排队论PPT(讲义完整版)

合集下载

《运筹学排队论》课件

《运筹学排队论》课件
资源分配
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。

运筹学课件第十章排队论

运筹学课件第十章排队论
第十章 排队论
第一节 引言
一、排队系统的特征及排队论 排队论研究排队系统的数学理论和方法, 是运筹学的一个重要分支。 排队问题表现:
到达的顾客 1、不能运转机器 2、病人 3、打电话 4、等待降落飞机 5、河水进入水库
要求的服务 修理 就诊 通话 降落 放水,调整水 位
服务机构 修理工人 医生 交换台 跑道指挥机构 水闸管理员
四、排队系统的主要数量指标和记号 描述一个排队系统运行状况的主要指标: 1、队长、排队长 队长:系统中的顾客数量(排队顾客+接受服务顾客)。
排队长:系统中的正在排队等待服务的顾客数量。
2、等待时间和逗留时间 等待时间:从顾客到达时刻起到他开始接受服务止这段时间 为等待时间。 逗留时间:从顾客到达时刻起到他接受服务完成这段时间为 逗留时间。
(i)队长有限:系统等待空间有限。 有限系统的空间为K, 顾客到达时的队长为L。若 L<K,则顾客进入队列等待服务,若L=K,则 顾客离去。 (ii) 等待时间有限: 顾客对等待时间具有不耐烦 性的系统。设最长等待时间是T0,某个顾客从 进入队列后的等待时间为 T。若T<T0,顾客继 续等待;若T=T0,则顾客脱离队列而离去。 (iii)逗留时间有限:等待时间与服务时间之和。
排队可以是人,也可以是物。 为了一致:将要求得到服务的对象统称为“顾客”,将提 供服务的服务者称为“服务员”或“服务机构”。
排队系统的一般描述; 顾客为了得到服务而到达系统,如果不能 立刻得到服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
顾客到达 队列 服务台 单服务台服务系统 服务完后离开

n 0
n ,n C 1 , 2 , 3 ,...... n u n p p , n 1 , 2 , 3 ,...... n 0

排队理论模型ppt课件

排队理论模型ppt课件
排队论模型
排队论是20世纪初由丹麦数学家Erlang应用数学 方法在研究电话话务理论过程中而发展起来的一门学 科,排队论也称随机服务系统理论,它涉及的是建立 一些数学模型,以对随机发生的需求提供服务的系统 预测其行为,它已应用于电讯、纺织、矿山、交通、 机器维修,可靠性,计算机设计和军事领域,都已取 得了显著的成绩。
1 n k
(9.3)
当S为可数状态集时(9.2)式变为
n01
pn1 p0
( n 1 p1
n ) pn
0
p n1 n1
0
从而可以求得概率分布列 {pn}
n1
(9.4
(五)、典型排队模型和理论结果
下面给出满足生灭过程典型排队M/M/1与M/M/C的 结果
(一)单服务台等待制M/M/1排队模型
1.M/M/1/ 顾客来到的时间间隔 服从参数 的
负指数分布,服务员为顾客服务时间 服从参数
的指数分布,且 与 相互独立,1个服务台,系
统容量为 的等待制排队模型。
可理解为:单位时间平均到达的顾客数-----平均到 达率
可理解为:单位时间平均服务完的顾客数----平均 服务率
(1)顾客输入过程 {N(t):t 0},( N(0) 0)是平均率为
3.排队系统的主要指标 研究排队问题的目的,是研究排队系统的运行效率估计
服务质量,确定系统参数最优值,以决定系统的结构是否 合理,设计改进措施等,所以必须确定用来判断系统运行 优劣的基本数量指标,这些数量指标通常是
(1)队长:是指系统中顾客(包括排队等待和正在接受服务 的)的数目,它的期望值为 Ls ;排队长度则仅指在队列中 排队等待的顾客数,其期望记为 Lq. 系统中的顾客数
煤矿 火车 煤仓

《运筹学》排队论培训课件

《运筹学》排队论培训课件

一般的排队系统,都可由图12-1加以描述。
顾客源 顾客到来
排队结构 排队规则

服务规则
务 机

离去
排队系统
图12-1
➢排队系统的组成
排队系统都有输入过程、排队规则和 服务台等3个组成部分:
1、输入过程 这是指要求服务的顾客是按怎 样的规律到达排队系统的过程,有时也把 它称为顾客流.一般可以从3个方面来描述 输入过程。
3.忙期和闲期
忙期是指从顾客到达空闲着的服务机 构起,到服务机构再次成为空闲止的这段 时间,即服务机构连续忙的时间。这是个 随机变量,它关系到服务员的服务强度。
与忙期相对的是闲期,即服务机构连 续保持空闲的时间。在排队系统中,忙期 和闲期总是交替出现的。
除了上述几个基本数量指标外,还 会用到其他一些重要的指标:
设随机变量T服从以为参数的负指数分布,它
的分布函数为:
P (T
t
)
1 0,
e
t
,
t 0 t 0
方差:E(t ) 1/ 期望:Var (t ) 1/ 2
负指数分布的性质:
性质1 由条件概率公式容易证明 p{T t s|T s} p{T t }
这性质称为无记忆性。若T表示排队系统中顾客到达的 时间间隔,那么这个性质说明一个顾客到来所需要的 时间与过去一个顾客到来所需要的时间s无关,所以说 在这种情形下的顾客到达是纯随机的。
性质2 当单位时间内的顾客到达数服从以为平均数 的泊松分布时,则顾客相继到达的间隔时间T服从负 指数分布。
由性质2可知: 相继到达的间隔时间是独立且为相同 参数的负指数分布,与输入过程为泊松流(参数为 ) 是等价的。
根据负指数分布与泊松流的关系可以推导出,当服

运筹学第五章排队论PPT课件

运筹学第五章排队论PPT课件
第五章 排队论(Queuing Theory)
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。
1909年,丹麦哥本哈根电子公司电话工程师A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
1.排队系统的统计推断:即通过对排队系统主 要参数的统计推断和对排队系统的结构分析,判 断一个给定的排队系统符合于哪种模型,以便根 据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率 规律性,主要研究队长分布、等待时间分布和忙 期分布等统计指标,包括了瞬态和稳态两种情形。
3.最优化问题:即包括最优设计(静态优化),
• 顾客源有限模型[M/M/1][∞/M/ FCFS]
1
2
... n
单队多服务台(串列)
.
1
1
2
3
2
混合形式
5
2)服务方式分为单个顾客服务和成批顾客服务。 3)服务时间分为确定型和随机型。 4)服务时间的分布在这里我们假定是平稳的。
§1.2 排队系统的模型分类
上述特征中最主要的、影响最大的是: • 顾客相继到达的间隔时间分布 • 服务时间的分布 • 服务台数
最优运营(动态优化)。
.
8
§2.2 排队问题求解(主要指性态问题)
求解一般排队系统问题的目的主要是通过
研究排队系统运行的效率指标,估计服务质
量,确定系统的合理结构和系统参数的合理
值,以便实现对计等。
排队问题的一般步骤:

运筹08(第10章排队论)精品PPT课件

运筹08(第10章排队论)精品PPT课件

2020/11/30
7
排队系统类型3:
服务完成后离开
服务台1
顾客到达
服务完成后离开
服务台2
服务完成后离开
服务台s
S个服务台, S个队列的排队系统
2020/11/30
8
排队系统类型4:
顾客到达
服务台1
离开
服务台s
多服务台串联排队系统
2020/11/30
9
排队系统的描述 实际中的排队系统各不相同,但概括 起来都由三个基本部分组成: 1、输入过程; 2、排队及排队规则; 3、服务机构
2020/11/30
21
➢ 定长分布(D):每个顾客接受的服 务时间是一个确定的常数。
➢ 负指数分布(M):每个顾客接受的
服务时间相互独立,具有相同的负指
数分布: e- t t0
f(t)=
0
t<0
其中>0为一常数。
2020/11/30
22
➢ K阶爱尔朗分布(Ek):
f(t)=
k(kt)k-1 · e- kt
2
无形排队现象:如几个旅客同时打电话 订车票;如果有一人正在通话,其他人只 得在各自的电话机前等待,他们分散在不 同的地方,形成一个无形的队列在等待通 电话。
排队的不一定是人,也可以是物。如生 产线上的原材料,半成品等待加工;因故 障而停止运行的机器设备在等待修理;码 头上的船只等待装货或卸货;要下降的飞 机因跑道不空而在空中盘旋等。
理;出价高的顾客应优先考虑。
2020/11/30
20
❖ 3、服务机制
包括:服务员的数量及其连接方式(串联还是并联) 顾客是单个还是成批接受服务; 服务时间的分布
记某服务台的服务时间为V,其分布函数 为B(t),密度函数为b(t),则常见的分布 有:定长分布(D)

第六章排队论 ppt课件

第六章排队论 ppt课件
3) 普遍性:在 t 时间内到达一个顾客的概率为 t +o(t ),
到达两个或两个以上顾客的概率为 o(t );即两个顾客不可 能同时到达 • 泊松过程具有可迭加性 – 即独立的泊松分布变量的和仍为泊松分布
21
6.3.2.2 负指数分布
(1)推导
• 泊松过程的到达间隔时间为负指数分布 – 令 h 代表间隔时间,则概率 P{h > t}代表时间区间 △t 内没有顾客来的概率;由泊松分布
第六章 随机服务系统理论
排队论
Queuing Theory
确定型只是随机现象的特例
1
6.1 随机服务系统基础
• 系统的输入与输出是随机变量 • A.k.Erlang 于1909~1920年发表了一系列根据话务量计
算电话机键配置的方法,为随机服务理论奠定了基础 • 又称为排队论(Queuing Theory)或拥塞理论(Congestion
PB3 (1 / 8)PA0 (1 / 8)
(16 1 / 8)3 3!
e 161 / 8
e 81 / 8
0.0664
(2) 3 个顾客全是购买 B 类商品的概率为
Pn ( t ) 0
n2
26
例-2
某铁路与公路相交的平面交叉口,当火车通过 交叉口时,横木护栏挡住汽车通行。每次火车 通过时,平均封锁公路3min,公路上平均每分 钟有4辆汽车到达交叉口。求火车通过交叉口 时,汽车排队长度超过100m的概率(即排队 汽车超过12辆的概率)。
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
6.1.1 基本要素
排队系统的三个基本组成部分. •输入过程 (顾客按照怎样的规律到达); •排队规则 (顾客按照一定规则排队等待服务); •服务机构 (服务机构的设置,服务台的数量,服务的 方式,服务时间分布等)

第5章 排队论ppt课件

第5章 排队论ppt课件

❖ 1、队长——系统中的顾客数量
m
L S Pi i i0
队长
m
m
i P0 i P0 i i 1
i0
i1
P0
m i1
d d
(
i)
P0
d d
m
(
i1
i)
P0
d d
1 m 1
(
)
1
1
P0
1
(m
1) m (1 ) 2
m
m 1
1
LS
m 2
❖ 2、排队长——系统中等待的顾客数量
i-1个细菌
一、生灭过程定义
❖ 研讨系统内部形状变化的过程 形状i+1
一个事件
系统形状i
一个事件
形状i-1
在Δt时辰内发生两个或两个以上 事件的概率为O(Δt)
Δt→0, O(Δt)→0
系统具有0,1,2,……个形状。在任何时辰,假设 系统处于形状i,并且系统形状随时间变化的过 程满足以下条件,称为一个生灭过程:
M/M/1/∞/∞排队系统
系统容量无限、顾客源无限 最根本的排队系统 排队过程为生灭过程过程
λ
λ
λ
λ
λ
λ
λ
S0
S1
S2

Si-1
Si
Si+1

μ
μ
μ
μ
μ
μ
μ
P0
P1
P2
Pi
列形状转移方程组求各形状概率
P1 P0
P1
P0
P0
Pi ii1Pi1Pi1iP0
Pi 1
i0
( 1 23 i )P 0 1

排队论(讲稿)PPT课件

排队论(讲稿)PPT课件
概况2
+ 您的内容打在这里,或者通过复制您的文本后。
概况3
+ 您的内容打在这里,或者通过复制您的文本后。
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
(1) 队长:系统中的顾客数,期望值记作Ls; 排队长:系统中排队等待服务的顾客数,期望值记作Lq;
系统 中 在队列中正 等在 待服务 顾客 数 服务的顾 的 客顾 数客数
(2) 逗留时间:顾客在系统中的停留时间,期望值记作Ws; 等待时间:顾客在系统中排队等待的时间,期望值记作Wq, [逗留时间]=[等待时间]+[服务时间]
在实际应用中,大多数系统会很快趋于稳态,而无需等到t→∞以 后。
❖ 求稳态概率Pn时,不需要求t→∞时Pn(t)的极限, 而只需令导数dPn(t)/dt=0即可。
19
清华大学出版社
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
服务机构
修理技工 发放修配零件的管理员 医生(或包括手术台) 交换台 打字员 仓库管理员 跑道 货码头(泊位) 水闸管理员 我方高射炮
6
清华大学出版社
1.2 排队系统的组成和特征
❖ 排队系统由三个基本部分组成:
①输入过程 ②排队规则 ③服务机构

第10章 排队论 《运筹学》PPT课件全

第10章  排队论  《运筹学》PPT课件全

WL
Wq
Lq
W
1
M/M/s 混 合 制 排 队 模 型
一、 单服务台混合制模型
M/M/1/K: 顾客的相继到达时间服从参数 为λ的负指数分布(即顾客的到达过程为 Poisson流),服务台个数为1,服务时间V 服从参数为μ的负指数分布,系统的空间 为K。

平稳状态下队长N的分布pn=P{N=n},n=0,1,2,…。

由于所考虑的排队系统中最多只能容纳K个顾 客(等待位置只有K-1个),因而有
务 台
n
0
n
n=0,1,2,...,K-1 n≥K n=1,2,...K
混 合

Cn
(
)n
n
n=0,1,2,...,K
0
n>K

故 pn n p0 n=1,2,…,K
模 型
1
其中,p0
1
1
K
n
1
K
1
1
n1

其分布函数为B(t),密度函数为b(t),则

常见的分布有: (1) 定长分布(D)

(2) 负指数分布(M)

(3) k阶爱尔朗分布(Ek):

排队系统的符号表示

“Kendall记号”,其一般形式为:X/Y/Z/A/B/C,其中 XX:顾客到达时间间隔的分布

YY:服务时间的分布

Z Z:服务台个数

A :系统容量 B B:顾客源数量

C C:服务规则

例 (M / M / 1 /
FCFS)表示:

到达间隔为负指数分布,服务时间也为负指数分 布,1个服务台,顾客源无限,系统容量也无限,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)N古A是典事定件义A:在P其(A中)=N发A生/N的结其果中的N是个可数能。结果的总个数, 例1. 求抛两个骰子并且决定和为7的概率p。
总共有36种可能的结果,所以N= 36
有6种结果(1, 6), (2, 5), (3, 4), (4, 3), (5, 2)和(6, 1)为所求。
所以NA = 6, 从而 p = 6/36 =1/6。
P{X=n+m | X>n}=P{X=m} (请同学们试证明之)
这种与过去历史无关的性质称为马尔可夫性。
几何分布在我们下面讲的排队论中是非常重要。它可以描述某一 任务(或顾客)的服务持续时间。
4 泊松分布(Poisson)
P{X = k} = λk e -λ/ k! k=0,1,2,…
泊松分布是最重要的离散型概率分布之一,它作为表述随机现象 的一种形式,在计算机性能评价等实践中扮演了重要的角色。
功或失败的概率。
2 二项分布
P{X=k}=Cnkpk(1-p)n-k, k=0,1,…,n 它描述n次贝努里实验中事件A出现k次概率。
3 几何分布
P{X=k}=p(1-p)k-1, k=1,2, … 它描述在k次贝努里实验中首次出现成功的概率。
排队论课件 9
几何分布有一个重要的性质-----后无效性:在前n次实验未出现成 功的条件下,再经过m次实验(即在n+m次实验中)首次出现成功 的概率,等于恰好需要进行m次实验出现首次成功的无条件概率。 用式子表达:
(a) 对于每一个事件A ,有0≤P(A)≤1 (b) P(Ω )=1 (c) 如果A和B是互斥的,则P(A U B)=P(A)+P(B)
排队论课件 4
2 条件概率和独立性
条件概率: 假定事件B已经发生时,事件A发生的条件概率P(A|B)
可以定义如下: P(A|B)=P(AB)/ P(B)
独立性: 如果P(AB)=P(A)P(B),事件A和B叫做相互独立的事件
均方差:方差的开方称为均方差,或标准方差,记为σx 二阶矩:连续情况: E[X2] =∫x2f(x)dx 积分区间从[-∞,∞]
离散情况:E[X2] = ∑ k2P{x=k} all k
排队论课件 7
3 协方差:两个随机变量X和Y的协方差定义如下:
Cov(X,Y)=E[(X-μx)(Y-μy)]=E[XY]-E[X]E[Y] 4 相关系数: 两个随机变量X和Y的相关系数定义如下:
排队论课件
3
(2) 相对频率定义: P(A)=lim nA/n n→∞
其中n是实验的次数,nA是A发生的次数
例2 投硬币 在大数量投掷后,硬币的正面在上的可能性在0.5左右,上下 两面在上面具有相同的概率。
(3) 公理化定义:从一定数量的定义概率度量的公理出发,经过 推导规则达到概率的有效计算。这些公理包括:
独立性的概念可以推广到三个或多个事件。
排队论课件 5
3 全概率公式和贝叶斯定理
全概率公式:给定一组互斥事件E1,E2,,…,En,这 些事件的并集包括所有可能的结果,同时给任一个任 意事件A,那么全概率公式可以表示为:
n
P(A)=∑P(A|Ei)P(Ei)
i=1 把计算A的概率分解为一些容易计算的概率之和。
随机变量的数字特征对研究随机变量是很重要的,常用的数字 特征有:数学期望、方差、协方差和相关系数。
1 数学期望:
连续情况: E[X] = μx =∫xf(x)dx 积分区间从[-∞,∞]
离散情况:E[X] =μx = ∑ kP{x=k}
all k
它是一种统计平均值x)2]=E[X2]-μx2 它是度量随机变量X与其均值E[X]的偏离程度。
排队论课件
11
6 k-爱尔朗分布
概率密度: f(x)= (λkx)n-1λke-λkx /(n-1)! x≥0,λ>0.
0 x<0 数字特征: E[X]=1/λ; Var[X]=1/(kλ2 )
随分机布如变的果量随k个X机随=变X机1量+变X可2量+以X…看i,+作iX=k1具服,有从2,同爱…一尔,指朗k,分数分别布分服。布从即的指:独数具立分有的布kk-个,爱随尔那么朗机 变量之和。
μx = σx = 1/λ 在连续型随机变量中,只有指数分布具有无后效性。
即: 若随机变量ζ服从指数分布, 对任意的 s>0 ,t>0 ,有 P{ζ>s+t|ζ>s}=P{ζ>t}
在离散型随机变量中,只有几何分布具有无后效性。这两种 分布可以分别用来描绘离散等待时间和连续等待时间。
在排队理论中,指数分布是很重要的。
在实际系统模型中,一般都要假定任务(或顾客)的到来是服从
泊松分布的。实践也证明:这种假设是有效的。
排队论课件
10
5 (负)指数分布
它是一种连续型的概率分布,它的概率密度为
f(x)= λe-λx x≥0
0
x<0
分布函数:
F(x)=1-e-λx x≥0
指数分布的一个有用的性质是它的数学期望等于标准差:
排队论
Queueing Theory
CONTENTS
PREPARATION:概率论与随机过程
UNIT 1 排队模型
UNIT 2 排队网络模型
UNIT 3 应用之:QUICK PASS系统
结束语
排队论课件 2
PREPARATION
概率论和随机过程
Part 1.概率论基础
1。 概率的定义
概率关系着对时间的数量分配。一个事件A的概率 P(A)是对应事件A要发生可能性的数量分配。概率有很 多不同的定义,常用的有三种:
贝叶斯定理: P(Ei|A)= P(A|Ei)P(Ei)
∑P(A|Ei)P(Ei)
也称为后验概率公式,是在已知结果发生的情况下,求导
致结果的某种原因的可能性的大小。
排队论课件
6
Part 2. 随机变量的数字特征
随机变量X是样本点的函数,它的定义域是样本空间Ω ,值域 是实数集R,即 X: Ω→R
r(X,Y)=Cov(X,Y) /σxσy 相关系数是两个随机变量线性相关程度的度量。
例3:设随机变量(X,Y)的分布律如下:
YX 1 2
1
¼½
-1
0 1/4
求 E(X),D(X),E(Y),D(Y),cov(X,Y),r(X,Y)
排队论课件 8
Part 3 几种重要的概率分布
1 贝努里分布
它的概率分布为:P{X=1}=p,P{X=0}=1-p 它也称两点分布或(0-1)分布。它描述一次贝努里实验中,成
相关文档
最新文档