第3章数控车床的程序编制

合集下载

数控机床技能实训:第三章 数控车床的加工工艺基础与编程

数控机床技能实训:第三章 数控车床的加工工艺基础与编程
(3)具有较高的生产率和较低的加工成本 机床生产率主要是指加工一个零件所需要的时间,其中包 括机动时间和辅助时间。数控车床的主轴转速和进给速度变化
上一页 下一页
第三章 数控车床的加工工艺基础 与编程
范围很大,并可无级调速,加工时可选用最佳的切削速度和进 给速度,可实现恒转速和恒切速,以使切削参数最优化,这就 大大地提高了生产率,降低了加工成本,尤其对大批量生产的 零件,批量越大,加工成本越低。
中体现并由机床自动完成加工,因此,数控加工工艺 的正确与 否将直接影响到数控车床的加工精度和效率。 一、数控车削加工零件的类型
数控车床车削的主运动是工件装卡在主轴上的旋转运动, 配合刀具在平面内的运动,加工的类型主要是回转体零件。
回转体零件分为轴套类、轮盘类和其他类几种。轴套类和 轮盘类零件的区分在于长径比,一般将长径比大于1的零件视为 轴套类零件;长径比小于1的零件视为轮盘类零件。
第三章 数控车床的加工工艺基础 与编程
3.1数控车削加工工艺基础知识 3.2数控车削加工工艺的相关内容 3.3数控车削加工编程基础
第三章 数控车床的加工工艺基础 与编程
3.1数控车削加工工艺基础知识
数控车床与普通车床相比,加工效率和精度更高,可以加 工的零件形状更加复杂,加工工件的一致性好,可以完成普通 车床无法加工的具有复杂曲面的高精度的零件。
端面,端面的轮廓也可以是直线、斜线、圆弧、曲线或端面螺 纹、锥面螺纹等。
(3)其他类零件 数控车床与普通车床一样,装上特殊卡盘就可以加工偏心
轴,或在箱体、板材上加工孔或圆柱。
上一页 下一页
第三章 数控车床的加工工艺基础 与编程
二、数控车削的加工特点 数控车削是数控加工中使用最广泛的加工方法之一,同常

数控车床的程序编制

数控车床的程序编制

数控车床的程序编制一、数控车床的编程特点数控车床的编程有如下特点:(1)在一个程序段中,依据图样上标注的尺寸,可以采纳肯定值编程、增量值编程或二者混合编程。

(2)由于被加工零件的径向尺寸在图样上和测量时都是以直径值表示,所以用肯定值编程时,X以直径值表示;用增量值编程时,以径向实际位移量的二倍值表示,并附上方向符号(正向可以省略)。

(3)为提高工件的径向尺寸精度,X向的脉冲当量取Z向的一半。

(4)由于车削加工常用棒料或锻料作为毛坯,加工余量较大,所以为简化编程,数控装置常具备不同形式的固定循环,可进行多次重复循环切削。

(5)编程时,常认为车刀刀尖是一个点,而实际上为了提高刀具寿命和工件表面质量,车刀刀尖常做成一个半径不大的圆弧,因此为提高加工精度,当编制圆头车刀程序时,需要对刀具半径进行补偿。

数控车床一般都具有刀具半径自动补偿功能(G41,G42),这时可直接按工件轮廓尺寸编程。

(6) 很多数控车床用X、Z表示肯定坐标指令,用U、W表示增量坐标指令。

而不用G90、G91指令。

数控车床的机床原点定义为主轴旋转中心线与车床端面的交点,图3-1中的O即为机床原点。

主轴轴线方向为Z轴,刀具远离工件的方向为Z轴正方向。

X轴为水平径向,且刀具远离工件的方向为正方向。

为了便利编程和简化数值计算,数控车床的工件坐标系原点一般选在工件的回转中心与工件右端面或左端面的交点上。

二、车削固定循环功能由于车削的毛坯多为棒料和铸锻件,因此车削加工多为大余量多次走刀。

所以在车床的数控装置中总是设置各种不同形式的固定循环功能。

如内外圆柱面循环,内外锥面循环,切槽循环和端面循环,内外螺纹循环以及各种复合面的粗车循环等。

各种数控车床的掌握系统不同,因此这些循环的指令代码及其程序格式也不尽相同。

必需依据使用说明书的详细规定进行编程。

1. 圆柱面切削循环编程格式: G90 X(U) — Z(W) — F—;其中:X、Z — 圆柱面切削的终点坐标值;U、W— 圆柱面切削的终点相对于循环起点坐标重量。

《数控技术第3版》_(习题解答)机工版

《数控技术第3版》_(习题解答)机工版

数控技术第三版章节练习答案第一章绪论1.1数控机床的工作流程是什么?答:数控机床由输入装置、CNC装置、伺服系统和机床的机械部件构成。

数控加工程序的编制-输入-译码-刀具补偿-插补-位置控制和机床加工1.2 数控机床由哪几部分组成?各部分的基本功能是什么?答:组成:由输入输出设备、数控装置、伺服系统、测量反馈装置和机床本体组成输入输出设备:实现程序编制、程序和数据的输入以及显示、存储和打印数控装置:接受来自输入设备的程序和数据,并按输入信息的要求完成数值计算、逻辑判断和输入输出控制等功能。

伺服系统:接受数控装置的指令,驱动机床执行机构运动的驱动部件。

测量反馈装置:检测速度和位移,并将信息反馈给数控装置,构成闭环控制系统。

机床本体:用于完成各种切削加工的机械部分。

1.3.什么是点位控制、直线控制、轮廓控制数控机床?三者如何区别?答:(1)点位控制数控机床特点:只与运动速度有关,而与运动轨迹无关。

如:数控钻床、数控镗床和数控冲床等。

(2)直线控制数控机床特点:a.既要控制点与点之间的准确定位,又要控制两相关点之间的位移速度和路线。

b.通常具有刀具半径补偿和长度补偿功能,以及主轴转速控制功能。

如:简易数控车床和简易数控铣床等。

(3)连续控制数控机床(轮廓控制数控机床):对刀具相对工件的位置,刀具的进给速度以及它的运动轨迹严加控制的系统。

具有点位控制系统的全部功能,适用于连续轮廓、曲面加工。

1.4.数控机床有哪些特点?答:a.加工零件的适用性强,灵活性好;b.加工精度高,产品质量稳定;c.柔性好;d.自动化程度高,生产率高;e.减少工人劳动强度;f.生产管理水平提高。

适用范围:零件复杂、产品变化频繁、批量小、加工复杂等1.5.按伺服系统的控制原理分类,分为哪几类数控机床?各有何特点?答:(1)开环控制的数控机床;其特点:a.驱动元件为步进电机;b.采用脉冲插补法:逐点比较法、数字积分法;c.通常采用降速齿轮;d. 价格低廉,精度及稳定性差。

数控机床的程序编写

数控机床的程序编写

前言现代科学技术的发展极大地推动了不同学科的交叉与渗透,引起了工程领域的技术改造与革命。

在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。

机电一体化主要体现在数控技术及应用上,在这次实训中,感触最深的是了解了数控机床在机械制造业中的重要性,它是电子信息技术和传统机械加工技术结合的产物,它集现代精密机械、计算机、通信、液压气动、光电等多学科技术为一体,具有高效率、高精度、高自动和。

摘要数控技术是机械加工自动化的基础,是数控机床的核心技术,其水平高低关系到国家战略地位和体现国家综合国力的水平,近年来,PLC在工业自动控制领域应用愈来愈广,它在控制性能、组机周期和硬件成本等方面所表现出的综合优势是其它工控产品难以比拟的。

随着PLC技术的发展, 它在位置控制、过程控制、数据处理等方面的应用也越来越多。

在机床的实际设计和生产过程中,为了提高数控机床加工的精度,对其定位控制装置的选择就显得尤为重要。

FBs系列PLC的NC定位功能较其它PLC更精准,且程序的设计和调试相当方便。

本文提出的是如何应用PLC的NC定位控制实现机床数控系统控制功能的方法来满足控制要求,在实际运行中是切实可行的。

整机控制系统具有程序设计思路清晰、硬件电路简单实用、可靠性高、抗干扰能力强,具有良好的性能价格比等显著优点,其软硬件的设计思路可供工矿企业的相关数控机床设计改造借鉴。

目录第一章:概述1.1、数控机床的发展趋势 (1)1.2、数控机床的发展历史 (2)第二章:数控加工的特点与刀具2.1、数控机床的特点 (3)2.1.1、数控车床的5大特点 (4)2.2、数控机床的常用种类 (4)2.3、数控机床的刀具选择与应用 (5)第三章:数控机床的程序编写3.1、数控机床的编程 (6)3.1.1、数控机床的自动编程内容与步骤 (6)3.1.2、数控机床编程的基本概览 (9)3.2、数控机床常用术语 (9)第四章:数控车床程序编程 (11)第一章概述1.1、数控机传递个发展趋势数控机床数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。

数控车床的程序编制

数控车床的程序编制

数控车床的程序编制数控车床是一种高精度、高效率的现代化机械设备,广泛应用于各种制造行业中。

作为一种数控设备,它需要通过编写程序来实现对零件的加工。

因此,程序编制是数控车床加工过程中不可或缺的一部分。

下面,我们将详细介绍数控车床的程序编制。

一、基本概念数控车床的程序编制其实就是将机床轴的位置、刀具路径、加工参数等信息输入到计算机中,使计算机能够自动控制车床进行加工。

其中,程序包括几何程序和加工参数程序。

几何程序是指需要加工零件的图形和轮廓,也就是加工轨迹;而加工参数则包括切削速度、切削深度、进给速度等。

在程序编制过程中,需要使用数控编程软件。

常见的数控编程软件有EdgeCAM、MasterCAM、PowerMill 等。

这些软件种类繁多,但它们的作用都是一样的。

用户通过这些软件可以编制出符合机床条件的加工程序,并输出G代码到数控机床中,即可自动进行加工操作。

二、程序编制步骤数控车床的程序编制主要包括以下步骤:1. 绘制零件图形:首先需要将需要加工的零件进行绘图,用计算机辅助设计(CAD)软件绘制出准确的零件图形。

在绘制的过程中,需要按照一定的标准进行绘制,包括设计尺寸、精度等方面。

2. 确定坐标系:将零件图形中的坐标系与机床坐标系进行对应,确定数控机床中的X、Y、Z三个坐标轴与设计图中的坐标轴的对应关系。

在编程过程中,需要明确这些坐标的位置、初始值、相对数值等参数。

3. 编写几何程序:将零件图形转化为机床轴的运动轨迹,编写出G代码。

这个过程中需要考虑机床加工的工艺,包括加工方式、刀具方向、切削方式、刀具规格等。

4. 编写加工参数程序:根据要加工的材料,确定加工参数,包括进给速度、切削速度、切削深度、冷却液的使用等参数,并将这些参数编写成M代码。

5. 存储程序:将编写好的几何程序和加工参数程序存储到机床中,可以直接使用或在需要时进行修改。

三、常见的几个注意点1. 选取合适的加工路径:加工路径的选取需要考虑到机床刀具和工件的特性,比如刀具材质、切削方向,工件的形状、材料。

数控车床编程基础

数控车床编程基础

第3章数控车床编程基础数控机床是在普通机床的基础上,经发展和演变而成的。

在普通机床上完成零件加工的整个过程是:技术人员根据零件图样及工艺文件要求,事先编制好加工工艺卡,操作人员则按照该工艺卡的规定,并通过自己的操作技能,以手工控制的方式完成其各工序和工步的加工。

在该工艺卡中,不仅规定了加工的路线和方法,还规定了所有的工艺参数,如刀具形式、切削用量、刀具位移的各种数据,以及其他有关的技术要求。

该工艺卡所规定的工艺流程等内容,即加工中所必需的“程序”。

数控机床加工不需要通过手工去进行直接操作,而是严格按照一套特殊的命令(简称指令),并经机床数控系统处理后,使机床自动完成零件加工。

这一套特殊命令的作用,除了与工艺卡的作用相同外,还能被数控装置(即计算机)所“接收”。

这种能被机床数控系统所接受的指令集合,就是数控机床加工中所必需的加工程序。

由于加工程序是人的意图与数控加工之间的桥梁,所以,掌握加工程序的编制过程,是整个数控加工的关键,也是综合能力的体现。

程序的格式与分类为了使机床运动,给予CNC指令的集合称为程序。

按着指令使刀具沿着直线、圆弧运动,或使主轴,停转。

在程序中根据机床的实际运动顺序书写这些指令。

3.1.1.程序编制的概念在数控机床上加工零件时,需要把加工零件的全部工艺过程和工艺参数,以信息代码的形式记录在控制介质上,并用控制介质上的信息控制机床动作,实现零件的全部加工过程。

从分析零件图样到获得数控机床所需控制介质(加工程序单或数控带等)的全过程,称为程序编制。

主要内容有:工艺处理、数学处理、填写(打印)加工程序单及制备控制介质等。

3.1.2.程序的格式3.1.2.1 程序的构成N:顺序号G:准备功能X,Z:运动尺寸M:辅助功能S:主轴功能T:刀具功能CR:程序段结束一个程序段开头是表示CNC运动顺序的顺序号,末尾是表示这个程序段结束的CR代码。

2.程序加工程序是能被机床数控系统所接受的指令集合。

数控车床编程基础知识PPT(69张)

数控车床编程基础知识PPT(69张)

注:(1)☆号表示电源接通时的G代码状 态;
(2)00组的G代码为一次性G代码;
(3)一旦指定了G代码,一览表中没有的G 代码显示报警信号;
(4)无论有几个不同组的G代码,都能在 同一程序段内指令,如果同组的G代码在同一程 序段内指令了2个以上时,后指令者有效;
(5)可按组号显示G代码。
3.2.2.1 插补功能
2.程序原点
程序原点是指程序中的坐标原点,即 在数控加工时,刀具相对于工件运动的起 点,所以也称为“对刀点”。
3.机械原点
(或称机床原点)
以L-10MC数控车铣中心为例介绍x和 y轴机械原点。
(1)x轴机械原点
x轴的机械原点被设定在刀盘中心距 离主轴中心500mm的位置。
(2)z轴机械原点
(1)数控系统:数控车床的数控系 统是由CNC装置、输入输出设备、可编程 控制器(PLC)、主轴驱动装置和进给驱 动装置以及位置测量系统等几部分组成。
(2)主轴箱 (3)主轴伺服电机 (4)夹紧装置 (5)往复拖板 (6)刀架 (7)控制面板
3.数控车床的加工特点
数控车床加工具有如下特点。 (1)加工生产效率高 (2)减轻劳动强度、改善劳动条件 (3)对零件加工的适应性强、灵活性好 (4)加工精度高、质量稳定 (5)有利于生产管理
第3章 数控车床编程
3.1 数控车床编程基础 3.2 FANUC系统数控车床程序的编制
3.1 数控车床编程基础
3.1.1 数控车床概述
1.数控车床的分类
数控车床品种繁多,按数控系统的功 能和机械构成可分为简易数控车床(经济 型数控车床)、多功能数控车床和数控车 削中心。
(1)简易数控车床(经济型数控车 床):是低档次数控车床,一般是用单板 机或单片机进行控制,机械部分是在普通 车床的基础上改进设计的。

数控加工工艺与编程习题答案

数控加工工艺与编程习题答案

《数控加工工艺与编程》习题集王燕编著沈阳航空航天大学北方科技学院第1章数控编程基础——习题一、解释下列名词术语:数控编程、手工编程、自动编程、机床坐标系、工件坐标系、机床原点、工件原点、机床参考点、基点、节点、CIMS、FMS、FA、CNC。

二、简答题1.数控机床有哪些主要特点?2.数控机床有那几部分组成?3.数控机床按运动控制方式的不同可分为哪几类?各有何特点?4.试述开环、闭环控制系统的主要区别和适用场合。

5.数控车削加工的主要对象有哪些?6.数控铣削加工的主要对象有哪些?7.加工中心的主要对象有哪些?8.简述零件的数控加工过程。

9.用直线段逼近非圆曲线时节点的计算常用有哪些方法,各有何特点?10.非圆曲线如图1所示,试根据等误差法进行非圆曲线逼近时的特点,在图上绘出相邻的三个节点,并写出节点坐标的计算步骤。

11.已知由三次样条函数S(x)描述的曲线轮廓上相邻二个节点P1、P2的坐标及其一阶导数,如图2所示。

(1)试用作图法画出两相切的两段圆弧圆弧(附简要作图步骤)。

(2)对两圆弧的公切点T的轨迹进行分析,并加以证明。

图1 等误差法求节点坐标图2 双圆弧法求节点坐标三、选择题(选择正确的答案,将相应的字母填入题内的括号中。

)1.车床的主运动是指( )。

A.车床进给箱的运动; B.车床尾架的运动;C.车床主轴的转动; D.车床电机的转动。

2.车床主运动的单位为( )。

A.mm/r; B.m/r; C.mm/min; D.r/min。

3.下列叙述中,除( )外,均适用数控车床进行加工。

A.轮廓形状复杂的轴类零件 B.精度要求高的盘套类零件C.各种螺旋回转类零件 D.多孔系的箱体类零件4.下列叙述中,( )是数控编程的基本步骤之一。

A.零件图设计 B.确定机床坐标系C.传输零件加工程序 D.分析图样、确定加工工艺过程5.进给率的单位有( )和( )两种。

A.mm/min,mm/r; B.mm/h,m/r;C.m/min,mm/min; D.mm/min,r/min。

数控车床的程序编制步骤

数控车床的程序编制步骤

数控车床的程序编制步骤数控车床程序编制是将零件加工的工艺要求和加工参数转换为机床能够执行的指令序列并载入数控系统,使机床按照程序要求自动完成加工过程。

下面是数控车床程序编制的典型步骤:1.了解零件图纸和工艺要求:仔细研究零件图纸,了解零件的尺寸要求、形状要求以及表面质量要求等,还要确定零件的加工顺序和工艺路线。

2.选择工具和刀具:根据零件的要求和加工工艺,选择合适的车刀、镗刀、钻刀及其加工参数。

3.制定加工工艺:根据零件的尺寸要求和形状要求,制定适当的车削切削参数和轮廓刀补偿值,并确定刀具路径。

4.确定坐标系和参考点:选择适当的坐标系和参考点,并确定零点的坐标位置。

5.数控系统参数设置:根据机床和数控系统的特点,设置数控系统的参数,如坐标系、移动速度、进给量等。

6.编写数控程序:使用数控编程语言,按照零件加工工艺要求,逐步编写数控程序。

7.先练习:在计算机仿真软件中,根据编写的数控程序进行仿真操作,以验证程序正确性。

修正程序错误。

8.载入数控系统:将编写好的数控程序,通过U盘、本地网络等方式,载入数控系统中。

9.导入刀具和工件坐标:确定刀具的初始位置、起刀点和工作零点,导入数控系统中。

10.设置工件坐标系:根据图纸和实际加工需求,设置工件坐标系和坐标偏移。

11.调试程序:使用手动操作或自动操作,对数控系统进行调试,确保程序的安全性和准确性。

12.加工实践:进行实际加工操作,监控加工过程中各项参数的变化,并及时调整。

13.检验零件:完成加工后,根据图纸要求进行零件的测量和检验,确保零件质量满足要求。

14.优化程序:根据实际加工情况,调整和优化数控程序,提高加工效率和质量。

15.存档和备份:将编写好的数控程序进行保存和备份,以备后续使用。

总结起来,数控车床程序编制是一项精细的工作,需要熟悉机床、工具和数控系统的基本原理,同时要具备良好的图纸分析和数控编程能力。

通过以上步骤的严格执行,可以确保数控车床加工过程的准确性和安全性。

机床数控技术第3章数控加工程序的编制

机床数控技术第3章数控加工程序的编制

6. 程序校验和首件试切
程序送入数控系统后,通常需要经过试运行和首 件试切两步检查后,才能进行正式加工。通过试运行, 校对检查程序,也可利用数控机床的空运行功能进行 程序检验,检查机床的动作和运动轨迹的正确性。对 带有刀具轨迹动态模拟显示功能的数控机床可进行数 控模拟加工,以检查刀具轨迹是否正确;通过首件试 切可以检查其加工工艺及有关切削参数设定得是否合 理,加工精度能否满足零件图要求,加工工效如何, 以便进一步改进,直到加工出满意的零件为止。
1—脚踏开关 2—主轴卡盘 3—主轴箱 4—机床防护门 5—数控装置 6—对刀仪 7—刀具8—编程与操作面板 9—回转刀架 10—尾座 11—床身
3.2 数控车削加工程序编制
数控车床主要用来加工轴类零件的内外圆柱面、 圆锥面、螺纹表面、成形回转体表面等。对于盘类零 件可进行钻、扩、铰、镗孔等加工。数控车床还可以 完成车端面、切槽等加工。
3. 程序名

FANUC数控系统要求每个程序有一个程序名,
程序名由字母O开头和4位数字组成。如O0001、 O1000、O9999等
3.2.3 基本编程指令
1. 快速定位指令G00
格式:G00 X(U)_ Z(W)_;
说明:
(1) G00指令使刀具在点位控制方式下从当前点以快移速度 向目标点移动,G00可以简写成G0。绝对坐标X、Z和其增 量坐标U、W可以混编。不运动的坐标可以省略。
3.2.1 数控车床的编程特点
(1)在一个程序段中,可以用绝对坐标编程,也可用 增量坐标编程或二者混合编程。
(2)由于被加工零件的径向尺寸在图样上和在测量时 都以直径值表示,所以直径方向用绝对坐标(X)编程时 以直径值表示,用增量坐标(U)编程时以径向实际位移 量的2倍值表示,并附上方向符号。

第3章:数控加工程序的编制

第3章:数控加工程序的编制

刀具中心的走刀路线为:
对刀点1→对刀点2 →b→c→c’→下刀点2→下刀点1
各基点及圆心坐标如下: A(0,0) B(0,40) C(14.96,70) D(43.54,70) E(102,64) F(150,40) G(170,40) H(170,0) O1(70,40) O2(150,100)
10 20 =10
60O
17.321
N18 G90 G00 Z100.;
10 20 =10
60O
17.321
N19 X0. Y0. M05; N20 M30;
10 20 =10
60O
孔加工注意事项:
孔加工循环指令是模态指令,孔加工数据 也是模态值;
撤消孔加工固定循环指令为G80,此外, G00、G01、G02、G03也可起撤消作用;
N016 G01 X45.0 W0 F100;
切槽
N017 G04 U5.0;
延迟
N018 G00 X51.0 W0;
退刀
退刀 N019 X200.0 Z350.0 T20 M05 M09;
N020 X52.0 Z296.0 S200 T33 M03 M08;
N021 G33 X47.2 Z231.5 F1.5;
(5)复杂轮廓一般要采用计算机辅 助计算和自动编程。
二、数控铣床编程中的特殊功能指令
(1)工件坐标系设定指令 G54~G59
G54~G59无需在程序段中给出工件 坐标系与机床坐标系的偏置值,而是安 装工件后测量出工件坐标系原点相对机 床坐标系原点在X、Y、Z向上的偏置值, 然后用手动方式输入到数控系统的工件 坐标系偏置值存储器中。系统在执行程 序时,从存储器中读取数值,并按照工 件坐标系中的坐标值运动。

数控车床程序编制

数控车床程序编制
图3.18设定加工坐标端面切削倒角,即由Z轴向X轴倒角,i的正负根据倒角是向X
轴正向还是负向,如图3.19a所示。 其编程格式为 G01 Z(W)~ I±i 。 由端面切削向轴向切削倒角,即由X轴向Z轴倒角,k的正负根据倒角是向Z
轴正向还是负向,如图3.19b所示。 编程格式 G01 X(U)~ K±k。
图3.14 数控车床坐标系
图3.15 直径编程
图3 .16切削起始点的确定
3.2数控车床的基本编程方法
数控车削加工包括内外圆柱面的车削加工、端面车削加工、钻孔加工、螺纹 加工、复杂外形轮廓回转面的车削加工等,在分析了数控车床工艺装备和数控 车床编程特点的基础上,下面将结合配置FANUC-0T数控系统的HM-077数控车 床重点讨论数控车床基本编程方法。
图3.27 刀具补偿编程
单一固定循环
图3.28圆柱面切削循环
图3.29 G90的用法(圆柱面)
图3.30 圆锥面切削循环
图3.31 端面切削循环
图3.32 锥面端面切削循环
图3.33 G94的用法(锥面)
单一固定循环可以将一系列连续加工动作,如“切入-切削-退刀-返回”,用一 个循环指令完成,从而简化程序。 1、圆柱面或圆锥面切削循环
自动对刀是通过刀尖检测系统实现的,刀尖以设定的速度向接触式传感器接近, 当刀尖与传感器接触并发出信号,数控系统立即记下该瞬间的坐标值,并自动修正刀 具补偿值。自动对刀过程如图3.13所示。
图 3.13
数控车床的编程特点
1、加工坐标系 加工坐标系应与机床坐标系的坐标方向一致,X轴对应径向,Z
轴对应轴向,C轴(主轴)的运动方向则以从机床尾架向主轴看,逆 时针为+C向,顺时针为-C向,如图3.14所示:加工坐标系的原点 选在便于测量或对刀的基准位置,一般在工件的右端面或左端面上。 2、直径编程方式

数控机床编程基础

数控机床编程基础
件源程序进行处理,以得到加工程序的一种编程方法。
下一页
第二节 手工编程与自动编程
2.用CAM(计算机辅助制造)软件编程 将加工零件以图形形式输入计算机,由计算机自动进行数值
计算、前置处理,在屏幕上形成加工轨迹并及时修改,再通 过后置处理形成加工程序输入数控机床进行加工 。 自动编程可以大大减轻编程人员的劳动强度,将编程效率提 高几十倍甚至上百倍,同时解决了手工编程无法解决的复杂 零件的编程难题。
段。 2)准备功能字 准备功能字的地址符是G,所以又称为G功能、
G指令或G代码。它是数控机床准备好某种运动方式的指令。 3)坐标尺寸字 坐标尺寸字是用来指令机床在各坐标轴上的
移动方向和位移量,由尺寸地址符和带正、负号的数字组成。
上一页 下一页
第三节 程序的结构与格式
4)进给功能字 进给功能字又称F功能或F指令,由地址符F和 若干位数字组成。
绝对值编程,U、V、W表示增量值编程。
上一页 下一页
第五节 常用编程指令
2.设定工件坐标系指令——G50 G50指令(有些数控系统采用G92指令)是将工件坐标系设定
在相对于刀具起始点的某一空间位置上,并把这个设定值寄 存在数控系统的存储器中,作为后续各程序段绝对尺寸的基 点。 3.选择机床坐标系指令——G53 在建立机床坐标系后,如果某程序段需要使用机床坐标系作 为坐标值的基准,可用G53指令选定。
3.编写程序单 根据所计算出的刀具运动轨迹坐标值和已确定的切削用量以
及辅助动作,按数控系统规定使用的指令代码及程序段格式, 编写零件加工程序单。 4.制作控制介质 程序单编写好之后,需要制作成控制介质,以便将加工信息 输入给数控系统。 5.程序检验和试切 编制好的程序必须经过检验和试切才能正式使用。

数控车床程序的编制及操作

数控车床程序的编制及操作

数控车床程序的编制及操作数控车床是一种将数字化程序与机械系统相结合的机床,它可以通过程序控制工件在旋转的工作台上实现各种加工操作。

数控车床的编制和操作是现代制造业中非常重要的一环,下面将详细介绍数控车床程序的编制及操作。

一、数控车床程序的编制1.确定工件的加工要求:首先需要明确工件的尺寸、形状、加工方式等基本要求。

2.设计加工工艺:根据工件的要求,设计出合适的加工工艺,包括加工顺序、刀具的选择和切削参数的设定等。

3.编写数控程序:根据设计好的加工工艺,将其转化为数控程序。

数控程序包括程序头、工件坐标系、刀具半径补偿、各种指令和参数等。

4.数控程序的调试:将编写好的数控程序加载到数控系统中,并进行调试,确保程序的正确性和可靠性。

二、数控车床程序的操作1.将数控程序加载到数控系统中:将编写好的数控程序上传到数控系统中,通常会使用USB、网络连接等方式进行传输。

2.设置加工工件坐标系:按照数控程序中设定的工件坐标系进行相应的参数设置,包括工件起点、刀库位置等。

3.安装刀具和夹具:根据加工工艺的要求,选择适当的刀具和夹具,并进行安装和调整。

4.开始加工:调试完毕后,可以开始加工了。

通常会将机床切换到自动模式,并按照数控程序的要求进行操作。

数控系统会自动控制工件的运动轨迹、刀具进给速度等。

5.监测加工过程:在加工过程中,需要时刻监测工件的加工情况,包括切削力、切削温度等。

可以通过控制面板上的显示和报警信息来监测和调整加工过程。

6.完成加工:当加工完成后,数控系统会自动结束加工,并将机床切换到手动模式。

此时可以将加工好的工件取出,并进行检查和质量评估。

三、常见问题及解决方法在数控车床程序的编制和操作过程中,可能会出现一些问题,常见的问题及解决方法如下:1.程序错误:在编写程序时可能会出现语法错误或逻辑错误。

可以通过调试程序来查找错误所在,并进行修正。

2.程序冲突:如果多个程序同时运行可能导致程序冲突。

可以通过调整程序执行顺序或增加程序之间的时间间隔来解决冲突。

数控车床编程基础

数控车床编程基础

FANUC公司目前生产的CNC装置有:F0、F10、F11、F12、
F15、F16、F18。F00、F100、110、120、150系列是在F0、
10、11、12、15的基础上加了MMC功能,即CNC、PMC、MMC三
位一体的CNC。
2. SIEMENS数控系统
SIEMENS数控系统是德国西门子公司开发研制的,
一个零件的轮廓可能由许多不同的几何要素所组成,各
几何要素之间的连接点称为基点。基点坐标是编程中重要数
据,可以直接作为其运动轨迹的起点和终点。
上一页 下一页 返回
第6章 数组
6.1 一维数组 6.2 二维数组 6.3 字符数组 6.4 数组程序举例
6.1 一维数组
6.1.1一维数组的定义方式
3.1 数控车床程序编制概述
3.1.3 数控系统主要功能
数控系统可以通过硬件和软件的结合,实现许多功能,
其中包括以下功能:
⑴ 准备功能。准备功能也称G功能,用来指挥机床动作
方式。包括基本移动、程序暂停、平面选择、坐标设定、刀
具补偿、基准点返回、固定循环、公英制转换等。
⑵ 插补功能。CNC装置通过软件插补,其中数据采样插
言编程。
上一页 下一页 返回
3.1 数控车床程序编制概述
② CAD/CAM计算机辅助编程
利用CAD/CAM计算机辅助编程是以零件CAD模型为基础的
一种加工工艺规划及数控编程为一体的自动编程方法。
CAD/CAM软件采用人机交互方式,进行零件几何建模,对车床
刀具进行定义和选择,确定刀具相对于零件的运动方式、切
6.1.3一维数组的初始化
给数组赋值的方法除了用赋值语句对数组元素逐个赋值外, 还可采用初始化赋值和动态赋值的方法。数组初始化赋值是 指在数组定义时给数组元素赋予初值。数组初始化是在编译 阶段进行的。这样可以减少运行时间,提高效率。

数控加工工艺与编程习题标准答案

数控加工工艺与编程习题标准答案

数控加工工艺与编程习题标准答案————————————————————————————————作者:————————————————————————————————日期:《数控加工工艺与编程》习题集王燕编著沈阳航空航天大学北方科技学院第1章数控编程基础——习题一、解释下列名词术语:数控编程、手工编程、自动编程、机床坐标系、工件坐标系、机床原点、工件原点、机床参考点、基点、节点、CIMS、FMS、FA、CNC。

二、简答题1.数控机床有哪些主要特点?2.数控机床有那几部分组成?3.数控机床按运动控制方式的不同可分为哪几类?各有何特点?4.试述开环、闭环控制系统的主要区别和适用场合。

5.数控车削加工的主要对象有哪些?6.数控铣削加工的主要对象有哪些?7.加工中心的主要对象有哪些?8.简述零件的数控加工过程。

9.用直线段逼近非圆曲线时节点的计算常用有哪些方法,各有何特点?10.非圆曲线如图1所示,试根据等误差法进行非圆曲线逼近时的特点,在图上绘出相邻的三个节点,并写出节点坐标的计算步骤。

11.已知由三次样条函数S(x)描述的曲线轮廓上相邻二个节点P1、P2的坐标及其一阶导数,如图2所示。

(1)试用作图法画出两相切的两段圆弧圆弧(附简要作图步骤)。

(2)对两圆弧的公切点T的轨迹进行分析,并加以证明。

图1 等误差法求节点坐标图2 双圆弧法求节点坐标三、选择题(选择正确的答案,将相应的字母填入题内的括号中。

)1.车床的主运动是指( )。

A.车床进给箱的运动; B.车床尾架的运动;C.车床主轴的转动; D.车床电机的转动。

2.车床主运动的单位为( )。

A.mm/r; B.m/r; C.mm/min; D.r/min。

3.下列叙述中,除( )外,均适用数控车床进行加工。

A.轮廓形状复杂的轴类零件 B.精度要求高的盘套类零件C.各种螺旋回转类零件 D.多孔系的箱体类零件4.下列叙述中,( )是数控编程的基本步骤之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章数控车床的程序编制数控车床是目前使用最广泛的数控机床之一。

数控车床主要用于加工轴类、盘类等回转体零件。

通过数控加工程序的运行,可自动完成内外圆柱面、圆锥面、成形表面、螺纹和端面等工序的切削加工,并能进行车槽、钻孔、扩孔、铰孔等工作。

车削中心可在一次装夹中完成更多的加工工序,提高加工精度和生产效率,特别适合于复杂形状回转类零件的加工。

3.1 数控车床程序编制的基础针对回转体零件加工的数控车床,在车削加工工艺、车削工艺装备、编程指令应用等方面都有鲜明的特色。

为充分发挥数控车床的效益,下面将结合HM-077数控车床的使用,分析数控车床加工程序编制的基础,首先讨论以下三个问题:数控车床的工艺装备;对刀方法;数控车床的编程特点。

3.1.1数控车床的工艺装备由于数控车床的加工对象多为回转体,一般使用通用三爪卡盘夹具,因而在工艺装备中,我们将以WALTER 系列车削刀具为例,重点讨论车削刀具的选用及使用问题。

1、数控车床可转位刀具特点数控车床所采用的可转位车刀,与通用车床相比一般无本质的区别,其基本结构、功能特点是相同的。

但数控车床的加工工序是自动完成的,因此对可转位车刀的要求又有别于通用车床所使用的刀具,具体要求和特点如表3.1所示。

表3.1可转位车刀特点要求特点目的精度高采用M级或更高精度等级的刀片;多采用精密级的刀杆;用带微调装置的刀杆在机外预调好。

保证刀片重复定位精度,方便坐标设定,保证刀尖位置精度。

可靠性高采用断屑可靠性高的断屑槽型或有断屑台和断屑器的车刀;采用结构可靠的车刀,采用复合式夹紧结构和夹紧可靠的其他结构。

断屑稳定,不能有紊乱和带状切屑;适应刀架快速移动和换位以及整个自动切削过程中夹紧不得有松动的要求。

换刀迅速采用车削工具系统;采用快换小刀夹。

迅速更换不同形式的切削部件,完成多种切削加工,提高生产效率。

刀片材料刀片较多采用涂层刀片。

满足生产节拍要求,提高加工效率。

刀杆截形刀杆较多采用正方形刀杆,但因刀架系统结构差异大,有的需采用专用刀杆。

刀杆与刀架系统匹配。

2、数控车床刀具的选刀过程数控车床刀具的选刀过程,如图3.1所示。

从对被加工零件图样的分析开始,到选定刀具,共需经过十个基本步骤,以图3.1中的10个图标来表示。

选刀工作过程从第1图标“零件图样”开始,经箭头所示的两条路径,共同到达最后一个图标“选定刀具”,以完成选刀工作。

其中,第一条路线为:零件图样、机床影响因素、选择刀杆、刀片夹紧系统、选择刀片形状,主要考虑机床和刀具的情况;第二条路线为:工件影响因素、选择工件材料代码、确定刀片的断屑槽型代码或ISO断屑X围代码、选择加工条件脸谱,这条路线主要考虑工件的情况。

综合这两条路线的结果,才能确定所选用的刀具。

下面将讨论每一图标的内容及选择办法。

图3.1 数控车床刀具的选刀过程(1)机床影响因素“机床影响因素”图标如图3.2所示。

为保证加工方案的可行性、经济性,获得最佳加工方案,在刀具选择前必须确定与机床有关的如下因素:1)机床类型:数控车床、车削中心;2)刀具附件:刀柄的形状和直径,左切和右切刀柄;3)主轴功率;4)工件夹持方式。

图3.2机床影响因素(2)选择刀杆“选择刀杆”图标如图3.3所示。

其中,刀杆类型尺寸见表3.2。

表3.2 刀杆类型尺寸刀杆类型外圆加工刀杆内孔加工刀杆柄部截面形状刀杆尺寸柄部直径D 柄部长度l1主偏角选用刀杆时,首先应选用尺寸尽可能大的刀杆,同时要考虑以下几个因素:1)夹持方式;2)切削层截面形状,即切削深度和进给量;3)刀柄的悬伸。

(3)刀片夹紧系统刀片夹紧系统常用杠杆式夹紧系统,“杠杆式夹紧系统”图标如图3.4所示。

图3.3选择刀杆图3.4杠杆式夹紧系统1)杠杆式夹紧系统杠杆式夹紧系统是最常用的刀片夹紧方式。

其特点为:定位精度高,切屑流畅,操作简便,可与其它系列刀具产品通用。

2)螺钉夹紧系统特点:适用于小孔径内孔以及长悬伸加工(4)选择刀片形状图3.5选择刀片形状“选择刀片形状”图标如图3.5所示。

主要参数选择方法如下:1)刀尖角刀尖角的大小决定了刀片的强度。

在工件结构形状和系统刚性允许的前提下,应选择尽可能大的刀尖角。

通常这个角度在35o到90O之间。

图3.5中R型圆刀片,在重切削时具有较好的稳定性,但易产生较大的径向力。

表3.3 刀片形状适用场合----首选----次选2)刀片基本类型刀片可分为正型和负型两种基本类型。

正型刀片:对于内轮廓加工,小型机床加工,工艺系统刚性较差和工件结构形状较复杂应优先选择正型刀片。

负型刀片:对于外圆加工,金属切除率高和加工条件较差时应优先选择负型刀片。

选择方法见表3.3。

(5)工件影响因素“工件影响因素”图标如图3.6所示。

选择刀具时,必需考虑以下与工件有关的因素:1)工件形状:稳定性;2)工件材质:硬度、塑性、韧性、可能形成的切屑类型;图3.6工件影响因素3)毛坯类型:锻件、铸件等;4)工艺系统刚性:机床夹具、工件、刀具等;5)表面质量;6)加工精度;7)切削深度;8)进给量;9)刀具耐用度。

(6)选择工件材料代码“选择工件材料代码”图标如图3.7所示。

表3.4选择工件材料代码按照不同的机加工性能,加工材料分成6个工件材料组,他们分别和一个字母和一种颜色对应,以确定被加工工件的材料组符号代码,见表3.4。

(7)确定刀片的断屑槽型代码或ISO断屑X围代码负型刀片的断屑X围正型刀片的断屑X围图3.8确定刀片断屑槽代码“确定刀片的断屑槽型代码或ISO断屑X围代码”图标如图3.8所示。

ISO标准按切削深度a P和进给量的大小将断屑X围分为A、B、C、D、E、F六个区,其中A、B、C、D为常用区域,WALTER标准将断屑X加工材料组代码钢:非合金和合金钢高合金钢不锈钢,铁素体,马氏体P(蓝)不锈钢和铸钢:奥氏体铁素体——奥氏体M(黄)铸铁:可锻铸铁,灰口铸铁,球墨铸铁K(红)NF金属:有色金属和非金属材料N(绿)难切削材料:以镍或钴为基体的热固性材料钛,钛合金及难切削加工的高合金钢S(棕)硬材料:淬硬钢,淬硬铸件和冷硬模铸件,锰钢H(白)围分为图中各色块表示的区域,ISO标准和WALTER标准可结合使用,如图3.8所示。

根据选用标准,按加工的切削深度和合适的进给量来确定刀片的WALTER断屑槽型代码或ISO分类X围。

(8)选择加工条件脸谱“选择加工条件脸谱”图标如图3.9所示,三类脸谱代表了不同的加工条件:很好、好、不足。

表3.5表示加工条件取决于机床的稳定性、刀具夹持方式和工件加工表面。

图3.9 加工条件脸谱表3.5 选择加工条件机床,夹具和工件系统的稳定性很好好不足加工方式无断续切削加工表面已经过粗加工带铸件或锻件硬表层,不断变换切深轻微的断续切削中等断续切屑严重断续切削(9)选定刀具“选定刀具”图标如图3.10所示。

选定工作分以下两方面:1)选定刀片材料根据被加工工件的材料组符号标记、WALTER 槽型、加工条件脸谱,就可得出WALTER 推荐刀片材料代号,见表3.6和表3.7。

2)选定刀具根据工件加工表面轮廓,从刀杆订货页码中选择刀杆。

根据选择好的刀杆,从刀片订货页码中选择刀片图3.10 选定刀具表3.6 选定刀片材料(选择负型刀片)工件材料组ISO 分类X 围 WALTER 槽代码P (蓝)AB...-NS4 WAK10 WAP20 WAM20 B ...-NS8 WAP10 WAP20 WAP30 BC ...-NM4 WAP10 WAP20 WAP30 C ...-NM7 WAP10 WAP20 WAP30 CD ...-NR7 WAP10 WAP20 WAP30 M (黄)AB ...-NS4 WAM20 WAM20 WAM20 BC ...-NM4 WAP30 WAM20 WAM20 CD ...-NR7 WAP30 WAP30 WAP30 K (红)- ...-NS4 WAK10 WAP20 WAP20 - ...-NS8 WAK10 WAP20 WAP30 -...-NM4WAK10WAK10WAP30- .NMAWAK10 WAK10 -表3.7选定刀片材料(选择正型刀片)工件材料组ISO分类X围WALTER槽代码P(蓝)AB...-PS4WAK10WAP20WAM20 BC...-PM5WAP10WAP20WAP30M(黄)AB...-PS4WAM20WAM20WAM20 BC...-PM5WAP30WAP30WAP30K(红)-...-PS4WAK10WAK20WAP20 -...-PM5WAP10WAP20WAP30N(绿)-...-PM2WK1WK1WK13.1.2对刀数控车削加工中,应首先确定零件的加工原点,以建立准确的加工坐标系,同时考虑刀具的不同尺寸对加工的影响。

这些都需要通过对刀来解决。

1、一般对刀一般对刀是指在机床上使用相对位置检测手动对刀。

下面以Z向对刀为例说明对刀方法,见图3.11。

刀具安装后,先移动刀具手动切削工件右端面,再沿X向退刀,将右端面与加工原点距离N输入数控系统,即完成这把刀具Z向对刀过程。

手动对刀是基本对刀方法,但它还是没跳出传统车床的“试切--测量--调整”的对刀模式,占用较多的在机床上时间。

此方法较为落后。

2、机外对刀仪对刀机外对刀的本质是测量出刀具假想刀尖点到刀具台基准之间X及Z方向的距离。

利用机外对刀仪可将刀具预先在机床外校对好,以便装上机床后将对刀长度输入相应刀具补偿号即可以使用,如图3.12所示。

3、自动对刀自动对刀是通过刀尖检测系统实现的,刀尖以设定的速度向接触式传感器接近,当刀尖与传感器接触并发出信号,数控系统立即记下该瞬间的坐标值,并自动修正刀具补偿值。

自动对刀过程如图3.13所示.图3.11 相对位置检测对刀图3.12 机外对刀仪对刀图3.13 自动对刀3.1.3数控车床的编程特点1、加工坐标系加工坐标系应与机床坐标系的坐标方向一致,X轴对应径向,Z轴对应轴向,C轴(主轴)的运动方向则以从机床尾架向主轴看,逆时针为+C向,顺时针为-C向,如图3.14所示:加工坐标系的原点选在便于测量或对刀的基准位置,一般在工件的右端面或左端面上。

2、直径编程方式在车削加工的数控程序中,X轴的坐标值取为零件图样上的直径值,如图3.15所示:图中A点的坐标值为(30,80),B点的坐标值为(40,60)。

采用直径尺寸编程与零件图样中的尺寸标注一致,这样可避免尺寸换算过程中可能造成的错误,给编程带来很大方便。

3、进刀和退刀方式对于车削加工,进刀时采用快速走刀接近工件切削起点附近的某个点,再改用切削进给,以减少空走刀的时间,提高加工效率。

切削起点的确定与工件毛坯余量大小有关,应以刀具快速走到该点时刀尖不与工件发生碰撞为原则。

相关文档
最新文档