(完整版)九年级数学相似三角形综合练习题及答案
初三相似三角形练习题及答案
初三相似三角形练习题及答案相似三角形是初中数学中一个重要的概念,它在几何形状比较相似的情况下,能够帮助我们快速推导出一些性质和结果。
为了帮助同学们更好地掌握相似三角形的相关知识,下面给出一些练习题及其详细答案,希望能够对大家的学习有所帮助。
1. 如图,已知△ABC与△ADE相似,其中∠B=∠D=90°,AB=10cm,BC=15cm,DE=6cm,求AD和AC的长度。
解析:由于∠B=∠D=90°,所以△ABC与△ADE是直角三角形。
根据直角三角形的性质,我们知道在两个直角三角形中,如果一个角相等,那么它们就是相似三角形。
因此,△ABC与△ADE相似。
根据相似三角形的定义,我们知道相似三角形的对应边的比例相等。
所以我们可以列出比例方程:AB/AD = BC/DE代入已知的数值,得到:10/AD = 15/6进一步计算,可以得到:AD = (10 * 6) / 15 = 4cm同理,我们可以使用相似三角形的对应边比例相等的性质,求解出AC的长度。
列出比例方程:AB/AC = BC/AE10/AC = 15/AD代入AD = 4cm,可以得到:10/AC = 15/4进一步计算,得到:AC = (10 * 4) / 15 = 8/3 cm所以,AD的长度为4cm,AC的长度为8/3 cm。
2. 如图,已知△PQR与△XYZ相似,PR = 12cm,YZ = 6cm,PQ = 9cm,求XZ的长度。
解析:根据相似三角形的性质,我们可以列出比例方程:PQ/PX = QR/XZ代入已知数值,得到:9/PX = 12/XZ进一步计算,得到:PX * XZ = 9 * 12PX * XZ = 108根据已知条件,我们可以得到两个三角形的一对边已知,它们分别是PR和YZ,由于两个三角形相似,我们可以列出另一个比例方程:PR/YZ = PQ/XZ12/6 = 9/XZ进一步计算,得到:2 = 9/XZ解方程,可以得到:XZ = 9/2 = 4.5cm所以,XZ的长度为4.5cm。
(完整word版)九年级数学相似三角形综合练习题及答案
九年级数学相似三角形综合练习题及答案1填空(本题14 分)(1 )若a=8cm , b=6cm , c=4cm ,贝U a 、b 、c 的第四比例项 d= ; a 、c 的比例中项 x=_。
(2) (2 x):x x:(1 x)。
贝U x= _______________ 。
(3) _______________________________________________________________ 在比例尺为1: 10000的地图上,距离为 3cm 的两地实际距离为 _________________________________ 公里。
(4) _______________________________ 圆的周长与其直径的比为 。
a 5 a b(5 )右,贝V= 。
b 3 b(6) 若 a :b : c=1 : 2: 3, 且 a bc 6,贝U a= ________ , b= ______ , c= _______ 。
ABACBC3CE(7) 如图 1, -- —— --- -,则(1)——(2)若 BD=10cm ,则 AD= cm 。
ADAE DE 2BC ,AB16cm ,则△ ABC 的周长为 (8)若点AEABc是线段AB的黄金分割点,且AC CB ,竺AC2•选择题 (1) 根据 A . 0 B .(2) 若线段bA.- d d C.—c(本题 9分)ab=cd ,共可写出以a 为第四比例项的比例式的个数是(1 C .2 D . 3a 、b 、c 、d 成比例,则下列各式中一定能成立的是(d b bC . DB AB ADEC AC AEBC DB ECECAB ACa3•已知:即3。
求(1)严3;;(2)愛。
(本题10分)4.若x: y:z=2: 7:5, x 2y 3z 6,求的值。
(本题6 分)za c e 25.已知:& d f 3,且2b d 5f 18。
相似三角形测试题及答案(全)
1、两个相似三角形对应边之比是1:5,那么它们的周长比是( )。 (A)
;(B)1:25;(C)1:5;(D)
。 2、如果两个相似三角形的相似比为1:4,那么它们的面积比为( )。 (A)1:16;(B)1:8;(C)1:4;(D)1:2。 3、如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角 形个数是( )。 (A)1;(B)2;(C)3;D)5。
3、如图,△ABC中,D是AC中点,AF∥DE, =1:3,则 =( )。 (A)1:2;(B)2:3;(C)3:4;(D)1:1。 4、如图,平行四边形ABCD中,O1、O2、O3为对角线BD上三点,且BO1= O1O2=O2O3=O3D,连结AO1并延长交BC于点E,连结EO3并延长交AD于F, 则AD:FD等于( )。 (A)19:2;(B)9:1;(C)8:1;(D)7:1。 三、(本题8分) 如图,已知矩形ABCD中,AB=10cm,BC=12cm,E为DC中点,AF⊥BE于 点F,求AF长。 四、(本题8分) 如图,D、E分别是△ABC边AB和AC上的点,∠1=∠2,求证:AD·AB= AE·AC。 五、(本题8分) 如图,ABCD是平行四边形,点E在边BA延长线上,连CE交AD于点F, ∠ECA=∠D,求证:AC·BE=CE·AD。
4、如图,∠ACD=∠B,AC=6,AD=4,则AB=________。
5、如图ABCD是平行四边形,F是DA延长线上一点,连CF交BD于G,交AB 于E,则图中相似三角形(包括全等三角形在内)共有________对。 6、如图,△ABC中,BC=15cm,DE、FG均平行于BC且将△ABC面积分成 三等分,则FG=________ cm。 7、如图,AF∥BE∥CD,AF=12,BE=19,CD=28,则FE:ED的值等于 ________。 8、如图,△ABC,DE∥GF∥BC,且AD=DG=GB,则 =________。
九年级数学相似三角形练习题及答案
相似三角形练习题1、如图,当四边形PABN 的周长最小时,a =.2、如图,等腰三角形 ABC 的边AB 长为2 ,DE 是它的中位线,那么下面四个结论: 〔1〕DE=1,〔2〕CDE ∆~CAB ∆,(3)CDE ∆的面积与CAB ∆面积之比为1:4,其中正确的有〔 〕A 、0个B 、1个C 、2个D 、3个 3、如图〔3〕,等腰ABC ∆中,底边BC=a ,A ∠=036,ABC ∠的平分线交AC 于D ,BCD ∠的512k -=,那么DE=( ) A 、2K a B 、3K a C 、2akD 、3a k4、:ABC ∆与DFE ∆相似且面积比为4:25,那么ABC ∆与DFE ∆的相似比为。
5、〔2021年滨州〕如下图,给出以下条件: ①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为〔 〕 A .1B .2C .3D .4〔5题图〕〔6题图〕6、2021年XX 市)如图,AB CD EF ∥∥,那么以下结论正确的选项是〔 〕 A .AD BCDF CE=B .BC DFCE AD=C .CD BCEF BE=D .CD ADEF AF=7、(2021XX)△ABC ∽△DEF ,且AB :DE=1:2,那么△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:18、〔2021XX 綦江〕假设△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,那么△ABC 与△DEF 的周长比为〔 〕 A .1∶4B .1∶2C .2∶1D 2y P (a ,0) N (a +2,A (1,-3)〔1题图〕 B (4,-1)O9、〔2021年XX 市〕如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值〔 〕 A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个10、(2021年XX 市〕如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,那么以下表达正确的选项是〔 〕A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形11、〔2021年XX 省〕如图,在55 方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的选项是〔 〕 A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格(11题图)〔13题图〕12、(2021年义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。
初三数学相似三角形经典题(含答案)
相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。
九年级相似三角形综合练习题附答案】
相似三角形综合练习题一、填空题:1. 已知a ba b+-=2295,则a b:=__________2. 若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm3. 如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。
4. 已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。
5. 在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________6. 已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________7. 如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________8. 如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________二、选择题:1. 如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________A. 9:16B. 3:2C. 3:4D. 3:72. 在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是__________米2A. 104mabB.1042mabC.abm104D.abm24103. 已知,如图,DE∥BC,EF∥AB,则下列结论:①AEECBEFC=②ADBFABBC=③EFABDEBC=④CECFEABF=其中正确的比例式的个数是__________A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________A. 16B. 14C. 16或14D. 16或95. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________A. △AED∽△ACBB. △AEB∽△ACDC. △BAE∽△ACED. △AEC∽△DAC三、解答题:1. 如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。
初中数学经典相似三角形练习题(附参考答案)
初中数学经典相似三⾓形练习题(附参考答案)经典练习题相似三⾓形(附答案)⼀.解答题(共30 ⼩题)1..如图,在△A中B,C DE∥BC,EF∥AB,求证:△ADE∽△EFC .2..如图,梯形A BCD 中,AB∥CD,点F 在BC 上,连DF 与AB 的延长线交于点G.(1 )求证:△CDF∽△BGF;(2 )当点 F 是BC 的中点时,过 F 作EF∥C D交AD 于点E,若AB=6cm ,EF=4cm ,求CD 的长.3..如图,点 D ,E 在BC 上,且FD∥ AB,FE∥AC.求证:△ABC∽△FDE .4..如图,已知E是矩形ABCD 的边CD 上⼀点,BF⊥A于E F,试说明:△ABF ∽△EAD.5..已知:如图①所⽰,在△和△ABA C DE中,AB=AC ,AD=AE ,∠BAC= ∠DAE,且点B,A ,D 在⼀条直线上,连接BE,CD ,M ,N 分别为BE,CD 的中点.(1 )求证:①BE=CD ;②△A是MN等腰三⾓形;(2 )在图①的基础上,将△绕点AD A E 按顺时针⽅向旋转180 °,其他条件不变,得到图②所⽰的图形.请直接写出(1)中的两个结论是否仍然成⽴;(3 )在(2 )的条件下,请你在图②中延长ED 交线段BC 于点P.求证:△PBD∽△AMN.6..如图,E 是? ABCD 的边BA 延长线上⼀点,连接EC,交AD 于点F.在不添加辅助线的情况下,请你写出图中所有的相似三⾓形,并任选⼀对相似三⾓形给予证明.和A△BC DE的F顶点都在边长为 1 的⼩正⽅形的顶点上.7..如图,在 4 ×3的正⽅形⽅格中,△(1 )填空:∠A BC= °,BC= ;(2 )判断△AB与C△DEC是否相似,并证明你的结论.8..如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm .某⼀时刻,动点M 从A 点出发沿AB ⽅向以1cm/s的速度向 B 点匀速运动;同时,动点N 从D 点出发沿DA ⽅向以2cm/s 的速度向 A 点匀速运动,问:(1 )经过多少时间,△的A M⾯N积等于矩形ABCD ⾯积的?(2 )是否存在时刻t ,使以 A ,M ,N 为顶点的三⾓形与△相A似CD?若存在,求t 的值;若不存在,请说明理由.9..如图,在梯形ABCD 中,若AB∥DC,AD=BC ,对⾓线BD 、AC 把梯形分成了四个⼩三⾓形.(1 )列出从这四个⼩三⾓形中任选两个三⾓形的所有可能情况,并求出选取到的两个三⾓形是相似三⾓形的概率是多少;(注意:全等看成相似的特例)(2 )请你任选⼀组相似三⾓形,并给出证明.10 .如图△AB中C,D 为AC 上⼀点,CD=2DA ,∠BAC=45 °,∠BDC=60 °,CE于⊥EB,D连接AE .(1 )写出图中所有相等的线段,并加以证明;(2 )图中有⽆相似三⾓形?若有,请写出⼀对;若没有,请说明理由;(3 )求△BE与C△BEA的⾯积之⽐.11 .如图,在△A中B,C AB=AC=a ,M 为底边BC 上的任意⼀点,过点M 分别作AB 、AC 的平⾏线交AC于P,交AB 于Q .(1 )求四边形AQMP 的周长;(2 )写出图中的两对相似三⾓形(不需证明);(3 )M 位于BC 的什么位置时,四边形AQMP 为菱形并证明你的结论.12 .已知:P 是正⽅形ABCD 的边BC 上的点,且BP=3PC ,M 是CD 的中点,试说明:△ADM∽△MCP.13 .如图,已知梯形ABCD 中,AD∥BC,AD=2 ,AB=BC=8 ,CD=10 .(1 )求梯形ABCD 的⾯积S;(2 )动点P 从点 B 出发,以1cm/s 的速度,沿B? A ? D ? C ⽅向,向点 C 运动;动点Q 从点 C 出发,以1cm/s 的速度,沿C? D? A ⽅向,向点 A 运动,过点Q 作QE⊥BC 于点E.若P、Q 两点同时出发,当其中⼀点到达⽬的地时整个运动随之结束,设运动时间为t 秒.问:①当点P 在B? A 上运动时,是否存在这样的t ,使得直线PQ 将梯形ABCD 的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D 为顶点的三⾓形与△相C似Q?E 若存在,请求出所有符合条件的t 的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t ,使得以P、D、Q 为顶点的三⾓形恰好是以DQ 为⼀腰的等腰三⾓形?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.14 .已知矩形ABCD ,长BC=12cm ,宽AB=8cm ,P、Q 分别是AB 、BC 上运动的两点.若P ⾃点 A 出发,以1cm/s 的速度沿AB ⽅向运动,同时,Q ⾃点 B 出发以2cm/s 的速度沿BC ⽅向运动,问经过⼏秒,以P、B、Q 为顶点的三⾓形与△相B似DC?15 .如图,在△A中B,C AB=10cm ,BC=20cm ,点P 从点 A 开始沿AB 边向 B 点以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点 C 以4cm/s 的速度移动,如果P、Q 分别从 A 、B 同时出发,问经过⼏秒钟,△PBQ与△ABC相似.16 .如图,∠ACB= ∠ADC=90 A°C,= ,AD=2 .问当AB 的长为多少时,这两个直⾓三⾓形相似.17 .已知,如图,在边长为 a 的正⽅形ABCD 中,M 是AD 的中点,能否在边AB 上找⼀点N(不含 A 、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18 .如图在△A中BC,∠C=90 °B,C=8cm ,AC=6cm ,点Q 从B 出发,沿BC ⽅向以2cm/s 的速度移动,点P 从C 出发,沿CA ⽅向以1cm/s 的速度移动.若Q 、P 分别同时从B、C 出发,试探究经过多少秒后,以点C、P、Q 为顶点的三⾓形与△相C似B?A19 .如图所⽰,梯形ABCD 中,AD∥BC,∠A=90 °A B,=7 ,AD=2 ,BC=3 ,试在腰AB 上确定点P 的位置,使得以P,A ,D 为顶点的三⾓形与以P,B,C 为顶点的三⾓形相似.20 .△ABC和△DE是F两个等腰直⾓三⾓形,∠A= ∠D=90 °的,顶△点E D E位F于边BC 的中点上.(1 )如图 1 ,设DE 与AB 交于点M ,EF与AC 交于点N ,求证:△BEM∽△CNE;(2 )如图 2 ,将△D E绕F点E 旋转,使得DE 与BA 的延长线交于点M ,EF 与AC 交于点N ,于是,除(1)中的⼀对相似三⾓形外,能否再找出⼀对相似三⾓形并证明你的结论.21 .如图,在矩形ABCD 中,AB=15cm ,BC=10cm ,点P 沿AB 边从点 A 开始向 B 以2cm/s 的速度移动;点Q 沿DA 边从点 D 开始向点 A 以1cm/s 的速度移动.如果P、Q 同时出发,⽤t(秒)表⽰移动的时间,C那么当t 为何值时,以点Q 、A 、P 为顶点的三⾓形与△相A似B.22 .如图,路灯(P 点)距地⾯8 ⽶,⾝⾼ 1.6 ⽶的⼩明从距路灯的底部(O 点)20 ⽶的 A 点,沿OA 所在的直线⾏⾛14 ⽶到B 点时,⾝影的长度是变长了还是变短了?变长或变短了多少⽶?23 .阳光明媚的⼀天,数学兴趣⼩组的同学们去测量⼀棵树的⾼度(这棵树底部可以到达,顶部不易到达),他们带了以下测量⼯具:⽪尺,标杆,⼀副三⾓尺,⼩平⾯镜.请你在他们提供的测量⼯具中选出所需⼯具,设计⼀种测量⽅案.(1 )所需的测量⼯具是:;(2 )请在下图中画出测量⽰意图;(3 )设树⾼AB 的长度为x,请⽤所测数据(⽤⼩写字母表⽰)求出x.24 .问题背景在某次活动课中,甲、⼄、丙三个学习⼩组于同⼀时刻在阳光下对校园中⼀些物体进⾏了测量.下⾯是他们通过测量得到的⼀些信息:甲组:如图 1 ,测得⼀根直⽴于平地,长为80cm 的⽵竿的影长为60cm .⼄组:如图 2 ,测得学校旗杆的影长为900cm .丙组:如图 3 ,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的⾼度为200cm ,影长为156cm .任务要求:(1 )请根据甲、⼄两组得到的信息计算出学校旗杆的⾼度;(2 )如图 3 ,设太阳光线NH 与⊙O相切于点M .请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提⽰:如图 3 ,景灯的影长等于线段NG 的影长;需要时可采⽤等式156 2+208 2 =260 2)25 .阳光通过窗⼝照射到室内,在地⾯上留下 2.7m 宽的亮区(如图所⽰),已知亮区到窗⼝下的墙脚距离EC=8.7m ,窗⼝⾼AB=1.8m ,求窗⼝底边离地⾯的⾼BC.26 .如图,李华晚上在路灯下散步.已知李华的⾝⾼AB=h ,灯柱的⾼OP=O′P′=两l 灯,柱之间的距离OO′=m.(1 )若李华距灯柱OP 的⽔平距离OA=a ,求他影⼦AC 的长;(2 )若李华在两路灯之间⾏⾛,则他前后的两个影⼦的长度之和(DA+AC )是否是定值请说明理由;(3 )若李华在点 A 朝着影⼦(如图箭头)的⽅向以v 1匀速⾏⾛,试求他影⼦的顶端在地⾯上移动的速度v 2.27 .如图①,分别以直⾓三⾓形ABC 三边为直径向外作三个半圆,其⾯积分别⽤S1,S2 ,S3 表⽰,则不难证明S1 =S 2 +S 3 .(1 )如图②,分别以直⾓三⾓形ABC 三边为边向外作三个正⽅形,其⾯积分别⽤S1 ,S2,S3 表⽰,那么S1,S2 ,S3 之间有什么关系;(不必证明)(2 )如图③,分别以直⾓三⾓形ABC 三边为边向外作三个正三⾓形,其⾯积分别⽤S1、S2、S3 表⽰,请你确定S1 ,S2,S3 之间的关系并加以证明;(3 )若分别以直⾓三⾓形ABC 三边为边向外作三个⼀般三⾓形,其⾯积分别⽤S1 ,S2 ,S3 表⽰,为使S1,S2,S3 之间仍具有与(2)相同的关系,所作三⾓形应满⾜什么条件证明你的结论;(4 )类⽐(1 ),(2 ),(3 )的结论,请你总结出⼀个更具⼀般意义的结论.28 .已知:如图,△ABC∽△AB A=D1E5,,AC=9 ,BD=5 .求AE .29 .已知:如图Rt △ABC∽Rt △BDC,AB若=3 ,AC=4 .(1 )求BD 、CD 的长;(2 )过 B 作BE⊥ DC 于E,求BE 的长.﹣2y=40 ,求x,y,z 的值;30 .(1 )已知,且3x+4z(2 )已知:两相似三⾓形对应⾼的⽐为 3 :10 ,且这两个三⾓形的周长差为560cm ,求它们的周长.参考答案与试题解析⼀.解答题(共 30 ⼩题)1..如图,在△ A 中B ,C DE ∥ BC , EF ∥ AB ,求证:△ ADE ∽△ EFC .ADE ∽2. .如图,梯形 A BCD 中, AB ∥ CD ,点F 在 BC 上,连 DF 与 AB 的延长线交于点 G .考点:相似三⾓形的判定;平⾏线的性质。
人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)
人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。
其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。
完整版)九年级数学相似三角形综合练习题及答案
完整版)九年级数学相似三角形综合练习题及答案1.填空题:1) 若$a=8$cm,$b=6$cm,$c=4$cm,则$a$、$b$、$c$的第四比例项$d=\underline{12}$;$a$、$c$的比例中项$x=\underline{5}$。
2) $(2-x):x=x:(1-x)$。
则$x=\underline{1}$。
3) 在比例尺为1:的地图上,距离为3cm的两地实际距离为\underline{30}公里。
4) 圆的周长与其直径的比为\underline{$\pi$}。
5) $\frac{a^5-ab}{b^3}=\frac{a^4}{b^2}$,则$\frac{a}{b}=\underline{a^2}$。
6) 若$a:b:c=1:2:3$,且$a-b+c=6$,则$a=\underline{2}$,$b=\underline{1}$,$c=\underline{3}$。
7) 如图1,则$\frac{AB}{AC}=\frac{BC}{CE}=\underline{\frac{3}{2}}$;若$BD=10$cm,则$AD=\underline{6}$cm;若$\triangle ADE$的周长为16cm,则$\triangle ABC$的周长为\underline{24}cm。
8) 若点$c$是线段$AB$的黄金分割点,且$AC>CB$,则$\frac{AC}{AB}=\underline{\frac{1+\sqrt{5}}{2}}$,$\frac{CB}{AB}=\underline{\frac{\sqrt{5}-1}{2}}$。
2.选择题:1) 根据$ab=cd$,共可写出以$a$为第四比例项的比例式的个数是()A.$1$,B.$2$,C.$3$,D.$4$。
答案:B。
2) 若线段$a$、$b$、$c$、$d$成比例,则下列各式中一定能成立的是()A.$abcd=1$,B.$a+b=c+d$,C.$\frac{a}{b}=\frac{c}{d}$,D.$a^2+b^2=c^2+d^2$。
(完整word版)九年级数学相似三角形单元测试题及答案
九年级数学相似单元测试(1)一.选择题(每小题3分洪30分) 1.在比例尺为 A.1250km b 3 1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( C. 12.5km D.1.25km 2•已知a 2 B.125km =c = 0,则匕空的值为 4 cA. 4 5 3. 已知/ ABC 的三边长分别为 相似,那么/ A ' B ' C '的第三边长应该是B.11 2D. 1 2 2,,6,2,/A ' B ' C '的两边长分别是 ( C.2 1 和.3,如果/ ABC 与/ A ' B ' C ' ) A. 24. 在相同时刻,物高与影长成正比 C.-6D.三 2 3 如果高为 1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( ) D 15米 D A 20米 B 18米 5. 如图,/ACB= Z ADC=90 ° ,BC=a,AC=b,AB=c,要使/ ABC s/CAD, 只要CD 等于 ( ) 2 2 2A. —B.—C.abD.— c a c c 6. —个钢筋三角架三长分别为20cm,50cm,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和 50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A. 一种 B.两种 C.三种 D.四种 7、 用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在 A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置 8、 如图,口 ABCD 中,EF // AB , DE : EA = 2 : 3, EF = 4,贝U CD 的长( )A 16 A.亍 C 16米 C . 10 D . 16 窗户的高在在室地直线上影长则那的高貉为窗户的下檐到教严面勺距离 C . 2米 D . 1.5 米BC=1米(点B CABC 的边BC10、 某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ 上,△ ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 二傾空题(每小题3分洪30分) 11、 已知冬=3,则= y 4 y 12、 .已知点C 是线段AB 的黄金分割点,且AC>BC,则AC : AB= _________ . 13、 .把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 ___________________ .14、 如图,/ABC 中,D,E 分别是AB,AC 上的点(DE.JBC ),当 ________ 或 ________ 或 _______ 时,/ ADE 与/ ABC 相似. 15、 在厶ABC 中,/ B = 25° , AD 是BC 边上的高,并且AD 2 = BD • DC ,则/ BCA 的度数为 _______________ 。
九年级数学《相似三角形》练习参考答案
【考点】比例的性质. 菁优网版 权所有
【分析】根据比的性质,可得答案.
【解答】解:A、 = ⇒ab=cd,故 A 正确;
B、 = ⇒ab=cd,故 B 正确;
C、 = ⇒ab=cd,故 C 正确;
1
D、 = ⇒ad=bc,故 D 错误;
故选:D. 【点评】本题考查了比例的性质,利用了比例的性质:分子分母交叉相乘,乘积相等. 5.若 = ,则 的值为( )
A. ﹣1 B. C.1 D. 【考点】相似三角形的判定与性质;平移的性质.
菁优网版 权所有
【专题】压轴题. 【分析】利用相似三角形面积的比等于相似比的平方先求出 AʹB,再求 AAʹ就可以了. 【解答】解:设 BC 与 AʹCʹ交于点 E,
由平移的性质知,AC∥AʹCʹ ∴△BEAʹ∽△BCA
4
∴S△BEAʹ:S△BCA=AʹB2:AB2=1:2 ∵AB= ∴AʹB=1 ∴AAʹ=AB﹣AʹB= ﹣1 故选 A. 【点评】本题利用了相似三角形的判定和性质及平移的性质:①平移不改变图形的形状和大小;②经过平移, 对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 12.如图,在△ABC 中,D 是 BC 的中点,DE⊥BC 交 AC 与 E,已知 AD=AB,连接 BE 交 AD 于 F,下列结论: ①BE=CE;②∠CAD=∠ABE;③AF=DF;④S△ABF=3S△DEF;⑤△DEF∽△DAE,其中正确的有( )个.
AF=DF,S△ABF=3S△DEF,利用角的关系代替证明∠5≠∠4,从而得出△DEF 与△DAE 不相似.根据以上的分析 可以得出正确的选项答案. 【解答】解:∵D 是 BC 的中点,且 DE⊥BC, ∴DE 是 BC 的垂直平分线,CD=BD, ∴CE=BE,故本答案正确; ∴∠C=∠7, ∵AD=AB, ∴∠8=∠ABC=∠6+∠7, ∵∠8=∠C+∠4, ∴∠C+∠4=∠6+∠7, ∴∠4=∠6,即∠CAD=∠ABE,故本答案正确; 作 AG⊥BD 于点 G,交 BE 于点 H, ∵AD=AB,DE⊥BC, ∴∠2=∠3,DG=BG= BD,DE∥AG,
相似三角形测试题及答案
相似三角形测试题及答案一、选择题1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,则BC:EF的比值为:A. 2:3B. 3:2C. 4:6D. 3:4答案:B2. 在相似三角形中,对应角相等,对应边成比例。
以下哪项不是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 面积比等于相似比的平方答案:D二、填空题3. 若三角形ABC与三角形DEF相似,相似比为2:3,则三角形ABC的周长是三角形DEF周长的____。
答案:2/34. 若三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,则BC 与EF的比值为______。
答案:2:3三、解答题5. 已知三角形ABC与三角形DEF相似,且AB = 8cm,DE = 12cm,求三角形ABC的周长,已知三角形DEF的周长为36cm。
答案:三角形ABC的周长 = (8/12) * 36cm = 24cm6. 已知三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 60°,求∠C和∠F的度数。
答案:∠C = ∠F = 70°四、证明题7. 已知三角形ABC与三角形DEF相似,且AB = 4cm,DE = 6cm,BC = 5cm,EF = 7.5cm,证明AC = 6.25cm。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例,所以AC/DF = AB/DE = 4/6 = 2/3。
已知EF = 7.5cm,所以AC = (2/3) * EF = (2/3) * 7.5cm = 5cm。
因此,AC = 6.25cm。
8. 已知三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,求证:∠C = ∠F。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等。
已知∠A = ∠D,∠B = ∠E,所以∠C = 180° - (∠A+ ∠B) = 180° - (∠D + ∠E) = ∠F。
浙教版数学九年级上册 第四章 相似三角形 综合测试卷(原卷+答案)
第四章综合测试卷 相似三角形班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1.己知 ab =25,则a +b b的值为( )A 25B 35C 75D 232.如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是( )A.BC DF=12 B.∠A 的度数∠D 的度数=12C.△ABC的面积△def 的面积= 12 D. △ABC 的周长△def 的周长= 123.如图,在直角坐标系中,△OAB 的顶点为O(0,0),A(4,3),B(3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比 13的位似图形△OCD,则点C 坐标为( )A. (-1,-1)B.(−43,−1)C.(−1,−43) D. (-2,-1)4. 如图,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出 △ABP 与△ECP 相似的是( )A.∠APB=∠EPCB. ∠APE=90°C. 点 P 是BC 的中点D. BP: BC=2:35.如图,在△ABC 中,点D 在BC 边上,连结AD,点E 在AC 边上,过点E 作EF∥BC,交 AD 于点F,过点E 作EG∥AB,交BC 于点G,则下列式子一定正确的是( ) A.AE EC=EF CDB.EF CD=EG ABC.AFFD=BG GCD.CG BC=AF AD6. 如图,小明为了测量一凉亭的高度AB(顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE(DE=BC=0.5m ,A ,B ,C 三点共线),把一面镜子水平放置在平台上的点 G 处,测得CG=15m ,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得 EG=3m ,小明身高EF=1.6m,则凉亭的高度AB 约为( )A. 8.5mB. 9mC. 9.5mD. 10m7. 在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似( )A. ①处B. ②处C. ③处D. ④处8. 如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A ,D 为圆心,以大 12AD 的长为半径在AD 两侧作弧,交于两点M ,N第二步,连结MN 分别交AB,AC 于点E,F;第三步,连结DE,DF.若BD=6,AF=4,CD=3,则BE 的长是( )A. 2B. 4C. 6D. 89. 如图,在△ABC 中,点 D 为BC 边上的一点,且AD=AB=2,AD⊥AB,过点 D 作DE⊥AD,DE 交AC 于点E,若DE=1,则△ABC 的面积为( )A. 2B. 4C.25D. 810. 在四边形 ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分 AC,点 H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图所示,点 E 是平行四边形ABCD 的边BC 延长线上一点,连结AE ,交 CD 于点F ,连结BF.写出图中任意一对相似三角形: .12. 已知 a6=b5=c4,且a+b-2c=6,则a 的值为 .13. 如图,在平行四边形ABCD 中,AB=10,AD=6,点E 是AD 的中点,在AB 上取一点F,使△CBF∽△CDE,则 BF 的长是 .14. 如图,在一块斜边长为30cm 的直角三角形木板(Rt△ACB)上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC=1:3,则这块木板截取正方形 CDEF 后,剩余部分的面积为 .15.如图①,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图②是此时的示意图,则图②中水面高度为16. 如图所示,在直角坐标系中有两点A(4,0),B(0,2).如果点C 在x 轴上,且点 C 与点O 及点A 不重合,当点 C 的坐标为 时,使得由点B ,O ,C 构成的三角形与△AOB 相似(至少找出两个符合条件的点).三、解答题(本大题有8小题,共66分)17.(6分)如图,在△ABC中,DE‖BC,EF‖AB,求证:△ADEO△EFC.18. (6分)如图,一块材料的形状是锐角三角形 ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?19.(6分)如图,点 P 是⊙O的直径AB 延长线上一点,且AB=4,点 M为A AB上一个动点(不与A,B重合),射线 PM与⊙O交于点 N(不与M重合).(1)当M在什么位置时,△MAB的面积最大? 并求出这个最大值;(2)求证:△PAN∽△PMB.20. (8 分)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.21. (8分)如图,在△ABC中,点 D,E分别在边AB,AC上,且∠ABE=∠ACD,BE,CD交于点G,连结DE.(1)求证:△AEDO△ABC;(2)如果BE平分∠ABC,求证:DE=CE.22.(10分)如图,在 △ABC 中,点D,E,F 分别在AB,BC,AC 边上, DE‖AC,EF‖AB.(1)求证: △BDEO △EFC.(2)设AF FC=12,①若. BC =12,,求线段BE 的长;②若△EFC 的面积是20,求△ABC 的面积.23.(10分)在矩形ABCD 中,AE⊥BD 于点E,点 P 是边AD 上一点.(1)若BP 平分∠ABD,交 AE 于点G,PF⊥BD 于点F,如图①,证明四边形 AGFP 是菱形;(2)如图②,若PE⊥EC,求证:AE·AB=DE·AP;(3)在(2)的条件下,若AB=1,BC=2,求AP 的长.24.(12分)如图,已知 △ABC 是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB,BC 匀速运动,其中点 P 运动的速度是 1cm/s,点 Q 运动的速度是2cm/s,当点 Q 到达点C 时,P ,Q 两点都停止运动.设运动时间为t(s),解答下列问题:(1) 当 t =2时,判断 △BPQ 的形状,并说明理由;(2)设 △BPQ 的面积为 S (cm²),求S 与t 的函数表达式;(3)如图,作 QR//BA 交AC 于点R,连结PR,当t 为何值时,△APR∽△PRQ?第四章综合测试卷 相似三角形1. C2. D3. B4. C5. C6. A7. B8. D9. B 10. D 11. △ADF∽△ECF(答案不唯一)12. 12 13. 1.8 14. 100cm² 15.24516. (-1,0)或(1,0)或(-4,0)(答案不唯一)17. 证明:∵DE∥BC,∴△ADE∽△ABC,∵EF∥AB,∴△EFC∽△ABC,∴△ADE∽△EFC.18. 解:设这个正方形零件的边长为 xmm ,则△AEF 的边EF 上的高AK=(80-x) mm.∵四边形EF-HG是正方形,∴EF∥GH,即 EF∥BC.∴△AEF CABC.∴EF BC=AK AD,即 x 120=80−x 80⋅∴x =48.∴这个正方形零件的边长是48mm.19. (1)解:当点 M 在 AB 的中点处时,△MAB 的面积最大,此时( OM⟂AB,∵OM =12AB =12×4=2,∴S ABM =12AB ⋅OM =12×4×2=4. (2)证明:∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.20. 解: ∵BD 为∠ABC 的平分线,∴∠ABD =∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD.∵BC=4,∴CD=4.∵AB∥ CD,∴ABECDE,∴AB CD=AE CE,∴84=AE CE,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.21. 证明:(1)∵∠ABE=∠ACD,且∠A 是公共角, ∴ABEACD.∴AE AD=AB AC,即AEAB =ADAC ,又∵∠A 是公共角,∴△AED∽△ABC. (2)∵∠ABE=∠ACD,∠BGD=∠CGE,∴△BGD∽ CGE.:DG EG=BG CG,即DG BG=EG CG.又∵∠DGE=∠BGC,∴△DGE∽△BGC.∴∠GBC=∠GDE,∵BE 平分∠ABC,∴∠GBC=∠ABE,∵∠ABE=∠ACD,∴∠GDE=∠ACD.∴DE=CE.22. (1)证明:∵DE∥AC,∴∠BED=∠C.∵EF∥AB,∴∠B=∠FEC,∴△BDE∽△EFC.(2)解:①∵EF//AB,∴BE EC=AF FC=12.∵BC = 12,∴BE12−BE =12,∴BE =4.②∵EF∥AB,∴△EFC∽△BAC,∴S△BC= (EC BC)2⋅∴BE EC=12,∴EC BC=23.又∵△EFC 的面积是20, ∴20SABC=(23)2,∴SABC=45,即△ABC 的面积是45.23. (1)证明:∵四边形 ABCD 是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵BP 平分∠ABD,∴∠ABG=∠PBD.∵∠AGP=∠BAG+∠ABG,∠APB =∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP 平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP 是平行四边形,∵PA=PF,∴四边形AGFP 是菱形.(2)证明:∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴DE·AP.(3)解:∵四边形 ABCD 是矩形,∴AD=BC=2,∠BAD=90°,∴BD=√AB²+AD² =5,∵AE ⊥BD,∴S ABD =12⋅BD ⋅AE = 12⋅AB ⋅AD,∴AE =255,∴DE =AD 2−AE 2=455,∵AE ⋅AB =DE ⋅AP,∴ AP =255×1455=12.24. 解:(1)△BPQ 是等边三角形.当t=2时,AP=21 =2( cm),BQ=2×2=4( cm),∴BP=AB-AP=6-2=4( cm),∴BQ=BP,又∵∠B = 60°,∴△BPQ 是等边三角形.(2)如图,过点 Q 作QE⊥AB,垂足为 E,由 QB=2tcm,∠B=60°,∠BEQ=90°,得 QE =3tcm,由AP= tcm,得 PB =(6−t )cm,∴S =12BP ⋅QE = 12×(6−t )×3t =−32t 2+33t.(3)∵QR‖BA,∴∠QRC=∠A=60°,∠RQC=∠B=60°,∴△QRC是等边三角形,∴QR=RC=QC=(6-2t)cm⋅:BE=12BQ=12×2t=t(cm),∴EP=AB−AP−BE=6−t−t=6−2t(cm),∵EP‖QR,EP=QR,∴四边形 EPRQ是平行四边形,∴PR=EQ3tcm.又∵∠PEQ=90°,∴∠APR∠PRQ=90°,∴△APR∽△PRQ,∴∠QPR=∠A=60∘,QRPR=6−2t3t=3,解得t=65.∴当t=65时,△APR∽△PRQ.。
九年级数学上--相似三角形综合练习题(共30小题)
.九年级数学上---相似三角形综合练习题(共30小题)一.解答题:1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.6.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在四边形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17、已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m。
初三相似三角形练习题含答案
初三相似三角形练习题含答案1. 某个角的度数是60°。
它的补角和它的和是多少?解答:补角是90°减去该角的度数,即90°- 60° = 30°。
和角是该角的度数加上补角的度数,即60° + 30° = 90°。
2. 给出三角形ABC,其中∠ABC = 90°, AB = 6cm,AC = 8cm。
根据比例的性质,我们可以得出DE = ? (ADE与ABC相似,DE = x cm)解答:由三角形相似的性质可知,AB/DE = AC/AD。
代入已知条件可得6/DE = 8/AD。
交叉相乘得到8DE = 6AD,进一步可以得到4DE = 3AD。
根据题意可知AD = AE + DE,即8 = AE + x。
将此代入前面的等式中,可以得到4x = 3(8-x)。
解这个方程可以得到x = 6。
所以DE = 6cm。
3. 已知两个三角形ABC和DEF相似。
已知BC = 12cm,EF = 8cm,且BC/EF = 3/2。
求AB的长度。
解答:根据相似三角形的性质,AB/DE = BC/EF。
代入已知条件得到AB/8 = 12/8。
交叉相乘可得到8AB = 12 × 8,即AB = 12 × 8 ÷ 8 =12cm。
所以AB的长度为12cm。
4. 两个三角形相似,已知小三角形的面积为25cm²,大三角形的面积是多少?解答:根据相似三角形的性质,如果两个三角形相似,它们对应边的比例的平方等于对应高的比例的平方。
假设小三角形的面积为S,大三角形的面积为T,对应边的比例为k,对应高的比例为h,那么我们可以得到:T/S = (k² × h²)/(k² × h²) = (k² × h²)/(1) = k² × h²根据题意,已知小三角形的面积为25cm²,所以S = 25。
初中数学经典相似三角形练习题(附参考答案)
初中数学经典相似三角形练习题(附参考答案)初中数学经典相似三角形练习题(附参考答案)一、题目描述在初中数学中,相似三角形是一个非常重要的概念。
本文为您提供一些经典的相似三角形练习题,通过解答这些练习题可以提高学生的解题能力和对相似三角形的理解。
本文附有详细的参考答案,供学生进行自我检测和复习。
二、练习题1. 已知△ABC和△DEF相似,AB = 6cm,BC = 8cm,AC = 10cm,DE = 9cm,计算EF的长度。
2. △ABC与△DEF相似,AB = 2cm,BC =3.5cm,AC = 4cm,EF= 7cm,求DE的长度。
3. 在△ABC中,角A的度数为50°,角B的度数为70°,BC = 8cm。
若与△ABC相似的三角形的边长分别为10cm和12cm,求与△ABC相似的三角形的第三边的长度。
4. 在△ABC中,∠B = 90°,AC = 10cm,BC = 12cm。
若与△ABC相似的三角形的第二边为16cm,求与△ABC相似的三角形的第三边的长度。
5. 已知△ABC与△DEF相似,AB = 6cm,AC = 8cm,DE = 12cm,若EF = 18cm,求BC的长度。
6. 高度为5cm的小树和高度为12cm的大树的影子长度之比为2:3。
如果小树的影子长度为10cm,求大树的影子长度。
7. 一个航拍无人机垂直飞行,发现自己离地面的垂直距离与航拍无人机的长度(包括机身和旋翼)的比例为3:2。
如果航拍无人机的长度为120cm,求离地面的垂直距离。
8. 在一个旅游小组中,由5名成年人和7名儿童组成,其平均年龄为30岁。
如果另一个旅游小组由2名成年人和3名儿童组成,其平均年龄为24岁。
求这两个旅游小组的总年龄之比。
三、参考答案1. 根据相似三角形的性质可知,EF与AC的比例应与DE与BC的比例相等。
即 EF/AC = DE/BC。
代入已知值,得 EF/10 = 9/8。
相似三角形经典练习题及答案
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学相似三角形综合练习题及答案 1.填空(本题14分) (1)若a=8cm ,b=6cm ,c=4cm ,则a 、b 、c 的第四比例项d=___;a 、c 的比例中项x=__。
(2))x 1(:x x :)x 2(-=-。
则x=__________。
(3)在比例尺为1:10000的地图上,距离为3cm 的两地实际距离为______公里。
(4)圆的周长与其直径的比为________。
(5)若
35b a =,则b
b a -=________。
(6)若a :b :c=1:2:3,且6
c b a =+-,则a=________,b=_______,c=________。
(7)如图1,23DE BC AE AC AD AB ===,则(1)=AE
CE ________(2)若BD=10cm ,则AD=______cm 。
(3)若△ADE 的周长为16cm ,则△ABC 的周长为________。
(8)若点c 是线段AB 的黄金分割点,且CB AC >,=AC AB ________,=
AB BC ________。
2.选择题(本题9分)
(1)根据ab=cd ,共可写出以a 为第四比例项的比例式的个数是( )
A .0
B .1
C .2
D .3
(2)若线段a 、b 、c 、d 成比例,则下列各式中一定能成立的是( )
A .
c b
d a = B .b
d a c = C .b a c d = D .a
b d
c = (3)如图:DE//BC ,在下列比例式中,不能成立的是( )
A .
EC
AE DB AD = B .EC AE BC DE = C .AE AC AD AB = D .AC AB EC DB =
3.已知:32b b a =-。
求(1)a 3b a -;(2)b
3a 2b 2a 3-+。
(本题10分) 4.若x :y :z=2:7:5,6z 3y 2x =+-,求
2z y x +的值。
(本题6分)
5.已知:
32f e d c b a ===,且18f 5d b 2=+-。
求e 5c a 2+-的值。
(本题6分)
6.已知:线段AB ,求作线段x ,使AB 3
2x =。
(本题6分) 7.已知:如图,线段AB=2,点C 是AB 的黄金分割点,点D 在AB 上,且AB BD AD 2•=。
求AC
CD 的值。
(本题6分)
8.如图,已知:△ABC 中,DE//BC ,分别交BA 、CA 的延长线于点D 、E ,F 是BC 的中点,FA 的延长线交DE 于点G 。
求证:DG=EG 。
(本题6分)
9.已知:D 是△ABC 的边AB 的中点,点E 在BC 边上,且BE :EC=1:3,ED 的延长线与CA 的延长线交于F 。
求证:2
1AC AF =。
(本题6分)
10.如图,已知:梯形ABCD 中,AD//BC ,AC 、BD 交于点O ,E 是BC 延长线上一点,点F 在DE 上,且OC
AO EF DF =。
求证:OF//BC 。
(本题6分)
11.如图,已知:E 为
ABCD 的边BC 延长线上一点,AE 交BD 于G ,交DC 于F 。
求
证:FG EG AG 2•=。
(本题7分)。
12.如图,已知:D 是△ABC 的边BC 上一点,过D 点的直线交AC 于Q ,交AB 延长线于P ,AE//BC ,交PQ 于E ,PD :PE=DQ :QE 。
求证:(1)D 是BC 的中点;(2)QA ·PB=PA ·QC 。
(本题12分)
*13.已知:
b c c a b a --=。
求证:c 2b 1a 1=+。
14.如图,已知:AB//CD ,AC 、BD 交于点O ,OE//AB 交BC 于点E 。
求证:OE
1DC 1AB 1=+。
参考答案
1.(1)3cm ;cm 24
(2)3
2 (3)0.3
(4)π
(5)3
2 (6)3,6,9 (7)(1)
25 (2)4cm (3)24cm (8)215+,2
53-,
2
15-=AC 2、(1)C (2)B (3)B
3、解:由已知:∴
3
5=b a ∴a=5k b=3k 3
2=-b b a 3
32+=+-b b b a (1)12
515353-=-=-k k k a b a (2)1:219106153223=-+=-+k
k k k b a b a 4、解:设x=2k y=7k z=5k
∴x=4,y=14,z=10,
由x-2y+3z=6 ∴509100182==+z
y x 2k-14k+15k=6,3k=6
∴k=2
5、解:∵3
2===f e d c b a ∴3
25252=+-+-f d b e c a 2b-d+5f=18 ∴3
21852=+-e c a ∴2a-c+5e=12
6、
7、解:∵c 为AB 黄金分割点
∴)( 2
AC AB CA AB AC -⋅=,又AB BD AD ⋅=2 AB AD 2
15-= AB=2,∴15-=
AD 从而53-=-=BC AB AC ∴4525315-=+--=
-=AC AD CD
022=-⋅+AB AB AC AC
2
52
AB AB AC ±-= AB AC ⋅-=2
15 ∴5
3452--=AC CD 215-=
(点e 还是AD 黄金分割点) 8、证明:∵DE ∥BC ,∴BF GD AF AG = FC EG AF AG = ∴FC
EG BF DG = ∵F 为BC 中点,∴DG=EG 。
9、证明:过点A 作AG ∥BC 交DF 于G ,∴∠3=∠4,D 为AB 中点,∠1=∠2,∴AD=DB ∴△ADG ≌△BDE ∴AG=BE ,∵BE :EC=1:3
∴AG :EC=1:3,∴AF :FC=1:3,∴AF :AC=1:2
10、证明:∵AD ∥BC ∴
OC AO OB DO =又∵OC AO EF DF = ∴EF
DF OB DO = ∴DF ∥BC 11、证明:平行四边形ABCD 中,∴AD ∥BC ,∴
BG DG AG EG =∴AB ∥DC ∴GF AG BG DG =∴GF
AG AG EG = ∴FG EG AG ⋅=2
12、证明:(1)∵AE ∥BC ,∴QE DQ AE DC = PE
PD AE BD = 又∴PE PD QE DQ =∴AE
BD AE DC =∴DC=BD ∴D 为BC 中点
(2)∵BC ∥AE ,∴
QA QC AE DC AE BD PA PB === ∴QA ·PB=PA ·QC
13、证明b c c a b a --=,∴b
b c a c a -=-
∵11-=-
b c a c ∴2=+b
c a c ∴c
b a 211=+ 14、∵OE ∥AB ,∴BC
CE AB OE = ∵OE ∥DC ∴BC
BE DC OE = ∴1=+=+=+BC
BE CE BC BE BC CE DC OE AB OE 两边除以OE 得OE DC AB 111=+。