2018届高三二轮复习--立体几何讲义

合集下载

2018届高中数学二轮复习教案:立体几何

2018届高中数学二轮复习教案:立体几何

学习过程一、考纲解读立体几何模块内容在目前高考中结构和比重相对稳定,一般为一个客观题加一个解答题的格局,分值在17到22分之间,难度不太高,是得基本分的关键内容之一.立体几何考题侧重考查同学们的空间概念、逻辑思维能力、空间想象能力及运算能力。

在选择、填空题中侧重立体几何中的概念型、空间想象型、简单计算型问题,而解答题侧重立体几何中的逻辑推理型问题,立体几何常考的四类问题(1)三视图及相关的体积、表面积的简单计算.(2)点、直线、平面之间的位置关系.(3)距离、角度的向量计算.(4)存在型、探究型问题.立体几何中的空间想象能力是培养能力是数学学习中重要的一个组成部分,同时该部分内容也是培养逻辑思维能力的重要手段,体现在证明和运算的规范性上,熟练掌握基本定理的文字语言和图形语言和符号语言是学习的基本保证,该模块中涉及到的重要数学思想方法有分类讨论、化归转化和类比等对本部分的考查,三视图是考察重点,几乎年年都考,以选择,填空题为主,当然也可能在大题中由三视图还原为直观图后考查定性及定量问题。

文理对平行、垂直关系的证明依然是考察重点。

符号语言、图形语言、文字语言的相互转化要引起足够的重视(尤其在选择填空题)文科对空间角不再考查,但理科引入了空间向量对其都有要求。

有关球的考查降低了要求,不再考球面距离但球的表面积、体积要熟练掌握。

二、复习预习(1)空间几何体定义体积表面积(2)点、直线、平面之间的位置关系平行垂直距离角度(3)空间向量法向量的求法及其在立体几何中的应用三、知识讲解考点1 (1)空间几何体① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.① 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.① 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.① 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).考点2点、直线、平面之间的位置关系① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.① 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.①如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行. 即若ααα//,//,,a b a b a 则⊂⊄.①如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行, 即若βαββα//,//,//,,,则b a p b a b a =⊂ .①如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 即若ααα⊥⊥⊥=⊂⊂l n l m l B n m n m 则,,,,, .①如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直, 即若βααβ⊥⊂⊥则,,l l . 理解以下性质定理,并能够证明.①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若b a b a a //,,,//则=⊂βαβα .①两平行平面与同一个平面相交,那么两条交线平行,即若α①β,α∩γ=a ,β∩γ=b ,则b a // ①垂直于同一平面的两直线平行,即若b a b a //,,则αα⊥⊥①如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面, 即若αββαβα⊥⊥⊂=⊥l a l l a 则,,,, . 考点3 空间向量法向量的求法以及法向量在立体几何证明球角度距离中的应用四、例题精析例1 [2014全国2卷] 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某 零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切 削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .2717 B .95 C .2710 D .31【规范解答】① 毛坯是底面半径为3,高为6的圆柱,体积V 1=9π·6=54π,加工后的零件,左半部为小圆柱,底面半径为2,高4,右半部为大圆柱, 底面半径为3,高2,体积V 2=4π·4+9π·2=34π, ① 削掉部分的体积与原体积的比值=πππ543454-=2710,故选C 【总结与反思】 ① 考查识别三视图所表示的立体模型;① 考查圆柱的体积公式。

2018年高考数学浙江专版三维二轮专题复习讲义:第一部

2018年高考数学浙江专版三维二轮专题复习讲义:第一部

专题五 解 析 几 何第一讲直_线_与_圆考点一 直线方程与两条直线的位置关系 一、基础知识要记牢直线与直线的位置关系的判定方法(1)给定两条直线l 1:y =k 1x +b 1和l 2:y =k 2x +b 2,则有下列结论:l 1∥l 2⇔k 1=k 2且b 1≠b 2;l 1⊥l 2⇔k 1·k 2=-1.(2)若给定的方程是一般式,即l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0,则有下列结论:l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; l 1⊥l 2⇔A 1A 2+B 1B 2=0.二、经典例题领悟好[例1] (1)设直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0.则“m =2”是“l 1∥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为_____________________________________________________________________.[解析] (1)m =2⇒A 1B 1=2-m =-1,A 2B 2=1-m =-1⇒A 1B 1=A 2B 2,且C 1B 1≠C 2B 2⇒l 1∥l 2;l 1∥l 2⇒A 1B 2=A 2B 1⇒2·(-1)=(-m )·(m -1)且B 1C 2≠B 2C 1⇒m =2.(2)由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2的交点为(1,2).当所求直线斜率不存在,即直线方程为x =1时,显然不满足题意.当所求直线斜率存在时,设所求直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵点P (0,4)到直线的距离为2,∴2=|-2-k |1+k2, ∴k =0或k =43.∴直线方程为y =2或4x -3y +2=0. [答案] (1)C (2)y =2或4x -3y +2=0(1)处理两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.(2)要注意每种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直(用两点式也不能与y 轴垂直).而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.(3)在解决问题的过程中,要注意选择直线方程的形式,用待定系数法求直线的方程,是最基本最常用的方法.三、预测押题不能少1.(1)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析:选B 因为l 1与l 2关于l 对称, 所以l 1上任一点关于l 的对称点都在l 2上, 故l 与l 1的交点(1,0)在l 2上. 又易知(0,-2)为l 1上一点, 设它关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点, 可得l 2的方程为x -2y -1=0.(2)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:5 考点二 圆的方程 一、基础知识要记牢(1)标准方程:(x -a )2+(y -b )2=r 2,圆心坐标为(a ,b ),半径为r .(2)一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E2,半径r =D 2+E 2-4F2.二、经典例题领悟好[例2] (1)(2016·浙江高考)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.(2)(2016·天津高考)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.[解析] (1)由二元二次方程表示圆的条件可得a 2=a +2,解得a =2或-1.当a =2时,方程为4x 2+4y 2+4x +8y +10=0,即x 2+y 2+x +2y +52=0,配方得⎝ ⎛⎭⎪⎫x +122+(y +1)2=-54<0,不表示圆;当a =-1时,方程为x 2+y 2+4x +8y -5=0,配方得(x +2)2+(y +4)2=25,则圆心坐标为(-2,-4),半径是5.(2)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9.[答案] (1)(-2,-4) 5 (2)(x -2)2+y 2=9圆的方程的求法(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程.(2)代数法,用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程,一般采用待定系数法.[提醒] 圆心到切线的距离等于半径,该结论在解题过程中经常用到,需牢记. 三、预测押题不能少2.(1)圆心在直线x +y =0上且过两圆x 2+y 2-2x =0,x 2+y 2+2y =0的交点的圆的方程为( )A .x 2+y 2-x +y -12=0B .x 2+y 2+x -y -12=0C .x 2+y 2-x +y =0 D .x 2+y 2+x -y =0解析:选 C 由已知圆的方程可设所求圆的方程为x 2+y 2-2x +λ(x 2+y 2+2y )=0(λ≠-1),即x 2+y 2-21+λx +2λ1+λy =0 ,∴圆心坐标为⎝ ⎛⎭⎪⎫11+λ,-λ1+λ.又∵圆心在直线x +y =0上,∴11+λ-λ1+λ=0,∴λ=1,∴所求圆的方程为x 2+y 2-x +y =0. (2)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.解析:设圆心坐标为(a ,b ),半径为r .由已知⎩⎪⎨⎪⎧a -2b =0,b >0,又圆心(a ,b )到y 轴、x 轴的距离分别为|a |,|b |,所以|a |=r ,|b |2+3=r 2.综上,解得a =2,b =1,r =2,所以圆心坐标为(2,1),圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4考点三 直线与圆、圆与圆的位置关系 一、基础知识要记牢解答直线与圆的位置关系问题的方法(1)代数法.将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.(2)几何法.把圆心到直线的距离d 和半径R 的大小加以比较:d <R ⇔相交;d =R ⇔相切;d >R ⇔相离.二、经典例题领悟好[例3] (1)(2017·昆明模拟)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离(2)(2016·全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.[解析] (1)由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2,即圆M 的圆心为(0,2),半径为2.又圆N 的圆心为(1,1),半径为1,则圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,半径之和为3,1<2<3,故两圆相交.(2)由直线l :mx +y +3m -3=0知其过定点(-3,3),圆心O 到直线l 的距离为d =|3m -3|m 2+1.由|AB |=23得⎝ ⎛⎭⎪⎫3m -3m 2+12+(3)2=12,解得m =-33.又直线l 的斜率为-m =33,所以直线l 的倾斜角α=π6.画出符合题意的图形如图所示,过点C 作CE ⊥BD ,则∠DCE =π6.在Rt △CDE 中,可得|CD |=|AB |cos π6=23×23=4. [答案] (1)B (2)4研究直线与圆的位置关系最基本的解题方法为代数法,将几何问题代数化,利用函数与方程思想解题.与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d ,及半弦长l2,构成直角三角形的三边,利用其关系来处理.三、预测押题不能少3.(1)已知点P (x 0,y 0),圆O :x 2+y 2=r 2(r >0),直线l :x 0x +y 0y =r 2,有以下几个结论: ①若点P 在圆O 上,则直线l 与圆O 相切; ②若点P 在圆O 外,则直线l 与圆O 相离; ③若点P 在圆O 内,则直线l 与圆O 相交; ④无论点P 在何处,直线l 与圆O 恒相切. 其中正确的个数是( ) A .1B .2C .3D .4解析:选A 根据点到直线的距离公式有d =r 2x 20+y 20.若点P 在圆O 上,则x 20+y 20=r 2,d =r ,相切;若点P 在圆O 外,则x 20+y 20>r 2,d <r ,相交;若点P 在圆O 内,则x 20+y 20<r 2,d >r ,相离,故只有①正确.(2)已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则k =________.解析:如图,把圆的方程化成标准形式得x 2+(y -1)2=1,所以圆心为C (0,1),半径为r =1,四边形PACB 的面积S =2S △PBC ,所以若四边形PACB 的最小面积是2,则S △PBC 的最小值为1.而S △PBC =12r ·|PB |,即|PB |的最小值为2,此时|PC |最小,|PC |为圆心到直线kx +y +4=0的距离d ,则d =|5|k 2+1=12+22=5,化简得k 2=4,因为k >0,所以k =2.答案:2[知能专练(十六)]一、选择题1.已知直线l 的倾斜角为π4,直线l 1经过点A (3,2),B (-a,1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =( )A .-4B .-2C .0D .2解析:选B 由题知,直线l 的斜率为1,则直线l 1的斜率为-1,所以2-13+a =-1,所以a=-4.又l 1∥l 2,所以-2b=-1,b =2,所以a +b =-4+2=-2,故选B.2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823 C. 3D.833解析:选B 由l 1∥l 2,得(a -2)a =1×3,且a ×2a ≠3×6,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪6-2312+-2=823. 3.(2018届高三·深圳五校联考)已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( )A .2B .-2C .1D .-1解析:选D 因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.4.(2017·嘉兴模拟)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.45π B.3π4 C .(6-25)πD.5π4解析:选A 法一:设A (a,0),B (0,b ),圆C 的圆心坐标为⎝ ⎛⎭⎪⎫a 2,b 2,2r =a 2+b 2,由题知圆心到直线2x +y -4=0的距离d =⎪⎪⎪⎪⎪⎪a +b 2-45=r ,即|2a +b -8|=25r ,2a +b =8±25r ,由(2a +b )2≤5(a 2+b 2),得8±25r ≤25r ⇒r ≥25,即圆C 的面积S =πr 2≥4π5.法二:由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线2x +y -4=0相切,所以由平面几何知识,知圆的直径的最小值为点O 到直线2x +y -4=0的距离,此时2r =45,得r =25,圆C 的面积的最小值为S =πr 2=4π5.5.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2;当k >2时,|OA ―→+OB ―→|>33|AB ―→|,又直线与圆x 2+y 2=4存在两交点,故k <2 2.综上,k 的取值范围为[2,22).6.(2017·成都模拟)圆心在曲线y =2x(x >0)上,且与直线2x +y +1=0相切的面积最小的圆的方程为( )A .(x -1)2+(y -2)2=5 B .(x -2)2+(y -1)2=5 C .(x -1)2+(y -2)2=25 D .(x -2)2+(y -1)2=25解析:选A 由圆心在曲线y =2x(x >0)上,设圆心坐标为⎝ ⎛⎭⎪⎫a ,2a (a >0),又圆与直线2x +y +1=0相切,所以圆心到直线的距离d 等于圆的半径r ,而d =⎪⎪⎪⎪⎪⎪2a +2a +122+12=2a +2a +15≥22a ·2a+15=5,当且仅当2a =2a,即a =1时取等号,此时圆的面积最小,圆心坐标为(1,2),圆的半径的最小值为5,则所求圆的方程为(x -1)2+(y -2)2=5.7.若三条直线l 1:4x +y =3,l 2:mx +y =0,l 3:x -my =2不能围成三角形,则实数m 的取值最多有( )A .2个B .3个C .4个D .6个解析:选C 三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-14;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =1或-53.故实数m 的取值最多有4个,故选C.8.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0之间的距离为1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y-7=0的距离等于4,因此所求圆半径的取值范围是(4,6),故选A.9.(2017·合肥质检)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:选B 由题可知,圆心C (1,1),半径r =2.当直线l 的斜率不存在时,直线方程为x =0,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为x =0或3x +4y -12=0,故选B.10.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝ ⎛⎭⎪⎫y ±332=43 B .x 2+⎝⎛⎭⎪⎫y ±332=13C.⎝ ⎛⎭⎪⎫x ±332+y 2=43D.⎝⎛⎭⎪⎫x ±332+y 2=13解析:选C 设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝ ⎛⎭⎪⎫±33,0,r 2=|AC |2=12+⎝ ⎛⎭⎪⎫±332=43.所以圆的方程为⎝⎛⎭⎪⎫x ±332+y 2=43,故选C.二、填空题11.设直线l 1:(m +1)x -(m -3)y -8=0(m ∈R),则直线l 1恒过定点________;若过原点作直线l 2∥l 1,则当直线l 2与l 1的距离最大时,直线l 2的方程为________.解析:由(m +1)x -(m -3)y -8=0,得m (x -y )+x +3y -8=0,令⎩⎪⎨⎪⎧x -y =0,x +3y -8=0,得⎩⎪⎨⎪⎧x =2,y =2,所以l 1恒过定点A (2,2).当l 2⊥AO (O 为坐标原点)时,直线l 1与l 2的距离最大,此时k AO =1,k 2=-1,所以直线l 2的方程为y =-x .答案:(2,2) y =-x12.(2017·温州模拟)圆x 2+y 2-2y -3=0的圆心坐标是________,半径是________. 解析:化圆的一般式方程为标准方程,得x 2+(y -1)2=4,由此知该圆的圆心坐标为(0,1),半径为2.答案:(0,1) 213.已知点P (a ,b )关于直线l 的对称点为P ′(b +1,a -1),则圆C :x 2+y 2-6x -2y =0关于直线l 对称的圆C ′的方程为________________;圆C 与圆C ′的公共弦的长度为________.解析:因为圆C 的方程为x 2+y 2-6x -2y =0,即(x -3)2+(y -1)2=10,其圆心为(3,1),半径为10,又因为点P (a ,b )关于直线l 的对称点为P ′(b +1,a -1),所以令a =3,b =1可得,其关于直线l 的对称点(2,2),所以圆C :x 2+y 2-6x -2y =0关于直线l 对称的圆C ′的圆心为(2,2),半径为10,即圆C ′:(x -2)2+(y -2)2=10;圆C 与圆C ′的圆心的距离为d =-2+-2=2,所以两圆公共弦的长度为2102-⎝⎛⎭⎪⎫222=38. 答案:(x -2)2+(y -2)2=103814.已知圆O :x 2+y 2=r 2与圆C :(x -2)2+y 2=r 2(r >0)在第一象限的一个公共点为P ,过点P 作与x 轴平行的直线分别交两圆于不同两点A ,B (异于P 点),且OA ⊥OB ,则直线OP 的斜率是________,r =________.解析:两圆的方程相减得,4x -4=0,则点P 的横坐标x =1.易知P 为AB 的中点,因为OA ⊥OB ,所以|OP |=|AP |=|PB |,所以△OAP 为等边三角形,所以∠APO =60°,因为AB ∥x 轴,所以∠POC =60°,所以直线OP 的斜率为 3.设P (1,y 1),则y 1=3,所以P (1,3),代入圆O ,解得r =2.答案: 3 215.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析:依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32×2=3,于是有|1·a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15. 答案:4±1516.(2018届高三·浙江省名校联考)设圆C :(x -3)2+(y -5)2=5,过圆心C 作直线l 交圆于A ,B 两点,交y 轴于点P ,若A 恰好为线段BP 的中点,则直线l 的方程为________.解析:如图,A 为PB 的中点,而C 为AB 的中点,因此,C 为PB 的四等分点.而C (3,5),P 点的横坐标为0,因此,A ,B 的横坐标分别为2,4,将A 的横坐标代入圆的方程中,可得A (2,3)或A (2,7),根据直线的两点式得到直线l 的方程为2x -y -1=0或2x +y -11=0.答案:2x -y -1=0或2x +y -11=017.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析:取四边形ABCD 对角线的交点,这个交点到四点的距离之和就是最小值.可证明如下:假设在四边形ABCD中任取一点P,在△APC中,有AP+PC>AC,在△BPD中,有PB+PD>BD,而如果P在线段AC上,那么AP+PC=AC;同理,如果P在线段BD上,那么BP+PD=BD.如果同时取等号,那么意味着距离之和最小,此时P就只能是AC与BD的交点.易求得P(2,4).答案:(2,4)[选做题]1.(2018届高三·湖北七市(州)联考)已知圆C:(x-1)2+y2=r2(r>0).设条件p:0<r<3,条件q:圆C上至多有2个点到直线x-3y+3=0的距离为1,则p是q的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选 C 圆C:(x-1)2+y2=r2的圆心(1,0)到直线x-3y+3=0的距离d=|1-3×0+3|12+32=2.当2-r>1,即0<r<1时,直线在圆外,圆上没有点到直线的距离为1;当2-r=1,即r=1时,直线在圆外,圆上只有1个点到直线的距离为1;当0<2-r<1,即1<r<2时,直线在圆外,此时圆上有2个点到直线的距离为1;当2-r=0,即r=2时,直线与圆相切,此时圆上有2个点到直线的距离为1;当0<r-2<1,即2<r<3时,直线与圆相交,此时圆上有2个点到直线的距离为1;当r-2=1,即r=3时,直线与圆相交,此时圆上有3个点到直线的距离为1;当r-2>1,即r>3时,直线与圆相交,此时圆上有4个点到直线的距离为1.综上,当0<r<3时,圆C上至多有2个点到直线x-3y+3=0的距离为1;由圆C上至多有2个点到直线x-3y+3=0的距离为1可得0<r<3.故p是q的充要条件,故选C.2.(2017·石家庄模拟)若a,b是正数,直线2ax+by-2=0被圆x2+y2=4截得的弦长为23,则t=a1+2b2取得最大值时a的值为( )A.12B.32C.34D.34解析:选 D 因为圆心到直线的距离d=24a2+b2,则直线被圆截得的弦长L=2r2-d2=24-44a2+b2=23,所以4a2+b2=4.则t=a1+2b2=122·(22a)·1+2b2≤122×12×[]2a2+1+2b22=142·[8a2+1+2(4-4a2)]=942,当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 2,4a 2+b 2=4时等号成立,此时a =34,故选D.3.已知点A (3,0),若圆C :(x -t )2+(y -2t +4)2=1上存在点P ,使|PA |=2|PO |,其中O 为坐标原点,则圆心C 的横坐标t 的取值范围为________.解析:设点P (x ,y ),因为|PA |=2|PO |,所以x -2+y 2=2x 2+y 2,化简得(x +1)2+y 2=4,所以点P 在以M (-1,0)为圆心,2为半径的圆上.由题意知,点P (x ,y )在圆C 上,所以圆C 与圆M 有公共点,则1≤|CM |≤3,即1≤t +2+t -2≤3,1≤5t 2-14t +17≤9.不等式5t 2-14t +16≥0的解集为R ;由5t 2-14t +8≤0,得45≤t ≤2.所以圆心C 的横坐标t 的取值范围为⎣⎢⎡⎦⎥⎤45,2. 答案:⎣⎢⎡⎦⎥⎤45,2 第二讲圆锥曲线的概念与性质考点一 圆锥曲线的定义与标准方程 一、基础知识要记牢 1.圆锥曲线的定义:在同一平面上,F 1,F 2(F )是定点,P 是动点. (1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|); (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|);(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M . 2.圆锥曲线的标准方程(以焦点在x 轴上为例):椭圆:x 2a 2+y 2b 2=1(a >b >0);双曲线:x 2a 2-y 2b2=1(a >0,b >0);抛物线:y 2=±2px (p >0). 二、经典例题领悟好[例1] (1)(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1B.x 24-y 25=15443(2)(2016·浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________.[解析] (1)根据双曲线C 的渐近线方程为y =52x , 可知b a =52.① 又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5,所以C 的方程为x 24-y 25=1.(2)设点M 的横坐标为x ,则点M 到准线x =-1的距离为x +1, 由抛物线的定义知x +1=10,∴x =9, ∴点M 到y 轴的距离为9. [答案] (1)B (2)91.求解圆锥曲线标准方程的方法是“先定型,后计算”.所谓“定型”,就是指确定类型,也就是确定椭圆、双曲线、抛物线的焦点所在的坐标轴,从而设出相应的标准方程的形式;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值,最后代入写出椭圆、双曲线、抛物线的标准方程.2.利用定义解题是这一部分的一个重要方法.面对一个数学对象,回顾它的定义常常能找到最简捷的途径,如果题目涉及焦点、准线、离心率、圆锥曲线上的点等条件时,首先要联想相应定义.三、预测押题不能少1.(1)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( )A .2 2B .2 3C .4D .2 5解析:选B 依题意,设抛物线方程是y 2=2px (p >0),则有2+p2=3,得p =2,故抛物线方程是y 2=4x ,点M 的坐标是(2,±22),|OM |= 22+8=2 3.(2)(2017·长沙模拟)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )4386C.x 22+y 2=1 D.x 24+y 2=1解析:选A 由题可知椭圆的焦点在x 轴上,所以设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),而抛物线y 2=-4x 的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.故选A.考点二 圆锥曲线的几何性质 一、基础知识要记牢(1)椭圆、双曲线中,a ,b ,c 之间的关系 ①在椭圆中:a 2=b 2+c 2,离心率为e =c a; ②在双曲线中:c 2=a 2+b 2,离心率为e =c a.(2)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .二、经典例题领悟好[例2] (1)(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53 C.23 D.59(2)(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.[解析] (1)根据题意知,a =3,b =2,则c =a 2-b 2=5,∴椭圆的离心率e =c a =53. (2)双曲线的右顶点为A (a,0),一条渐近线的方程为y =b ax ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=ab c .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=abc ,即3b 2=ab c ,所以e =23=233. [答案] (1)B (2)2332.(1)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-2,0)∪(0,2) D .(-∞,-2)∪(2,+∞) 解析:选A 由题作出图象如图所示.由x 2a 2-y 2b2=1,可知A (a,0),F (c,0). 易得B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝⎛⎭⎪⎫c ,-b 2a . ∵k AB =b 2ac -a =b 2a c -a ,∴k CD =a a -cb 2.∵k AC =b 2a a -c =b 2a a -c ,∴k BD =-a a -c b 2.∴l BD :y -b 2a =-a a -c b 2(x -c ),即y =-a a -c b 2x +ac a -c b 2+b 2a ,l CD :y +b 2a =a a -cb 2(x -c ),即y =a a -c b 2x -ac a -c b 2-b 2a.∴x D =c +b 4a 2a -c.∴点D 到BC 的距离为⎪⎪⎪⎪⎪⎪b 4a 2a -c .∴b 4a 2c -a<a +a 2+b 2=a +c , ∴b 4<a 2(c 2-a 2)=a 2b 2,∴a 2>b 2,∴0<b 2a 2<1.∴0<b a <1或-1<b a<0.(2)(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0, 3 ]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0, 3 ]∪[4,+∞)解析:选A 当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即m3≥3,解得m ≥9. 故m 的取值范围为(0,1]∪[9,+∞). 考点三 直线与圆锥曲线的位置关系 一、经典例题领悟好[例3] (2017·浙江高考)如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.[解] (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)设直线AP 的斜率为k ,则直线AP 的方程为y -14=k ⎝ ⎛⎭⎪⎫x +12,即kx -y +12k +14=0,因为直线BQ 与直线AP 垂直,所以直线BQ 的方程为,x +ky -94k -32=0,联立⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +3k +.因为|PA |= 1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-k -k +2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.数形结合是研究直线与圆锥曲线位置关系的根本方法,即把位置关系转化成方程或方程组解的问题,其中设而不求、整体运算是常用手段,对根与系数的关系、点差法等方法的应用条件、注意事项、操作程序等要理解、熟练.二、预测押题不能少3.(2016·浙江高考)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 解:(1)设直线y =kx +1被椭圆截得的线段为AP ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1得(1+a 2k 2)x 2+2a 2kx =0,故x 1=0,x 2=-2a 2k 1+a 2k2.因此|AP |=1+k 2|x 1-x 2|=2a 2|k |1+k21+a 2k2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. 由(1)知,|AP |=2a 2|k 1|1+k 211+a 2k 21, |AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0. 由k 1≠k 2,k 1,k 2>0得 1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2).①因为①式关于k 1,k 2的方程有解的充要条件是 1+a 2(a 2-2)>1, 所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤ 2.由e =c a =a 2-1a ,得0<e ≤22.所求离心率的取值范围为⎝ ⎛⎦⎥⎤0,22. [知能专练(十七)]一、选择题1.(2017·惠州调研)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =132,则它的渐近线方程为( )A .y =±32xB .y =±23xC .y =±94xD .y =±49x解析:选A 由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =132,可得c 2a 2=134,∴b 2a 2+1=134,可得b a =32,故双曲线的渐近线方程为y =±32x .2.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33 C.23 D.13解析:选A 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63. 3.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32解析:选D 由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP ∥x 轴,又PF ⊥x 轴,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.4.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π4,若AB =4,BC =2,则椭圆的两个焦点之间的距离为( )A.463B.263 C.433 D.233解析:选A 不妨设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),如图,由题意知,2a =4,a =2,∵∠CBA =π4,BC =2,∴点C 的坐标为(-1,1),∵点C 在椭圆上,∴122+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c =263,则椭圆的两个焦点之间的距离为2c =463.5.(2017·全国卷Ⅱ)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A. 5B .2 2C .2 3D .3 3解析:选C 法一:由题意,得F (1,0), 则直线FM 的方程是y =3(x -1).由⎩⎨⎧y =3x -,y 2=4x ,得x =13或x =3.由M 在x 轴的上方,得M (3,23), 由MN ⊥l ,得|MN |=|MF |=3+1=4.又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°, 因此△MNF 是边长为4的等边三角形, 所以点M 到直线NF 的距离为4×32=2 3. 法二:依题意,得直线FM 的倾斜角为60°, 则|MN |=|MF |=21-cos 60°=4.又∠NMF 等于直线FM 的倾斜角, 即∠NMF =60°,因此△MNF 是边长为4的等边三角形, 所以点M 到直线NF 的距离为4×32=2 3. 6.(2018届高三·湘中名校联考)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥35|CD |,则双曲线离心率e 的取值范围为( )A.⎣⎢⎡⎭⎪⎫53,+∞B.⎣⎢⎡⎭⎪⎫54,+∞C.⎝ ⎛⎦⎥⎤1,53 D.⎝ ⎛⎦⎥⎤1,54 解析:选B 将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,不妨取A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a ,所以|AB |=2b 2a .将x =c 代入双曲线的渐近线方程y =±ba x ,得y =±bc a,不妨取C ⎝⎛⎭⎪⎫c ,bc a ,D ⎝ ⎛⎭⎪⎫c ,-bc a ,所以|CD |=2bca.因为|AB |≥35|CD |,所以2b 2a ≥35×2bc a ,即b ≥35c ,则b 2≥925c 2,即c 2-a 2≥925c 2,即1625c 2≥a 2,所以e 2≥2516,所以e ≥54,故选B.二、填空题7.设F 1,F 2为双曲线C :x 2a 2-y 216=1(a >0)的左、右焦点,点P 为双曲线C 右支上一点,如果|PF 1|-|PF 2|=6,那么双曲线C 的方程为________,离心率为________.解析:由双曲线定义可得2a =|PF 1|-|PF 2|=6,a =3,所以曲线C 的方程为x 29-y 216=1.又b=4,所以c =a 2+b 2=5,则离心率e =c a =53.答案:x 29-y 216=1 538.已知抛物线x 2=4y ,则其焦点F 的坐标为________,若M 是抛物线上一点,|MF |=4,O 为坐标原点,则∠MFO =________.解析:抛物线x 2=4y 的焦点坐标F (0,1).设M (x ,y ),由抛物线定义可得|MF |=y +1=4,则y =3,代入抛物线方程解得一个M (23,3),则FM ―→=(23,2),FO ―→=(0,-1),所以cos ∠MFO =FM ―→·FO ―→|FM ―→||FO ―→|=-12,所以∠MFO =2π3.答案:(0,1)2π39.(2018届高三·广东五校联考)已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________.解析:由点P (x 0,y 0)满足0<x 22+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a=2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22).答案:[2,22) 三、解答题10.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35.(1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.解:(1)将(0,4)代入C 的方程得16b2=1,解得b =4.又e =c a =35,得a 2-b 2a 2=925,即1-16a 2=925,则a =5.所以C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3).设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x225+x -225=1,即x 2-3x -8=0,所以x 1+x 2=3.设AB 的中点坐标为(x 0,y 0),则x 0=x 1+x 22=32,y 0=y 1+y 22=25(x 1+x 2-6)=-65,即中点坐标为⎝ ⎛⎭⎪⎫32,-65.11.已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.解:(1)易知直线与抛物线的交点坐标为(8,-8),∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .(2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0,Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴ x 1x 2=y 1y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0,∴m =8或m =0(舍去),∴l 2:x=y +8,M (8,0).故S △FAB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3y 1+y 22-4y 1y 2=24 5.12.(2018届高三·浙江名校联考)椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的长轴长等于圆C 2:x 2+y 2=4的直径,且C 1的离心率等于12.直线l 1和l 2是过点M (1,0),且互相垂直的两条直线,l 1交C 1于A ,B 两点,l 2交C 2于C ,D 两点.(1)求C 1的标准方程;(2)当四边形ACBD 的面积为12714时,求直线l 1的斜率k (k >0). 解:(1)由题意得2a =4,即a =2.∵c a =12,∴c =1,∴b =3,∴椭圆C 1的标准方程为x 24+y 23=1.(2)直线AB :y =k (x -1),则直线CD :y =-1k (x -1),由⎩⎪⎨⎪⎧y =k x -,3x 2+4y 2=12,得(3+4k 2)x2-8k 2x +4k 2-12=0,设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=8k 23+4k2,x 1x 2=4k 2-123+4k2,∴|AB |=1+k 2|x 1-x 2|=k 2+3+4k2.∵圆心(0,0)到直线CD :x +ky -1=0的距离d =1k 2+1,又|CD |24+d 2=4,∴|CD |=24k 2+3k 2+1,∵AB ⊥CD ,∴S 四边形ACBD =12|AB |·|CD |=12k 2+14k 2+3,由12k 2+14k 2+3=12147,解得k =1或k =-1,由k >0,得k =1. 第三讲圆锥曲线中的热点问题考点一 轨迹方程问题 一、基础知识要记牢在直角坐标系中,如果某曲线C 上点的坐标都是二元方程f (x ,y )=0的实数解,且以这个二元方程f (x ,y )=0的实数解为坐标的点都是曲线上的点,则方程叫做曲线的方程,这条曲线叫做方程的曲线.二、经典例题领悟好[例1] (2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→=2NM ―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·PQ ―→=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .[解] (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0),由NP ―→=2NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ ―→=(-3,t ),PF ―→=(-1-m ,-n ),OQ ―→·PF ―→=3+3m -tn ,OP ―→=(m ,n ),PQ ―→=(-3-m ,t -n ),由OP ―→·PQ ―→=1,得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0.所以OQ ―→·PF ―→=0,即OQ ―→⊥PF ―→.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C的左焦点F .求动点轨迹方程的一般步骤(1)建:建立合适的直角坐标系; (2)设:设曲线上任意一点的坐标(x ,y ); (3)限:考虑满足的条件; (4)代:把点的坐标代入关系式;(5)化:化简,并证明所求方程为符合条件的动点的轨迹方程(一般省略). 三、预测押题不能少1.已知在平面直角坐标系中的一个椭圆,中心在原点,左焦点为F (-3,0),且过点D (2,0). (1)求该椭圆的标准方程;(2)设点A ⎝ ⎛⎭⎪⎫1,12,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.解:(1)设椭圆的标准方程为x 2a +y 2b=1(a >b >0),由题意,c =3,a =2,所以b =1.故椭圆的标准方程为x 24+y 2=1.(2)设线段PA 的中点为M (x ,y ),点P 的坐标为(x 0,y 0),由⎩⎨⎧x =x 0+12,y =y 0+122,得⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -12,由点P 在椭圆上,得x -24+⎝⎛⎭⎪⎫2y -122=1.所以线段PA 的中点M 的轨迹方程是⎝ ⎛⎭⎪⎫x -122+4⎝ ⎛⎭⎪⎫y -142=1.考点二 最值、范围问题一、经典例题领悟好[例2] (2017·山东高考)在平面直角坐标系xOy 中,已知椭圆C :x 2a +y 2b=1(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为2 2.(1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M ,点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.[解] (1)由椭圆的离心率为22,得a 2=2(a 2-b 2). 又当y =1时,x 2=a 2-a 2b 2,得a 2-a 2b2=2,所以a 2=4,b 2=2,因此椭圆方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=4消去y ,得(2k 2+1)x 2+4kmx +2m 2-4=0, 由Δ>0得m 2<4k 2+2.(*) 且x 1+x 2=-4km2k 2+1, 因此y 1+y 2=2m2k 2+1, 所以D ⎝ ⎛⎭⎪⎫-2km2k 2+1,m 2k 2+1,又N (0,-m ),所以|ND |2=⎝ ⎛⎭⎪⎫-2km 2k 2+12+⎝ ⎛⎭⎪⎫m 2k 2+1+m 2,整理得|ND |2=4m2+3k 2+k 4k 2+2,因为|NF |=|m |, 所以|ND |2|NF |2=k 4+3k 2+k 2+2=1+8k 2+3k 2+2.令t =8k 2+3,t ≥3. 故2k 2+1=t +14, 所以|ND |2|NF |2=1+16t +t2=1+16t +1t+2. 令y =t +1t,所以y ′=1-1t2.当t ≥3时,y ′>0,从而y =t +1t 在[3,+∞)上单调递增,因此t +1t ≥103,当且仅当t =3时等号成立,此时k =0, 所以|ND |2|NF |2≤1+3=4,由(*)得-2<m <2且m ≠0,故|NF ||ND |≥12,设∠EDF =2θ,则sin θ=|NF ||ND |≥12,所以θ的最小值为π6.从而∠EDF 的最小值为π3,此时直线l 的斜率是0.综上所述:当k =0,m ∈(-2,0)∪(0,2)时,∠EDF 取到最小值π3.求解圆锥曲线中的范围问题的关键是建立关于求解某个变量的目标函数,通过求这个函数的值域确定目标的范围.圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线与圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.二、预测押题不能少。

2018高考数学理二轮复习课件:1-4-2 高考中的立体几何 精品

2018高考数学理二轮复习课件:1-4-2 高考中的立体几何 精品
[解] ①证明:∵AD⊥侧面 PAB,PE⊂平面 PAB, ∴AD⊥PE. 又∵△PAB 是等边三角形,E 是线段 AB 的中点, ∴PE⊥AB.∵AD∩AB=A, ∴PE⊥平面 ABCD. 而 CD⊂平面 ABCD,所以 PE⊥CD.
②求 PC 与平面 PDE 所成角的正弦值.
[解]②以 E 为原点,建立如图所示的空间直角坐标系 E-xyz.
②求平面 B1GE 与底面 ABC 所成锐二面角的余弦值.
[解]②过点 A1 作 A1O⊥AB,垂足为 O,连接 OC, ∵侧面 AA1B1B⊥底面 ABC, ∴A1O⊥底面 ABC, ∴∠A1AB=60°, ∵AA1=2,∴AO=1, ∵AB=2,∴点 O 是 AB 的中点, 又∵点 G 为正三角形 ABC 的重心, ∴点 G 在 OC 上, ∴OC⊥OB,
热点探究悟道
热点一 空间位置关系 (1)[2015·陕西高三质检]如图,在正方体 ABCD-A1B1C1D1 中,AA1=2,E 为棱 CC1 的中点.
①求证:B1D1⊥AE;
[证明] ①连接 BD, 则 BD∥B1D1. ∵四边形 ABCD 是正方形, ∴AC⊥BD. ∵CE⊥平面 ABCD, ∴CE⊥BD. 又 AC∩CE=C, ∴BD⊥平面 ACE. ∵AE⊂平面 ACE, ∴BD⊥AE, ∴B1D1⊥AE.
= |a·b| |a||b| .
(2)线面角
|l·n|
设 l 是斜线 l 的方向向量,n 是平面 α 的法向量,则斜线 l 与平面 α 所成的角满足 sinθ= |l||n| .
(3)二面角 →①如→图(ⅰ),AB,CD 是二面角 α-l-β 的两个半平面内与棱 l 垂直的直线,则二面角的大小 θ= 〈AB,CD〉 .
∵A1O⊥底面 ABC,∴A1O⊥OB,A1O⊥OC, 以 O 为原点,分别以 OC,OB,OA1 为 x,y,z 轴建立如图空间直角坐标系 O-xyz,由题意得 A(0,

2018高考数学理二轮专题复习课件 专题五 立体几何4.4.2 精品

2018高考数学理二轮专题复习课件 专题五 立体几何4.4.2 精品

由AA→→CK··mm==00, 得3xy1+1=30y,1+ 3z1=0,
取 m=( 3,0,-1);由AA→→KB··nn==00,
得2x2x+2+33y2y+2=03,z2=0, 取 n=(3,-2, 3).
于是
cos〈m,n〉=|mm|··|nn|=
3 4.
所以二面角
B-AD-F
的平面角的余弦值为
[专题回访] 1.l1,l2 表示空间中的两条直线,若 p:l1,l2 是异面直线; q:l1,l2 不相交,则( ) A.p 是 q 的充分条件,但不是 q 的必要条件 B.p 是 q 的必要条件,但不是 q 的充分条件 C.p 是 q 的充分必要条件 D.p 既不是 q 的充分条件,也不是 q 的必要条件
(1)求证:BF⊥平面 ACFD; (2)求二面角 B-AD-F 的平面角的余弦值.
解:(1)证明:延长 AD,BE,CF 相交于一点 K,如图(1)所 示.
因为平面 BCFE⊥平面 ABC,平面 BCFE∩平面 ABC=BC, 且 AC⊥BC,所以 AC⊥平面 BCK,
因此 BF⊥AC. 又因为 EF∥BC,BE=EF=FC=1,BC=2,所以△BCK 为 等边三角形,且 F 为 CK 的中点,则 BF⊥CK. 所以 BF⊥平面 ACFD.
1.空间角的计算
(1)线、线夹角

l,m
的夹角为
θ 0≤θ≤2π , 则
cosθ

|a·b| |a|·|b|

a21+|a1bb121++ca212·b2+a22+a3bb322|+c22.
(2)线、面夹角
设 l 与平面 α 的夹角为 θ0≤θ≤π2,则 sinθ=|a|a|··μ|μ||=|cos〈a, μ〉|.

2018高考数学理二轮备考课件—11立体几何

2018高考数学理二轮备考课件—11立体几何

涉及知识点
解题思想方 几何模型 法 逻辑推理、 解析法 逻辑推理、 方程思想、 解析法 逻辑推理、 解析法
面面垂直判定定理、 向量的 四棱锥 平面法向量、 数量积 线面平行判定定理、 向量的 四棱锥 平面法向量、 数量积 全等三角形、二面 全 证面面垂直; 角、勾股定理、平面 四面体 国 求二面角的 向量的数量 法向量、 Ⅲ 余弦值 积
-8-
2.证明线面平行和线面垂直的常用方法 (1)证明线面平行的常用方法:①利用线面平行的判定定理把证明 线面平行转化为证明线线平行;②利用面面平行的性质定理把证明 线面平行转化为证明面面平行. (2)证明线面垂直的常用方法:①利用线面垂直的判定定理把线面 垂直转化为证明线线垂直;②利用面面垂直的性质定理把证明线面 垂直转化为证明面面垂直;③利用常见结论,如两条平行线中的一 条垂直于一个平面,则另一条也垂直于这个平面等.
-7-
1.证明线线平行和线线垂直的常用方法 (1)证明线线平行常用的方法:①利用平行公理,即证两条直线同 时和第三条直线平行;②利用平行四边形进行平行转换;③利用三 角形的中位线定理证线线平行;④利用线面平行、面面平行的性质 定理进行平行转换. (2)证明线线垂直常用的方法:①利用等腰三角形底边上的中线即 高线的性质;②勾股定理;③线面垂直的性质:即要证两直线垂直,只 需证明一直线垂直于另一直线所在的平面即可,即l⊥α,a⊂α⇒l⊥a.
勾股定理、 面面垂直 菱形与两 逻辑推理、 的判定定理、 空间点 条垂线组 解析法 坐标、 向量的数量积 成的图形 线面平行性质定理、 平面法向量、 向量的 长方体 数量积 逻辑推理、 解析法
-5-
卷 设问特点 别 全 证面面垂直; 国 求二面角的 Ⅰ 余弦值 全 证线面垂直; 2016 国 求二面角的 Ⅱ 正弦值 全 证线面平行; 国 求线面角的 Ⅲ 正弦值 年份

高三二轮复习之立体几何

高三二轮复习之立体几何

高三二轮复习之立体几何第1讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图[核心提炼]一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样,即“长对正、高平齐、宽相等”.[例1](1)(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A[由题意可知带卯眼的木构件的直观图如右图所示,由直观图可知其俯视图应选A.故选A.](2)(2018·济南一模)如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的正投影可能是()A.①②B.①④C.②③D.②④B[P点在上下底面投影落在AC或A1C1上,所以△P AC在上底面或下底面的投影为①,在前面、后面以及左面,右面的投影为④,故选B.][方法归纳]由三视图还原直观图的思路 (1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱的位置.(3)确定几何体的直观图形状. [对点训练]1.(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2B [先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴|MN |=OM 2+ON 2=22+42=2 5.故选B.]2.(2018·相阳教育“黉门云”高考等值试卷模拟)某四面体的三视图由如图所示的三个直角三角形构成,则该四面体六条棱长最长的为( )A .7 B.41 C .6D.35B [四面体如图所示,其中SB ⊥平面ABC 且△ABC 中,∠ACB =90°.由SB ⊥平面ABC ,AB ⊂平面ABC 得到SB ⊥AB ,同理SB ⊥BC ,所以棱长最大为SA 且SA =SB 2+AB 2=SB 2+AC 2+BC 2=41,故选B.]考点二 空间几何体的表面积与体积[核心提炼]1.柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高); (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高);(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面的周长,h ′为斜高).2.柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高); (2)V 锥体=13Sh (S 为底面面积,h 为高);(3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上、下底面面积,h 为高)(不要求记忆).3.球的表面积和体积公式 (1)S 球表=4πR 2(R 为球的半径); (2)V 球=43πR 3(R 为球的半径).[例2] (1)(2018·威海二模)某几何体的三视图如图所示,则该几何体的体积为( )A .18B .24C .32D .36B [由三视图可知,几何体是三棱柱削去一个同底的三棱锥,如右图,三棱柱的高为5,削去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为12×3×4×5-13×12×3×4×3=30-6=24.故选B.](2)(2018·天津二调)已知一个几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm 3.解析 根据几何体的三视图,得该几何体是上部为四棱锥,下部为半个圆柱的组合体,四棱锥的高为2,底面矩形的宽为2,长为4,圆柱的高为4,底面半径为1,∴该组合体的体积为V =13×2×4×2+12×π×12×4=163+2π.答案163+2π [方法归纳]求解几何体的表面积及体积的技巧(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑、熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体进行求解.[对点训练]1.(2018·山东名校联盟一模)某几何体的三视图如图所示,依次为正视图,侧视图和俯视图,则这个几何体体积为( )A .6π+43B .8π+83C .6π+23D .8π+43B [由三视图可知,几何体是如图所示的组合体,该组合体由一个三棱锥与四分之三球体组成,其中棱锥的底面是等腰直角三角形,一侧面与底面垂直,球半径为2,所以可得,该几何体的体积为V =34×4π3×23+13×12×4×2×2=8π+83,故选B.]2.(2018·豫北名校精英对抗赛)若某多面体的三视图如右图所示(单位:cm)则此多面体的体积是________cm 3.解析 解根据三视图得该几何体是由棱长为1 cm 的正方体ABCD -EFGH 、沿相邻三个侧面的对角线截去一个三棱锥E -AFH 得到一个多面体(如图所示),所以此多面体的体积V =1-13×12×1×1×1=56(cm 3).答案 56考点三 多面体与球的切、接问题[核心提炼]与球有关的组合体问题,一种是内切,一种是外接.解题时需认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.[例3] (1)(2018·葫芦岛二模)某几何体的三视图如图所示,坐标纸上的每个小方格的边长为1,则该几何体的外接球的表面积是( )A.5103B .112π C.10009πD.50001081πC [该几何体是如图所示的三棱锥,三棱锥的高PD =6, 且侧面P AC ⊥底面ABC ,AC ⊥BC ,P A =PC =42+62=52,AC =8,BC =6;AB =82+62=10,∴P A 2+PB 2=AB 2,∴△ABC 的外接圆的圆心为斜边AB 的中点E ,设该几何体的外接球的球心为O .OE ⊥底面ABC ,设OE =x ,外接球的半径为R , 则x 2+⎝⎛⎭⎫1022=32+(6-x )2,解得x =53.∴R 2=⎝⎛⎭⎫532+52=2509,∴外接球的表面积S =4π×R 2=1000π9.故选C.](2)(2018·全国Ⅲ卷)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3B [由等边△ABC 的面积为93可得34AB 2=93, 所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3. 设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d , 则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.故选B.][方法归纳]多面体与球接、切问题的求解策略涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(或直径)与该几何体已知量的关系,列方程(组)求解.[对点训练]1.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4B [设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.]2.(2018·湛江二模)已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球体积为________.解析 如图所示,在长、宽、高分别为22,2,2的长方体中,点E ,F 分别为对应棱的中点,则三视图对应的几何体为三棱锥E -ABF ,将三棱锥补形为三棱柱ABF -A 1B 1E ,则三棱锥的外接球即三棱柱的外接球, 取AB ,A 1B 1的中点,易知外接球的球心为GH 的中点, 据此可得外接球半径R =(2)2+12=3,外接球的体积V =43πR 3=43π.答案 43π课时作业(十二)1.(2018·辽宁部分重点中学协作体模拟)在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是( )A .圆面B .矩形面C .梯形面D .椭圆面或部分椭圆面C [将圆柱桶竖放,水面为圆面;将圆柱桶斜放,水面为椭圆面或部分椭圆面;将圆柱桶水平放置,水面为矩形面,所以圆柱桶内的水平面可以呈现出的几何形状不可能是梯形面,故选C.]2.(2018·四川棠湖中学3月月考)用一个平面去截正方体,则截面不可能是( ) A .直角三角形 B .等边三角形 C .正方形D .正六边形A [用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形; ④截面为六边形时,可以是正六边形. 故可选A.]3.某几何体的三视图是如图所示的三个直角三角形,若该几何体的体积为144 cm 2,则d =( )A .14 cmB .13 cmC .12 cmD .11 cmC [根据已知的三视图,作出直观图如下:由已知有AB ⊥平面BCD ,且∠CBD =90°,且AB =8,BD =9,BC =d ,由三棱锥的体积计算公式V =13Sh =13×12×9×d ×8=144,求出d =12 cm ,故选C.]4.(2018·济南二模)中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知某“堑堵”的正视图和俯视图如右图所示,则该“堑堵”的左视图的面积为( )A .18 6B .18 3C .18 2D.2722 C [由三视图可知,该几何体为直三棱柱, 底面直角三角形斜边的高为6×3=3 2该“堑堵”的左视图的面积为32×6=182,故选C.]5.(2018·厦门质检二)已知某正三棱锥的侧棱长大于底边长,其外接球体积为125π6,三视图如图所示,则其侧视图的面积为( )A.32 B .2 C .4D .6D [设正三棱锥外接球的半径为R , 则43πR 3=1256⇒R =52, 由三视图可得底面边长为23, 底面正三角形的高为32×23=3,底面三角形外接圆半径为23×3=2,由勾股定理得⎝⎛⎭⎫522=22+⎝⎛⎭⎫h -522,得h =4, ∴侧视图面积为S △PBE =12×3×4=6,故选D.]6.(2018·洛阳一模)某几何体的三视图如图所示,则该几何体的体积为( )A.233B.152C.476D .8A [根据题中所给的几何体的三视图,可以得到该几何体是由正方体切割而成的,记正方体为ABCD -A 1B 1C 1D 1,取A 1D 1中点为M ,取D 1C 1中点为N ,该几何体就是正方体切去一个三棱锥D -MND 1之后剩余部分,故其体积为V =23-13×12×1×1×2=233,故选A.]7.(2018·皖江八校八联)某几何体的三视图如图所示,其中每个单位正方体的边长为1,则该几何体的体积( )A .8π-6B .8π-163C .4π+4D .4π+143B [由三视图可知,该几何体是半圆柱挖去一个三棱锥,其体积为12×π×22×4-13×12×4×2×4=8π-163.故选B.]8.(2018·重庆三调)一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的体积为( )A.π6B.π3C.π2D .πB [原几何体如图所示:它是半个圆锥,其底面半径为1,高为2,故体积为12×13×π×12×2=π3,故选B.]9.(2018·全国Ⅰ卷)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10πB [设圆柱的轴截面的边长为x ,则由x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×22=12π.故选B.]10.(2018·烟台二模)某几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.169D.209B [由给定的三视图可知,该几何体表示左侧是一个以边长为2的正方形为底面,高为2的四棱锥,其体积为V 1=13×2×2×2=83;右侧为一个直三棱柱,其底面如俯视图所示,高为2的直三棱柱,其体积为V 2=12×2×2×2=4,所以该几何体的体积为V =V 1+V 2=83+4=203,故选B.]11.(2018·大同、阳泉质监二)《九章算术》中将底面是直角三角形的直三棱柱称之为“堑堵”.一块“堑堵”型石材表示的三视图如图所示.将该石材切削、打磨,加工成若干个相同的球,并使每个球的体积最大,则所剩余料体积为( )A .288-48πB .288-16πC .288-32πD .288-4πC [如图所示,作三棱柱底面的内接圆,设内接圆的半径为r ,则CF =CE =6-r ,AD =AE =8-r ,∵AD +CF =CE +AE =AC =62+82=10,得6-r +8-r =10,故r =2,又∵三棱柱的高为12,故共有12÷4=3个球, ∵该三棱柱的体积等于12×6×8×12=288,∴剩余材料的体积为288-3×43π×23=288-32π,故选C.]12.(2018·莆田质检二)某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的外接球的表面积为( )A .πB .2πC .3πD .4πC [观察分析题中所给的三视图,可以确定该四棱锥的底面是边长为1的正方形,高为1,且顶点在底面上的摄影落在底面顶点处的四棱锥,从而可以断定该四棱锥的五个顶点都在以1为棱长的正方体上,从而求得该正方体的外接球的半径为32,所以其面积为S =4πr 2=3π,故选C.]13.(2018·全国Ⅱ卷)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.解析 在Rt △SAB 中,SA =SB ,S △SAB =12·SA 2=8,解得SA =4.设圆锥的底面圆心为O ,底面半径为r ,高为h ,在Rt △SAO 中,∠SAO =30°, 所以r =23,h =2,所以圆锥的体积为13πr 2·h =13h ×(23)2×2=8π.14.(2018·南京师大附中考前模拟)如图,直三棱柱ABC -A 1B 1C 1的各条棱长均为2,D 为棱B 1C 1上任意一点,则三棱锥D -A 1BC 的体积是________.解析 由题可得VD -A 1BC =VA 1-BCD =13·S BCD ·AD =13×2×2×12×3=233.答案23315.(2018·天津十二校二联)一个几何体的三视图如图所示,则该几何体的体积为________.解析 由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成, 其中,圆锥的底面半径为1,高为2,体积为12×13×π×12×2=π3;球半径为1,体积为14×43π×12=π3,所以,该几何体的体积为π3+π3=2π3.答案2π316.(2018·威海二模)已知正三棱柱ABC -A 1B 1C 1,侧面BCC 1B 1的面积为43,则该正三棱柱外接球表面积的最小值为________.解析 设BC =a ,CC 1=b ,则ab =4 3.底面三角形外接圆的半径为r ,则a sin60°=2r ,∴r =33a .所以R 2=⎝⎛⎭⎫b 22+⎝⎛⎭⎫33a 2=b 24+a 23≥2b 24·a 23=24812=4, 所以该正三棱柱外接球表面积的最小值为4π×4=16π.第2讲空间点、线、面的位置关系考点一空间线面位置关系的判断[核心提炼]空间中点、线、面的位置关系的判定(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义.[例1](1)(2018·湛江二模)下列命题正确的是()①三点确定一个平面;②两两相交且不共点的三条直线确定一个平面;③如果两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面;④如果两个平面平行,那么其中一个平面内的直线一定平行于另一个平面.A.①③B.①④C.②④D.②③C[注意考查所给的命题:①不在同一条直线上的三点确定一个平面,该说法错误;②两两相交且不共点的三条直线确定一个平面,该说法正确;③如果两个平面垂直,那么其中一个平面内的直线不一定垂直于另一个平面,可能相交或平行于另一个平面,该说法错误;④如果两个平面平行,那么其中一个平面内的直线一定平行于另一个平面,该说法正确.综上可得:命题正确的是②④.故选C.](2)(2018·天一大联考四)设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m⊥α,m⊥β,则α∥β;②若m∥n,m⊥β,则n⊥β;③若m⊥α,m ∥β,则α⊥β;④若m⊥α,α∥β,则m⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4D[①一根直线同时垂直两个不相同的平面,显然这两个平面平行,故正确;②因为两条平行直线中有一条垂直于一个平面,则另外一条直线也垂直这个平面,故正确;③若m ⊥α,m∥β,则必存在直线l⊂β⇒l∥m,l⊥α,所以由面面垂直的判定可知α⊥β,故正确;④若m⊥α,α∥β,则由线面垂直的判定可知m⊥β,故正确,故选D.][方法归纳]对于空间中与平行、垂直相关的定理我们一定要准确记忆和理解,不能漏掉任何一个条件.如两平面平行的判定定理“一个平面内的两条相交直线与另一个平面平行,则这两个平面平行”,必须注意“相交”,否则推不出两平面平行.[对点训练]1.(2018·泸州模拟)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是()A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥βD[由a,b是空间中不同的直线,α,β是不同的平面,知:在A中,a∥b,b⊂α,则a∥α或a⊂α,故A错误;在B中,a⊂α,b⊂β,α∥β,则a与b平行或异面,故B错误;在C中,a⊂α,b⊂α,α∥β,b∥β,则α与β相交或平行,故C错误;在D中,α∥β,a⊂α,则由面面平行的性质定理得a∥β,故D正确.故选D.]2.(2018·绵阳三诊)如图,平面α与平面β相交于BC,AB⊂α,CD⊂β,点A∉BC,点D∉BC,则下列叙述错误的是()A.直线AD与BC是异面直线B. 过AD只能作一个平面与BC平行C.过AD只能作一个平面与BC垂直D.过D只能作唯一平面与BC垂直,但过D可作无数个平面与BC平行C[由异面直线判定定理得直线AD与BC是异面直线;在平面β内仅有一条直线过点D且与BC平行,这条直线与AD确定一个平面与与BC平行,即过AD只能作一个平面与BC平行;若AD垂直平面α,则过AD的平面都与BC垂直,因此C错;过D只能作唯一平面与BC垂直,但过D可作无数个平面与BC平行;故选C.]考点二空间线面平行、垂直关系的证明[核心提炼]1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α=α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α. (2)线面垂直的判定定理:a ⊥α,b ⊥β⇒a ∥b . (3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.[例2] (2018·全国Ⅰ卷)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解 (1)证明:由已知可得, ∠BAC =90°,即BA ⊥AC . 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =DQ =23DA ,所以BP =2 2.如图,过点Q 作QE ⊥AC , 垂足为E ,则QE 綊13DC .由已知及(1)可得,DC ⊥平面ABC ,所以QE⊥平面ABC,QE=1. 因此,三棱锥Q-ABP的体积为V Q-ABP=13×S△ABP×QE=13×12×3×22sin 45°×1=1.[方法归纳]平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.[对点训练]1.(2018·南京师大附中考前模拟)如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面P AD⊥平面ABCD.证明(1) 因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2) 因为四边形ABCD是矩形,所以AB⊥AD.因为AF ⊥EF ,(1)中已证AB ∥EF , 所以AB ⊥AF ,又AB ⊥AD , 由点E 在棱PC 上(异于点C ),所以F 点异于点D ,所以AF ∩AD =A , AF ,AD ⊂平面P AD ,所以AB ⊥平面P AD , 又AB ⊂平面ABCD ,所以平面P AD ⊥平面ABCD .2.(2018·厦门质检)如图,四棱锥P -ABCD 中,侧面P AB ⊥底面ABCD ,P A =PB ,CD =2AB =4,CD ∥AB ,∠BP A =∠BAD =90°.(1)求证:PB ⊥平面P AD ;(2)若三棱锥C -PBD 的体积为2,求△P AD 的面积.解 (1)∵平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,AD ⊂平面ABCD ,且AD ⊥AB ,∴AD ⊥平面P AB .又∵PB ⊂平面P AB ,∴PB ⊥AD .又∵PB ⊥P A ,P A ∩AD =A ,P A ,PD ⊂平面P AD , ∴PB ⊥平面P AD .(2)取AB 中点E ,连接PE . ∵P A =PB ,∴PE ⊥AB .又∵PE ⊂平面P AB ,平面P AB ⊥平面ABCD , 平面P AB ∩平面ABCD =AB ,∴PE ⊥平面ABCD . ∴PE 为三棱锥P -BCD 的高,且PE =12AB =1.又∵CD ∥AB ,AD ⊥CD ,∴S △BCD =12CD ·AD =2AD .∴V C -PBD =V P -BCD=13·S △BCD ·PE =23AD =2,得AD =3.P A =AB ·cos 45°=2.又∵AD ⊥平面P AB 且P A ⊂平面P AB ,∴P A ⊥AD . ∴S △P AD =12P A ·AD =322.考点三 异面直线所成角、直线与平面所成的角[核心提炼]1.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)范围:⎝⎛⎦⎤0,π2. 2.直线与平面所成的角(1)定义:一条斜线和它在平面上的射影所成得锐角叫做这条直线和这个平面所成的角. (2)范围:⎣⎡⎦⎤0,π2 [例3] (1)(2018·全国Ⅱ卷)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15 B.56 C.55D.22C [图(1)方法1:如图(1),在长方体ABCD -A 1B 1C 1D 1的一侧补上一个相同的长方体A ′B ′BA -A 1′B 1′B 1A 1.连接B 1B ′,由长方体性质可知,B 1B ′∥AD 1,所以∠DB 1B ′为异面直线AD 1与DB 1所成的角或其补角,连接DB ′,由题意,得DB ′=12+(1+1)2=5,B ′B 1=12+(3)2=2,DB 1=12+12+(3)2= 5.在△DB ′B 1中,由余弦定理得DB ′2=B ′B 21+DB 21-2B ′B 1·DB 1·cos ∠DB 1B ′, 即5=4+5-2×25cos ∠DB 1B ′,∴cos ∠DB 1B ′=55.故选C.图(2)方法2:如图(2),分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系.由题意,得A (1,0,0),D (0,0,0),D 1(0,0,3),B 1(1,1,3),∴AD 1→=(-1,0,3),DB 1→=(1,1,3),∴AD 1→·DB 1→=-1×1+0×1+(3)2=2, |AD 1→|=2,|DB 1→|=5,∴cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故选C.](2)(2018·全国Ⅰ卷)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32A [如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,DD 1,AD 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22sin 60°=334.故选A.] [方法归纳]异面直线所成角的求法(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成角的三个步骤①作:通过作平行线,得到相交直线的夹角. ②证:证明相交直线夹角为异面直线所成的角.③求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.[对点训练]1.(2018·钦州质检三)在正方体ABCD -A 1B 1C 1D 1中,下列几种说法正确的是( ) A .A 1C 1与B 1C 成60°角 B .D 1C 1⊥AB C .AC 1与DC 成45°角D .A 1C 1⊥ADA [直线A 1C 1与B 1C 是异面直线,而B 1C ∥A 1D ,所以∠DA 1 C 为A 1C 1与B 1C 所成的角,显然三角形DA 1C 1是等边三角形,所以∠DA 1C =60°,所以A 是正确的;选项B :由正方体的性质易得D 1C 1∥AB ,所以是错误的;选项C :可得DC ∥D 1C 1,在Rt △AC 1D 1中,AD 1≠D 1C 1,故AC 1与DC 不可能成45°角,所以是错误的;选项D :易得∠D 1A 1C 1为A 1C 1与AD 所成的角,在等腰直角三角形D 1A 1C 1为中易得∠D 1A 1C 1=45°,所以A 1C 1与AD 不可能垂直,所以是错误的,故选A.]2.(2018·全国大联考5月)如图,已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=AD =2BC ,∠A 1B 1C 1=∠B 1C 1D 1=120°,且BC ∥AD ,则直线AB 1与直线A 1D 所成角的余弦值为( )A.1010B.31020C.105D.55B [不妨设AD =4,如图,延长BC 至点M ,使得CM =BC ,连接B 1 M ,AM ,易证直线AB 1与直线A 1D 所成的角等于∠AB 1M 或其补角.易知AB 1=25,B 1M =42, AM =AB 2+BM 2-2AB ·BM ·cos ∠ABM =27,所以cos ∠AB 1M =AB 21+B 1M 2-AM 22AB 1·B 1M=31020,则直线AB 1与直线A 1D 所成角的余弦值为31020,故选B.]课时作业(十三)1.下列命题正确的个数为( ) ①经过三点确定一个平面; ②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3C [因为①中,只有经过不共线的三点,才能唯一的确定一个平面,所以不正确;②中,梯形的上底和下底所在的直线互相平行,所以梯形是一个平面图象,所以是正确的;③中,当两两相交的三条直线,交于一点时,最多可以确定三个平面,所以是正确的;④中,当两个平面相交时,存在一条公共直线,当三点在这条直线上时,两个平面可以是相交的,所以不正确,所以正确命题的个数为两个,故选C.]2.(2018·宁波5月模拟)已知直线l 、m 与平面α、β,l ⊂α,m ⊂β,则下列命题中正确的是( )A .若l ∥m ,则必有α∥βB .若l ⊥m ,则必有α⊥βC .若l ⊥β,则必有α⊥βD .若α⊥β,则必有m ⊥αC [对于选项A ,平面α和平面β还有可能相交,所以选项A 错误;对于选项B ,平面α和平面β还有可能相交或平行,所以选项B 错误;对于选项C ,因为l ⊂α,l ⊥β,所以α⊥β.所以选项C 正确;对于选项D ,直线m 可能和平面α不垂直,所以选项D 错误.故选C.]3.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010B.15C.35D.31010D [连BA 1,则在正四棱柱中可得BA 1∥CD 1,∴∠A 1BE 即为异面直线BE 与CD 1所成角(或其补角).设AA 1=2AB =2,则在△A 1BE 中,BE =2,EA 1=1,BA 1=5,由余弦定理得cos ∠A 1BE =(2)2+(5)2-122×2×5=31010 ,∴异面直线BE 与CD 1所成角的余弦值为31010 .故选D.]4.(2018·潍坊二模)已知三棱柱ABC -A 1B 1C 1,平面β截此三棱柱,分别与AC ,BC ,B 1C 1,A 1C 1交于点E ,F ,G ,H ,且直线CC 1∥平面β.有下列三个命题:①四边形EFGH 是平行四边形;②平面β∥平面ABB 1A 1;③若三棱柱ABC -A 1B 1C 1是直棱柱,则平面β⊥平面A 1B 1C 1.其中正确的命题为( )A.①②B.①③C.①②③D.②③B[在三棱柱ABC-A1B1C1中,平面β截此三棱柱,分别与AC,BC,B1C1,A1C1交于点E,F,G,H,且直线CC1∥平面β,则CC1∥EH∥FG,且CC1=EH=FG,所以四边形EFGH 是平行四边形,故①正确;∵EF与AB不一定平行∴平面β与平面ABB1A1平行或相交,故②错误;若三棱柱ABC-A1B1C1是直棱柱,则CC1⊥平面A1B1C1.∴EH⊥平面A1B1C1.又∵EH⊂平面β,∴平面β⊥平面A1B1C1,故③正确.故选B.]5.(2018·包头一模)如图,在正方形ABCD中,E,F分别是AB,BC的中点,G是EF 的中点,沿DE,EF,FD将正方形折起,使A,B,C重合于点P,构成四面体,则在四面体P-DEF中,给出下列结论:①PD⊥平面PEF;②PD⊥EF;③DG⊥平面PEF;④DF⊥PE;⑤平面PDE⊥平面PDF.其中正确结论的序号是()A.①②③⑤B.②③④⑤C.①②④⑤D.②④⑤C[如图所示,因为E,F分别为AB,BC的中点,所以BD⊥EF,因为DA⊥AE,DC⊥CF,所以折叠后DP⊥PE,DP⊥PF,所以DP⊥平面PEF,所以①正确;由DP⊥平面PEF,EF⊂平面PEF,所以DP⊥EF,所以②正确;由DP⊥平面PEF,根据过一点有且只有一条直线垂直于一个平面,所以DG⊥平面PEF是不正确的,所以③不正确;由PE⊥PF,PE⊥DP,可得PE⊥平面DPF,又DF⊂平面DPF,所以PE⊥DF,所以④正确;由PE⊥平面DPF,又PE⊂平面PDE,所以平面PDE⊥平面DPF,所以⑤是正确,综上可知,正确的结论序号为①②④⑤,故选C.]6.(2018·唐山三模)若异面直线m,n所成的角是60°,则以下三个命题:①存在直线l,满足l与m,n的夹角都是60°;②存在平面α,满足m⊂α,n与α所成角为60°;③存在平面α,β,满足m⊂α,n⊂β,α与β所成锐二面角为60°.其中正确命题的个数为()A.0 B.1C.2 D.3D[异面直线m,n所成的角是60°,在①中,由异面直线m,n所成的角是60°,在m上任取一点A,过A作n′∥n,在空间中过点A能作出直线l,使得l与n′,n的夹角均为60°,∴存在直线l,满足l与m,n的夹角都是60°,故①正确;在②中,在n上取一点B,过B作m′∥m,则以m,m′确定的平面α,满足m⊂α,n 与α所成的角是60°,故②正确;在③中,在n上取一点C,过C作m′∥m,m,m′确定一个平面平面α,过n能作出一个平面β,满足m⊂α,n⊂β,α与β所成锐二面角为60°,故③正确,故选D.]7.(2018·南京、盐城二模)α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是________(填上所有正确命题的序号).①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若α⊥β,α∩β=n,m⊥n,则m⊥β;④若n⊥α,n⊥β,m⊥α,则m⊥β.解析由题意得,由α∥β,m⊂α,根据面面平行的性质,可得m∥β,所以①正确的;由m∥α,n⊂α,则m与n平行或异面,所以②不正确;由α⊥β,α∩β=n,m⊥n,则m⊥β或m ⊂β,所以③不正确;由n⊥α,n⊥β,n⊥α,根据直线垂直平行平面中一个也必垂直于另一个。

最新-2018高考数学二轮专题复习 立体几何理 精品

最新-2018高考数学二轮专题复习 立体几何理 精品

立体几何(理)【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、空间两条直线的三种位置关系,并会判定。

3、平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线平行及角相等的方法。

4、异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范围,会求异面直线的所成角。

5.理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6.了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.7.空间平行与垂直关系的论证.8. 掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题,进一步掌握异面直线所成角的求解方法,熟练解决有关问题.9.理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转化法、向量法).对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离.【考点预测】在2018年高考中立体几何命题有如下特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质、三视图多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.【要点梳理】1.三视图:正俯视图长对正、正侧视图高平齐、俯侧视图宽相等.2.直观图:已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3.体积与表面积公式:(1)柱体的体积公式:V =柱Sh ;锥体的体积公式: V =锥13Sh ;台体的体积公式: V =棱台1()3h S S ';球的体积公式: V =球343r π. (2)球的表面积公式: 24S R π=球.4.有关球与正方体、长方体、圆柱、圆锥、圆台的结合体问题,要抓住球的直径与这些几何体的有关元素的关系.5.平行与垂直关系的证明,熟练判定与性质定理.6.利用空间向量解决空间角与空间距离。

2018届高考数学二轮复习浙江专用课件:专题四 立体几何 第1讲 精品

2018届高考数学二轮复习浙江专用课件:专题四 立体几何 第1讲 精品
故 2R= DA2+SA2+SB2= 32=4 2, ∴R=2 2,∴S 表=4πR2=32π.
(2)法一 (排除法)V<13×S△ABC×2= 63,排除 B、C、D, 选 A.
法二 (直接法):在 Rt△ASC 中,AC=1,∠SAC=90°,SC=
2,所以 SA= 4-1= 3.同理,SB= 3.过 A 点作 SC 的垂线交
(1)证明 因为四棱柱 ABCD-A1B1C1D1 的侧棱垂直底面, 所以 A1A⊥平面 ABCD,又 BC⊂平面 ABCD, 所以 BC⊥AA1,因为 BC⊥AB,AB∩AA1=A,AB⊂平面 AA1B1B, AA1⊂平面 AA1B1B,所以 BC⊥平面 AA1B1B. 又 AB1⊂平面 AA1B1B,所以 AB1⊥BC, 因为 A1A⊥AB,A1A=AB=1,所以四边形 AA1B1B 为正方形, 所以 AB1⊥A1B, 因为 A1B∩BC=B,A1B,BC⊂平面 A1BC, 所以 AB1⊥平面 A1BC.
A.8π
B.16π
C.32π
D.64π
(2)已知三棱锥S-ABC的所有顶点都在球O的球面
上,△ABC是边长为1的正三角形,SC为球O的直
径,且SC=2,则此三棱锥的体积为( )
2 A. 6
3 B. 6
2 C. 3
2 D. 2
解析 (1)由三视图可知,几何体为一横放的四棱 锥,其底面是边长为 4 的正方形,高为 2,平面 SAB⊥平面 ABCD,易知 SA=SB=2 2.如图所示. 故可补全为以 DA、SA、SB 为棱的长方体,
(2)柱体、锥体和球的体积公式: ①V 柱体=Sh(S 为底面面积,h 为高); ②V 锥体=13Sh(S 为底面面积,h 为高); ③V 球=43πR3. 4.直线、平面平行的判定及其性质

2018届高三数学二轮复习课件:专题五立体几何5.1空间几何体

2018届高三数学二轮复习课件:专题五立体几何5.1空间几何体
高考· 题型突破 高考· 专题集 训
解析: (1)由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视 图为图②.
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
(2)观察三视图可知该多面体是由直三棱柱和三棱锥组合而成 的,且直三棱柱的底面是直角边长为 2 的等腰直角三角形,侧棱 长为 2.三棱锥的底面是直角边长为 2 的等腰直角三角形,高为 2, 如图所示.因此该多面体各个面中有 2 个梯形,且这两个梯形全 等,梯形的上底长为 2,下底长为 4,高为 2,故这些梯形的面积 1 之和为 2×2×(2+4)×2=12.故选 B. 答案: (1)B (2)B
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
(1)(2017· 全国卷Ⅱ)如图,网格纸上小正方形的边长为 1,粗实线画出 的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几 何体的体积为( A.90π C.42π ) B.63π D.36π
专题五 立体几何 第 1 课时 空间几何体
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
高考对本部分内容考查主要从以下两种形式进行: (1)三视图几乎是每年的必考内容,一般以选择题、填空题的 形式出现,一是考查相关的视图,由直观图判断三视图或由 三视图想象直观图;二是以三视图为载体,考查面积、体积 的计算等,均属低中档题. (2)空间几何体的表面积与体积的计算,通常以几何体为载体 与球进行交汇考查,或蕴含在两几何体的“接”或“切”形 态中,以小题形式出现,属低中档题.
二轮数 学· 理

2018届高考数学理二轮复习全国通用课件 专题四 立体几何 第2讲 精品

2018届高考数学理二轮复习全国通用课件 专题四 立体几何 第2讲 精品

∵棱柱 ADE-BCF 是直三棱柱,∴AB⊥平面 BCF,∴B→A是平面 BCF 的一个法向量,且 OM⊄平面 BCF,∴OM∥平面 BCF. (2)设平面 MDF 与平面 EFCD 的一个法向量分别为 n1=(x1,y1, z1),n2=(x2,y2,z2).∵D→F=(1,-1,1),D→M=12,-1,0, D→C=(1,0,0),C→F=(0,-1,1),由nn11· ·DD→→FM==00,.
(2)线面夹角
设直线 l 与平面 α 的夹角为 θ0≤θ≤π2 ,则 sin θ=||aa|·|μμ||=|cos a,μ |.
(3)面面夹角
设平面 α,β的夹角为 θ(0≤θ<π), 则|cos θ|=||μμ|·|vv||=|cos μ,v |.
热点一 向量法证明平行与垂直 【例1】 如图,在直三棱柱ADE-BCF中,平面
ABFE和平面ABCD都是正方形且互相垂直,M为 AB的中点,O为DF的中点,运用向量方法求证: (1)OM∥平面 BCF; (2)平面 MDF⊥平面 EFCD.
证明 法一 由题意,得 AB,AD,AE 两 两垂直,以 A 为原点建立如图所示的空间 直角坐标系. 设正方形边长为 1,则 A(0,0,0),B(1,0,0), C(1,1,0),D(0,1,0),F(1,0,1),M12,0,0, O12,12,12. (1)O→M=0,-12,-12,B→A=(-1,0,0), ∴O→M·B→A=0,∴O→M⊥B→A.
(4)面面垂直
α⊥β⇔μ⊥v⇔μ·v=0⇔a2a3+b2b3+c2c3=0.
2.直线与直线、直线与平面、平面与平面的夹角计算 设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2, c2),平面 α,β的法向量分别为 μ=(a3,b3,c3),v=(a4,b4, c4)(以下相同). (1)线线夹角 设 l,m 的夹角为 θ0≤θ≤π2 , 则 cos θ=||aa|·|bb||= a21|+a1ab212+ +bc211b2a+22+c1bc222+| c22.

2018届高考数学理新课标二轮专题复习课件:2-10立体几何 精品

2018届高考数学理新课标二轮专题复习课件:2-10立体几何 精品

圆锥的底面半径为 2,高为 1,其体积 V3=13π×22×1=4π 3 ,所 以阴影部分绕直线 BC 旋转一周形成几何体的体积 V=V1-V2- V3=6π.
【答案】 B
(3)(2016·武昌调研)某超市为了方便摆放要售卖的足球,利用 边长为 a 的正方形硬纸片做了一个支架(如图),以各边中点连线 折起四个小三角形,并使得四个小三角形与底面垂直,此时,足 球上最高点到支架底面的距离为 2a,则该足球的表面积为 ________.
[求外接球的表面积] (1)(2016·唐山期末)三棱锥 P-ABC 中,PA⊥平面 ABC 且 PA =2,△ABC 是边长为 3的等边三角形,则该三棱锥外接球的表 面积为( )
4π A. 3
B.4π
C.8π
D.20π
【解析】 由题意得,此三棱锥外接球即为以△ABC 为底面、

PA
为高的正三棱柱的外接球,因为△ABC
第 讲 立体几何
热点调研
调研一 空间几何体
考向一 空间几何体的面积与体积 命题方向: 1.多面体的面积与体积; 2.旋转体的面积与体积.
[多面体的面积与体积] (1)(2016·北京丰台)侧面都是直角三角形的正三棱锥,底面边 长为 a 时,该三棱锥的全面积是( )
3+ 3 A. 4 a2
B.34a2
此时 R2=196,R=34.当点 P 在 A1,C1 处时,R= 23,所以外接球
的半径 R 的取值范围是[34, 23].
【答案】
[34,
3 2]
【回顾】 (1)本题主要考查几何体的结构、几何体的外接球 半径的求法、最值问题,考查空间想象能力、转化与化归能力、 运算求解能力,意在让少数考生得分.(2)本题若错,一是不能根 据已知条件确定球心的大致位置,二是不能合理转化为解三角形 的问题解决.

2018年高考数学二轮复习 专题1.5 立体几何(讲)理

2018年高考数学二轮复习 专题1.5 立体几何(讲)理

专题1.5 立体几何考向一 三视图与几何体的面积、体积【高考改编☆回顾基础】1图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.【答案】12【解析】该几何体为一个三棱柱和一个三棱锥的组合体,其直观图如图所示,各个面中有两个全等的梯形,其面积之和为2×2+42×2=12.1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为________.2【答案】63π【解析】3. 【空间几何体的体积】【2017课标3,改编】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 . 【答案】3π4【解析】3【命题预测☆看准方向】1.空间几何体的三视图成为近几年高考的必考点,单独考查三视图的逐渐减少,主要考查由三视图求原几何体的面积、体积,主要以选择题、填空题的形式考查.2.对柱体、锥体、台体表面积、体积及球与多面体的切接问题中的有关几何体的表面积、体积的考查又是高考的一个热点,难度不大,主要以选择题、填空题的形式考查.3.2018年应注意抓住考查的主要题目类型进行训练,重点有三个:一是三视图中的几何体的形状及面积、体积;二是求柱体、锥体、台体及球的表面积、体积;三是求球与多面体的相切、接问题中的有关几何体的表面积、体积.【典例分析☆提升能力】【例1】17世纪日本数学家们对于数学关于体积方法的问题还不了解,他们将体积公式“V=kD 3”中的常数k 称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D 为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V =kD 3,其中,在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长.假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k 1,k 2,k 3,那么,k 1∶k 2∶k 3=( )C.【答案】D【解析】球中,等边圆柱中,正方体中, 3333,1V D k D k ==∴=;故选D. 【趁热打铁】将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )【答案】B【解析】【例2】【2018届河南省郑州市第一次模拟】刍薨(chuhong),中国古代算术中的一种几何形体,《九章算术》中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为()4【答案】B【趁热打铁】【2018届湖北省稳派教育高三上第二次联考】已知一个几何体的三视图如图所示,则该几何体的体积为()π+ D.C. 126【答案】A【解析】由三视图可得,该几何体为右侧的一个半圆锥和左侧的一个三棱锥拼接而成。

(浙江专版)2018年高考数学二轮专题复习 第一部分 专题四 立体几何与空间向量讲义

(浙江专版)2018年高考数学二轮专题复习 第一部分 专题四 立体几何与空间向量讲义

专题四立体几何与空间向量第一讲空间几何体的三视图、表面积及体积考点一空间几何体的三视图一、基础知识要记牢三视图的排列规则是:“长对正、高平齐、宽相等”.二、经典例题领悟好[例1] (1)(2017·惠州调研)如图所示,将图①中的正方体截去两个三棱锥,得到图②中的几何体,则该几何体的侧视图为( )(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )[解析] (1)从几何体的左面看,棱AD1是原正方形ADD1A1的对角线,在视线范围内,画实线;棱C1F不在视线范围内,画虚线.故选B.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体如图①所示,故其侧(左)视图如图②所示.故选B.[答案] (1)B (2)B分析空间几何体的三视图的要点(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的形状,即可得到结果.比较复杂的三视图问题常常借助于长方体确定空间几何体的形状. 三、预测押题不能少1.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .2解析:选B 在正方体中还原该四棱锥如图所示, 从图中易得最长的棱为AC 1=AC 2+CC 21=2+22+22=2 3.考点二 空间几何体的表面积与体积 一、基础知识要记牢常见的一些简单几何体的表面积和体积公式圆柱的表面积公式:S =2πr 2+2πrl =2πr (r +l )(其中r 为底面半径,l 为圆柱的高); 圆锥的表面积公式:S =πr 2+πrl =πr (r +l )(其中r 为底面半径,l 为母线长); 圆台的表面积公式:S =π(r ′2+r 2+r ′l +rl )(其中r 和r ′分别为圆台的上、下底面半径,l 为母线长);柱体的体积公式:V =Sh (S 为底面面积,h 为高); 锥体的体积公式:V =13Sh (S 为底面面积,h 为高);台体的体积公式:V =13(S ′+S ′S +S )h (S ′,S 分别为上、下底面面积,h 为高);球的表面积和体积公式:S =4πR 2,V =43πR 3(R 为球的半径).二、经典例题领悟好[例2] (1)(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π(2)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π[解析] (1)由三视图知该几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h . 由图得r =2,c =2πr =4π,h =4, 由勾股定理得:l =22+32=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.(2)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π.[答案] (1)C (2)B求几何体的表面积及体积问题,关键是空间想象能力,能想出、画出空间几何体,高往往易求,底面放在已知几何体的某一面上.求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.三、预测押题不能少2.(1)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π, ∴r 2=4,r =2,故选B.(2)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为_______.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π2考点三 球与多面体的切接问题 一、基础知识要记牢(1)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,可采用“补形法”成为一个球内接长方体.(2)正四面体的内切球与外接球半径之比为1∶3. 二、经典例题领悟好[例3] (1)(2016·全国卷Ⅲ)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π23(2)(2018届高三·湖北七市(州)联考)一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .36π B.112π3C .32πD .28π[解析] (1)设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B. (2)根据三视图,可知该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥还原成一个三棱柱,如图所示,该三棱柱的底面是边长为4的正三角形,高是4,其中心到三棱柱的6个顶点的距离即为该四棱锥外接球的半径.∵三棱柱的底面是边长为4的正三角形,∴底面三角形的中心到三角形三个顶点的距离为23×23=433,∴其外接球的半径R =⎝ ⎛⎭⎪⎫4332+22=283,则外接球的表面积S =4πR 2=4π×283=112π3,故选B.[答案] (1)B (2)B处理球与棱柱、棱锥切、接问题的思路(1)过球及多面体中的特殊点(一般为接、切点)或线作截面,化空间问题为平面问题. (2)利用平面几何知识寻找几何体中元素间关系,确定球心位置. (3)建立几何量间关系求半径r . 三、预测押题不能少3.(1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )4C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以圆柱的体积V =34π×1=3π4.(2)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR3=32.答案:32[知能专练(十三)]一、选择题1.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )解析:选C 注意到在三视图中,俯视图的宽度应与侧视图的宽度相等,而在选项C 中,其宽度为32,与题中所给的侧视图的宽度1不相等,因此选C. 2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径为( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.3.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积为( )A .4πB .3πC .2πD .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.4.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:选B 由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为 22+12=5,所以S 侧=4×⎝ ⎛⎭⎪⎫12×2×5=45,V =13×22×2=83.5.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,如图所示,其下面是一个底面为等腰直角三角形的直三棱柱,上面是一个底面为等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为+2×2=12,故选B.6.如图,三棱锥V ­ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正视图的面积为23,则其侧视图的面积为( )A.32 B.33 C.34D.36解析:选B 由题意知,该三棱锥的正视图为△VAC ,作VO ⊥AC 于O ,连接OB (图略),设底面边长为2a ,高VO =h ,则△VAC 的面积为12×2a ×h =ah =23.又三棱锥的侧视图为Rt △VOB ,在正三角形ABC 中,高OB =3a ,所以侧视图的面积为12OB ·VO =12×3a ×h =32ah =32×23=33.7.《九章算术》的商功章中有一道题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺解析:选B 设圆柱底面圆的半径为r ,若以尺为单位,则2 000×1.62=3r 2⎝⎛⎭⎪⎫10+3+13,解得r =9(尺),∴底面圆周长约为2×3×9=54(尺),换算单位后为5丈4尺,故选B.8.(2017·丽水模拟)已知某几何体的三视图如图所示,其中俯视图是正三角形,则该几何体的体积为( )A. 3 B .2 3 C .3 3D .4 3解析:选 B 分析题意可知,该几何体是由如图所示的三棱柱ABC ­A 1B 1C 1截去四棱锥A ­BEDC 得到的,故其体积V =34×22×3-13×1+22×2×3=23,故选B.9.(2017·贵阳质检)三棱锥P ­ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P ­ABC 的高的最大值为5+3=8,故选C.10.(2017·洛阳模拟)已知三棱锥P ­ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P ­ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3C.64π3D.80π3解析:选D 依题意,记三棱锥P ­ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P ­ABC =13S △ABC h =13×⎝ ⎛⎭⎪⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝ ⎛⎭⎪⎫2332=203,所以三棱锥P ­ABC 的外接球的表面积为4πR 2=80π3,故选D. 二、填空题11.已知某几何体的三视图如图所示,则该几何体的表面积为________,体积为________.解析:由三视图得该几何体为如图所示的三棱锥,其中底面ABC 为直角三角形,∠B =90°,AB =1,BC =2,PA ⊥底面ABC ,PA =2,所以AC =PB =5,PC =3,PC 2=PB 2+BC 2,∴∠PBC =90°,则该三棱锥的表面积为12×1×2+12×1×2+12×2×5+12×2×5=2+25,体积为13×12×1×2×2=23.答案:2+2 5 2312.(2017·诸暨质检)某几何体的三视图如图所示,则该几何体最长的一条棱的长度为________,体积为________.解析:根据三视图,可以看出该几何体是一个底面为正三角形,一条侧棱垂直底面的三棱锥,如图所示,其中底面△BCD 是正三角形,各边长为2,侧棱AD ⊥底面BCD ,且AD =2,底面△BCD 的中垂线长DE =3,∴AC =AB =22,V 三棱锥A ­BCD =13×S △BCD ×AD =13×12×2×3×2=233,即该几何体最长的棱长为22,体积为233.答案:2 2 23313.一个直棱柱(侧棱与底面垂直的棱柱)被一个平面截去一部分后,所剩几何体的三视图如图所示,则截去的几何体为________(从备选项中选择一个填上:三棱锥、四棱锥、三棱柱、四棱柱),截去的几何体的体积为________.解析:作出直观图可得截去的几何体为底面为直角边长分别为1和2的直角三角形,高为4的三棱锥,其体积V =13×1×22×4=43. 答案:三棱锥 4314.(2018届高三·浙江名校联考)某简单几何体的三视图如图所示,则该几何体的体积为________,其外接球的表面积为________.解析:由三视图得该几何体是一个底面为对角线为4的正方形,高为3的直四棱柱,则其体积为4×4×12×3=24.又直四棱柱的外接球的半径R =⎝ ⎛⎭⎪⎫322+22=52,所以四棱柱的外接球的表面积为4πR 2=25π.答案:24 25π15.(2017·洛阳模拟)一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则该几何体的表面积为________.解析:由三视图可知该几何体为一个球体的34,故该几何体的表面积等于球的表面积的34,加上以球的半径为半径的圆的面积,即S =34×4πR 2+πR 2=16π. 答案:16π16.(2016·四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.解析:由正视图知三棱锥的形状如图所示,且AB =AD =BC =CD =2,BD=23,设O 为BD 的中点,连接OA ,OC ,则OA ⊥BD ,OC ⊥BD ,结合正视图可知AO ⊥平面BCD .又OC =CD 2-OD 2=1,∴V 三棱锥A ­BCD =13×⎝ ⎛⎭⎪⎫12×23×1×1=33. 答案:33 17.如图是某三棱柱被削去一个底面后的直观图、侧视图与俯视图.已知CF =2AD ,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示,则该几何体的体积为________.解析:取CF 中点P ,过P 作PQ ∥CB 交BE 于Q ,连接PD ,QD ,则AD∥CP ,且AD =CP .所以四边形ACPD 为平行四边形,所以AC ∥PD .所以平面PDQ ∥平面ABC .该几何体可分割成三棱柱PDQ ­CAB 和四棱锥D ­PQEF ,所以V =V PDQ ­CAB +V D ­PQEF =12×22sin 60°×2+13×+2×3=3 3.答案:3 3[选做题]1.(2017·石家庄质检)某几何体的三视图如图所示,则该几何体的体积是( )A .16B .20C .52D .60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V =12×3×4×6-2×13×2×4×3=20,故选B. 2.四棱锥P ­ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高为( )A .6B .5 C.92 D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P ­ABCD是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt △PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94,故选D.3.(2017·兰州模拟)已知球O 的半径为13,其球面上有三点A ,B ,C ,若AB =123,AC =BC =12,则四面体OABC 的体积为________.解析:如图,过点A ,B 分别作BC ,AC 的平行线,两线相交于点D ,连接CD ,∵AC =BC =12,AB =123,在△ABC 中,cos ∠ACB =AC 2+BC 2-AB 22AC ·BC =-12, ∴∠ACB =120°,∴在菱形ACBD 中,DA =DB =DC =12,∴点D 是△ABC 的外接圆圆心,连接DO ,在△ODA 中,OA 2=DA 2+DO 2,即DO 2=OA 2-DA 2=132-122=25,∴DO =5,又DO ⊥平面ABC ,∴V O ­ABC =13×12×12×12×32×5=60 3. 答案:60 3 第二讲点、直线、平面之间的位置关系考点一 空间线面位置关系的判断一、基础知识要记牢 空间线线、线面、面面的位置关系的认识和判定是学习立体几何的基础,要在空间几何体和空间图形中理解、表述位置关系,发展空间想象能力.二、经典例题领悟好[例1] (1)(2017·全国卷Ⅲ)在正方体ABCD ­A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC(2)(2016·全国卷Ⅱ)α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.②如果m ⊥α,n ∥α,那么m ⊥n .③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)[解析] (1)法一:由正方体的性质,得A 1B 1⊥BC 1,B 1C ⊥BC 1,A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1CD .又A 1E ⊂平面A 1B 1CD ,所以A 1E ⊥BC 1.法二:∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B 、D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1,∴A 1E ⊥BC 1,故C 正确;∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错.(2)对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m⊂α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n 与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.[答案] (1)C (2)②③④解决空间线面位置关系的判断问题的常用方法(1)根据空间线面垂直、平行关系的判定定理和性质定理逐一判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.三、预测押题不能少1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )解析:选A 法一:对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ.又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C、D中均有AB∥平面MNQ.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接OQ,则OQ∥AB.因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB∥平面MNQ.故选A.考点二空间线面平行、垂直关系的证明一、基础知识要记牢(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(4)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(5)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(6)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.(7)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(8)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(9)三垂线定理及逆定理:①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直;②在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.二、经典例题领悟好[例2] 如图,在四棱锥P­ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.[证明] (1)∵平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,∴PA⊥底面ABCD.(2)∵AB∥CD,CD=2AB,E为CD的中点,∴AB∥DE,且AB=DE.∴四边形ABED为平行四边形.∴BE∥AD.又∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD.(3)∵AB⊥AD,而且四边形ABED为平行四边形.∴BE⊥CD,AD⊥CD,由(1)知PA⊥底面ABCD,∴PA⊥CD.∴CD⊥平面PAD.∴CD⊥PD.∵E和F分别是CD和PC的中点,∴PD∥EF.∴CD⊥EF.又BE∩EF=E,∴CD⊥平面BEF.又CD⊂平面PCD,∴平面BEF⊥平面PCD.(1)正确并熟练掌握空间中平行与垂直的判定定理与性质定理,是进行判断和证明的基础;在证明线面关系时,应注意几何体的结构特征的应用,尤其是一些线面平行与垂直关系,这些都可以作为条件直接应用.(2)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(3)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.(4)证明的核心是转化,即空间向平面的转化:面面⇔线面⇔线线.三、预测押题不能少2.由四棱柱ABCD­A1B1C1D1截去三棱锥C1­B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,因为ABCD­A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C,因为O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为E,M分别为AD,OD的中点,所以EM∥AO.因为AO⊥BD,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E⊂平面A1EM,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.[知能专练(十四)]一、选择题1.下列四个命题中,正确命题的个数是( )①若平面α∥平面β,直线m∥平面α,则m∥β;②若平面α⊥平面γ,且平面β⊥平面γ,则α∥β;③平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;④直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α⊥β.A.0 B.1C.2 D.3解析:选B ①若平面α∥平面β,直线m∥平面α,则m∥β或m⊂β,故①不正确;②若平面α⊥平面γ,且平面β⊥平面γ,则α∥β或相交,故②不正确;③平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;此命题中,若B∈β,且AB与l异面,同时AB⊥l,此时AB与β相交,故③不正确;命题④是正确的.2.(2017·泉州模拟)设a,b是互不垂直的两条异面直线,则下列命题成立的是( ) A.存在唯一直线l,使得l⊥a,且l⊥bB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一平面α,使得a⊂α,且b∥αD.存在唯一平面α,使得a⊂α,且b⊥α解析:选C a,b是互不垂直的两条异面直线,把它放入正方体中如图,由图可知A不正确;由l∥a,且l⊥b,可得a⊥b,与题设矛盾,故B不正确;由a⊂α,且b⊥α,可得a⊥b,与题设矛盾,故D不正确,故选C.3.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A .①②B .①②③C .①D .②③解析:选B 对于①,∵PA ⊥平面ABC ,∴PA ⊥BC .∵AB 为⊙O 的直径,∴BC ⊥AC ,又∵PA ∩AC =A ,∴BC ⊥平面PAC ,又PC ⊂平面PAC ,∴BC ⊥PC .对于②,∵点M 为线段PB 的中点,∴OM ∥PA ,∵PA ⊂平面PAC ,OM ⊄平面PAC ,∴OM ∥平面PAC .对于③,由①知BC ⊥平面PAC ,∴线段BC 的长即是点B 到平面PAC 的距离.故①②③都正确.4.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( )A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥βC .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β解析:选B 画出一个长方体ABCD ­A1B 1C 1D 1.对于A ,C 1D 1∥平面ABB 1A 1,C 1D 1∥平面ABCD ,但平面ABB 1A 1与平面ABCD 相交;对于C ,BB 1⊥平面ABCD ,BB 1∥平面ADD 1A 1,但平面ABCD 与平面ADD 1A 1相交;对于D ,平面ABB 1A 1⊥平面ABCD ,CD ∥平面ABB 1A 1,但CD ⊂平面ABCD .5.(2017·成都模拟)把平面图形M 上的所有点在一个平面上的射影构成的图形M ′称为图形M 在这个平面上的射影.如图,在长方体ABCD ­EFGH 中,AB =5,AD =4,AE =3,则△EBD 在平面EBC 上的射影的面积是( )A .234B.252 C .10 D .30解析:选A 连接HC ,过D 作DM ⊥HC ,交HC 于M ,连接ME ,MB ,因为BC ⊥平面HCD ,又DM ⊂平面HCD ,所以BC ⊥DM ,因为BC ∩HC =C ,所以DM ⊥平面HCBE ,即D 在平面HCBE 内的射影为M ,所以△EBD 在平面HCBE 内的射影为△EBM ,在长方体中,HC ∥BE ,所以△MBE 的面积等于△CBE 的面积,所以△EBD 在平面EBC上的射影的面积为12×52+32×4=234,故选A. 6.已知E ,F 分别为正方体ABCD ­A 1B 1C 1D 1的棱AB ,AA 1上的点,且AE =12AB ,AF =13AA 1,M ,N 分别为线段D 1E 和线段C 1F 上的点,则与平面ABCD 平行的直线MN 有( )A .1条B .3条C .6条D .无数条解析:选D 取BH =13BB 1,连接FH ,则FH ∥C 1D 1,连接HE ,D 1H ,在D 1E 上任取一点M ,过M 在平面D 1HE 中作MG ∥HO ,交D 1H 于点G ,其中OE =13D 1E ,过O 作OK ⊥平面ABCD 于点K ,连接KB ,则四边形OHBK 为矩形,再过G 作GN ∥FH ,交C 1F 于点N ,连接MN ,由于MG ∥HO ,HO ∥KB ,KB ⊂平面ABCD ,GM ⊄平面ABCD ,所以GM ∥平面ABCD ,同理,GN ∥FH ,可得GN ∥平面ABCD ,由面面平行的判定定理得,平面GMN ∥平面ABCD ,则MN ∥平面ABCD ,由于M 为D 1E 上任一点,故这样的直线MN 有无数条.二、填空题7.已知α,β,γ是三个不重合的平面,a ,b 是两条不重合的直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填可能条件的序号).解析:由定理“一条直线与一个平面平行,则过这条直线的任一平面和此平面的交线与该直线平行”可得,横线处可填入条件①或③.答案:①或③8.(2018届高三·江南十校联考)如图,正方体ABCD ­A1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确结论的序号是________.解析:过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,∴AA 1⊥MN ,①正确.过M ,N 分别作MR ⊥A 1B 1,NS ⊥B 1C 1于点R ,S ,连接RS ,当则M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M ,N 分别是AB 1,BC 1的中点时,A 1C 1∥RS ,∴A 1C 1与MN 可以异面,也可以平行,故②④错误.由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,∴平面MNP ∥平面A 1B 1C 1D 1,故③正确.综上所述,正确结论的序号是①③.答案:①③9.(2017·温州模拟)如图,在四面体ABCD 中,E ,F 分别为AB ,CD 的中点,过EF 任作一个平面α分别与直线BC ,AD 相交于点G ,H ,则下列结论正确的是________.①对于任意的平面α,都有直线GF ,EH ,BD 相交于同一点;②存在一个平面α0,使得点G 在线段BC 上,点H 在线段AD 的延长线上;③对于任意的平面α,都有S △EFG =S △EFH ;④对于任意的平面α,当G ,H 在线段BC ,AD 上时,几何体AC ­EGFH 的体积是一个定值. 解析:对①,G ,H 分别为相应线段中点时,三线平行,故①错.对②,三线相交时,交点会在BD 上,作图可知②错.对③,如图1,取BD ,AC 的中点I ,J ,则BC ,AD 都与平面EIFJ 平行,故A ,H 到平面EIFJ 的距离相等,B ,G 到平面EIFJ 的距离相等,而E 为AB 的中点,故A ,B 到平面EIFJ 的距离相等,从而G ,H 到平面EIFJ 的距离相等.连接GH 交EF 于K ,则K 为GH 的中点,从而G ,H 到EF 的距离相等,故两三角形的面积相等.③正确.对④,如图2,当H 为D 时,G 为C ,此时几何体的体积为三棱锥A ­CDE 的体积,为四面体体积的一半.当如图2所示时,只需证V C ­EFG =V D ­EFH ,由③可得,只需证C ,D 到截面的距离相等,因为F 为CD 的中点,所以C ,D 到截面的距离相等.故④正确.答案:③④ 三、解答题10.(2016·山东高考)在如图所示的几何体中,D 是AC 的中点,EF ∥DB.(1)已知AB =BC ,AE =EC ,求证:AC ⊥FB ;(2)已知G ,H 分别是EC 和FB 的中点,求证:GH ∥平面ABC . 证明:(1)因为EF ∥DB , 所以EF 与DB 确定平面BDEF . 如图,连接DE .因为AE =EC ,D 为AC 的中点, 所以DE ⊥AC .同理可得BD ⊥AC . 又BD ∩DE =D , 所以AC ⊥平面BDEF . 因为FB ⊂平面BDEF , 所以AC ⊥FB .(2)如图,设FC 的中点为I ,连接GI ,HI .在△CEF 中,因为G 是CE的图1图2中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,BC∩DB=B,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.11.(2017·嘉兴模拟)如图,矩形ABCD所在平面与三角形ECD所在平面相交于CD,AE⊥平面ECD.(1)求证:AB⊥平面ADE;(2)若点M在线段AE上,AM=2ME,N为线段CD中点,求证:EN∥平面BDM.证明:(1)因为AE⊥平面ECD,CD⊂平面ECD,所以AE⊥CD.又因为AB∥CD,所以AB⊥AE.在矩形ABCD中,AB⊥AD,因为AD∩AE=A,AD⊂平面ADE,AE⊂平面ADE,所以AB⊥平面ADE.(2)连接AN交BD于F点,连接FM,因为AB∥CD且AB=2DN,所以AF=2FN,又AM=2ME,所以EN∥FM,又EN⊄平面BDM,FM⊂平面BDM,所以EN∥平面BDM.12.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E,G,F分别为MB,PB,PC的中点.(1)求证:平面EFG∥平面PMA;(2)求证:平面EFG⊥平面PDC.证明:(1)∵E,G,F分别为MB,PB,PC的中点,∴EG∥PM,GF∥BC.又∵四边形ABCD是正方形,∴BC∥AD,∴GF∥AD.∵EG,GF在平面PMA外,PM,AD在平面PMA内,∴EG∥平面PMA,GF∥平面PMA.又∵EG,GF都在平面EFG内且相交,∴平面EFG∥平面PMA.。

2018年高考数学二轮专题复习:专题七 立体几何

2018年高考数学二轮专题复习:专题七 立体几何

专题七立体几何自查网络核心背记一、空间几何体的结构特征<一)多面体1.棱柱可以看成是一个多边形<包含图形所围成的平面部分)上各点都沿同一个方向移动____所形成的几何体.2.主要结构特征:棱柱有两个面互相平行,而其余的交线都互相平行,其余的这些面都是四边形.3.侧棱和底面____的棱柱叫做直棱柱,底面为的直棱柱叫做正棱柱.4.有一个面是多边形,而其余各面都的三角形的多面体叫做棱锥.5.如果棱锥的底面是一,它的顶点又在过且与底面垂直的直线上,则这个棱锥叫做正棱锥,正棱锥各侧面都是一的等腰三角形,这些等腰三角形____都相等,叫做棱锥的斜高.6.棱锥被一的平面所截,截面和底面间的部分叫做棱台.一——7.由正棱锥截得的棱台叫做正棱台.正棱台各侧面都是全等的等腰梯形,这些一叫做棱台的斜高.正棱台中两底面中心连线,相应的边心距和.组成一个直角梯形;两底面中心连线,和两底面相应的外接圆半径组成一个直角梯形.<二)旋转体1.分别以一、直角梯形中——、——____所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体叫做圆柱、圆锥、圆台.旋转轴叫做所围成的几何体的轴;在轴上的这条边叫做这个几何体的高;垂直于轴的边旋转而成的叫做这个几何体的底面;不垂直于轴的边旋转而成的叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线,’ 2.-个半圆绕着____所在的直线旋转一周所形成的曲面叫球面,球面所围成的几何体称为球.球面也可以看做空间中到一个定点的距离等于定长的点的集合.3.球的截面性质:球的截面是;球心和截面<不过球心)圆心的连线于截面;设球的半径为R,截面圆的半径为r,球心到截面圆的距离d就是球心0到截面圆心0i的距离,它们的关系是一.4.球的大圆、小圆:球面被的平面截得的圆叫做球的大圆;球面被的平面截得的圆叫做球的小圆.<三)投影1.当图形中的直线或线段不平行于投射线时,平行投影具有如下性质:①直线或线段的平行投影是____;②平行直线的平行投影是;③平行于投射面的线段,它的投影与这条线段;④与投射面平行的平面图形,它的投影与这个图形;⑤在同一直线或平行线上,两条线段的平行投影的比等于____.2. -个.把一个图形照射在一个平面上,这个图形的影子就是它在这个平面上的中心投影.空间图形经过中心投影后,直线还是直线,但是平行线可能变成____.3.在物体的平行投影中,如果投射线与投射面____,则称这样的平行投影为正投影.4.除了平行投影的性质正投影还具备如下性质:直于投射面的直线或线段的正投影是.②于投射霹的平面图形的正投影是<四)斜二测画法与三视图1.斜二测画法的作图规则可以简记为:水平方向方向长度竖直方向线,变为方线,长度2.投射面与视图:通常,总是选取三个____的平面作为投射面,来得到三个投影图.一个投射面水平放置,叫做水平投射面,投射到水平投射面内的图形叫做,一个投射面放置在正前方,这个投射面叫做直立投射面.投射到直立投射面内的圆形叫做和直立、水平两个投射面都垂直的投射面叫做侧立投射l面.投射到侧立投射面内的圆形叫做3.三视图定义:将空间图形向水平投射面,直立投射面、侧立投射面作正投影.然后把这个投影按一定的布局放在一个平面内,这样构成的图形叫做空闷图形的三视图.4.三视图的画法要求;三视图的主视图、俯视图、左视图分别是从物体的看到的物体的正投影围成的平面图形.5. 一个物体的三视图的排列规则是:俯视图放在的下面,长度与一样;左视图放在主视图的,高度与____一样,宽度与——的宽度—样为了便于记忆.通常说:“长对正高平齐、宽相等”或“主左一样高、主俯—样长、左俯—样宽6.画三视图时应注意:被挡住的轮廓要画成瘦线,尺寸线用细实线标出;φ表示直径,R表示半径;单位不注明按mm计,二、空间几何体的表面积与体积<一)柱、锥、台的表面积公式1.设直棱柱的高为b ,底面多边形的周长为c,则直棱柱侧面面积计算公式为——.设圆柱的底面半径为r 周长为C,侧面母线长为l,则圆柱的侧面积是____.2.设正棱锥的底面边长为a,底面周长为C,斜高为h,,则正n梭锥的侧面积计算公式为一·如果圆锥底面半径为r,周长为C,侧面母线长为l,那么圆锥的侧面积是一.3.如果设正棱台下底面边长为a、周长为C,上底面边长为a'、周长为C'斜高为h',则正竹棱台的侧面积公式为____ .如果圆台的上下底面半径分为r',r,周长为C,,C,侧面母线长为l,那么圆台的侧面积是<二)柱、锥、台的体积公式1.棱柱的底面面积为S,高为h,则体积为——’底面半径为r,高是h的圆柱体的体积计算公式是—一.2.若一个棱锥的底面面积为S.高为h,那么它的体积公式为____.若圆锥的底面圆的半径为r,高为h,则体积为____.3.若台体<棱台、圆台)上、下底面面积分别为S,S,,高为h,则台体的体积公式为一,若圆台的上、下底面半径分别为r,,r,高为h.则圆台的体积公式为<三)球的表面积与体积公式设球的半径为R.则球的表面积计算公式为- .即球面面积等于它的大圆面积的____.球的体积公式为三、平面的基本性质与推论<一)平面的定义平面是一个不加定义,只需理解的最基本的原始概念.在生活中平静的水面、镜面、书桌面都给我们平面的印象,立体几何中的平面就是由此抽象出来的.平面是处处平直的面,它是向四面八方一的.无大小、厚薄之分,它是不可度量的.<二)平面的基本性质及推论1.平面的基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的都在这个平面内,这时我们说:直线在平面内或平面____直线.2.平面的基本性质2:经过____的三点,有且只有一个平面,即:____的三点确定一个平面.3.推论1:经过一条直线和____一点,有且只有一个平面.4.推论2:经过两条直线有且只有一个平面.5.推论3:经过两条直线有且只有一个平面.6.面面相交:如果两个平面有一条公共直线,则称之为两平面相交,这条公共直线也叫做两个平面的交线.平面口与p相交,交线是Z,符号表示为.7.平面的基本性质3:如果不重合的两个平面有一个公共点,那么它们一条经过一的公共直线.<三)异面直线1._ ___的直线叫做异面直线.2.异面直线的判定:与一平面相交于一点的直线与平面内一的直线是异面直线,用符号表示为:若ABn口-B,B垂z,Zc口,则直线AB与直线z是异面直线.四、空间中的平行关系<一)平面的基本性质4与等角定理1.平面的基本性质4:平行子同一直线的两条直线____.符号表示为:若直线矗∥6.c∥6,那么——.2.等角定理:如果一个角的p边与另一个角的两边分别对应平行,并且一,那么这两个角相等.<二)空间四边形顺次连接____ 的四点A.B,C.D所梅成的图形叫做空闻四边形.其中,四个点A,B,C.D,每个点都Ⅱq它的____ .所连接的相邻顶点fa-的线段叫做它的____.连接不相邻的顶点的线段叫做空间四边形的____.<三)直线与平面平行1.直线a和平面口只有一个公共点A,叫做直线与平面____.这个公共点A叫做直线与平面的交点.记作____.2.直线a与平面a没有公共点,叫做直线与平面平行.记作一一.3.判定定理:如果____的一条直线和——的一条直线平行,那么这条直线与这个平面平行.4.性质定理:如果一条直线与一个平面平行,____ 的平面和这个平面相交,那么这条直线就和两平面的交线平行.<四)平面与平面平行1.两不重合平面有公共点就叫两平面相交,记作口n卢2 Z.若两个平面一,则称这两个平面为平行平面,“平面口平行于平面p"可以记作“口∥∥.2.平面与平面平行的判定定理;如果一个平面内有两条一直线都平行于另一个平面,那么这两个平面平行.3.推论:如果—个平面内有两条____直线分别平行于另—个平面内的两条直线,则这两个平面平行.4.性质定理:如果两个____平面同时与第三个平面相交,那么它们的交线平行.符号语言表示为:口//p,a(l y=a,pffy=b净_,,.。

2018届高三数学文二轮复习课件:第2部分 专题四 立体几何2-4 精品

2018届高三数学文二轮复习课件:第2部分 专题四 立体几何2-4 精品

∴PO⊥BO, ∵PO⊥EF,EF∩BO=O,EF⊂平面 BFED, BO⊂平面 BFED, ∴PO⊥平面 BFED, 又梯形 BFED 的面积为 S=12(EF+BD)·HO=3 3, ∴四棱锥 P-BFED 的体积 V=13S·PO=13×3 3× 3=3.
类型二 学会审题 [例 2] (2016·高考全国乙卷)如图,已知正三棱锥 P-ABC 的侧面是 直角三角形,PA=6,顶点 P 在平面 ABC 内的正投影为点 D,D 在平面 PAB 内的正投影为点 E,连接 PE 并延长交 AB 于点 G.
(2)在平面 PAB 内,过点 E 作 PB 的平行线交 PA 于点 F,F 即为 E 在平面 PAC 内的正投影. 理由如下:由已知可得 PB⊥PA,PB⊥PC,又 EF∥PB,所以 EF ⊥PA,EF⊥PC.又 PA∩PC=P,因此 EF⊥平面 PAC,即点 F 为 E 在平面 PAC 内的正投影. 连接 CG,因为 P 在平面 ABC 内的正投影为 D,所以 D 是正三角 形 ABC 的中心.由(1)知,G 是 AB 的中点,所以 D 在 CG 上,故 CD=23CG.
1.如图①,在边长为 4 的菱形 ABCD 中,∠DAB=60°,点 E,F 分别是边 CD,CB 的中点,AC∩EF=O.沿 EF 将△CEF 翻折到△ PEF,连接 PA,PB,PD,得到如图②的五棱锥 P-ABFED,且 PB = 10.
图① (1)求证:BD⊥平面 POA; (2)求四棱锥 P-BFED 的体积.
∴四面体 N-BCM 的体积 VN-BCM=13×S△BCM×P2A=13×2 5×12×4
=4
3
5 .(12
分)
[终极提升]——登高博见 (1)利用线面平行的判定定理进行证明, 即通过线线平行证明线面平行; (2)先求出点 N 到平面 BCM 的距离及△ BCM 的面积,然后代入锥体的体积公式 求解.

2018届高考数学理科二轮总复习课件:专题六 立体几何

2018届高考数学理科二轮总复习课件:专题六 立体几何

1
2
3
证明
(2)BC1⊥AB1.
1
2
3
证明
2.(2016· 江苏 ) 如图,在直三棱柱 ABC - A1B1C1 中, D,E分别为AB,BC的中点,点F在侧棱B1B上, 且B1D⊥A1F,A1C1⊥A1B1. 求证:(1)直线DE∥平面A1C1F;
证明 由题意知,DE为△ABC的中位线,
∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,
通过数量关系的计算达到解题目的.
思维升华 解答
跟踪演练 3
如图,在四面体 ABCD 中, AD = BD ,
∠ABC=90°,点E,F分别为棱AB,AC上的点,点 G为棱AD的中点,且平面EFG∥平面BCD.
EF (1)求BC的值;
证明 因为平面EFG∥平面BCD,平面ABD∩平面EFG= EG,平面ABD∩平面BCD=BD, 所以EG∥BD, 又G为AD的中点,所以E为AB的中点,
思维升华
空间平行与垂直的性质是同学们运用的薄弱点,要引起高度
重视.本题第1问用到了线面平行的性质,希望同学们好好体会.
思维升华
证明
跟踪演练 1 CD的中点.
(2017· 苏北四市期末 ) 如图,在四棱锥 E - ABCD 中,平面
EAB⊥ 平面 ABCD ,四边形 ABCD 为矩形, EA⊥EB , M , N 分别是 AE ,
EF 1 同理可得,F 为 AC 的中点,所以BC=BC.
证明 因为AD=BD,
由(1)知,E为AB的中点,所以AB⊥DE,
又∠ABC=90°,即AB⊥BC,
由(1)知,EF∥BC,所以AB⊥EF,
又DE∩EF=E,DE,EF⊂平面EFD,

2018届高三理科数学二轮复习讲义:模块三 考前增分篇一回扣教材纠错例析 5.立体几何

2018届高三理科数学二轮复习讲义:模块三 考前增分篇一回扣教材纠错例析 5.立体几何

一、回扣教材,纠错例析5.立体几何[要点回扣]1.空间几何体的三视图在由三视图还原为空间几何体的实际形状时,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线为虚线.在还原空间几何体实际形状时一般是以正(主)视图和俯视图为主.[对点专练1]若某几何体的三视图如图所示,则此几何体的直观图是()[答案] A2.斜二测画法在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”[对点专练2] 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________.[答案] 2 23.计算空间几何体的表面积和体积(1)分析清楚空间几何体的结构,搞清楚该几何体的各个部分的构成特点;(2)进行合理的转化和一些必要的等积变换.[对点专练3] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( )A .4πB .3πC .2π D.32π[答案] D4.与球有关的切接问题长方体外接球半径为R时有(2R)2=a2+b2+c2;棱长为a的正四面体内切球半径r=612a,外接球半径R=64a.[对点专练4]已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上,若P A,PB,PC两两相互垂直,则球心到截面ABC 的距离为________.[答案]3 35.空间直线、平面的位置关系不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l,m⊥l,易误得出m⊥β的结论,就是因为忽视面面垂直的性质定理中m⊂α的限制条件.[对点专练5]已知b,c是平面α内的两条直线,则“直线a⊥α”是“直线a⊥b,直线a⊥c”的________条件.[答案]充分不必要6.用向量求空间中角的公式(1)直线l1,l2夹角θ有cosθ=|cos l1,l2|;(2)直线l与平面α的夹角θ有:sinθ=|cos l,n|(其中n是平面α的法向量);(3)平面α,β夹角θ有cosθ=|cos n1,n2|,则α-l-β二面角的平面角为θ或π-θ.(其中n1,n2分别是平面α,β的法向量) [对点专练6]已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于________.[答案] 647.用空间向量求A 到平面α的距离公式d =|n ·AB →||n |. [对点专练7] 正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________.[答案] 24[易错盘点]易错点1 三视图认识不清致误【例1】 已知某个几何体的三视图如图所示,则这个几何体的体积是________.[错解] 40003[错因分析] 没有理解几何体的三视图的意义,不能正确从三视图还原成几何体,不清楚几何体中的几何关系.[正解] 如图所示,作几何体S -ABCD 且知平面SCD ⊥平面ABCD ,四边形ABCD 为正方形,作SE ⊥CD 于点E ,得SE ⊥平面ABCD 且SE =20.∴V S -ABCD =13S 正方形ABCD ·SE =80003;∴这个几何体的体积是80003.在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线为虚线.在还原空间几何体实际形状时一般是以正(主)视图和俯视图为主,结合侧(左)视图进行综合考虑.[对点专练1](1)某几何体的三视图如图所示,则该几何体的体积等于( )A.23B.43 C .1 D.13(2)已知某几何体的三视图如图所示,则该几何体最长棱长的值为________.[解析] (1)由三视图知该几何体是直三棱柱截去一个三棱锥所剩的几何体,底面是直角边为1的等腰直角三角形,高为2,∴所求体积V =V 柱-V 锥=⎝ ⎛⎭⎪⎫12×1×1×2-13×⎝ ⎛⎭⎪⎫12×1×1×2=23,故选A. (2)依题意,几何体是如图所示的三棱锥A -BCD ,其中∠CBD =120°,BD =2,点C 到直线BD 的距离为3,BC =2,CD =23,AB =2,AB ⊥平面BCD ,因此AC =AD =22,该几何体最长棱长的值为2 3.[答案] (1)A (2)2 3易错点2 线面关系定理条件使用不当致误【例2】 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF∥平面ABC1D1;(2)求证:EF⊥B1C.[错解]证明:(1)连接BD1,∵E、F分别为DD1、DB的中点,∴EF∥D1B,∴EF∥平面ABC1D1.(2)AC⊥BD,又AC⊥D1D,∴AC⊥平面BDD1.∴EF⊥AC.[错因分析]推理论证不严谨,思路不清晰.[正解]证明:(1)连接BD 1,如图所示,在△DD1B中,E、F分别为DD1、DB的中点,则EF∥D1B.∵D1B⊂平面ABC1D1,EF⊄平面ABC1D1,∴EF∥平面ABC1D1.(2)在正方体ABCD-A1B1C1D1中,∵AB⊥面BCC1B1,∴B1C⊥AB.又∵B1C⊥BC1,AB,BC1⊂平面ABC1D1,AB∩BC1=B,∴B1C⊥平面ABC1D1,∵BD1⊂平面ABC1D1,∴B1C⊥BD1.∵EF∥BD1,∴EF⊥B1C.证明空间线面位置关系的基本思想是转化与化归,根据线面平行、垂直关系的判定和性质,进行相互之间的转化.解这类问题时要注意推理严谨,使用定理时找足条件,书写规范等.[对点专练2](1)下列命题中错误的是()A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面β,α∩β=l,过α内任意一点作l的垂线m,则m⊥β(2)已知三条不同直线m,n,l与三个不同平面α,β,γ,有下列命题:①若m∥α,n∥α,则m∥n;②若α∥β,l⊂α,则l∥β;③α⊥γ,β⊥γ,则α∥β;④若m,n为异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β.其中正确命题的个数是()A.0 B.1 C.2 D.3[解析](1)如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ,A正确;如果平面α⊥平面β,那么平面α内平行于交线的直线平行平面β,B正确;如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β,C正确;若此点在直线l上,则不能推出m⊥β,D错误,故选D.(2)因为平行于同一平面的两条直线除了平行,还可能相交或成异面直线,所以命题①错误;由直线与平面平行的定义知命题②正确;由于垂直于同一个平面的两个平面可能平行还可能相交,因此命题③错误;过两条异面直线分别作平面互相平行,这两个平面是唯一存在的,因此命题④正确.故选C.[答案](1)D(2)C易错点3空间角的范围不清致误【例3】如图所示,四棱锥P-ABCD中,底面四边形ABCD 是正方形,侧面PDC是边长为a的正三角形,且平面PDC⊥底面ABCD,E为PC的中点.(1)求异面直线P A与DE所成的角的余弦值;(2)AP与平面ABCD所成角的正弦值.[错解]如图所示,取DC的中点O,连接PO,∵△PDC为正三角形,∴PO⊥DC.又∵平面PDC⊥平面ABCD,∴PO⊥平面ABCD.建立如图所示的空间直角坐标系O -xyz ,则P ⎝⎛⎭⎪⎫0,0,32a ,A ⎝ ⎛⎭⎪⎫a ,-a 2,0,B ⎝ ⎛⎭⎪⎫a ,a 2,0, C ⎝ ⎛⎭⎪⎫0,a 2,0,D ⎝ ⎛⎭⎪⎫0,-a 2,0. (1)E 为PC 的中点,∴E ⎝⎛⎭⎪⎫0,a 4,34a . ∴DE →=⎝ ⎛⎭⎪⎫0,34a ,34a ,P A →=⎝⎛⎭⎪⎫a ,-a 2,-32a . ∴P A →·DE →=34a ×⎝ ⎛⎭⎪⎫-a 2+34a ×⎝⎛⎭⎪⎫-32a =-34a 2,|P A →|=2a ,|DE →|=32a .cos P A →,DE →=P A →·DE →|P A →|·|DE →|=-34a 22a ×32a =-64. ∴异面直线P A 与DE 所成的角的余弦值为-64.(2)平面ABCD 的法向量n =⎝⎛⎭⎪⎫0,0,32a , ∴cos P A →,n =P A →·n |P A →|·|n |=-34a 22a ×32a=-64. ∴AP 与平面ABCD 所成角的正弦值为-64.[错因分析] 本题失分的根本原因是概念不清,混淆了空间角与向量所成角的概念.[正解] (1)在求出cos P A →,DE →=-64后, ∵异面直线P A 、DE 所成角是锐角或直角,∴异面直线P A 、DE 所成角的余弦值是64.(2)cos P A →,n =-64,∴直线AP 与平面ABCD 所成角的正弦值为64.(1)异面直线P A 与DE 所成的角为锐角或直角,余弦值一定非负.(2)直线AP 与平面ABCD 所成的角不是P A →与平面ABCD 的法向量所成的角.[对点专练3] 如图,已知四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AB ⊥AC ,AB =AC =P A =2,E 是BC 的中点.(1)求异面直线AE 与PC 所成的角;(2)求二面角D -PC -A 的平面角的余弦值.[解] (1)如图所示,以A 点为原点建立空间直角坐标系A -xyz ,则B (2,0,0),C (0,2,0),P (0,0,2).故E (1,1,0),AE→=(1,1,0),PC →=(0,2,-2), cos AE →,PC →=AE →·PC →|AE →|·|PC →|=12,即AE →,PC →=60°, 故异面直线AE 与PC 所成的角为60°.(2)在四边形ABCD 中,∵AB =AC =2,AB ⊥AC ,∴∠ABC =∠ACB =45°,∵AD ∥BC ,∴∠DAC =∠ACB =45°,又AD ⊥CD ,∴AD =CD =2,∴D (-1,1,0),又C (0,2,0),∴CD→=(-1,-1,0),PC →=(0,2,-2). 设n =(x ,y ,z )是平面PCD 的法向量,则CD →⊥n ,PC →⊥n ,即CD →·n=0,PC →·n =0,∴⎩⎪⎨⎪⎧-x -y =02y -2z =0,令x =-1得,y =1,z =1, 即n =(-1,1,1),|n |=3,又AB ⊥平面P AC ,∴AB→=(2,0,0)是平面P AC 的一个法向量, ∴cos AB →,n =AB →·n |AB →|·|n |=-33, 即二面角D -PC -A 的平面角的余弦值为33.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高三二轮复习讲义--立体几何分值:17-22分题型:题型不固定,一般1-2个小题1个解答题;难度:低、中档;考查内容:如果是小题,主要考查三视图还原为几何体,几何体对应的三视图,空间几何体的表面积与体积的计算。

对于解答题,主要考查空间线面平行、垂直关系的判定与性质,几何体的体积,表面积,距离。

第一讲空间几何体的三视图、表面积及体积高考体验:1、(2016年全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB. 24πC. 28πD. 32π2、(2016年全国Ⅲ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+54+90 D.813、(2015年全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分的体积比值为()A.18B.17C.16D.15(第1题图) (第2题图) (第3题图) (第4题图)4、(2016年全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。

若该几何体的体积为283π,则它的表面积是( ) A.17π B. 18π C. 20π D .28π5、(2015年全国卷Ⅱ)已知,A B 是球面上两点,90oAOB ∠=,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )A.36πB.64πC.144πD.256π6.(2015新课标1)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )A.14斛B.22斛C.36斛D.66斛高考感悟:(1)由网格图给出三视图或由空间直角坐标系给出几何体。

(2)由三视图还原直观图求线段的长度、面积、体积等;(3)与求有关的“接”“切”问题。

例题讲解:热点一: 空间几何体的三视图 考向1:几何体三视图的识别例1 (1)(2016年天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )(2)(2012年湖南卷)某几何体的正视图和侧视图均如右图所示,则该几何体的俯视图不可能...是()(3) (2013全国卷Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).热点训练:(1)(2012陕西卷)将正方形截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()(2)(2016年石家庄二模)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体。

它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖)。

其直观图如图,图中四边形是为体现其直观性所作的辅助线。

当其主视图和侧视图完全相同时,它的俯视图可能是()(3)已知三棱锥P-ABC 顶点分别为P(0,0,2),A(0,0,0),B(1,1,0),C(0,2,0),则以yOz 平面为投影面得到的正视图为( )考向2:几何体三视图的相关计算例2(1)(2016浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 2cm ,体积是 3cm(2)(2011年北京卷)某四棱锥的三视图如图所示,该四棱锥的表面积是( ) A.32 B.16162+ C.48 D.16322+(3)某几何体的三视图如图所示,则该几何体的体积为( ) A.12 B.18 C.24 D.30(第2题图) (第3题图) 热点训练:(1)(2016年北京卷)某四棱柱的三视图如图所示,则该四棱柱的体 积为(2)(2016年山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示。

该几何体的体积为( ) A.1233π+B.1233π+C. 1236π+D. 216π+(3)(2015年全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r ) 组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

若该几何体 的表面积为1620π+,则r ( )A .1B .2C .4D .8 .(4)(2015年福建卷)某几何体的三视图如图所示,则该几何体的表面积等于A.822+B.1122+C.1422+D.15热点二:与球有关的组合体的计算问题例2(1) (2014年湖南卷)一块石材表示的几何体的三视图如图2所示。

将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( ) A.1 B.2 C.3 D.4(2) (2016年广东茂名二模)若几何体的三视图如图所示, 该几何体的外接球的表面积为( )A.34πB.35πC.36πD.17π(3)(2016年河北衡水一调)某几何体的三视图如图,若该几何体的 所有顶点都在一个球面上,则该球的表面积为( ) A.4π B.283πC.443πD.20π热点训练:(1)(2017全国I)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。

若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为 .(2)四面体ABCD 中,共顶点A 的三条棱两两互相垂直,且其长分别为2,3,4若四面体ABCD 的四个顶点在同一球面上,则这个球的表面积为(3)(2013新课标Ⅱ) 已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为__________.(4)(2010辽宁)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于( )A.4πB.3πC.2πD.π巩固练习:1.如图,在长方体ABCD-A 1B 1C 1D 1中,点P 是棱CD 上一点,则三棱锥P-A 1B 1A 的侧视图可能为( )2、(2016年全国卷Ⅲ)在封闭的直三棱柱111ABC A B C-内有一个体积为V的球。

若,6AB BC AB⊥=, 18,3BC AA==,则V的最大值是()A.4πB.92πC.6πD.323π3.(2013新课标1)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为______.4.(2016·太原校级二模)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )(A)22(B)52(C)62(D)3第二讲点、直线、平面之间的位置关系高考体验:1、(2017全国卷Ⅲ)在正方体1111ABCD A B C D-中,E为棱CD的中点,则()A.11A E DC⊥ B.1A E BD⊥ C.11A E BC⊥ D.1A E AC⊥2.(2017全国卷1)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是()3、(2016年全国卷Ⅰ)平面α过正方体1111ABCD A B C D-的顶点A,//α平面11CB D,αI平面ABCD m=,αI平面11ABB A n=,则,m n所成角的正弦值为()A.3B.2C.3D.134、(2013年全国卷Ⅱ)已知,m n 为异面直线,m ⊥平面,n α⊥平面β,直线l 满足,,,l m l n l m αβ⊥⊥⊄⊄,则( )A.αβα//l //且B.αβ⊥且l β⊥C.α与β相交,且交线垂直于lD. α与β相交,且交线平行于l5、(2016年全国卷Ⅱ),αβ是两个平面,,m n 是两条直线,有下列四个命题: ①如果βα⊥⊥//n ,m ,n m ,那么αβ⊥; ②如果αα⊥//n ,m ,那么m n ⊥ ③如果α⊂βαm ,//,那么β//m④如果βα//,n //m ,那么m 与α所成的角和n 与β所成的角相等。

其中正确的命题有6、(2013年全国卷Ⅰ)如图,三棱柱111ABC A B C -中,11,,60o CA CB AB AA BAA ==∠=(Ⅰ)证明:1AB A C ⊥(Ⅱ)若12,6AB CB AC ===, 求三棱柱111ABC A B C -的体积。

高考感悟(1)线面平行、垂直的证明;(2)根据题中条件求几何体体积;(3)平面基本性质的应用。

例题讲解:热点一:空间线线、线面关系的证明例1 (2014全国卷Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点。

(1)证明://PB 平面AEC ;(2)设置1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBD 的距离。

例2 (2016年全国卷Ⅰ)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =.顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G 。

(1) 证明:G 是AB 的中点;(2) 在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积。

例3 (2014年全国卷Ⅰ)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形1B C 的中点为O 点,且OA ⊥ 平面11BB C C 。

(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若11,60,1oAC AB CBB BC ⊥∠==,求三棱柱111ABC A B C -的高。

热点训练:(1)(2016年全国卷Ⅲ)如图,四棱锥P ABCD -中PA ⊥底面,,3ABCD AD BC AB AD AC ===P ,4,PA BC M ==为线段AD 上一点,2,AM MD N =为PC 的中点。

(Ⅰ)证明://MN 平面PAB ; (Ⅱ)求四面体N BCM -的体积。

(2)(2013年安徽卷)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60o BAD ∠=,已知2,6PB PD PA ===。

(Ⅰ)证明:PC BD ⊥(Ⅱ)若点E 为PA 的中点,求三棱锥P BCE -的体积。

热点二:空间面面位置关系的证明例4 (2015年全国卷Ⅰ)如图,四边形ABCD 为菱形。

相关文档
最新文档