体对外做功为⎰=322V V p A d ()2233222d 32V p V p VVV p V V V -==⎰又据C pV =21可得 所以过程II 气体内能增量为 ()()22332322525V p V p T T R E -=-=∆ 过程II 气体吸热 J 1009.1J 1006.6J 1085.4433222⨯=⨯+⨯=∆+=E A Q 整个过程气体吸收热量 21Q Q Q +=2. 解:(1) J 32000J 4003001800011112=-==→=-=ηη净净A Q Q A T T ,净A Q Q +=21第二个热机2Q 不变,则 J 34000J 10000J 2400021=+='+='净A Q Q (2) 由 121T T '-='η 得 K 425K %4.291300121=-='-='ηT T 3. 解:(1) p –V 图上循环曲线如解图9-3-6所示,其中ab 为绝热线,bc 为等体线,ca 为等温线.(2) 等体过程放热为 Q V = C V (T 2-T 1) (1)等温过程吸热为 2ln 111V V RT Q T = (2) 绝热过程方程 211111)2(T V T V --=γγ (3)双原子分子气体 R C V 25= 4.1=γ由(1)~(3)式解得系统一次循环放出的净热量为若100 次循环放出的总热量全部用来熔解冰,则熔解的冰的质量为21016.7100-⨯==λQm kg4. 解:(1) c →a 等体过程有cc a a T pT p = 所以 75)(==ac a c p pT T K解图9-3-111b →c 等压过程有c ca b T V T V = 所以 225)(==cb c b V VT T K(2) 气体的物质的量为 mo l 321.0===aa a RT V p M mν 由 40.1=γ 可知气体为双原子分子气体,故c →a 等体吸热过程 0=ca Ab →c 等压压缩过程 J 400)(-=-=b c b bc V V p AJ 1000)(-=-=∆b c V bc T T C E ν 整个循环过程0=∆E ,循环过程净吸热为a →b 过程净吸热 ca bc ab Q Q Q Q --=(3) 0>ab Q 为净吸热,a →b 过程经历了升温、降温过程,设温度转折点为x , a →b 过程)d d (2d 2d p V V p iT R i M m E +==, V p A d d = 由热力学第一定律ab 直线方程为43006100-=--V p ? V p d 75d -=于是有令0d =Q 解得3m 28.4=x V ,即a →x 吸热,x →b 放热5. 解:(1) B 室中进行的是绝热过程. 设初始平衡时状态为),,(000T V p ,达到平衡终态时,两室的状态为),,(A A A T V p 和),,(B B B T V p ,则有B A 02p p p == (1) 由初终态的状态方程00A A B BA 0Bp V p V p V T T T == (2) 利用(1)式可得0A BA 0B22V V V T T T == (3) 对B 室有准静态绝热过程方程3/mB B 00p V p V γγ= (4)由(3)、(4)式和57==Vp C C γ得 γγ1011B 222V V V ==- 和0011B 22.12T T T ≈=-γ由总体积一定,得A 室的终态体积为 代入(3)式(2) 因活塞处无功耗,故A 气体推动活塞对B 气体做功的值等于B 气体的内能增量 (3) A 室中吸收的热量等于它对B 室做的功,加上自己内能的增量6. 解:(1) ca 为绝热过程,则 12111--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγV V T V V T T c a a c(2 ) ab 为等温过程,工质吸热 1211lnV V nRT Q = bc 为等容过程,工质放热为 循环过程的效率7. 解:卡诺热机效率131211T T Q Q -=-=η 热机传给暖气系统热量 1132Q T T Q =(1) 卡诺热机向致冷机输出的功1131)1(Q T T Q A -==η 卡诺致冷机从天然蓄水池中吸收热量为 于是卡诺致冷机传给暖气的热量为)1(''132313121T TT T Q T Q wA A Q Q --=+=+=η (2)从(1)、(2)两式,再考虑到J 101.271⨯=Q ,可得暖气系统共吸收热量。
大学物理第九章热力学基础试题
大学物理第九章热力学基础试题第9章热力学基础一、选择题1.对于准静态过程和可逆过程,有以下说法.其中正确的是[](A)准静态过程一定是可逆过程(B)可逆过程一定是准静态过程(C)二者都是理想化的过程(D)二者实质上是热力学中的同一个概念2.对于物体的热力学过程,下列说法中正确的是[](A)内能的改变只决定于初、末两个状态,与所经历的过程无关(B)摩尔热容量的大小与所经历的过程无关(C)在物体内,若单位体积内所含热量越多,则其温度越高(D)以上说法都不对3.有关热量,下列说法中正确的是[](A)热是一种物质(B)热能是物质系统的状态参量(C)热量是表征物质系统固有属性的物理量(D)热传递是改变物质系统内能的一种形式4.关于功的下列各说法中,错误的是[](A)功是能量变化的一种量度(B)功是描写系统与外界相互作用的物理量(C)气体从一个状态到另一个状态,经历的过程不同,则对外作的功也不一样(D)系统具有的能量等于系统对外作的功5.理想气体状态方程在不同的过程中有不同的微分表达式,式pdV示[](A)等温过程(B)等压过程(C)等体过程(D)绝热过程MRdT表6.理想气体状态方程在不同的过程中可以有不同的微分表达式,式VdpMRdT表示[](A)等温过程(B)等压过程(C)等体过程(D)绝热过程7.理想气体状态方程在不同的过程中可以有不同的微分表达式,式VdppdV0表示[](A)等温过程(B)等压过程(C)等体过程(D)绝热过程8.理想气体状态方程在不同的过程中可以有不同的微分表达式,则式VdppdVMRdT表示[](A)等温过程(B)等压过程(C)等体过程(D)任意过程9.热力学第一定律表明:[](A)系统对外作的功不可能大于系统从外界吸收的热量(B)系统内能的增量等于系统从外界吸收的热量(C)不可能存在这样的循环过程,在此过程中,外界对系统所作的功不等于系统传给外界的热量(D)热机的效率不可能等于110.对于微小变化的过程,热力学第一定律为dQ=dEdA.在以下过程中,这三者同时为正的过程是[](A)等温膨胀(B)等容膨胀(C)等压膨胀(D)绝热膨胀11.对理想气体的等压压缩过程,下列表述正确的是[](A)dA>0,dE>0,dQ>0(B)dA<0,dE<0,dQ<0(C)dA<0,dE>0,dQ<0(D)dA=0,dE=0,dQ=012.功的计算式AVpdV适用于V).一次是等温压缩到2[](A)理想气体(B)等压过程(C)准静态过程(D)任何过程13.一定量的理想气体从状态(p,V)出发,到达另一状态(p,VV,外界作功A;另一次为绝热压缩到,外界作功W.比较这两个功值的大小是22[](A)A>W(B)A=W(C)A<W(D)条件不够,不能比较14.1mol理想气体从初态(T1、p1、V1)等温压缩到体积V2,外界对气体所作的功为[](A)RT1lnV2V(B)RT1ln1V1V22(C)p1(V2V1)(D)p2V2p1V115.如果W表示气体等温压缩至给定体积所作的功,Q表示在此过程中气体吸收的热量,A表示气体绝热膨胀回到它原有体积所作的功,则整个过程中气体内能的变化为[](A)W+Q-A(B)Q-W-A(C)A-W-Q(D)Q+A-W16.理想气体内能增量的表示式ECVT适用于[](A)等体过程(B)等压过程(C)绝热过程(D)任何过程17.刚性双原子分子气体的定压比热与定体比热之比在高温时为[](A)1.0(B)1.2(C)1.3(D)1.418.公式CpCVR在什么条件下成立[](A)气体的质量为1kg(B)气体的压强不太高(C)气体的温度不太低(D)理想气体19.同一种气体的定压摩尔热容大于定体摩尔热容,其原因是[](A)膨胀系数不同(B)温度不同(C)气体膨胀需要作功(D)分子引力不同20.摩尔数相同的两种理想气体,一种是单原子分子气体,另一种是双原子分子气体,从同一状态开始经等体升压到原来压强的两倍.在此过程中,两气体[](A)从外界吸热和内能的增量均相同(B)从外界吸热和内能的增量均不相同(C)从外界吸热相同,内能的增量不相同(D)从外界吸热不同,内能的增量相同21.两气缸装有同样的理想气体,初态相同.经等体过程后,其中一缸气体的压强变为原来的两倍,另一缸气体的温度也变为原来的两倍.在此过程中,两气体从外界吸热[](A)相同(B)不相同,前一种情况吸热多(C)不相同,后一种情况吸热较多(D)吸热多少无法判断22.摩尔数相同的理想气体H2和He,从同一初态开始经等压膨胀到体积增大一倍时[](A)H2对外作的功大于He对外作的功(B)H2对外作的功小于He对外作的功(C)H2的吸热大于He的吸热(D)H2的吸热小于He的吸热23.摩尔数相同的两种理想气体,一种是单原子分子,另一种是双原子分子,从同一状态开始经等压膨胀到原体积的两倍.在此过程中,两气体3[](A)对外作功和从外界吸热均相同(B)对外作功和从外界吸热均不相同(C)对外作功相同,从外界吸热不同(D)对外作功不同,从外界吸热相同24.摩尔数相同但分子自由度不同的两种理想气体从同一初态开始作等温膨胀,若膨胀后体积相同,则两气体在此过程中[](A)对外作功相同,吸热不同(B)对外作功不同,吸热相同(C)对外作功和吸热均相同(D)对外作功和吸热均不相同25.两气缸装有同样的理想气体,初始状态相同.等温膨胀后,其中一气缸的体积膨胀为原来的两倍,另一气缸内气体的压强减小到原来的一半.在其变化过程中,两气体对外作功[](A)相同(B)不相同,前一种情况作功较大(C)不相同,后一种情况作功较大(D)作功大小无法判断26.理想气体由初状态(p1、V1、T1)绝热膨胀到末状态(p2、V2、T2),对外作的功为[](A)MCV(T2T1)(B)MCp(T2T1)(C)MCV(T2T1)(D)MCp(T2T1)27.在273K和一个1atm下的单原子分子理想气体占有体积22.4升.将此气体绝热压缩至体积为16.8升,需要作多少功[](A)330J(B)680J(C)719J(D)223J28.一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E1变化到E2.在上述三过程中,气体的[](A)温度变化相同,吸热相同(B)温度变化相同,吸热不同(C)温度变化不同,吸热相同(D)温度变化不同,吸热也不同29.如果使系统从初态变到位于同一绝热线上的另一终态则[](A)系统的总内能不变(B)联结这两态有许多绝热路径(C)联结这两态只可能有一个绝热路径(D)由于没有热量的传递,所以没有作功30.一定量的理想气体,从同一状态出发,经绝热压缩和等温压缩达到相同体积时,绝热压缩比等温压缩的终态压强[](A)较高(B)较低(C)相等(D)无法比较431.一定质量的理想气体从某一状态经过压缩后,体积减小为原来的一半,这个过程可以是绝热、等温或等压过程.如果要使外界所作的机械功为最大,这个过程应是[](A)绝热过程(B)等温过程(C)等压过程(D)绝热过程或等温过程均可32.视为理想气体的0.04kg的氦气(原子量为4),温度由290K升为300K.若在升温过程中对外膨胀作功831J,则此过程是[](A)等体过程(B)等压过程(C)绝热过程(D)等体过程和等压过程均可能33.一定质量的理想气体经历了下列哪一个变化过程后,它的内能是增大的[](A)等温压缩(B)等体降压(C)等压压缩(D)等压膨胀34.一定量的理想气体从初态(V,T)开始,先绝热膨胀到体积为2V,然后经等容过程使温度恢复到T,最后经等温压缩到体积V.在这个循环中,气体必然[](A)内能增加(B)内能减少(C)向外界放热(D)对外界作功pOV2VVT9-1-34图35.提高实际热机的效率,下面几种设想中不可行的是[](A)采用摩尔热容量较大的气体作工作物质(B)提高高温热源的温度(C)使循环尽量接近卡诺循环(D)力求减少热损失、摩擦等不可逆因素36.在下面节约与开拓能源的几个设想中,理论上可行的是[](A)在现有循环热机中进行技术改进,使热机的循环效率达100%(B)利用海面与海面下的海水温差进行热机循环作功(C)从一个热源吸热,不断作等温膨胀,对外作功(D)从一个热源吸热,不断作绝热膨胀,对外作功37.下列说法中唯一正确的是[](A)任何热机的效率均可表示为AQ吸(B)任何可逆热机的效率均可表示为1T低T高(C)一条等温线与一条绝热线可以相交两次(D)两条绝热线与一条等温线可以构成一个循环538.卡诺循环的特点是[](A)卡诺循环由两个等压过程和两个绝热过程组成(B)完成一次卡诺循环必须有高温和低温两个热源(C)卡诺循环的效率只与高温和低温热源的温度有关(D)完成一次卡诺循环系统对外界作的净功一定大于039.在功与热的转变过程中,下面说法中正确的是[](A)可逆卡诺机的效率最高,但恒小于1(B)可逆卡诺机的效率最高,可达到1(C)功可以全部变为热量,而热量不能全部变为功(D)绝热过程对外作功,系统的内能必增加40.两个恒温热源的温度分别为T和t,如果T>t,则在这两个热源之间进行的卡诺循环热机的效率为[](A)TTtTtTt(B)(C)(D)TttTT41.对于热传递,下列叙述中正确的是[](A)热量不能从低温物体向高温物体传递(B)热量从高温物体向低温物体传递是不可逆的(C)热传递的不可逆性不同于热功转换的不可逆性(D)理想气体等温膨胀时本身内能不变,所以该过程也不会传热42.根据热力学第二定律可知,下列说法中唯一正确的是[](A)功可以全部转换为热,但热不能全部转换为功(B)热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(C)不可逆过程就是不能沿相反方向进行的过程(D)一切自发过程都是不可逆过程43.根据热力学第二定律判断,下列哪种说法是正确的[](A)热量能从高温物体传到低温物体,但不能从低温物体传到高温物体(B)功可以全部变为热,但热不能全部变为功(C)气体能够自由膨胀,但不能自由压缩(D)有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量44.热力学第二定律表明:[](A)不可能从单一热源吸收热量使之全部变为有用功(B)在一个可逆过程中,工作物质净吸热等于对外作的功(C)摩擦生热的过程是不可逆的(D)热量不可能从温度低的物体传到温度高的物体45.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功.”对此6说法,有以下几种评论,哪一种是正确的[](A)不违反热力学第一定律,但违反热力学第二定律(B)不违反热力学第二定律,但违反热力学第一定律(C)不违反热力学第一定律,也不违反热力学第二定律(D)违反热力学第一定律,也违反热力学第二定律46.有人设计了一台卡诺热机(可逆的).每循环一次可从400K的高温热源吸收1800J的热量,向300K的低温热源放热800J,同时对外作功1000J.这样的设计是[](A)可以的,符合热力学第一定律(B)可以的,符合热力学第二定律(C)不行的,卡诺循环所作的功不能大于向低温热源放出的热量(D)不行的,这个热机的效率超过了理论值47.1mol的单原子分子理想气体从状态A变为状态B,如果变化过程不知道,但A、B两态的压强、温度、体积都知道,则可求出[](A)气体所作的功(B)气体内能的变化(C)气体传给外界的热量(D)气体的质量48.如果卡诺热机的循环曲线所包围的面积从图中的abcda增大为abcda,那么循环abcda与abcda所作的功和热机效率变化情况是:[](A)净功增大,效率提高(B)净功增大,效率降低(C)净功和效率都不变(D)净功增大,效率不变pabdT2cbOT1c49.用两种方法:使高温热源的温度T1升高△T;使低温热源的温度T2降低同样的△T值;分别可使卡诺循环的效率升高1和2,两者相比:[](A)1>2(B)2>1(C)1=2(D)无法确定哪个大50.下面所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在理论上可能实现的循环过程的图的符号.[]pppp等温等压绝热绝热等绝热绝热容等容绝热绝热等温等温OVOVOVVO(A)(B)(C)(D)7T9-1-48图Vp51.在T9-1-51图中,IcII为理想气体绝热过程,IaII和IbII是任意过程.此两任意过程中气体作功与吸收热量的情况是:IIbc[](A)IaII过程放热,作负功;IbII过程放热,作负功a(B)IaII过程吸热,作负功;IbII过程放热,作负功I(C)IaII过程吸热,作正功;IbII过程吸热,作负功(D)IaII过程放热,作正功;IbII过程吸热,作正功O52.给定理想气体,从标准状态(p0,V0,T0)开始作绝热膨胀,体积增大到3倍.膨胀后温度T、压强p与标准状态时T0、p0之关系为(为比热比)[](A)T() T9-1-51图V11111T0,p()p0(B)T()T0,p()1p03333111111(C)T()T0,p()p0(D)T()T 0,p()p0333353.甲说:“由热力学第一定律可证明任何热机的效率不可能等于1.”乙说:“热力学第二定律可表述为效率等于100%的热机不可能制造成功.”丙说:“由热力学第一定律可T2”丁说:“由热力学第一定律可证明理想气体卡).T1T诺热机(可逆的)循环的效率等于(12).”对以上说法,有如下几种评论,哪种是正确的T1证明任何卡诺循环的效率都等于(1[](A)甲、乙、丙、丁全对(B)甲、乙、丙、丁全错(C)甲、乙、丁对,丙错(D)乙、丁对,甲、丙错paabbII的效率为,每次循环在高温热源处吸的热量为Q,则d[](A),QQ(B),QQcdc(C),QQ(D),QQOV54.某理想气体分别进行了如T9-1-54图所示的两个卡诺循环:I(abcda)和II(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I的效率为,每次循环在高温热源处吸的热量为Q,循环55.两个完全相同的气缸内盛有同种气体,设其初始状态相同.今使它们分别作绝热压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:[](A)气缸1和气缸2内气体的温度变化相同(B)气缸1内的气体较气缸2内的气体的温度变化大(C)气缸1内的气体较气缸2内的气体的温度变化小(D)气缸1和气缸2内的气体的温度无变化二、填空题1.不等量的氢气和氦气从相同的初态作等压膨胀,体积变为原来的两倍.在这过程中,氢气和氦气对外作的功之比为.8T9-1-54图2.1mol的单原子分子理想气体,在1atm的恒定压力下从273K加热到373K,气体的内能改变了.3.各为1摩尔的氢气和氦气,从同一状态(p,V)开始作等温膨胀.若氢气膨胀后体积变为2V,氦气膨胀后压强变为p,则氢气和氦气从外界吸收的热量之比为.24.两个相同的容器,一个装氢气,一个装氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等.现将6J热量传给氦气,使之温度升高.若使氢气也升高同样的温度,则应向氢气传递的热量为.5.1摩尔的单原子分子理想气体,在1个大气压的恒定压力作用下从273K加热到373K,此过程中气体作的功为.6.273K和一个1atm下的单原子分子理想气体占有体积22.4升.此气体等温压缩至体积为16.8升的过程中需作的功为.7.一定量气体作卡诺循环,在一个循环中,从热源吸热1000J,对外作功300J.若冷凝器的温度为7C,则热源的温度为.8.理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S1和S2,则二者的大小关系是.9.一卡诺机(可逆的),低温热源的温度为27C,热机效率为OpS1S2VT9-2-8图40%,其高温热源温度为K.今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加K.10.一个作可逆卡诺循环的热机,其效率为,它的逆过程的致冷系数w则与w的关系为.T2,T1T211.1mol理想气体(设CPCV为已知)的循环过程如T-V图所示,其中CA为绝热过程,A点状态参量(T1,V1),和B点的状态参量(T1,V2)为已知.则C点的状态参量为:TABVC,T1TC,TC2OV1V2VpC.T9-2-11图912.一定量的理想气体,从A状态(2p1,V1)经历如T9-2-12图所示的直线过程变到B状态(p1,V1),则AB过程中系统作功___________,内能改变△E=_________________.13.质量为M、温度为T0的氦气装在绝热的容积为V的封2p1p1OpABV12V1VT9-2-12图闭容器中,容器一速率v作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为.14.有摩尔理想气体,作如T9-2-14图所示的循环过程abca,其中acb为半圆弧,b-a为等压过程,pc2pa,在此循环过程中气体净吸热量为QCp(TbTa)(填入:>,15.一定量的理想气体经历acb过程时吸热550J.则经历acbea过程时,吸热为.16.一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:等压过程;等体内能增加最多;__________过程气体吸收的热量最多.ppcpaaOVap105PacbVbVT9-2-14图4aceb433V10mO11dT9-2-15图温过程;绝热过程.其中:__________过程气体对外作功最多;____________过程气17.一定量的理想气体,从状态a出发,分别经历等压、等温、绝热三种过程由体积V1膨胀到体积V2,试在T9-2-17图中示意地画出这三种过程的p-V图曲线.在上述三种过程中:pa(1)气体的内能增加的是__________过程;(2)气体的内能减少的是__________过程.OV1V2VT9-2-17图18.如T9-2-18图所示,已知图中两部分的面积分别为S1和S2.如果气体的膨胀过程为a1b,则气体对外做功W=________;如果气体进行a1b2a的循环过程,则它对外做功W=_______________.paOS11S22bVT9-2-18图1019.如T9-2-19图所示,一定量的理想气体经历abc过程,在此过程中气体从外界吸收热量Q,系统内能变化E.则Q和E>0或<0或=0的情况是:Q_________,E__________.20.将热量Q传给一定量的理想气体,pbcOaVT9-2-19图(1)若气体的体积不变,则其热量转化为;(2)若气体的温度不变,则其热量转化为;(3)若气体的压强不变,则其热量转化为.21.一能量为1012eV的宇宙射线粒子,射入一氖管中,氖管内充有0.1mol的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_________________K.(1eV=1.60某1019J,普适气体常量R=8.31J/(molK))22.有一卡诺热机,用29kg空气作为工作物质,工作在27℃的高温热源与-73℃的低温热源之间,此热机的效率=______________.若在等温膨胀的过程中气缸体积增大到2.718倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29某10-3kgmol-1,普适气体常量R=8.31JmolK)23.一气体分子的质量可以根据该气体的定体比热来计算.氩气的定体比热cV=0.314kJ·kg1·K1,则氩原子的质量m=__________.三、计算题1.1mol刚性双原子分子的理想气体,开始时处于p11.0110Pa、V110m的状态,然后经图示直线过程I变到p24.0410Pa、后又经过方程为pV2C (常量)V22103m3的状态.5的过程II变到压强p3p11.0110Pa的状态.求:(1)在过程I中气体吸的热量;(2)整个过程气体吸的热量.1115335p(p2,V2)(p1,V1)Op3p1VT9-3-1图2.1mol的理想气体,完成了由两个等容过程和两个等压过程构成的循环过程(如T9-3-2图),已知状态1的温度为T1,状态3的温度为T3,且状态2和4在同一等温线上.试求气体在这一循环过程中作的功.Op21T9-3-2图34V113.一卡诺热机(可逆的),当高温热源的温度为127C、低温热源温度为27C时,其每次循环对外作净功8000J.今维持低温热源的温度不变,提高高温热源的温度,使其每次循环对外作净功10000J.若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1)第二个循环热机的效率;(2)第二个循环的高温热源的温度.4.某种单原子分子的理想气体作卡诺循环,已知循环效率20%,试问气体在绝热膨胀时,气体体积增大到原来的几倍5.1mol双原子分子理想气体作如T9-3-5图所示的可逆循环过程,其中1-2为直线,2-3为绝热线,3-1为等温线.已知T22T1,V38V1,试求:(1)各过程的功,内能增量和传递的热量;(用T1和已知常数表示)(2)此循环的效率.(注:循环效率AQ1,A为每一循环过程气体对外所作的功,Q1为每一循环过程气体吸收的热量)pp21p1OV12V2T9-3-5图3V3V6.如T9-3-6图所示,一金属圆筒中盛有1mol刚性双原子分子的理想气体,用可动活塞封住,圆筒浸在冰水混合物中.迅速推动活塞,使气体从标准状态(活塞位置I)压缩到体积为原来一半的状态I(活塞位置II),然后维持活塞不动,待气体温度下降至0℃,再让活塞缓慢上升到位置I,完成一次循环.II(1)试在p-V图上画出相应的理想循环曲线;(2)若作100次循环放出的总热量全部用来熔解冰,则有多少冰被熔化冰水混合物5-T9-3-6图(已知冰的熔解热3.35某10J·kg1,普适气体常量R=--8.31J·mol1·K1)p(102Pa)7.比热容比1.40的理想气体,进行如T9-3-7图所示a4的abca循环,状态a的温度为300K.3(1)求状态b、c的温度;21(2)计算各过程中气体所吸收的热量、气体所作的功和c气体内能的增量;O(3)求循环效率.b46V(m3)2T9-3-7图8.一台冰箱工作时,其冷冻室中的温度为-10℃,室温为15℃.若按理想卡诺致冷循环计算,则此致冷机每消耗102J的功,可以从冷冻室中吸出多少热量129.一可逆卡诺热机低温热源的温度为7.0℃,效率为40%;若要将其效率提高50%,则高温热源温度需提高几度10.绝热容器中有一定量的气体,初始压强和体积分别为p0和V0.用一根通有电流的电阻丝对它加热(设电阻不随温度改变).在加热的电流和时间都相同的条件下,第一次保持体积V0不变,压强变为p1;第二次保持压强p0不变,而体积变为V1.不计电阻丝的热容量,求该气体的比热容比.11.空气中的声速的表达式为u系式p,其中是气体密度,是体弹性模量,满足关V.就下列两种情况计算其声速:V(1)假定声波传播时空气的压缩和膨胀过程是一个等温过程(即等温声速模型,亦称为牛顿模型);(2)假定声波传播时空气的压缩和膨胀过程是一个绝热过程(即绝热声速模型);比较这两个结果你得出什么结论(设空气中只有氮气)12.某热机循环从高温热源获得热量QH,并把热量QL排给低温热源.设高、低温热源的温度分别为TH=2000K和TL=300K,试确定在下列条件下热机是可逆、不可逆或不可能存在的.(1)QH=1000J,A=900J;(2)QH=2000J,QL=300J;(3)A=1500J,QL=500J.13.研究动力循环和制冷循环是热力学的重要应用之一.内燃机以气缸内燃烧的气体为工质.对于四冲程火花塞点燃式汽油发动机来说,它的理想循环是定体加热循环,称为奥托循环(Ottocycle).而对于四冲程压燃式柴油机来说,它的理想循环是定压加热循环,称为狄塞耳循环(Dieelcycle).如T9-3-13图所示,往复式内燃机的奥托循环经历了以下四个冲程:(1)吸气冲程(0→1):当活塞由上止点T向下止点B运时,进气阀打开,在大气压力下吸入汽油蒸气和空气的混合气体.(2)压缩冲程:进气阀关闭,活塞向左运行,混合气体被绝热压缩(1→2);活塞移动T点时,混合气体被电火花点燃迅速燃烧,可以认为是定体加热过程(2→3),吸收热量(3)动力冲程:燃烧气体绝热膨胀,推动活Q1.塞对外作功(3→4);然后,气体在定体条件下降压(4→1),放出热量Q2.(4)排气冲程:活塞向左运行,残余气体从排气阀排出.假定内燃机中的工质是理想气体并保持定量,试求上述奥托循环1→2→3→4→1的效率.VT9-3-13图1314.绝热壁包围的气缸被一绝热的活塞分成A,B两室,活塞在气缸内可无摩擦自由滑动,每室内部有1摩尔的理想气体,定容热容量cV5R.开始时,气体都处在平衡态2(p0,V0,T0).现在对A室加热,直到A中压强变为2p0为止.(1)加热结束后,B室中气体的温度和体积(2)求加热之后,A、B室中气体的体积和温度;(3)在这过程中A室中的气体作了多少功(4)加热器传给A室的热量多少15.如T9-3-15图所示,器壁与活塞均绝热的容器中间被一隔板等分为两部分,其中右边贮有1摩尔处于标准状态的氦气(可视为理想气体),左边为真空.现先把隔板拉开,待气体平衡后,再缓慢向右推动活塞,把气体压缩到原来的体积.求氦气的温度改变量.真空T9-3-15图16.如T9-3-15图所示,一固定绝热隔板将某种理想气体分成A、B两部分,B的外侧是可动活塞.开始时A、B两部分的温度T、体积V、压强p均相同,并与大气压强相平衡.现对A、B两部分气体缓慢地加热,当对A和B给予相等的热量Q以后,A室中气体的温度升高度数与B室中气体的温度升高度数之A比为7:5.(1)求该气体的定体摩尔热容CV和定压摩尔热容Cp;(2)B室中气体吸收的热量有百分之几用于对外作功?T9-3-17图17.有两个全同的物体,其内能为uCT(C为常数),初始时两物体的温度分别为T1、T2.现以两物体分别为高、低温热源驱动一卡诺热机运行,最后两物体达到一共同温度Tf.求(1)Tf;(2)求卡诺热机所作的功.18.温度为25℃、压强为1atm的1mol刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(普适气体常量R=8.31JmolK,ln3=1.0986)(1)计算这个过程中气体对外所作的功;(2)假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少19.图T9-3-19为一循环过程的T-V曲线.该循环的工质为mol的理想气体,其中CV和均已知且为常量.已知a点的温度为T1,体积为V1,b点的体积为V2,ca为绝热过程.求:(1)c点的温度;(2)循环的效率.。
第4章-化学热力学基础习题
第4章 化学热力学基础习题1.选择题4-1下列物质中m f H ∆不等于零的是 ( )(A) Cl 2(g) (B) O 2(g) (C) C(金刚石) (D) Ne(g) 4-2下列说法中正确的是( )(A) 稳定单质的 m f H ∆、 m f G ∆、m S 都为零(B) 放热反应总是可以自发进行的(C) H 2(g)的标准燃烧热等于H 2O(l)的 m f H ∆ (D) CO 2(g)的 m f H ∆也就是CO(g)的标准燃烧热4-3 下列反应中释放能量最大的是( )(A) CH 4(l) + 2 O 2(g) → CO 2(g) + 2 H 2O(g) (B) CH 4(g) + 2 O 2(g) → CO 2(g) + 2 H 2O(g) (C) CH 4(g) + 2 O 2(g) → CO 2(g) + 2 H 2O(l) (D) CH 4(g) +23O 2(g) → CO(g) + 2 H 2O(l) 4-4 下列叙述正确的是( )(A)m r S ∆=∑∆θS (生成物)-∑∆θS (反应物)(B) 一个自发进行的反应,体系自由能减少等于体系对环境所做最大功(C) 某气相反应 m r G ∆是指反应物与产物都处于298 K 且气体总压为101.3 kPa 时,该反应的自由能变。
(D) 同类型的二元化合物可用它们的 m f H ∆值直接比较其热力学稳定性。
4-5 已知2 PbS(s) + 3O 2(g) = 2 PbO(s) + 2 SO 2(g)m r H ∆= - 843.4 kJ· mol -1则该反应的Q v 值为( )(A) 840.9 (B) 845.9 (C) -845.9 (D) -840.9 4-6下列物质中,摩尔熵最大的是( )(A) CaF 2 (B) CaO (C) CaSO 4 (D) CaCO 34-7下列反应中 m r S ∆最大的是( )(A) C(s) + O 2(g) → CO 2(g) (B) 2 SO 2(g) + O 2(g) →2 SO 3(g)(C) 3 H 2(g) + N 2(g) →2 NH 3(g) (D) CuSO 4(s) + 5H 2O(l) →CuSO 4· 5H 20(s)4-8下列反应中 m r H ∆等于产物m f H ∆的是( )(A) CO 2(g) + CaO(s) →CaCO 3(s) (B)21H 2(g)+ 21I 2(g) → HI(g) (C) H 2(g) + Cl 2(g) →2 HCl(g) (D) H 2(g)+ 21O 2(g) → H 2O(g)4-9下列反应中 m r G ∆等于产物m f G ∆的是( )(A) Ag +(aq)+Cl -(aq) →AgCl(s) (B) 2Ag(s)+Cl 2(g) →2AgCl(s) (C) Ag(s)+21Cl 2(g) →AgCl(s) (D) Ag(s)+ 21Cl 2(l) →AgCl(s) 4-10对反应CH 4(g) + 2 O 2(g) → CO 2(g) + 2 H 2O(l)的m r H ∆,下列说法中正确的是( )A . m r H ∆ 是CO 2(g) 生成焓B .m r H ∆是CH 4(g)的燃烧焓 C . m r H ∆是正值 D . m r H ∆-U ∆是正值2.填空题4-11 对某体系做功165 J ,该体系应 热量 J ,才能使内能增加100 J 。
热力学基础
热力学基础习 题一、单选题1、一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同体积的终态,在绝热过程中的压强0p ∆与等温过程中的压强T p ∆的关系为( )A. T p p ∆<∆0B. T p p ∆>∆0C. T p p ∆=∆0D. 无法确定 2、系统的状态改变了,其内能值则( )A. 必定改变B. 必定不变C. 不一定改变D. 状态与内能无关3、将20g 的氦气(理想气体,且RC 23V =)在不与外界交换热量情况下,从17℃升至27℃,则气体系统内能的变化与外界对系统作的功为( )A.J 1023.62⨯=∆E ,J 1023.62⨯=A B.J 1023.62⨯=∆E ,J 1023.63⨯=AC. J 1023.62⨯=∆E ,0=A D. 无法确定4、将温度为300 K ,压强为105Pa 的氮气分别进行绝热压缩与等温压缩,使其容积变为原来的1/5。
则绝热压缩与等温压缩后的压强和温度的关系分别为( )A. 等温绝热P P >,等温绝热T T > B.等温绝热P P <, 等温绝热T T > C.等温绝热P P <,等温绝热T T > D.等温绝热P P >,等温绝热T T <5、质量为m 的物体在温度为T 时发生相变过程(设该物质的相变潜热为λ),则熵变为( )A. T m S λ=∆ B.Tm S λ>∆C.Tm S λ<∆D. 0=∆S6、质量一定的理想气体,从相同状态出发,分别经历不同的过程,使其体积增加一倍,然后又回到初态,则( )A. 内能最大B. 内能最小C. 内能不变D. 无法确定7、一定量的理想气体,经历某一过程后,温度升高了。
则根据热力学定律可以断定为:(1)该理想气体系统在此过程中吸热;(2)在此过程中外界对该理想气体系统作正功;(3)该理想气体系统的内能增加了;(4)在此过程中理想气体系统从外界吸热,又对外作正功。
化学热力学练习题焓变与熵变计算
化学热力学练习题焓变与熵变计算热力学是研究物质能量转化和体系热平衡的科学,其核心概念之一就是焓变和熵变。
焓变描述了在定压条件下物质从起始状态到终止状态时的能量变化,而熵变则描述了体系在一个过程中的无序程度变化。
通过计算焓变与熵变,我们可以进一步了解物质的热力学性质,为化学反应的研究和工业应用提供依据。
下面,我们将通过一些常见的练习题来学习焓变和熵变的计算方法。
练习题1:氢气燃烧生成水考虑氢气与氧气燃烧生成水的反应:2 H₂(g) + O₂(g) → 2 H₂O(l)已知在常压下,该反应的焓变为-572 kJ/mol。
请计算该反应的熵变。
解答:焓变的计算方法是,根据反应物和生成物的摩尔数,将焓变值除以摩尔数得到摩尔焓变。
在本例中,反应物为2摩尔的氢气和1摩尔的氧气,生成物为2摩尔的水。
因此,摩尔焓变为-572 kJ/mol ÷ 2 = 286kJ/mol。
熵变的计算方法是,根据物质的一个摩尔数的熵与摩尔焓变之间的关系,使用熵变的标准生成值。
根据热力学第二定律,我们知道在298 K时,理想气体在标准状态下的熵为0。
因此,可以推出标准生成摩尔熵变的表达式:ΔS° = ΣnS°(生成物) - ΣmS°(反应物)在本例中,生成物为2摩尔的水,反应物为2摩尔的氢气和1摩尔的氧气。
根据热力学表,水的标准生成摩尔熵为69.92 J/mol·K,氢气的标准生成摩尔熵为130.68 J/mol·K,氧气的标准生成摩尔熵为205.03 J/mol·K。
代入上述公式:ΔS° = (2 mol × 69.92 J/mol·K) - (2 mol × 130.68 J/mol·K + 1 mol ×205.03 J/mol·K)= -23.45 J/K因此,该反应的熵变为-23.45 J/K。
《大学物理》热力学基础练习题及答案解析
《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
热力学基础习题
第六章 热力学基础习题(一)教材外习题1.在下列各种说法中,哪些是正确的? (1)热平衡过程就是无摩擦的、平衡力作用的过程(2)热平衡过程一定是可逆过程(3)热平衡过程是无限多个连续变化的平衡态的连接 (4)热平衡过程是在p -V 图上可用一连续曲线表示 (A )(1)、(2) (B )(3)、(4) (C )(2)、(3)、(4) (D )(1)、(2)、(3)、(4)( ) 2.对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作的功三者均为负值?(A )等容降压过程 (B )等温膨胀过程 (C )绝热膨胀过程 (D )等压压缩过程( )3.如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为Pa ,右边为真空。
今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A )P 0 (B )P 0/2 (C )2γ P 0 (γ = C P / C V ) (D )P 0/2γ( )4.一定量的理想气体分别由初态a 经①过程a b 和由初态a ' 经②过程a 'cb 到达相同的终态b ,如p — T 图所示,则两个过程中气体从外界吸收的热量Q 1,Q 2的关系为:(A )Q 1<0, Q 1>Q 2(B )Q 1>0, Q 1>Q 2(C )Q 1<0, Q 1>Q 2 (D )Q 1>0, Q 1<Q 2( )5.根据热力学第二定律可知:(A )功可以全部转换为热,但热不能全部转换为功。
(B )热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (C )不可逆过程就是不能向相反方向进行的过程 (D )一切自发过程都是不可逆的( )pT二、填空题:1.一定量的理想气体,从p —V 图上状态出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试画出这三种过程的p —V 图曲线。
化学热力学基础例题与习题OK
h
5
5.下列各物质的标准摩尔生成自由能
f
G
m
不为零的是 C 。
A.白磷(s) B.Br2(l) C.Hg(s) D.N2(g)
h
6
6.下列说法正确的是 B 。 A.只有恒压过程才有焓变 B.只有恒压且不做非体积功W’的过程的反
应热才等于焓变 C.任何过程都有焓变,且焓变等于反应热 D.单质的焓变和自由能变都等于零
S
m
/J·mol-1·K-1
191.6
205.14
rH
m
=90.25 kJ·mol-1
210.76
rS
m
=210.76-
1 2
×191.6-
12×205.14
=12.39 J·mol-1·K-1
h
37
rG
m
(298K)=
rH
m
-T
rS
m
=90.25-298.15×12.39×10-3
h
35
2.设汽车内燃机内温度因燃料燃烧可达
1300℃,试估算反应 1
2
N2(g)+
1 2
O2(g)→NO(g)
在25
℃和1300
℃的
r
G
m
和K
的数值。并联
系反应速率简单说明在大气污染中的影响。
h
36
解
1
1
2 N2(g) + 2 O2(g) = NO(g)
f
H
m
/kJ·mol-1
0
0
90.25
h
16
二、填空题
1.反应CaO(s)+H2O(l)→Ca(OH)2(s),在 298K及100kPa时是自发反应,高温时其逆反
热力学基础练习题
热力学基础练习题一、选择题1.关于热力学过程,下列说法正确的是: ( ) A 、 准静态过程一定是可逆过程; B 、 非准静态过程不一定是不可逆过程; C 、 可逆过程一定是准静态过程; D 、 不可逆过程一定是非准静态过程.2. 如图所示,当气缸中的活塞迅速向外移动而使气体膨胀时,气体所经历的过程( ) A .是准静态过程,它能用p-v 图上的一条曲线表示 B .不是准静态过程,但它能用p-v 图上的一条曲线表示 C .不是准静态过程,它不能用p-v 图上的一条曲线表示 D .是准静态过程但它不能用p-v 图上的一条曲线表示3.如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程( )(A )是A →D. (B ) 是A →C. (C )是A →B.(D )既是A →B 也是A →C , 两过程吸热一样多。
4.气体的摩尔定压热容m P C ,大于摩尔定容热容m V C ,,其主要原因是( ) (A )膨胀系数不同; (B )温度不同;(C )分子引力不同; (D )气体膨胀需作功。
5.氦气、氮气、水蒸汽(均视为刚性分子理想气体),它们的摩尔数相同,初始状态相同,若使它们在体积不变情况下吸收相等的热量,则( ) (A) 它们的温度升高不相同,压强增加不相同. (B) 它们的温度升高相同,压强增加不相同. (C) 它们的温度升高不相同,压强增加相同. (D) 它们的温度升高相同,压强增加相同.6.理想气体在如图中实线所示的由状态1到状态2的准静态过程中: ( ) A 、000>>>∆Q W E ,,; B 、000<><∆Q W E ,,; C 、000>><∆Q W E ,,; D 、000=><∆Q W E ,,p pVOA B C D7.如图所示为一定量的理想气体的p —V 图,由图可得出结论( ) (A )ABC 是等温过程; (B )B A T T >; (C )B A T T <;(D )B A T T =。
热力学基础计算题
《热力学基础》计算题1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)(1) 计算这个过程中气体对外所作的功.(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?解:(1) 等温过程气体对外作功为⎰⎰===0000333ln d d V V V V RT V VRT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分(2) 绝热过程气体对外作功为V V V p V p W V V V V d d 00003003⎰⎰-==γγRT V p 1311131001--=--=--γγγγ 2分 =2.20×103 J 2分2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:(1) A →B : ))((211A B A B V V p p W -+==200 J .ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J . 150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分m 3) 53. 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)解:氦气为单原子分子理想气体,3=i(1) 等体过程,V =常量,W =0据 Q =∆E +W 可知)(12T T C M M E Q V mol-=∆==623 J 3分 (2) 定压过程,p = 常量,)(12T T C M M Q p mol-==1.04×103 J ∆E 与(1) 相同.W = Q - ∆E =417 J 4分(3) Q =0,∆E 与(1) 同W = -∆E=-623 J (负号表示外界作功) 3分4. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气).已知气体的初压强p 1=1atm ,体积V 1=1L ,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,(1) 在p -V 图上将整个过程表示出来.(2) 试求在整个过程中气体内能的改变.(3) 试求在整个过程中气体所吸收的热量.(1 atm =1.013×105 Pa)(4) 试求在整个过程中气体所作的功.解:(1) p -V 图如右图. 2分 (2) T 4=T 1∆E =0 2分(3))()(2312T T C M M T T C M M Q V mol p mol -+-= )]2(2[23)2(25111111p p V V V p -+-= 11211V p ==5.6×102 J 4分 (4) W =Q =5.6×102 J 2分5.1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量.(2) 气体对外界所作的功.(3) 气体吸收的热量.(4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)(L) p (atm) p 1p p 12解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则 )(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ).由状态方程得 Δ(pV ) =R ΔT ,故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分6. 有1 mol 刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27℃,若经过一绝热过程,使其压强增加到16 atm .试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度.( 1 atm= 1.013×105 Pa , 玻尔兹曼常量k=1.38×10-23 J ·K -1,普适气体常量R =8.31J ·mol -1·K -1 )解:(1) ∵ 刚性多原子分子 i = 6,3/42=+=ii γ 1分 ∴ 600)/(11212==-γγp p T T K 2分3121048.7)(21)/(⨯=-=∆T T iR M M E mol J 2分 (2) ∵绝热 W =-ΔE =-7.48×103 J (外界对气体作功) 2分(3) ∵ p 2 = n kT 2∴n = p 2 /(kT 2 )=1.96×1026 个/m 3 3分7. 如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知常量.试求:(1) 气体从体积V 1膨胀到V 2所作的功;(2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.解:(1) d W = p d V = (a 2 /V 2 )d V)11()/(2122221V V a dV V a dW W V V -===⎰⎰ 2分 (2) ∵ p 1V 1 /T 1 = p 2V 2 /T 2∴ T 1/ T 2 = p 1V 1 / (p 2V 2 )由 11/p a V =,22/p a V =得 p 1 / p 2= (V 2 /V 1 )2∴ T 1/ T 2 = (V 2 /V 1 )2 (V 1 /V 2) = V 2 /V 1 3分8. 汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=?解:据 iRT M M E mol21)/(=, RT M M pV mol )/(= 2分 得 ipV E 21= 变化前 11121V ip E =, 变化后22221V ip E = 2分 绝热过程 γγ2211V p V p = 即 1221/)/(p p V V=γ 3分题设 1221p p =, 则 21)/(21=γV V 即 γ/121)21(/=V V ∴ )21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ 3分9. 2 mol 氢气(视为理想气体)开始时处于标准状态,后经等温过程从外界吸取了 400 J的热量,达到末态.求末态的压强.(普适气体常量R =8.31J·mol -2·K -1)解:在等温过程中, ΔT = 0Q = (M /M mol ) RT ln(V 2/V 1)得 0882.0)/(ln 12==RTM M Q V Vmol 即 V 2 /V 1=1.09 3分末态压强 p 2 = (V 1 /V 2) p 1=0.92 atm 2分10. 为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:等压过程 W = p ΔV =(M /M mol )R ΔT 1分 内能增 iW T iR M M E mal 2121)/(==∆∆ 1分 双原子分子5=i 1分∴ 721=+=+=∆W iW W E Q J 2分11.两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为V 0,其中盛有温度相同、压强均为p 0的同种理想气体.现保持气体温度不变,用外力缓慢移动活塞(忽略磨擦),使左室气体的体积膨胀为右室的2倍,问外力必须作多少功?为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:设左、右两室中气体在等温过程中对外作功分别用W 1、W 2表示,外力作功用W ′表示.由题知气缸总体积为2V 0,左右两室气体初态体积均为V 0,末态体积各为4V 0/3和2V 0/3 . 1分据等温过程理想气体做功:W =(M /M mol )RT ln(V 2 /V 1)得 34ln 34ln0000001V p V V V p W == 得 32ln 32ln 0000002V p V V V p W == 2分 现活塞缓慢移动,作用于活塞两边的力应相等,则W’+W 1=-W 221W W W --=')32ln 34(ln 00+-=V p 89ln 00V p = 2分12.一定量的理想气体,从A 态出发,经p -V 图中所示的过程到达B 态,试求在这过程中,该气体吸收的热量..解:由图可得A 态: =A A V p 8×105 JB 态: =B B V p 8×105 J∵ B B A A V p V p =,根据理想气体状态方程可知B A T T =∆E = 0 3分根据热力学第一定律得:)()(D B B A C A V V p V V p W Q -+-==6105.1⨯= J 2分13. 如图,体积为30L 的圆柱形容器内,有一能上下自由滑动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔、温度为127℃的单原子分子理想气体.若容器外大气压强为1标准大气压,气温为27℃,求当容器内气体与周围达到平衡时需向外放热多少?(普适气体常量 R = 8.31 J ·mol -1·K -1)解:开始时气体体积与温度分别为 V 1 =30×10-3 m 3,T 1=127+273=400 K∴气体的压强为 p 1=RT 1/V 1 =1.108×105 Pa大气压p 0=1.013×105 Pa , p 1>p 0可见,气体的降温过程分为两个阶段:第一个阶段等体降温,直至气体压强p 2 = p 0,此时温度为T 2,放热Q 1;第二个阶段等压降温,直至温度T 3= T 0=27+273 =300 K ,放热Q 2(1) )(23)(21211T T R T T C Q V -=-= 365.7 K∴ Q 1= 428 J 5分(2) )(25)(32322T T R T T C Q p -=-==1365 J ∴ 总计放热 Q = Q 1 + Q 2 = 1.79×103 J 5分53)14.一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中(1) 气体对外作的功;(2) 气体内能的增量;(3) 气体吸收的热量.(1 atm =1.013×105 Pa) 解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J3分(2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分15. 一定量的理想气体在标准状态下体积为 1.0×10-2 m 3,求下列过程中气体吸收的热量:(1) 等温膨胀到体积为 2.0×10-2 m 3;(2) 先等体冷却,再等压膨胀到 (1) 中所到达的终态.已知1 atm= 1.013×105 Pa ,并设气体的C V = 5R / 2.解:(1) 如图,在A →B 的等温过程中,0=∆T E , 1分 ∴ ⎰⎰===2121d d 11V V V V T T V V V p V p W Q )/ln(1211V V V p = 3分 将p 1=1.013×105 Pa ,V 1=1.0×10-2 m 3和V 2=2.0×10-2 m 3 代入上式,得 Q T ≈7.02×102 J 1分 (2) A →C 等体和C →B 等压过程中 ∵A 、B 两态温度相同,∴ ΔE ABC = 0 ∴ Q ACB =W ACB =W CB =P 2(V 2-V 1)3分又 p 2=(V 1/V 2)p 1=0.5 atm 1分∴ Q ACB =0.5×1.013×105×(2.0-1.0)×10-2 J ≈5.07×102 J 1分16. 将1 mol 理想气体等压加热,使其温度升高72 K ,传给它的热量等于1.60×103 J ,求:(1) 气体所作的功W ;(2) 气体内能的增量E ∆;(3) 比热容比γ.(普适气体常量11K mol J 31.8--⋅⋅=R )解:(1) 598===∆∆T R V p W J 2分(2)31000.1⨯=-=∆W Q E J 1分 (3) 11K mol J 2.22--⋅⋅==∆TQ C p 11K mol J 9.13--⋅⋅=-=R C C p V6.1==V p C C γ 2分p17. 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=1.2×106 Pa ,V 0=8.31×10-3m 3,T 0 =300 K 的初态,后经过一等体过程,温度升高到T 1 =450 K ,再经过一等温过程,压强降到p = p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p / C V =5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .(2) 气体从始态变到末态的全过程中从外界吸收的热量.(普适气体常量R = 8.31 J·mol -1·K -1) 解:(1) 由 35=V p C C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23= 2分 (2) 该理想气体的摩尔数 ==000RT V p ν 4 mol 在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J 2分 全过程中气体对外作的功为 011ln p p RT W ν= 式中 p 1 ∕p 0=T 1 ∕T 0 则 30111006.6ln⨯==T T RT W ν J . 2分 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J . 2分18.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED是任意过程,组成一个循环。
第四章化学热力学基础题库
第四章化学热力学基础题库一、选择题(将正确答案编号填入括号内)1、如图,将CuSO4水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭体系的是:( A )(A) 绝热箱中所有物质 (B) 两个铜电极(C) 蓄电池和铜电极(D) CuSO4水溶液2、对于内能是体系状态的单值函数概念,错误理解是:( D )(A) 体系处于一定的状态,具有一定的内能(B) 对应于某一状态,内能只能有一数值不能有两个以上的数值(C) 状态发生变化,内能也一定跟着变化(D) 对应于一个内能值,可以有多个状态3、体系的下列各组物理量中都是状态函数的是:( C )(A) T,p,V,Q (B) m,V m,C p,W(C) T,p,V,n (D) T,p,U,W4、下述说法中,哪一种不正确:( A )(A) 焓是体系能与环境进行交换的能量(B) 焓是人为定义的一种具有能量量纲的热力学量(C) 焓是体系状态函数(D) 焓只有在某些特定条件下,才与体系吸热相等5、下述说法中,哪一种正确:( A )(A) 热容C不是状态函数(B) 热容C与途径无关(C) 恒压热容C p不是状态函数(D) 恒容热容C V不是状态函数6、热力学第一定律仅适用于什么途径:( A )(A) 同一过程的任何途径(B) 同一过程的可逆途径(C) 同一过程的不可逆途径 (D) 不同过程的任何途径7、范德华气体绝热向真空膨胀后,气体的温度将: ( C ) (A) 不变 (B) 升高 (C) 降低 (D) 不能确定8、已知CO g O H 及)(2(g)在298K 时标准摩尔生成焓分别为242-KJ/mol 及-111KJ/mol ,则反应)()()()(22g CO g H C g O H +→+石墨的为θm r H ∆:( B ) (A) -353KJ (B) 131KJ (C) -131KJ (D) 353kJ9、理想气体与温度为T 的大热源接触,作等温膨胀吸热Q ,而所作的功是变化到相同终态最大功的20%,则体系的熵变为: ( A )(A) T Q S 5=∆ (B) T Q S =∆ (C) T Q S 5=∆ (D) TQS -=∆10、理想气体经不可逆循环,则: ( B ) (A) )(系S ∆=0,)(环S ∆)=0 (B) )(系S ∆)=0,)(环S ∆>0 (C) )(系S ∆>0,)(环S ∆>0 (D) )(系S ∆>0,)(环S ∆<011、在隔离系统中,发生一具有一定速度的变化,则系统的熵变: ( C ) (A) 保持不变 (B) 总是减小 (C) 总是增大 (D) 可任意变化12、可逆热机的效率最高,因此由可逆热机带动的火车: ( B ) (A) 跑的最快 (B) 跑的最慢 (C) 夏天跑的快 (D) 冬天跑的快13、已知气相反应)()(3)(126266g H C g H g H C =+在100℃时的标准摩尔反应焓J rH m 43.192-=∆θ,当反应达平衡时可用下列哪组措施使平衡向右移动:( C )(A) 升温与加压 (B) 升温与减压 (C) 降温与加压 (D) 降温与减压14、熵是混乱度(热力学微观状态数或热力学几率)的量度,下列结论中不正确的是: ( C ) (A) 同一种物质的 S(g)>S(l)>S(s) (B) 同种物质温度越高熵值越大 (C) 分子内含原子数越多熵值越大 (D) 0K 时任何纯物质的熵值都等于零 15、热力学基本方程 d G = -S d T + V d p ,可适应用下列哪个过程: ( A )(A) 298K 、标准压力下,水气化成蒸汽 (B) 理想气体向真空膨胀(C) 电解水制取氢气 (D) N 2 + 3H 2=2NH 3未达到平衡二、填空题1、系统与环境之间 的系统称为敞开系统;系统与环境之间 的系统称为封闭系统;系统与环境之间 的系统称为隔离系统。
热力学基础计算题
《热力学基础》计算题1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)(1) 计算这个过程中气体对外所作的功.(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?解:(1) 等温过程气体对外作功为⎰⎰===0000333ln d d V V V V RT V VRT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分(2) 绝热过程气体对外作功为V V V p V p W V V V V d d 00003003⎰⎰-==γγRT V p 1311131001--=--=--γγγγ 2分 =2.20×103 J 2分2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:(1) A →B : ))((211A B A B V V p p W -+==200 J .ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J . 150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分m 3) 53. 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)解:氦气为单原子分子理想气体,3=i(1) 等体过程,V =常量,W =0据 Q =∆E +W 可知)(12T T C M M E Q V mol-=∆==623 J 3分 (2) 定压过程,p = 常量,)(12T T C M M Q p mol-==1.04×103 J ∆E 与(1) 相同.W = Q - ∆E =417 J 4分(3) Q =0,∆E 与(1) 同W = -∆E=-623 J (负号表示外界作功) 3分4. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气).已知气体的初压强p 1=1atm ,体积V 1=1L ,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,(1) 在p -V 图上将整个过程表示出来.(2) 试求在整个过程中气体内能的改变.(3) 试求在整个过程中气体所吸收的热量.(1 atm =1.013×105 Pa)(4) 试求在整个过程中气体所作的功.解:(1) p -V 图如右图. 2分 (2) T 4=T 1∆E =0 2分(3))()(2312T T C M M T T C M M Q V mol p mol -+-= )]2(2[23)2(25111111p p V V V p -+-= 11211V p ==5.6×102 J 4分 (4) W =Q =5.6×102 J 2分5.1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量.(2) 气体对外界所作的功.(3) 气体吸收的热量.(4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)(L) p (atm) p 1p p 12解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则 )(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ).由状态方程得 Δ(pV ) =R ΔT ,故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分6. 有1 mol 刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27℃,若经过一绝热过程,使其压强增加到16 atm .试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度.( 1 atm= 1.013×105 Pa , 玻尔兹曼常量k=1.38×10-23 J ·K -1,普适气体常量R =8.31J ·mol -1·K -1 )解:(1) ∵ 刚性多原子分子 i = 6,3/42=+=ii γ 1分 ∴ 600)/(11212==-γγp p T T K 2分3121048.7)(21)/(⨯=-=∆T T iR M M E mol J 2分 (2) ∵绝热 W =-ΔE =-7.48×103 J (外界对气体作功) 2分(3) ∵ p 2 = n kT 2∴n = p 2 /(kT 2 )=1.96×1026 个/m 3 3分7. 如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知常量.试求:(1) 气体从体积V 1膨胀到V 2所作的功;(2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.解:(1) d W = p d V = (a 2 /V 2 )d V)11()/(2122221V V a dV V a dW W V V -===⎰⎰ 2分 (2) ∵ p 1V 1 /T 1 = p 2V 2 /T 2∴ T 1/ T 2 = p 1V 1 / (p 2V 2 )由 11/p a V =,22/p a V =得 p 1 / p 2= (V 2 /V 1 )2∴ T 1/ T 2 = (V 2 /V 1 )2 (V 1 /V 2) = V 2 /V 1 3分8. 汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=?解:据 iRT M M E mol21)/(=, RT M M pV mol )/(= 2分 得 ipV E 21= 变化前 11121V ip E =, 变化后22221V ip E = 2分 绝热过程 γγ2211V p V p =即 1221/)/(p p V V =γ 3分题设 1221p p =, 则 21)/(21=γV V 即 γ/121)21(/=V V ∴ )21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ 3分9. 2 mol 氢气(视为理想气体)开始时处于标准状态,后经等温过程从外界吸取了 400 J的热量,达到末态.求末态的压强.(普适气体常量R =8.31J·mol -2·K -1)解:在等温过程中, ΔT = 0Q = (M /M mol ) RT ln(V 2/V 1)得 0882.0)/(ln 12==RTM M Q V Vmol 即 V 2 /V 1=1.09 3分末态压强 p 2 = (V 1 /V 2) p 1=0.92 atm 2分10. 为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:等压过程 W = p ΔV =(M /M mol )R ΔT 1分iW T iR M M E mal 2121)/(==∆∆ 1分 双原子分子5=i 1分∴ 721=+=+=∆W iW W E Q J 2分11.两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为V 0,其中盛有温度相同、压强均为p 0的同种理想气体.现保持气体温度不变,用外力缓慢移动活塞(忽略磨擦),使左室气体的体积膨胀为右室的2倍,问外力必须作多少功?为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:设左、右两室中气体在等温过程中对外作功分别用W 1、W 2表示,外力作功用W ′表示.由题知气缸总体积为2V 0,左右两室气体初态体积均为V 0,末态体积各为4V 0/3和2V 0/3 . 1分据等温过程理想气体做功:W =(M /M mol )RT ln(V 2 /V 1)得 34ln 34ln0000001V p V V V p W == 得 32ln 32ln 0000002V p V V V p W == 2分 现活塞缓慢移动,作用于活塞两边的力应相等,则W’+W 1=-W 221W W W --=')32ln 34(ln 00+-=V p 89ln 00V p = 2分12.一定量的理想气体,从A 态出发,经p -V 图中所示的过程到达B 态,试求在这过程中,该气体吸收的热量..解:由图可得A 态: =A A V p 8×105 JB 态: =B B V p 8×105 J∵ B B A A V p V p =,根据理想气体状态方程可知B A T T =,∆E = 0 3分根据热力学第一定律得:)()(D B B A C A V V p V V p W Q -+-==6105.1⨯= J 2分13. 如图,体积为30L 的圆柱形容器内,有一能上下自由滑动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔、温度为127℃的单原子分子理想气体.若容器外大气压强为1标准大气压,气温为27℃,求当容器内气体与周围达到平衡时需向外放热多少?(普适气体常量 R = 8.31 J ·mol -1·K -1)解:开始时气体体积与温度分别为 V 1 =30×10-3 m 3,T 1=127+273=400 K∴气体的压强为 p 1=RT 1/V 1 =1.108×105 Pa大气压p 0=1.013×105 Pa , p 1>p 0可见,气体的降温过程分为两个阶段:第一个阶段等体降温,直至气体压强p 2 = p 0,此时温度为T 2,放热Q 1;第二个阶段等压降温,直至温度T 3= T 0=27+273 =300 K ,放热Q 2(1) )(23)(21211T T R T T C Q V -=-= ==1122)/(T p p T 365.7 K∴ Q 1= 428 J 5分(2) )(25)(32322T T R T T C Q p -=-==1365 J ∴ 总计放热 Q = Q 1 + Q 2 = 1.79×103 J 5分53)14.一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中(1) 气体对外作的功;(2) 气体内能的增量;(3) 气体吸收的热量.(1 atm =1.013×105 Pa) 解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J3分(2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分15. 一定量的理想气体在标准状态下体积为 1.0×10-2 m 3,求下列过程中气体吸收的热量:(1) 等温膨胀到体积为 2.0×10-2 m 3;(2) 先等体冷却,再等压膨胀到 (1) 中所到达的终态.已知1 atm= 1.013×105 Pa ,并设气体的C V = 5R / 2.解:(1) 如图,在A →B 的等温过程中,0=∆T E , 1分 ∴ ⎰⎰===2121d d 11V V V V T T V V V p V p W Q )/ln(1211V V V p = 3分 将p 1=1.013×105 Pa ,V 1=1.0×10-2 m 3和V 2=2.0×10-2 m 3 代入上式,得 Q T ≈7.02×102 J 1分 (2) A →C 等体和C →B 等压过程中 ∵A 、B 两态温度相同,∴ ΔE ABC = 0 ∴ Q ACB =W ACB =W CB =P 2(V 2-V 1)3分又 p 2=(V 1/V 2)p 1=0.5 atm 1分∴ Q ACB =0.5×1.013×105×(2.0-1.0)×10-2 J ≈5.07×102 J 1分16. 将1 mol 理想气体等压加热,使其温度升高72 K ,传给它的热量等于1.60×103 J ,求:(1) 气体所作的功W ;(2) 气体内能的增量E ∆;(3) 比热容比γ.(普适气体常量11K mol J 31.8--⋅⋅=R )解:(1) 598===∆∆T R V p W J 2分(2)31000.1⨯=-=∆W Q E J 1分 (3) 11K mol J 2.22--⋅⋅==∆TQ C p 11K mol J 9.13--⋅⋅=-=R C C p V6.1==V p C C γ 2分p17. 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=1.2×106 Pa ,V 0=8.31×10-3m 3,T 0 =300 K 的初态,后经过一等体过程,温度升高到T 1 =450 K ,再经过一等温过程,压强降到p = p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p / C V =5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .(2) 气体从始态变到末态的全过程中从外界吸收的热量.(普适气体常量R = 8.31 J·mol -1·K -1) 解:(1) 由 35=V p C C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23= 2分 (2) 该理想气体的摩尔数 ==000RT V p ν 4 mol 在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J 2分 全过程中气体对外作的功为 011ln p p RT W ν= 式中 p 1 ∕p 0=T 1 ∕T 0 则 30111006.6ln⨯==T T RT W ν J . 2分 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J . 2分18.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED是任意过程,组成一个循环。
热力学计算题(50题)
热力学计算题(50题)本文包含了50个热力学计算题的答案,分别为:1. 在1 atm下,如果1 L液态H2O沸腾,则液态H2O的温度是多少?答案:100℃2. 在标准状况下,1摩尔理想气体的体积是多少?答案:22.4 L3. 1升液态水的密度是多少?答案:1千克/升4. 一摩尔甲烷气体在标准状况下的热力学能是多少?答案: -74.8 kJ / mol5. 1升的理想气体在标准大气压下的焓(molar enthalpy)是多少?答案: -295 kJ / mol6. 一升20℃的空气有多少质量?答案:1.2 g7. 一升空气,温度为25℃,压力为1 atm,含有多少氧气分子?答案:其中氧气分子数量为 1.2 × 10^228. 一升CO2气体的温度为298K时,压力是多少?答案: 37.96 atm9. 如果一个物体的热容为25 J/℃,它受热 80℃,所吸收的热量是多少?答案:2000 J10. 摩尔热容是15 J/mol·K的氧气气体在1 atm下被加热10 K 会发生多少变化?答案:1.5 J11. 一个物体被加热10 J,它受热前的温度是20℃,它后来的温度是多少℃?答案:受热后的温度为 73.53℃12. 对于固体氧气(O2),如果将它从25℃加热到50℃,需要消耗多少热量?答案:340 J/mol13. 一升液态水被加热 100℃,需要吸收多少热量?答案:4184 J14. 一克液态水被加热 1℃,需要吸收多少热量?答案:4.18 J15. 对于CO2气体(1 mol),在1 atm和273 K下,它的物态方程是什么?答案:pV = (1 mol)(8.21 J/mol·K)(273 K)16. 用50 J的热量加热1升冷却水可能使它的温度升高多少℃?答案:温度可能升高 10℃17. 如果把长度为10 cm、质量为20 g的铝棒从25℃加热到175℃,需要多少热量?答案:252 J18. 对于一个摩尔二氧化碳气体,如果把压力从1 atm减小到0.75 atm,需要释放多少热量?答案:-495 J19. 对于1摩尔理想气体,如果把温度从200 K增加到1000 K,并保持其体积不变,则需要吸收多少热量?答案:23.32 kJ20. 一个系统吸收 250 J 的热量,释放50 J的热量,系统的内能的变化是多少?答案:200 J21. 对于一个物体,如果它从25℃升高到50℃,则它的热动能将变为原来的几倍?答案:1.5倍22. 一瓶500 g的汽水在室温下是10℃,如果将汽水加热到37℃,需要吸收多少热量?答案:目标温度需要吸收 8725 J 的热量23. 在25℃下,一块金属的热容容值是25 J/K,其体积是1 cm^3,密度为6.5 g/cm^3,求其热导率。
热力学基本定律练习题
热力学基本定律练习题1-1 0.1kg C6H6(l)在,沸点353.35K下蒸发,已知(C6H6) =30.80 kJ mol-1。
试计算此过程Q,W,ΔU和ΔH值。
解:等温等压相变。
n/mol =100/78 , ΔH = Q = n= 39.5 kJ ,W= - nRT = -3.77 kJ , ΔU =Q+W=35.7 kJ1-2 设一礼堂的体积是1000m3,室温是290K,气压为,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其C p,m为29.29 J K-1 ·mol-1。
)解:理想气体等压升温(n变)。
,=1.2×107 J1-3 2 mol单原子理想气体,由600K,1.0MPa对抗恒外压绝热膨胀到。
计算该过程的Q、W、ΔU和ΔH。
(C p ,m=2.5 R)解:理想气体绝热不可逆膨胀Q=0 。
ΔU=W,即nC V,m(T2-T1)= - p2 (V2-V1),因V2= nRT2/ p2 , V1= nRT1/ p1 ,求出T2=384K。
ΔU=W=nC V,m(T2-T1)=-5.39kJ ,ΔH=nC p,m(T2-T1)=-8.98 kJ1-4 在298.15K,6×101.3kPa压力下,1 mol单原子理想气体进行绝热膨胀,最后压力为,若为;(1)可逆膨胀 (2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。
(已知Cp ,m=2.5 R)。
解:(1)绝热可逆膨胀:γ=5/3 , 过程方程p11-γT1γ= p21-γT2γ, T2=145.6 K ,ΔU=W=nC V,m(T2-T1)=-1.9 kJ , ΔH=nC p,m(T2-T1)=-3.17kJ(2)对抗恒外压膨胀 ,利用ΔU=W,即nC V,m(T2-T1)= -p2 (V2-V1) ,求出T2=198.8K。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《热力学基础》计算题1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R = 1--⋅⋅K mol J 1,ln 3=(1) 计算这个过程中气体对外所作的功.(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少解:(1) 等温过程气体对外作功为⎰⎰===0000333ln d d V V V V RT V VRT V p W 2分 =×298× J = ×103 J 2分(2) 绝热过程气体对外作功为V V V p V p W V V V V d d 00003003⎰⎰-==γγRT V p 1311131001--=--=--γγγγ 2分 =×103 J 2分2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J .ΔE 1=C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J . 150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分1 2 31 2 O V (10-3 m 3) 5 A B C3. 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R = 11K mol J --⋅)解:氦气为单原子分子理想气体,3=i(1) 等体过程,V =常量,W =0据 Q =E +W 可知)(12T T C M M E Q V mol-=∆==623 J 3分 (2) 定压过程,p = 常量,)(12T T C M M Q p mol-==×103 J E 与(1) 相同.W = Q E =417 J 4分(3) Q =0,E 与(1) 同W = E=623 J (负号表示外界作功) 3分4. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气).已知气体的初压强p 1=1atm ,体积V 1=1L ,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,(1) 在p -V 图上将整个过程表示出来.(2) 试求在整个过程中气体内能的改变.(3) 试求在整个过程中气体所吸收的热量.(1 atm =×105 Pa)(4) 试求在整个过程中气体所作的功.解:(1) p -V 图如右图. 2分 (2) T 4=T 1E =0 2分(3))()(2312T T C M M T T C M M Q V mol p mol -+-=)]2(2[23)2(25111111p p V V V p -+-= 11211V p ==×102 J 4分 (4) W =Q =×102 J 2分mol 双原子分子理想气体从状态A (p 1,V 1)沿p V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量.(2) 气体对外界所作的功.(3) 气体吸收的热量.(4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)T 3 T 4 T 2 T 1 1 2 1 2 (L) p (atm) OB A O V p 1p p V 1V 2解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则 )(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ).由状态方程得 Δ(pV ) =R ΔT ,故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分6. 有1 mol 刚性多原子分子的理想气体,原来的压强为 atm ,温度为27℃,若经过一绝热过程,使其压强增加到16 atm .试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度.( 1 atm= ×105 Pa , 玻尔兹曼常量k=×10-23 J ·K -1,普适气体常量R = J ·mol -1·K -1 )解:(1) ∵ 刚性多原子分子 i = 6,3/42=+=i i γ 1分 ∴ 600)/(11212==-γγp p T T K 2分3121048.7)(21)/(⨯=-=∆T T iR M M E mol J 2分 (2) ∵绝热 W =-ΔE =-×103 J (外界对气体作功) 2分(3) ∵ p 2 = n kT 2∴n = p 2 /(kT 2 )=×1026 个/m 3 3分7. 如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知常量.试求:(1) 气体从体积V 1膨胀到V 2所作的功;(2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.解:(1) d W = p d V = (a 2 /V 2 )d V)11()/(2122221V V a dV V a dW W V V -===⎰⎰ 2分 (2) ∵ p 1V 1 /T 1 = p 2V 2 /T 2∴ T 1/ T 2 = p 1V 1 / (p 2V 2 )由 11/p a V =,22/p a V =得 p 1 / p 2= (V 2 /V 1 )2∴ T 1/ T 2 = (V 2 /V 1 )2 (V 1 /V 2) = V 2 /V 1 3分8. 汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=解:据 iRT M M E mol 21)/(=, RT M M pV mol )/(= 2分 得 ipV E 21= 变化前 11121V ip E =, 变化后22221V ip E = 2分 绝热过程 γγ2211V p V p = 即 1221/)/(p p V V=γ 3分题设 1221p p =, 则 21)/(21=γV V 即 γ/121)21(/=V V ∴ )21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ 3分9. 2 mol 氢气(视为理想气体)开始时处于标准状态,后经等温过程从外界吸取了 400 J的热量,达到末态.求末态的压强.(普适气体常量R =·mol -2·K -1)解:在等温过程中, ΔT = 0Q = (M /M mol ) RT ln(V 2/V 1)得 0882.0)/(ln 12==RTM M Q V Vmol 即 V 2 /V 1= 3分末态压强 p 2 = (V 1 /V 2) p 1= atm 2分10. 为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量解:等压过程 W = p ΔV =(M /M mol )R ΔT 1分内能增量 iW T iR M M E mal 2121)/(==∆∆ 1分 双原子分子5=i 1分∴ 721=+=+=∆W iW W E Q J 2分11.两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为V 0,其中盛有温度相同、压强均为p 0的同种理想气体.现保持气体温度不变,用外力缓慢移动活塞(忽略磨擦),使左室气体的体积膨胀为右室的2倍,问外力必须作多少功为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量解:设左、右两室中气体在等温过程中对外作功分别用W 1、W 2表示,外力作功用W ′表示.由题知气缸总体积为2V 0,左右两室气体初态体积均为V 0,末态体积各为4V 0/3和2V 0/3 .外力1分据等温过程理想气体做功:W =(M /M mol )RT ln(V 2 /V 1)得 34ln 34ln 0000001V p V V V p W == 得 32ln 32ln0000002V p V V V p W == 2分 现活塞缓慢移动,作用于活塞两边的力应相等,则W’+W 1=-W 221W W W --=')32ln 34(ln 00+-=V p 89ln 00V p = 2分12.一定量的理想气体,从A 态出发,经p -V 图中所示的过程到达B 态,试求在这过程中,该气体吸收的热量..解:由图可得 A 态: =A A V p 8×105 JB 态: =B B V p 8×105 J∵ B B A A V p V p =,根据理想气体状态方程可知B A T T =, E = 0 3分根据热力学第一定律得:)()(D B B A C A V V p V V p W Q -+-==6105.1⨯= J 2分13. 如图,体积为30L 的圆柱形容器内,有一能上下自由滑动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔、温度为127℃的单原子分子理想气体.若容器外大气压强为1标准大气压,气温为27℃,求当容器内气体与周围达到平衡时需向外放热多少(普适气体常量 R = J ·mol -1·K -1)解:开始时气体体积与温度分别为 V 1 =30×10-3 m 3,T 1=127+273=400 K∴气体的压强为 p 1=RT 1/V 1 =×105 Pa大气压p 0=×105 Pa , p 1>p 0可见,气体的降温过程分为两个阶段:第一个阶段等体降温,直至气体压强p 2 = p 0,此时温度为T 2,放热Q 1;第二个阶段等压降温,直至温度T 3= T 0=27+273 =300 K ,放热Q 2(1) )(23)(21211T T R T T C Q V -=-= K∴ Q 1= 428 J 5分(2) )(25)(32322T T R T T C Q p -=-==1365 J ∴ 总计放热 Q = Q 1 + Q 2 = ×103 J 5分A CB D p (105 Pa)O V (m 3)2 5814 活塞14.一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中(1) 气体对外作的功;(2) 气体内能的增量;(3) 气体吸收的热量.(1 atm =×105 Pa) 解:(1) 气体对外作的功等于线段c a 下所围的面积 W =(1/2)×(1+3)××105×2×103 J = J3分(2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W = J . 3分15. 一定量的理想气体在标准状态下体积为 ×102 m 3,求下列过程中气体吸收的热量:(1) 等温膨胀到体积为 ×102 m 3;(2) 先等体冷却,再等压膨胀到 (1) 中所到达的终态.已知1 atm= ×105 Pa ,并设气体的C V = 5R / 2.解:(1) 如图,在A →B 的等温过程中,0=∆T E , 1分 ∴ ⎰⎰===2121d d 11V V V V T T V VV p V p W Q )/ln(1211V V V p = 3分 将p 1=×105 Pa ,V 1=×102 m 3和V 2=×102 m 3 代入上式,得 Q T ≈×102 J 1分 (2) A →C 等体和C →B 等压过程中 ∵A 、B 两态温度相同,∴ ΔE ABC = 0 ∴ Q ACB =W ACB =W CB =P 2(V 2-V 1)3分又 p 2=(V 1/V 2)p 1= atm 1分∴ Q ACB =××105×-×102 J ≈×102 J 1分16. 将1 mol 理想气体等压加热,使其温度升高72 K ,传给它的热量等于×103 J ,求:(1) 气体所作的功W ;(2) 气体内能的增量E ∆;(3) 比热容比.(普适气体常量11K mol J 31.8--⋅⋅=R )解:(1) 598===∆∆T R V p W J 2分 (2) 31000.1⨯=-=∆W Q EJ 1分(3) 11K mol J 2.22--⋅⋅==∆TQ C p 11K mol J 9.13--⋅⋅=-=R C C p V 6.1==V pC C γ 2分17. 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=×106 Pa ,V 0=×10-3m 3,T 0 =300 K 的初态,后经过一等体过程,温度升高到T 1=450 K ,再经过一等温过程,压 0 1 2 3 1 2 3 a b c V (L) p (atm) 1 p 2 V V V 2A B C 等温强降到p = p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p / C V =5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .(2) 气体从始态变到末态的全过程中从外界吸收的热量.(普适气体常量R = J·mol -1·K -1)解:(1) 由 35=V p C C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23= 2分 (2) 该理想气体的摩尔数 ==000RT V p ν 4 mol 在全过程中气体内能的改变量为 △E =C V (T 1-T 2)=×103 J 2分全过程中气体对外作的功为 011ln p p RT W ν= 式中 p 1 ∕p 0=T 1 ∕T 0则 30111006.6ln ⨯==T T RT W ν J . 2分 全过程中气体从外界吸的热量为 Q = △E +W =×104 J . 2分18.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED是任意过程,组成一个循环。