初中数学单元评价检测(三)
初中八年级数学下册第十六章二次根式单元检测习题三(含答案) (33)
初中八年级数学下册第十六章二次根式单元检测习题三(含答案)计算))⋅=__________.66【答案】-31【解析】【分析】直接利用平方差公式得出226,再利用二次根式计算结果即可.【详解】解:原式22=6=5-36=-31.故答案为:-31.【点睛】本题主要考察了平方差公式和二次根式的运算,熟练掌握平方差公式和二次根式的运算是本题的关键.82.化简(π﹣3.14)0+|1﹣2√2|﹣√8的结果是___.【答案】0.【解析】【分析】按顺序分别进行0次幂运算、绝对值的化简、二次根式的化简,然后再按运算顺序进行计算即可.【详解】(π﹣3.14)0+|1﹣2√2|﹣√8=1+2√2﹣1﹣2√2=0,故答案为:0.【点睛】本题考查了实数的运算,涉及了0次幂、绝对值化简、二次根式化简等运算,熟练掌握相关运算法则是解题的关键.83.当a=______【答案】1【解析】∵是同类二次根式,∴a+2=5−2a,解得:a=1.84.若规定一种运算为a★b(b-a),如3★5×(5-3)=,________.-2【解析】【分析】),再进行二次根式的乘法运算.【详解】)-2.-2.【点睛】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.85.若实数a 满足=2,则a 的值为 . 【答案】5【解析】试题分析:根据算术平方根平方运算等于被开方数,可得关于a 的方程. 根据题意可得:a ﹣1=4.解得a=5,考点:二次根式的定义.三、解答题86.解方程:+1)x【答案】x =2. 【解析】试题分析:先化简,再进行解方程.试题解析:)11x = 221x ⎡⎤-=⎢⎥⎣⎦2x =2x = 87.计算下列各式:(1) (221-【答案】(1)-(21【解析】试题分析:(1)直接将被开方数相同的二次方根合并即可;(2)先考虑绝对值里边式子的正负,然后利用绝对值的代数意义化简,去括号合并后即可得到结果.试题解析:(1)原式(2(3=--=-;(2)原式=(21)=---21=1=-点睛:此题考查了二次根式的加减混合运算,关键是熟练掌握绝对值的化简及同类二次根式的合并.88.计算: ;(2);⎛ ⎝;a>0). 【答案】(1);(2) -(3) 4ab -;(4)(0)a >.【解析】试题分析:(1)被开方数与被开方数相除,结果化为最简二次根式;(2)根号外和根号内的部分分别相除,再把所得的结果相乘;(3)被开方数与被开方数相除,结果化为最简二次根式,注意符号运算;(4)逆用二次根式的除法法则.试题解析: ===;(2)3110⎛⎫=-÷⨯ ⎪⎝⎭==-;⎛= ⎝4ab ==-;()a ===>.89.计算:(2)4(3) (4)()21-【答案】(1);(3)-5;(4)9.【解析】【分析】(1)先化简,再加减即可;(2)先化简然后根据二次根式的乘法、除法法则运算;(3)利用平方差公式计算;(4)利用乘法公式展开,然后化简合并即可.【详解】解:(1)原式==(2)原式=4=2=(3)原式22=-38=-5=-(4)原式81=+9=+9=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.90.先化简,再求值:22x 2x 1x 1-+-÷(x 1x 1-+-x+1),其中x=2sin45°--1)0.【答案】【解析】【分析】根据分式的运算法则以及特殊角锐角三角函数值、零指数幂的意义即可求出答案.【详解】解:当x=2sin45°--1)0.即x=2×2-1 原式=()()2(x 1)x 1x 1-+-÷2x x x 1-+=x 1x 1-+•()x 1x 1x +-=1x- =【点睛】本题考查分式的运算法则和分母有理化,以及特殊角的三角函数值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.。
初中二年级(上)数学教学目标单元检测题(三)
初中二年级(上)数学教学目标单元检测题(三)《第十四章:勾股定理》一、选择题:(每小题3分,共36分)1、下列线段中,不能组成直角三角形的是( ) A 、a=3,b=4,c=5 B 、a=1,b=2,c 2=5C 、a= ,b=1,c=D 、a=2,b=3,c 2=62、如图所示,下列三角形中是直角三角形的为( )3、在△ABC 中,给出下列条件:(1)∠A:∠B:∠C=3:4:5;(2)a:b:c=3:4:5;(3)∠A=26°,∠C=64°;(4)a=16,b=63,c=65。
其中能判断△ABC 是直角三角形的有( )A 、4组B 、3组C 、2组D 、1组 4、已知直角三角形三边的长分别是a 、b 、c 则下列结论中正确的是( ) A 、a 2+b 2=c 2 B 、b 2+c 2=a 2 C 、c 2+a 2=b 2 D 、以上三种都有可能 5、边长为3、4、5的三角形的各边长都扩大3倍,得到的新三角形是( ) A 、直角三角形 B、锐角三角形 C 、钝角三角形 D 、无法确定 6、在一次篝火晚会中,小明从火堆先向正东走了240步,再向正北走了70步,这时他离火堆( )A 、200步B 、180步C 、250步D 、280步 7、图形中AB ,BB 1, B 1B 2, B 2B 3应满足相等关系,如图,ABB 1=∠AB 1B 2=∠AB 2B 3=90°,AB=BB 1=B 1B 2=B 2B 3=1,那么AB 3=( )、1 B 、2 C 、 D 、 8、AB 靠在墙上,底端B 距墙脚C 的距离为2m ,顶端A454335距地面的距离AC 为7m ,若将梯子的底端向外移动到B /,便B /到C 的距离B /C=3m ,同时顶端下移到A /,那么AA /的长( )A 、等于1mB 、大于1mC 、小于1mD 、以上都不对 9、一个木工师傅测量了一个等腰三角形的腰、底边和底边上的高,但他把数据 与其他数据弄混了,请你帮助他找出来,应该是( )A 、5,8,4B 、13,12,12C 、13,12,8D 、13,10,12 10、一个三角形三边的长分别是6、8、10,则这个三角形最长边上的高是( )A 、4.8B 、8C 、5D 、11如图,AB ⊥CD 于B ,AB=BC ,E 是AB 上一点,且BE=BD ,若CD=17,BE=5,则AD 的长是( )、12 B 、13 C 、5 D 、7 12、△ABC 中,AB=13,AC=15,AD 是高,且AD=12,那么BC=( )A、8 B 、14 C 、4或8 D 、4或14 二、填空题:(每小题3分,共36分)13、一个直角三角形两条直角边的长分别是6cm 、8cm ,这个直角三角形斜边上的高是 cm ,周长是 cm14、已知直角三角形有两条边的长分别是3cm 、4cm ,则第三边的长是 15、如图,观察在正方形网格上正方形Ⅲ的面积是 平方单位。
2020年人教版初中数学七年级下《第5章 相交线与平行线》单元测试卷(三)
2020年人教版初中数学七年级下《第5章相交线与平行线》单元测试卷(三)一.选择题(共12小题)1.如图,有一个破损的扇形零件,小明利用图中的量角器量出这个扇形零件的圆心角度数为50°,你认为小明测量的依据是()A.垂线段最短B.对顶角相等C.圆的定义D.三角形内角和等于180°2.如图,若AB,CD相交于点O,过点O作OE⊥AB,则下列结论不正确的是()A.∠1与∠2互为余角B.∠3与∠2互为余角C.∠2与∠AOE互为补角D.∠AOC与∠BOD是对顶角3.如图,AC⊥BC于点C,点D是线段BC上任意一点.若AC=5,则AD的长不可能是()A.4B.5C.6D.74.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.5.如图,∠1与∠2是同位角的个数有()A.1个B.2个C.3个D.4个6.下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.17.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形8.下列各命题的逆命题是真命题的是()A.对顶角相等B.全等三角形的对应角相等C.相等的角是同位角D.等边三角形的三个内角都相等9.下列语句不是命题的是()A.连结AB B.对顶角相等C.相等的角是对顶角D.同角的余角相等10.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一边有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A.3B.2C.1D.011.下列语句中表示命题的是()A.画一条线段B.作线段AB的垂直平分线C.等边三角形是中心对称图形吗?D.平行四边形对角线相等12.以下现象属于平移的是()A.钟摆的摆动B.电风扇扇叶的转动C.分针的转动D.滑雪运动员在平坦的雪地上沿直线滑行二.填空题(共10小题)13.如图,AB、CD相交于点O,OE平分∠AOD,若∠BOC=60°,则∠COE的度数是.14.两个角的两边分别垂直,其中一个角比另一个角的2倍少30°,这两个角分别是.15.如图,∠C=90°,则图中最长的线段是.16.命题“全等三角形的对应角相等“的逆命题是一个命题(填“真“或“假“).17.有以下两个命题:①实数与数轴上的点一一对应;②﹣5没有立方根,其中是假命题的为(填序号).18.已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为秒.19.如图,△ABC的面积为10,BC=4,现将△ABC沿着射线BC平移a个单位(a>0),得到新的△A'B'C',则△ABC所扫过的面积为.20.如图,将周长为18cm的△ABC沿BC平移1cm得到△DEF.则AD=cm.21.如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3cm,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF的周长为cm.22.如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为cm2.三.解答题(共6小题)23.如图,直线AB与CD相交于点O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数.(3)射线OD与OF之间的夹角是多少?24.如图,点O是直线AB上一点,∠AOC=40°,OD平分∠AOC,∠COE=70°.(1)请你说明DO⊥OE;(2)OE平分∠BOC吗?为什么?25.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.26.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.27.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP 和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.28.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)附加题:在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).2020年人教版初中数学七年级下《第5章相交线与平行线》单元测试卷(三)参考答案与试题解析一.选择题(共12小题)1.【解答】解:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故选:B.2.【解答】解:A、∠1与∠2互余,说法正确;B、∠2与∠3互余,说法正确;C、∠DOE与∠1互补,说法错误,∠DOE与∠2互补;D、∠AOC与∠BOD是对顶角,说法正确;故选:C.3.【解答】解:∵AC=5,AC⊥BC于点C,∴AD≥5,故选:A.4.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.5.【解答】解:这四个图中,∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角.故选:D.6.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;故选:D.7.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.8.【解答】解:A、对顶角相等的逆命题为“相等的角为对顶角”,此命题为假命题,故本选项错误;B、全等三角形的对应角等的逆命题为“对应角相等的三角形是全等三角形”,此命题为假命题,故本选项错误;C、相等的角是同位角的逆命题为“如果两个角的同位角,那么这两个角为相等”,此命题为假命题,故本选项错误;D、等边三角形的三个内角都相等的逆命题为“如果三个角相等,那么这个三角形是等边三角形”,此命题为真命题,故本选项正确;故选:D.9.【解答】解:A、连结AB,不是命题,符合题意;B、对顶角相等,是命题,不符合题意;C、相等的角是对顶角,是命题,不符合题意;D、同角的余角相等,是命题,不符合题意;故选:A.10.【解答】解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;图形平移的方向不一定是水平的,③是假命题;两直线平行,内错角相等,④是假命题;相等的角不一定是对顶角,⑤是假命题;垂线段最短,⑥是真命题,故选:C.11.【解答】解:A、画一条线段,不是命题;B、作线段AB的垂直平分线,不是命题;C、等边三角形是中心对称图形吗?不是命题;D、平行四边形对角线相等,是命题;故选:D.12.【解答】解:A、钟摆的摆动,不属于平移现象,故本选项不符合题意;B、电风扇扇叶的转动,不属于平移现象,故本选项不符合题意;C、分针的转动,不属于平移现象,故本选项不符合题意;D、滑雪运动员在平坦的雪地上滑雪,属于平移现象,故本选项符合题意.故选:D.二.填空题(共10小题)13.【解答】解:∵∠BOC=60°,∴∠AOD=60°,∠AOC=120°,∵OE平分∠AOD,∴∠AOE=∠DOE=30°,∴∠COE的度数是:∠AOC+∠AOE=120°+30°=150°.故答案为:150°.14.【解答】解:设另一个角为α,则这个角是2α﹣30°,∵两个角的两边分别垂直,∴α+2α﹣30°=180°或α=2α﹣30°,解得α=70°或α=30°,∴2α﹣30°=110°或2α﹣30°=30°,这两个角是110°,70°或30°,30°.故答案为:110°,70°或30°,30°.15.【解答】解:∵∠C=90°,∴AC⊥BC,∴图中最长的线段是AB,故答案为:AB.16.【解答】解:命题“全等三角形的对应角相等“的逆命题是对应角相等的两个三角形全等,此逆命题为假命题.故答案为:假.17.【解答】解:①实数与数轴上的点一一对应,故不符合题意;②﹣5有立方根,故符合题意;故答案为:②.18.【解答】解:当S=2时,重叠部分长方形的宽=2÷2=1cm,重叠部分在大正方形的左边时,t=1÷1=1秒,重叠部分在大正方形的右边时,t=(5+2﹣1)÷1=6秒,综上所述,小正方形平移的时间为1或6秒.故答案为:1或6.19.【解答】解:△ABC所扫过面积即梯形ABC′A′的面积,作AH⊥BC于H,∴S△ABC=10,BC•AH=10,AH=5,∴S梯形ABFD=×(AA′+BC′)×AH=(a+4+a)×5=10+5a;故答案为:10+5a.20.【解答】解:∵△ABC沿BC平移1cm得到△DEF.∴AD=1cm.故答案为1.21.【解答】解:由题意得到BE=3cm,DF=4cm,∵AB=DE=7cm,BC=10cm,∴EC=10cm﹣3cm=7cm,FC=7cm﹣4cm=3cm,∴长方形A'ECF的周长=2×(7+3)=20(cm),故答案为20.22.【解答】解:∵⊙O1平移3cm到⊙O2∴⊙O1与⊙O2全等∴图中的阴影部分的面积=图中的矩形的面积∴2×3=6cm2∴图中阴影部分面积为6cm2.故答案为:6.三.解答题(共6小题)23.【解答】解:(1)∠DOE的补角为∠COE,∠AOD,∠BOC;(2)因为OD是∠BOE的平分线,∠BOD=∠BOE=31°,所以∠AOD=180°﹣∠BOD=149°,因为∠AOE=180°﹣∠BOE=118°、OF是∠AOE的平分线,所以∠EOF=∠AOE=59°,即∠AOD=149°,∠EOF=59°;(3)因为OF,OD分别是∠AOE,∠BOE的平分线,所以∠DOF=∠DOE+∠EOF=∠BOE+∠EOA=(∠BOE+∠EOA)=×180°=90°.24.【解答】解:(1)∵OD平分∠AOC,∴∠DOC=∠AOC=20.∵∠COE=70°,∴∠DOE=90°,∴DO⊥OE.(2)OE平分∠BOC.理由:∵∠AOC+∠COE+∠BOE=180°,又∵∠AOC=40°,∠COE=70°,∴∠BOE=70°,∴∠BOE=∠COE,∴OE平分∠BOC.25.【解答】解:(1)∵EO⊥CD,∴∠DOE=90°,又∵∠BOD=∠AOC=36°,∴∠BOE=90°﹣36°=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=∠COD=30°,∴∠AOC=30°,又∵EO⊥CD,∴∠COE=90°,∴∠AOE=90°+30°=120°;(3)分两种情况:若F在射线OM上,则∠EOF=∠BOD=30°;若F'在射线ON上,则∠EOF'=∠DOE+∠BON﹣∠BOD=150°;综上所述,∠EOF的度数为30°或150°.26.【解答】证明:∵∠1=∠2,∠3=∠E,∴∠1+∠3=∠2+∠E.∵∠2+∠E=∠5,∴∠1+∠3=∠5,∴∠ADC=∠5,∴AD∥BE.27.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.28.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°;∵∠A=∠B,∴∠A+∠O=180°,∴OB∥AC.(3分)(2)∵∠A=∠B=100°,由(1)得∠BOA=180°﹣∠B=80°;∵∠FOC=∠AOC,并且OE平分∠BOF,∴∠EOF=∠BOF∠FOC=∠FOA,∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°.(3分)(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2.(4分)(4)由(1)知:OB∥AC,∴∠OCA=∠BOC,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β∠OEB=∠EOC+∠ECO=α+β+β=α+2β∵∠OEB=∠OCA∴2α+β=α+2β∴α=β∵∠AOB=80°,∴α=β=20°∴∠OCA=2α+β=40°+20°=60°.故答案是:60°.(3分)。
(压轴题)初中数学七年级数学上册第三单元《一元一次方程》检测(含答案解析)(3)
一、选择题1.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kg B .24(1-a %)b % 元/kg C .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg2.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a) 3.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0 C .3 D .6 4.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100 B .﹣100x 100 C .101x 100 D .﹣101x 100 5.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣76.下列式子:222,32,,4,,,22ab x yz ab ca b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个7.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .558.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 39.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .mB .nC .m n +D .m ,n 中较大者 10.若23,33M N x M x +=-=-,则N =( ) A .236x x +- B .23x x -+ C .236x x -- D .23x x - 11.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c 12.如果m ,n 都是正整数,那么多项式的次数是( )A .B .mC .D .m ,n 中的较大数二、填空题13.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 14.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.15.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.16.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.17.在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.18.已知5a b -=,3c d +=,则()()b c a d +--的值等于______. 19.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.20.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.三、解答题21.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 22.若1+2+3+…+n=m ,求(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b )的值.23.已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值. 24.列出下列代数式: (1)a 、b 两数差的平方; (2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积; (4)a 的相反数与b 的平方的和. 25.化简: (1)()()22224232a b ababa b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.26.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由. (3)若18a =,15b = ,求正确结果的代数式的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格. 【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg , ∴2月份鸡的价格为24(1-a %)元/kg , ∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg . 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.2.B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒ 故选:B ﹒本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=,解得:3{0a b ==, 所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.4.C解析:C 【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100. 【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得, 单项式的系数的绝对值为序数加1, 系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100, 故选C . 【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.5.A解析:A 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A利用乘法分配律,将代数式变形.6.A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.7.C解析:C 【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解. 【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-,∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数, 当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=,∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个, 即m=45. 故选:C . 【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.D解析:D 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误; B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误; C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误; D 、系数相加字母及指数不变,故D 正确; 故选:D . 【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.9.D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.10.D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D. 【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.11.B解析:B 【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c 故选B . 【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.12.D解析:D 【解析】 【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m ,n 中的较大数是该多项式的次数. 【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D. 【点睛】此题考查多项式,解题关键在于掌握其定义.二、填空题13.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2. 【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.14.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65 【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值. 【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…, ∴第m 组有m 个连续的偶数, ∵2020=2×1010, ∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数, ∴m =45,n =20, ∴m +n =65. 故答案为:65. 【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.15.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2解析:n 2+2 【详解】解:第1个图形中点的个数为3; 第2个图形中点的个数为3+3; 第3个图形中点的个数为3+3+5; 第4个图形中点的个数为3+3+5+7; …第n 个图形中小圆的个数为3+3+5+7+…+(2n ﹣1)=n 2+2. 故答案为:n 2+2. 【点睛】本题考查规律型:图形的变化类.16.【分析】有第1排的座位数看第n 排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n 排座位有(a+n-1)个故答案为:(a+n 解析:a n 1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.17.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3=解析:乙【分析】由题意可得甲、乙、丙报的数字顺序规律为,从1起三个数字为一个循环,即丙报的数字规律为3的倍数,将2018除以3余数为2,即2018为一个循环的第2个数字,即可判断为乙报的数字.【详解】解:∵2018÷3=672 (2)∴最后能抢到2018的同学是乙.故答案为:乙【点睛】本题考查数字规律,读懂题意,找到数字循环规律是解答此题的关键.18.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子,然后代入求值即可.【详解】()()()()532+--=+-+=-++=-+=-.b c a d b c a d b a c d故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键.19.0【分析】根据同类项的定义先得到k的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0 【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可. 【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0 【点睛】本题考查了同类项的定义和合并同类项,比较基础.20.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解. 【详解】 解:由题意可知:第一个单项式为11(1)1x -⨯⨯; 第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯…∴第n 个单项式为(1)n n n x -⨯⨯ 即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x - 【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键.三、解答题21.(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴原式=3A﹣4A+2B=﹣A+2B=﹣2x2﹣ax+5y﹣b+2bx2﹣3x﹣5y﹣6=(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴A﹣2B=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=(2﹣2b)x2+(a+3)x+(b+6),由x取任意数值时,A﹣2B的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a﹣2b+314(A﹣2B)=﹣3﹣2+32=﹣312.【点睛】理解本题中x取任意数值时A﹣2B的值均是一个定值的意思是整式化简后的x和x2项的系数均为零是解题关键.22.a m b m【解析】试题分析:根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质,(ab n)•(a2b n﹣1)…(a n﹣1b2)•(a n b)=a1+2+…n b n+n﹣1+…+1=a m b m.解:∵1+2+3+…+n=m,∴(ab n)•(a2b n﹣1)…(a n﹣1b2)•(a n b),=a1+2+...n b n+n﹣1+ (1)=a m b m考点:单项式乘单项式;同底数幂的乘法.点评:本题考查单项式的乘法法则和同底数幂的乘法的性质.23.16或25【解析】试题分析:根据有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,求得a、b的值,然后分别代入计算可得.试题解:∵有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,∴a﹣1=0,解得:a=1.(1)当|b+2|=2时,解得:b=0或b=4.①当b=0时,此时A不是二次三项式;②当b=﹣4时,此时A是关于x的二次三项式.(2)当|b+2|=1时,解得:b=﹣1(舍)或b=﹣3.(3)当|b+2|=0时,解得:b=﹣2(舍)∴a=1,b=﹣4或a=1,b=﹣3.当a=1,b=﹣4时,(a﹣b)2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.24.(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.25.(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.26.(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.。
最新初中数学有理数单元检测(3)
最新初中数学有理数单元检测(3)一、选择题1.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a2.下列等式一定成立的是( )A =B .11=C 3=±D .6=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】321-=,故错误;B. 11=,故正确;3=, 故错误;D. ()66=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.3.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2可能在x 轴上C .a 的倒数是1aD .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A 、2a 和a 都是非负数,故错误;B 、当a=0时,(-a +2,2a )在x 轴上,故正确;C 、当a=0时,a 没有倒数,故错误;D 、当a≥0时,a 的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.4.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.5.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.6.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .7.如图是张小亮的答卷,他的得分应是( )A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.在数轴上,与原点的距离是2个单位长度的点所表示的数是()A.2 B.2-C.2±D.1 2±【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.9.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a可以是()A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】 解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 603︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.10.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.11.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a + 【答案】B【解析】【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.12.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.13.下列运算正确的是( )A 4 =-2B .|﹣3|=3C 4=± 2D 39【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 、42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.14.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b - 【答案】A 【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.15.- 14的绝对值是( )A.-4 B.14C.4 D.0.4【答案】B【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.16.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.17.有理数,a b在数轴上的位置如图所示,以下说法正确的是()A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.18.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.19.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b+-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.20.数轴上的A 、B 、C 三点所表示的数分别为a 、b 、1,且|a ﹣1|+|b ﹣1|=|a ﹣b |,则下列选项中,满足A 、B 、C 三点位置关系的数轴为( )A .B .C .D . 【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A 中a <1<b ,∴|a ﹣1|+|b ﹣1|=1﹣a+b ﹣1=b ﹣a ,|a ﹣b|=b ﹣a ,∴A 正确;B 中a <b <1,∴|a ﹣1|+|b ﹣1|=1﹣a+1﹣b =2﹣b ﹣a ,|a ﹣b|=b ﹣a ,∴B 不正确;C 中b <a <1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.。
新人教版初中数学八年级数学上册第三单元《轴对称》检测题(答案解析)(3)
一、选择题1.如图,在边长为9的等边△ABC 中,CD ⊥AB 于点D ,点E 、F 分别是边AB 、AC 上的两个点,且AE=CF=4cm ,在CD 上有一动点P ,则PE +PF 的最小值是( )A .4B .4.5C .5D .82.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D .3.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .114.已知点A 是直线l 外的一个点,点B ,C ,D ,E 是直线l 上不重合的四个点,再添加①AB AC =;②AD AE =;③BD CE =中的两个作为题设,余下的一个作为结论组成一个命题,组成真命题的个数为( ).A .0B .1C .2D .3 5.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个7.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .1188.若a ,b 为等腰ABC 的两边,且满足350a b -+-=,则ABC 的周长为( )A .11B .13C .11或13D .9或15 9.如图,在ABC 中,AB AC =,108BAC ∠=︒,72ADB ∠=︒,DE 平分ADB ∠,图中等腰三角形的个数是( )A .3B .4C .5D .610.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个11.平面直角坐标系中,已知()1,1A ,()2,0B .若在x 轴上取点C ,使ABC 为等腰三角形,则满足条件的点C 的个数是( )A .2个B .3个C .4个D .5个12.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD +CF =BD ;③CE =12BF ;④AE =BG .其中正确的是( )A .①②B .①③C .①②③D .①②③④二、填空题13.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.14.如图,在ABC 中,90ACB ︒∠=,30B ,6AC =,P 为BC 边的垂直平分线DE 上一个动点,则ACP △周长的最小值为________.15.如图,点D 、E 是ABC 的边BC 上的点,且AED n ∠=︒,::1:3:2CAD DAE BAE ∠∠∠=,若点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,则n =________.16.若等腰三角形的顶角为30°,腰长为10,则此等腰三角形的面积为_________. 17.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.18.如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.19.给出如下三个图案,它们具有的公共特点是:________.(写出1个即可)20.如图,在正方形网格中,分别将①②③④四个网格涂上阴影,能与原阴影部分构成一个轴对称图形的有____________.(填网格序号)三、解答题21.小明遇到这样一个问题:如图①,在ABC 中,12AB =,8AC =,AD 是中线,求AD 的取值范围.她的做法是:过点B 作//BE AC 交AD 的延长线于点E ,证明BED CAD △≌△,经过推理和计算就可以使问题得到解决.按照上面的思路,请回答:(1)小红证明BED CAD △≌△的判定定理是:______;(2)AD 的取值范围是______;方法运用:(3)如图②,AD 是ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE EF =,求证:BF AC =.22.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.23.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.24.在平面直角坐标系中,点(0,)A a ,点(,0)B b ,点(3,0)C -,且a 、b 满足269||0a a a b -++-=.(1)点A 坐标为______,点B 坐标为______,ABC 是______三角形.(2)如图,过点A 作射线l (射线l 与边BC 有交点),过点B 作BD l ⊥于点D ,过点C 作CE l ⊥于点E ,过点E 作EF DC ⊥于点F 交y 轴于点G .①求证:BD AE =;②求点G 的坐标.(3)如图,点P 是x 轴正半轴上一动点,APO ∠的角平分线交y 轴于点Q ,点M 为线段OP 上一点,过点M 作//MN PQ 交y 轴于点N ;若45AMN ∠=︒,请探究线段AP 、AN 、PM 三者之间的数量关系,并证明你的结论.25.如图,在ABC ∆中,,AB AC =过点A 作//AD BC 交ABC ∠的平分线BD 于点D ,求证:AC AD =.26.在平面直角坐标系中,△ABC 的位置如图所示,已知点A 、B 的坐标为(-4,3)(3,0).(1)点C关于x对称的点的坐标(,);(2)在图中作出△ABC关于y轴的对称图形△A′B′C′;(3)△ABC的面积为.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】作点E关于AD的对称点G,所以连接FG,与CD的交点即为P点.此时PF+PE=FG最小,通过计算证明△AFG是等边三角形,从而得出结果.【详解】作点E关于AD的对称点G,连接FG与CD的交点即为P点,如图:∴PG=PE,此时PF+PE=PF+ PG有最小值,最小值为FG,∵△ABC是边长为9等边三角形,且CD⊥AB,AE=CF=4,∴AD=BD=1AB=4.5,AF=AC-CF=9-4=5,∠A=60 ,2∴ED=GD= AD- AE =4.5-4=0.5,∴AG=AE+ED+GD=5= AF ,∴△AFG 是等边三角形,∴FG= AF=5,∴PF+PE 的最小值是5,故选:C .【点睛】本题主要考查了轴对称-最短路径问题,等边三角形的判定和性质,掌握轴对称-最短路径的确定方法是解题的关键.2.D解析:D【分析】点D 到点A 、点B 的距离相等可知点D 在线段AB 的垂直平分线上,据此可得答案.【详解】解:∵点D 到点A 、点B 的距离AD=BD ,∴点D 在线段AB 的垂直平分线上,故选择:D .【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图. 3.B解析:B【分析】根据题意,设EF 与AC 的交点为点P ,连接BP ,由垂直平分线的性质,则BP=CP ,得到PA PB PA PC AC +=+=,即可得到PA PB +的最小值.【详解】解:根据题意,设EF 与AC 的交点为点P ,连接BP ,如图:∵EF 是BC 的垂直平分线,∴BP=CP ,∴8PA PB PA PC AC +=+==,∴PA PB +的最小值为8;故选:B .【点睛】本题考查了垂直平分线的性质,解题的关键是正确找出点P 的位置,使得PA PB +有最小值.4.D解析:D【分析】写出所组成的三个命题,然后根据等腰三角形的判断与性质对各命题进行判断.【详解】解:根据题意吧,如图:由等腰三角形的性质和全等三角形的判定定理,易证△ABD≌△ACE;命题1:若AB=AC,AD=AE,则BD=CE,此命题为真命题;命题2:若AB=AC,BD=CE,则AD=AE,此命题为真命题;命题3:若AD=AE,BD=CE,则AB=AC,此命题为真命题.故选:D.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,以及命题真假的判断,解题的关键是熟练掌握所学的知识,正确的判断命题的真假.5.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,即③正确;综上,①②③④都正确.故选:D.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.7.B解析:B【分析】由等边三角形的性质,得到AC=BC ,CE=CD ,∠ACB=∠ECD=60°,然后证明△ACE ≌△BCD ,则∠CAE=∠CBD ,由角的关系,求出∠ABE+∠BAE=58°,即可得到答案.【详解】解:如图:∵ABC ∆和CDE ∆都是等边三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=60°,∴∠ACE+∠BCE=∠BCD+∠BCE=60°,∴∠ACE=∠BCD ,∴△ACE ≌△BCD ,∴∠CAE=∠CBD ,即6062BAE EBC ︒-∠=︒-∠,∵60EBC ABE ∠=︒-∠,∴6062(60)BAE ABE ︒-∠=︒-︒-∠,∴58ABE BAE ∠+∠=︒,∴18058122AEB ∠=︒-︒=︒;故选:B .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形的内角和定理,以及角的和差关系,解题的关键是掌握所学的知识,正确求出58ABE BAE ∠+∠=︒. 8.C解析:C【分析】根据非负数的意义列出关于a 、b 的方程并求出a 、b 的值,再根据b 是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C .【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.9.C解析:C【分析】利用等腰三角形的性质“等边对等角”,求出角的度数,再根据“等角对等边”证明三角形是等腰三角形.【详解】解:∵AB AC =,∴ABC 是等腰三角形,∵108BAC ∠=︒, ∴180108362B C ︒-︒∠=∠==︒, ∵72ADB ∠=︒,∴18072BAD B ADB ∠=︒-∠-∠=︒,∴ADB BAD ∠=∠,∴AB BD =,∴ABD △是等腰三角形,∵1087236DAC BAC BAD ∠=∠-∠=︒-︒=︒,∴DAC C ∠=∠,∴AD CD =,∴ACD △是等腰三角形,∵DE 平分ADB ∠, ∴1362ADE BDE ADB ∠=∠=∠=︒, ∴18072AED ADE DAE ∠=︒-∠-∠=︒,∴AED DAE ∠=∠,∴DE DA =,∴ADE 是等腰三角形,∵BDE B ∠=∠, ∴BE DE =, ∴BED 是等腰三角形,一共有5个等腰三角形.故选:C .【点睛】本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定. 10.D解析:D【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE S S ∴==,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACES S =故④正确; 综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.11.C解析:C【分析】分三种情况:当AB=AC 时,当BA=BC 时,当AC=AB 时,根据等腰三角形两边相等的性质分别作图即可得解.【详解】当AB=AC 时,点C 与点O 重合;当BA=BC 时,以点B 为圆心,AB 长为半径画弧,与x 轴有两个交点;当AC=AB 时,作线段AB 的垂直平分线,与x 轴有一个交点,共有4个点C ,故选:C ..【点睛】此题考查等腰三角形的性质,直角坐标系中作等腰三角形的方法,熟记等腰三角形的性质并利用其作图是解题的关键.12.C解析:C【分析】根据∠ABC=45°,CD ⊥AB 可得出BD=CD ,利用ASA 判定Rt △DFB ≌Rt △DAC ,从而得出DF=AD ,BF=AC .则CD=CF+AD ,即AD+CF=BD ;再利用ASA 判定Rt △BEA ≌Rt △BEC ,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.又由(2),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG 在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.∴正确的选项有①②③;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.二、填空题13.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.18【分析】因为BC的垂直平分线为DE所以点C和点B关于直线DE对称所以当点动点P 和E 重合时则△ACP 的周长最小值再结合题目的已知条件求出AB 的长即可【详解】解:如图∵P 为BC 边的垂直平分线DE 上一解析:18【分析】因为BC 的垂直平分线为DE ,所以点C 和点B 关于直线DE 对称,所以当点动点P 和E 重合时则△ACP 的周长最小值,再结合题目的已知条件求出AB 的长即可.【详解】解:如图,∵P 为BC 边的垂直平分线DE 上一个动点,∴点C 和点B 关于直线DE 对称,∴当点动点P 和E 重合时则△ACP 的周长最小值,∵∠ACB=90°,∠B=30°,AC=6,∴AB=2AC=12,∵AP+CP=AP+BP=AB=12,∴△ACP 的周长最小值=AC+AB=18,故答案为:18.【点睛】本题考查了轴对称-最短路线的问题以及垂直平分线的性质,正确确定P 点的位置是解题的关键,确定点P 的位置这类题在课本中有原题,因此加强课本题目的训练至关重要. 15.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ∠BEA=∠B 再根据比例关系设根据三角形内角和定理可求得x 再根据三角形外角的性质可得∠AED 【详解】解:∵点D 在边AC 的垂直平分线上点 解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ,∠BEA=∠B ,再根据比例关系设,3,2CAD x DAE x BAE x ∠=∠=∠=,根据三角形内角和定理可求得x ,再根据三角形外角的性质可得∠AED .【详解】解:∵点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,∴AD=CD ,AE=BE ,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.16.25【分析】依据含30°角的直角三角形的性质即可得到该等腰三角形腰上的高再根据三角形面积计算公式进行计算即可【详解】解:如图所示AB=AC=10∠A =30°过B 作BD ⊥AC 于D ∵∠A =30°AB =1解析:25【分析】依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.【详解】解:如图所示,AB=AC=10,∠A =30°,过B 作BD ⊥AC 于D ,∵∠A =30°,AB =10,∴BD =12AB =5, ∴S △ABC =12AC ×BD =12×10×5=25, 故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,作出腰上的高并根据30°角求出高是解题关键.17.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.18.【分析】根据是等边三角形得进而得可得以此类推即可求解【详解】解:∵是等边三角形∴∴∴∴同理:…均为等边三角形…则的边长为故答案是:【点睛】本题考查了规律型-图形的变化类解决本题的关键是观察图形的变化 解析:20202.【分析】根据30MON ∠=︒,11OA =,112A B A △是等边三角形,得11260∠=︒B A A ,进而得1130∠=︒OB A ,1111AO B A ,可得22OA =,以此类推即可求解.【详解】 解:∵30MON ∠=︒,11OA =,112A B A △是等边三角形,∴11260∠=︒B A A∴1130∠=︒OB A∴1111AO B A∴22OA =同理:223A B A △,334A B A △,…均为等边三角形,2222B A OA ==,233342B A OA…则202120212022A B A △的边长为20202.故答案是:20202.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律. 19.都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征【详解】解:答案不唯一例如:都是轴对称图形故答案为:都是轴对称图形【点睛】本题考查了轴对称图形解题的关键是正确把握轴对称图形的特征 解析:都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征.【详解】解:答案不唯一,例如:都是轴对称图形,故答案为:都是轴对称图形.【点睛】本题考查了轴对称图形,解题的关键是正确把握轴对称图形的特征.20.②③【分析】根据轴对称图形的概念求解【详解】解:有2个使之成为轴对称图形分别为:②③故答案是:②③【点睛】此题主要考查了轴对称图形的概念正确把握轴对称图形的概念是解题关键解析:②③.【分析】根据轴对称图形的概念求解.【详解】解:有2个使之成为轴对称图形,分别为:②,③.故答案是:②③.【点睛】此题主要考查了轴对称图形的概念,正确把握轴对称图形的概念是解题关键.三、解答题21.(1)角角边或者角边角(AAS 或ASA );(2)210AD <<;(3)见解析【分析】(1)由“ASA”或“AAS”可证△BED ≌△CAD ;(2)由全等三角形的性质可得AC=BE=8,由三角形的三边关系可求解;(3)延长AD 至H ,使AD=DH ,连接BH ,由“SAS”可证△BHD ≌△CAD ,可得AC=BH ,∠CAD=∠H ,由等腰三角形的性质可得∠H=∠BFH ,可得BF=BH=AC ;【详解】解:(1)∵AD 是中线,∴BD=CD ,又∵∠ADC=∠BDE ,∵//BE AC ,∴EBD C ∠=∠,E CAD ∠=∠,∴△BED ≌△CAD (ASA ),或△BED ≌△CAD (AAS ),故答案为:SAS 或AAS ;(2)∵△BED ≌△CAD ,∴AC=BE=8,在△ABE 中,AB-BE <AE <AB+BE ,∴4<2AD <20,∴2<AD <10,故答案为:2<AD <10;(3)过点B 作//BG AC 交AD 的延长线于点G ,则CAD BGD ∠=∠∵AD 是中线,∴BD CD =在ADC 和GDB △中∵CAD BGD ∠=∠,ADC GDB ∠=∠,BD CD =,∴ADC GDB ≌△△∴BG CA =∵AE EF =∴EAF AFE ∠=∠又∵CAD BGD ∠=∠,AFE BFG ∠=∠∴BGD BFG ∠=∠∴BG BF =,又∵BG CA =,∴BF AC =;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的三边关系,添加恰当辅助线构造全等三角形是本题的关键.22.图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.23.(1)见解析;(2)见解析.【分析】(1)作∠CAE=∠C 即可;(2)延长BA ,根据两直线平行,同位角相等,有∠EAF=∠B ,由(1)可知∠CAE=∠C ,再根据AB=AC ,可得∠B=∠C ,等量替换之后即可得证.【详解】(1)射线AE 为所求;(2)证明:如图所示,延长BA ,∵//AE BC ,∴∠EAF=∠B ,∠CAE=∠C ,∵AB=AC ,∴∠B=∠C ,∴∠EAF=∠CAE ,∴AE 是ABC 的一个外角角平分线.【点睛】本题考查了平行线的性质和判定,等腰三角形的性质和角平分线的判定等知识,掌握相关知识是解题的关键.24.(1)(0,3)A ,(3,0)B ,等腰直角;(2)①见解析;②点 (0,3)G -;(3)AP AN PM =+,证明见解析.【分析】(1)根据偶次方与绝对值的非负性,解得a b 、的值,即可解得点A 、B 的坐标,继而根据等腰直角三角形的判定方法解题;(2)①由等角的余角相等,解得BAD ACE =∠∠,结合(1)中结论,进而证明AEC BDA ≌△△(AAS),即可解题;②由AEC BDA ≌△△可证CAE ABD ∠=∠,继而得到GAE CBD ∠=∠,设CF 交y 轴于点H ,根据等角的余角相等,得到HGE OCH ∠=∠,继而证明AGE BCD ≌△△(AAS)解得AG 、OG 的长即可解题;(3)在AP 上截取AH AN =,连接MH ,设NMO α∠=,分别解得45AMO α∠=︒+,=45NAM α∠︒-,由角平分线的性质解得2APO α∠=,45HAM α∠=︒-,进而得到NAM HAM ∠=∠,即可证明AMN AMH ≌(SAS),继而证明PMH PHM ∠=∠,PH PM =即可解题.【详解】(1)269||0a a a b -++-=2(3)||0a a b ∴-+-=3,3a b a ∴===(0,3)A ∴,(3,0)B ,(3,0)C -,AO OB CO AO ∴==90AOB AOC ∠=∠=︒45ACO ABO ∴∠=∠=︒90CAB ∴∠=︒()AOC AOB SAS ∴≅AC AB ∴=ABC ∴为等腰直角三角形,故答案为:(0,3)A ,(3,0)B ,等腰直角;(2)①BD l ⊥,CE l ⊥90BDA AEC ∴∠=∠=︒90,90BAD CAE CAE ACE ∠+∠=︒∠+∠=︒BAD ACE ∴∠=∠AC AB =AEC BDA ∴≌(AAS),∴BD AE =.②AEC BDA ≌ CAE ABD ∴∠=∠45CAO ABO ∠=∠=︒GAE CBD ∴∠=∠,设CF 交y 轴于点HEF DC ⊥90CFG ∴∠=︒90FGH FHG ∴∠+∠=︒90COH ∠=︒90OCH CHO ∴∠+∠=︒∴CHO FHG ∠=∠HGE OCH ∴∠=∠又∵AE BD =∴AGE BCD ≌△△(AAS)∴6AG BC ==又∵3AO =,∴3OG =∴点(0,3)G -.(3)AP AN PM =+.证明过程如下:在AP 上截取AH AN =,连接MH ,设NMO α∠=,45AMN ∠=︒45AMO α∴∠=︒+,∴()904545NAM αα∠=︒-︒+=︒-,又∵//MN PQ∴QPO NMO α∠=∠=,∵PQ 平分APO ∠∴2APO α∠=∴45245HAM ααα∠=︒+-=︒-∴NAM HAM ∠=∠又∵AN AH =,AM AM =∴AMN AMH ≌(SAS)∴45AMH AMN ∠=∠=︒∴90PMH α∠=︒-, 又∵()454590PHM αα∠=︒+︒-=︒-∴PMH PHM ∠=∠∴PH PM ==+=+.∴AP AH PH AN PM【点睛】本题考查全等三角形的判定与性质、等腰直角三角形、角平分线的性质、平行线的性质、绝对值的非负性、偶次方的非负性等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.见解析【分析】由已知可得∠ABD=∠D,从而得到AB=AD,进而得到AC=AD.【详解】证明:∵BD是∠ABC 的平分线,∴∠ABD=∠CBD,又AD//BC,∴∠CBD=∠D,∴∠ABD=∠D,∴AB=AD,∵AB=AC,∴AC=AD.【点睛】本题考查等腰三角形的性质与判定,熟练掌握平行线的性质、角平分线的定义、等腰三角形的判定与性质是解题关键.26.(1)-2,-5;(2)见解析;(3)10【分析】(1)根据轴对称的性质解答;(2)根据轴对称的性质作图;(3)利用割补法求解.【详解】(1)根据坐标系知点C坐标为(-2,5),∴点C关于x对称的点的坐标(-2,-5),故答案为:-2,-5;(2)如图,△A′B′C′即为所求;(3)1117537225510222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:10.【点睛】此题考查关于坐标轴对称的性质:关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等.。
(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》检测题(答案解析)(3)
一、选择题1.已知(1,3)A -,(2,1)B -,现将线段AB 平移至11A B .若点1(,1)A a ,1(3,)B b -,则a b +=( ).A .6B .1-C .2D .2-2.下列图案中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D . 3.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.如图,△ABC 中,∠ACB =90°,∠ABC =40°.将△ABC 绕点B 逆时针旋转得到△A ′BC ′,使点C 的对应点C ′恰好落在边AB 上,则∠CAA ′的度数是( )A .50°B .70°C .110°D .120° 5.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是( )A .B .C .D .7.如图,点A ,B 的坐标分别为(1,1)、(3,2),将△ABC 绕点A 按逆时针方向旋转90°,得到△A'B'C',则B'点的坐标为( )A .(﹣1,3)B .(-1,2)C .(0,2)D .(0,3) 8.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 9.下列标志中是中心对称图形的是( )A .B .C .D . 10.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- 11.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.如图,在ABC 中,70,30B BAC ∠=︒∠=︒,将ABC 绕点C 顺时针旋转得到,EDC 当点B 的对应点D 恰好落在AC 上时,连接,AE 则AED ∠的度数为( )A .40B .35C .25D .20二、填空题13.如图,ABC 是等边三角形,D 为BC 边上的点,ABD △经旋转后到达ACE △的位置,若15CAE ∠=︒,那么DAC ∠=_____.14.如图在△ABC 中,∠ACB =90°,∠BAC =30°,将△ABC 绕C 点按逆时针方向旋转α角(0°<α<90°),得到△A′B′C ,设A′C 交AB 边于D ,连结AA′,若△AA′D 是等腰三角形,则旋转角α的度数为_____.15.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()0,1,()1,0,()1,0-,一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点1P 与点2P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称,第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称……照此规律重复下去,则点2021P 的坐标为_________.16.如图,在正方形ABCD 中,点M 是边CD 的中点,那么正方形ABCD 绕点M 至少旋转_________度与它本身重合.17.在平面直角坐标系xoy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转90°得到OA′, 则点A′的坐标是____________.18.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.19.如图,三角形DEF 是由三角形ABC 通过平移得到,且点B ,E ,C ,F 在同一条直线上,若14BF =,4EC =,则BE 的长度是______.20.如图,将△ABC 沿BC 方向平移到△DEF ,若A 、D 间的距离为1,CE =2,则BF =_____.三、解答题21.如图,ABC 中,90C ∠=︒.ABC 绕点B 逆时针旋转,旋转角为α,点C '为点C 的对应点.(1)请用尺规作图法画出旋转后的A BC ''△;(2)若90α=︒,3BC =,4AC =.求A A '的长.22.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4),按下列要求作图:(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;23.如图,一次函数2y x b =+的图像经过点(1,3)M ,且与x 轴,y 轴分别交于,A B 两点.(1)填空:b = ;(2)将该直线绕点A 顺时针旋转45至直线l ,过点B 作BC AB ⊥交直线l 于点C ,求点C 的坐标及直线l 的函数表达式.24.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上,点A 的坐标是(3,1)--.(1)将ABC 关于x 轴对称得到111A B C △,画出111A B C △,并写出点1B 的坐标; (2)把111A B C △平移,使点B 平移到2(3,4)B ,请作出111A B C △平移后的222A B C △,并写出2A 的坐标;(3)已知ABC 中有一点(,)D a b ,求222A B C △中的对应点2D 的坐标.25.(1)请画出△ABC 关于原点O 对称的△A 1B 1C 1;(2)请画出△ABC 绕点B 逆时针旋转90°后的△A 2BC 2;(3)写出A 2 和C 2两点坐标.26.如图,在长方形ABCD 中,8AB cm =,BC 10cm =,现将长方形ABCD 向右平移xcm ,再向下平移()1x cm +后到长方形''''A B C D 的位置,(1)当4x =时,长方形ABCD 与长方形A'B'C'D'的重叠部分面积等于________2cm . (2)如图,用x 的代数式表示长方形ABCD 与长方形A B C D ''''的重叠部分的面积. (3)如图,用x 的代数式表示六边形'''ABB C D D 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平移的性质,通过列方程并求解,即可得到a 和b 的值,并代入到代数式计算,即可得到答案.【详解】根据题意得:()()131b --=---,132a -=-∴3b =-,2a =∴()231a b +=+-=-故选:B .【点睛】本题考查了平移、一元一次方程、代数式的知识;解题的关键是熟练掌握平移的性质,从而完成求解.2.B解析:B【分析】根据中心对称图形和轴对称图形的概念进行判断即可;【详解】A 、是中心对称图形,不是轴对称图形,故本选项错误;B 、既是中心对称图形,又是轴对称图形,故本选项正确;C 、是中心对称图形,不是轴对称图形,故本选项错误;D 、是中心对称图形,不是轴对称图形,故本选项错误;故选:B .【点睛】本题考查了中心对称图形和轴对称图形的概念,正确掌握知识点是解题的关键; 3.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A 、是中心对称图形,不是轴对称图形,故本选项不合题意;B 、不是中心对称图形,但是轴对称图形,故本选项不合题意;C 、是中心对称图形,又是轴对称图形,故本选项合题意;D 、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C .【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D【分析】根据旋转可得∠A′BA =∠ABC =40°,A′B =AB ,得∠BAA′=70°,根据∠CAA'=∠CAB +∠BAA′,进而可得∠CAA'的度数.【详解】解:∵∠ACB =90°,∠ABC =40°,∴∠CAB=90°−∠ABC=90°−40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=1(180°−40°)=70°,2∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.【点睛】本题考查了旋转的性质、等腰三角形的性质等知识,解决本题的关键是熟练掌握旋转的性质并能准确利用旋转性质得出线段与角的等量关系.5.B解析:B【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A、是轴对称图形不是中心对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形不是中心对称图形,故不符合题意;D、是轴对称图形不是中心对称图形,故不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;6.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A、是轴对称图形不是中心对称图形,故不符合题意;B、是轴对称图形不是中心对称图形,故不符合题意;C、既不是轴对称图形也不是中心对称图形,故符合题意;D、既是轴对称图形又是中心对称图形,故不符合题意;故选:C.【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;7.D解析:D【分析】根据题意画出图形,然后结合直角坐标系即可得出B'的坐标.【详解】解:如图,根据图形可得:点B′坐标为(0,3),故选:D.【点睛】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.8.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既不是轴对称图形,也不是中心对称图形,故此选项错误;故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.B解析:B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是中心对称图形,符合题意;C、既不是轴对称图形,也不是中心对称的图形,不合题意;D、是轴对称图形,不是中心对称的图形,不合题意.故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.10.C解析:C【分析】根据平移的性质,以及点A,B的坐标,可知点A的横坐标加上了1,纵坐标加上了1,所以平移方法是:先向左平移1个单位,再向上平移3个单位,根据点B的平移方法与A点相同,即可得到答案.【详解】∵A(-2,-1)平移后对应点A'的坐标为(-3,2),∴A点的平移方法是:先向左平移1个单位,再向上平移3个单位,∴B点的平移方法与A点的平移方法是相同的,∴B(0,-2)平移后B'的坐标是:(0-1,-2+3)即(-1,1).故选:C.【点睛】本题考查了坐标与图形的变化-平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.11.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是中心对称图形也是轴对称图形,故此选项正确;D、是轴对称图形,但不是中心对称图形,故此选项错误.故选C.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.12.D解析:D【分析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得∠ACE=∠ACB=80°,AC=CE,∠BAC=∠CED=30°,由等腰三角形的性质得到∠AEC=50°,由角的和差即可求解.【详解】解:∵∠B=70°,∠BAC=30°,∴∠ACB =80°,∵将△ABC 绕点C 顺时针旋转得△EDC ,∴∠ACE =∠ACB =80°,AC =CE ,∠BAC =∠CED =30°,∴∠CEA =50°,∴∠AED =∠AEC -∠CED =20°,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.45°【分析】由△ABD 经旋转后到达△ACE 的位置可知∠BAD=即可求解【详解】解:∵△ABC 是等边三角形∴∠BAC=60°∵△ABD 经旋转后到达△ACE 的位置∴∠BAD=∴∠DAC=故答案为:【点解析:45°【分析】由△ABD 经旋转后到达△ACE 的位置,可知∠BAD=15CAE ∠=︒,即可求解.【详解】解:∵△ABC 是等边三角形,∴∠BAC=60°,∵△ABD 经旋转后到达△ACE 的位置,∴∠BAD=15CAE ∠=︒,∴∠DAC=BAC 45BAD ∠-∠=︒.故答案为:45︒.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等.也考查了等边三角形的性质. 14.20°或40°【分析】根据旋转的性质可得AC =CA 根据等腰三角形的两底角相等求出∠AAC =∠CAA 再表示出∠DAA 根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ADA 然后分①∠AAC =∠D解析:20°或40°【分析】根据旋转的性质可得AC =CA',根据等腰三角形的两底角相等求出∠AA'C =∠CAA',再表示出∠DAA',根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ADA',然后分①∠AA'C =∠DAA',②∠AA'C =∠ADA',③∠DAA'=∠ADA'三种情况讨论求解.【详解】解:∵△ABC 绕C 点逆时针方向旋转得到△A'B'C ,∴AC =CA',∴∠AA'C=∠CAA'=12(180°﹣α),∴∠DAA'=∠CAA'﹣∠BAC=12(180°﹣α)﹣30°,根据三角形的外角性质,∠ADA'=∠BAC+∠ACA'=30°+α,△ADA'是等腰三角形,分三种情况讨论,①∠AA'C=∠DAA'时,12(180°﹣α)=12(180°﹣α)﹣30°,无解,②∠AA'C=∠ADA'时,12(180°﹣α)=30°+α,解得α=40°,③∠DAA'=∠ADA'时,12(180°﹣α)﹣30°=30°+α,解得α=20°,综上所述,旋转角α度数为20°或40°.故答案为:20°或40°.【点睛】考核知识点:旋转性质.理解旋转的性质是解题关键.15.(-20)【分析】计算出前几次跳跃后点P1P2P3P4P5P6P7的坐标可以得出规律继而可求出点的坐标【详解】解:根据题意得:点P1(02)P2(2-2)P3(-42)P4(40)P5(-20)P6解析:(-2,0)【分析】计算出前几次跳跃后,点P1、P2、P3、P4、P5、P6、P7的坐标,可以得出规律,继而可求出点2021P的坐标.【详解】解:根据题意得:点P1(0,2)、P2(2,-2)、P3(-4,2)、P4(4,0)、P5(-2,0)、P6(0,0)、P7(0,2),,∴每6次为一个循环,∵202163365÷=,∴点2021P的坐标与点P5的坐标相同,即为(-2,0),故答案为:(-2,0).【点睛】此题考查坐标的变化规律探究,中心对称的定义,正确掌握中心对称的定义确定点的坐标,发现规律并运用解决问题是解题的关键.16.360【分析】根据旋转对称图形的定义即可得【详解】点M是边CD的中点不是正方形ABCD的中心正方形ABCD绕点M至少旋转360度才能与它本身重合故答案为:360【点睛】本题考查了旋转对称图形掌握理解解析:360【分析】根据旋转对称图形的定义即可得.【详解】点M 是边CD 的中点,不是正方形ABCD 的中心,∴正方形ABCD 绕点M 至少旋转360度才能与它本身重合,故答案为:360.【点睛】本题考查了旋转对称图形,掌握理解定义是解题关键.17.【分析】先作出图形然后写出坐标即可【详解】解:如图:则A′的坐标是故答案是【点睛】本题主要考查了坐标与图形的旋转变换根据题意正确画出图形成为解答本题的关键解析:()3,2-【分析】先作出图形,然后写出坐标即可.【详解】解:如图:则A′的坐标是()3,2-.故答案是()3,2-.【点睛】本题主要考查了坐标与图形的旋转变换,根据题意正确画出图形成为解答本题的关键. 18.30【分析】根据旋转性质及直角三角形两锐角互余可得△E′CB 是等边三角形从而得出∠ACE′的度数再根据∠ACE′+∠ACE´=90°得出△CDE 旋转的度数【详解】解:根据题意和旋转性质可得:CE´= 解析:30【分析】根据旋转性质及直角三角形两锐角互余,可得△E′CB 是等边三角形,从而得出∠ACE′的度数,再根据∠ACE′+∠ACE´=90°得出△CDE 旋转的度数. 【详解】解:根据题意和旋转性质可得:CE´=CE=BC , ∵三角板是两块大小一样且含有30°的角,∴∠B=60°∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到△ABC等边三角形.19.5【分析】根据平移的性质得BE=CF再利用BE+EC+CF=BF得到BE+4+BE=14然后解方程即可【详解】∵三角形DEF是由三角形ABC通过平移得到∴BE=CF∵BE+EC+CF=BF∴BE+4解析:5【分析】根据平移的性质得BE=CF,再利用BE+EC+CF=BF得到BE+4+BE=14,然后解方程即可.【详解】∵三角形DEF是由三角形ABC通过平移得到,∴BE=CF,∵BE+EC+CF=BF,∴BE+4+BE=14,∴BE=5.故答案为5.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20.4【分析】根据平移的性质由AD=1得到BE=1CF=1再根据BF=BE+EC+CF计算即可得到答案;【详解】解:根据平移的性质由AD=1得:BE=1CF=1由∵BF=BE+EC+CF∴BF=1+2+解析:4【分析】根据平移的性质,由AD=1得到BE=1,CF=1,再根据BF= BE+EC+CF,计算即可得到答案;【详解】解:根据平移的性质,由AD=1得:BE=1,CF=1,由∵BF= BE+EC+CF,∴BF= 1+2+1=4,故答案为:4;【点睛】本题主要考查了平移的性质,能根据AD=1得到BE=1,CF=1是解题的关键.三、解答题21.(1)作图见解析,(2)52.【分析】(1)作BA′=BA ,A′C′=AC 即可;(2)根据勾股定理求出AB ,由旋转可知,△AB A′是等腰直角三角形,根据勾股定理可求A A '. 【详解】解:(1)旋转后的A BC ''△如图所示;(2)∵90C ∠=︒,3BC =,4AC =, ∴2222435AB AC BC +=+=,由旋转可知,∠ABA′=90°,AB=A′B=5,22225552AA AB A B ''=+=+=【点睛】本题考查了旋转作图和性质,勾股定理,解题关键是熟练运用旋转性质和勾股定理.22.(1)见解析;A1(﹣4,1);(2)见解析,B2(﹣1,5)【分析】(1)直接利用平移的性质,将A、B、C三点往左平移5个单位,则A、B、C各个顶点对应的横坐标分别减5即可得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)先把点A、B、C向左平移5个单位,得到A1、B1、C1,再顺次连结A1B1,B1C1,C1A1,如图所示:△A1B1C1,即为所求,点A1(﹣4,1)(2)连结OA,OB,OC,先把点A、B、C绕点O逆时针方向旋转90,得到A2、B2、C2,再顺次连结A2B2,B2C2,C2A2,如图所示:△A2B2C2,点B2(﹣1,5).【点睛】本题考查了平移、旋转图形的变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.(1)1;(2)11,2C ⎛⎫ ⎪⎝⎭,11:36l y x =+ 【分析】(1)直接把点(1,3)M 代入,即可求出b 的值;(2)先求出直线AB 的解析式,以及点A 、B 的坐标,过点C 作CD ⊥y 轴,垂足为D ,由旋转的性质,则AB=BC ,然后证明△ABO ≌△BCD ,得到BD=AO ,CD=BO ,即可求出点C 的坐标,然后求出直线AC 的解析式即可.【详解】解:(1)根据题意,∵一次函数2y x b =+的图像经过点(1,3)M ,∴321b =⨯+,∴1b =,故答案为:1;(2)由(1)可知,直线AB 的解析式为:21y x =+,令x=0,则y=1,令y=0,则12x =-, ∴点A 为(12-,0),点B 为(0,1), ∴OA=12,OB=1; 由旋转的性质,得AB BC =,∵BC AB ⊥∴∠ABC=90°,过点C 作CD ⊥y 轴,垂足为D ,如图:∵∠BDC=90°,∴∠CBD+∠BCD=∠CBD+∠ABD=90°,∴∠BCD=∠ABD ,同理,∠CBD=∠BAO ,∵AB=BC ,∴△ABO ≌△BCD ,∴BD=AO=12,CD=BO=1, ∴OD=11122OB BD -=-=, ∴点C 的坐标为(1,12); 设直线l 的表达式为y mx n =+,∵直线经过点A 、C ,则12102m n m n ⎧+=⎪⎪⎨⎪-+=⎪⎩,解得:1316m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线l 的表达式为1136y x =+. 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,一次函数的性质,以及余角的性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,构造全等三角形进行解题. 24.(1)图见解析,点B 1的坐标为(-2,4);(2)图见解析,A 2的坐标为(2,1);(3)D 2的坐标为(a+5,-b ).【分析】(1)分别作出点A 、B 、C 关于x 轴对称得到的对应点,再顺次连接可得;(2)根据B 1(-2,4)和2(3,4)B ,可得平移方式为向右平移5个单位,分别作出△A 1B 1C 1向右平移5个单位所得对应点,再顺次连接可得;(3)根据图形的变换方式即可得出D 点的变换方式,从而可得点2D 的坐标.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,点B 1的坐标为(-2,4);(2)如图所示,△A 2B 2C 2即为所求,A 2的坐标为(2,1);(3)△A 2B 2C 2中的对应点D 2的坐标为(a+5,-b ).【点睛】本题考查坐标与图形变换—轴对称和平移.理解点的变换和对应图形变换的关系是解题关键.25.(1)见解析;(2)见解析;(3)A 2(-2,2)和C 2(-1,4)【分析】(1)根据关于中心对称的点的性质,分别找到对应点位置,再依次连接即可画出图形; (2)利用旋转的性质找到对应点位置,再依次连接即可画出图形;(3)根据A 2 和C 2两点在坐标系的位置,即可写出坐标.【详解】解:(1)如图所示:△A 1B 1C 1即为所求;(2)如图所示:△A 2BC 2即为所求;(3)由题意可知:A 2(-2,2)和C 2(-1,4).【点睛】此题主要考查了中心对称及旋转变换,掌握中心对称与旋转的定义并能准确找出对应点位置是解题的关键.26.(1)218cm ;(2)22(1770)x x cm -+;(3)1890x +【分析】(1)根据平移方向和距离可求出重叠部分的长和宽,从而可求出重叠部分的面积; (2)用x 表示出重叠部分的长和宽,然后根据长方形面积公式列式整理即可;(3)利用平移前后长方形的面积和加上两个正方形的面积,然后再送去重叠部分的面积列式进行计算即可得解.【详解】解:(1)将长方形ABCD 向右平移4cm ,再向下平移5cm所以,重叠部分的长为:10-4=6cm ,宽为:8-5=3cm ;因此,重叠部分的面积为:263=18cm ⨯;(2)∵8AB cm =,BC 10cm =,∴重叠部分的长为(10-x )cm ,宽为[8-(x+1)]cm ,∴重叠部分的面积=(10)[8(1)]x x --+=(10)(7)x x -- .=22(1770)x x cm -+(3)211082(1)2(1770)2S x x x x =⨯⨯++⨯--+ =1890x +.【点睛】本题考查了平移的性质和整式的混合运算,认准图形,准确列出所求部分的面积是解题的关键.。
初中数学第三单元测试题及答案
初中数学第三单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 计算下列哪个表达式的结果是正数?A. -3 + 2B. 4 - 5C. 3 × 0D. -2 ÷ -13. 如果一个数的平方等于16,这个数是多少?A. 4B. -4C. 4 或 -4D. 164. 哪个分数是最接近0的?A. 1/2B. 1/3C. -1/4D. -1/35. 下列哪个是正确的因式分解?A. x^2 - 4 = (x + 4)(x - 4)B. x^2 + 4x + 4 = (x + 2)^2C. x^2 - 9 = (x - 3)(x - 3)D. x^2 + 2x + 1 = (x + 1)^2二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可以是______。
7. 如果一个角的度数是30°,那么它的补角是______。
8. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。
9. 一个数的立方是-27,这个数是______。
10. 一个数的倒数是1/2,这个数是______。
三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-2) × (-3) + 4 ÷ 2。
12. 计算下列表达式的值:(-3)^2 - 4 × 2 + 1。
13. 计算下列表达式的值:(-1/2) × 2 - 3 ÷ (-6)。
四、解答题(每题5分,共10分)14. 一个长方形的长是15厘米,宽是10厘米,求这个长方形的周长。
15. 如果一个圆的半径是7厘米,求这个圆的面积。
五、证明题(每题5分,共5分)16. 证明:对于任意实数a和b,(a + b)^2 = a^2 + 2ab + b^2。
初中数学第三单元测试题答案一、选择题1. B2. D3. C4. C5. B二、填空题6. ±57. 150°8. 59. -310. 2三、计算题11. 712. 113. 1四、解答题14. 周长= 2 × (长 + 宽) = 2 × (15 + 10) = 50厘米15. 面积= π × 半径^2 = π × 7^2 = 49π厘米^2五、证明题16. 证明:(a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2,因为ab和ba是相同的,所以可以合并为2ab。
(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测(有答案解析)(3)
一、选择题1.某市一周平均气温(℃)如图所示,下列说法不正确的是()A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低2.某商店进了一批玩具,出售时要在进价的基础上加一定的利润,其销售个数x与售价y 如下表:个数x/个1234…售价y/元8+0.316+0.624+0.932+1.2…下列用销售个数x表示售价y的关系式中,正确的是 ( )A.y=(8+0.3)x B.y=8x+0.3 C.y=8+0.3x D.y=8+0.3+x3.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t的关系的大致图象是()A.B.C.D.4.下列说法不正确的是()A.表格可以准确的表示两个变量的数值关系B.图象能直观的反应两个变量之间的数量关系C.关系式是表示两个变量之间关系的唯一方法D.当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应5.小明出校门后先加速行驶一段距离,然后以大小不变的速度行驶,在距家门不远的地方开始减速,最后停下,下面可以近似地刻画出以上情况的是().A.B.C.D.6.正常人的体温一般在37℃左右,在不同时刻体温也在变化.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是().A.清晨5时体温最低B.下午5时体温最高≤≤C.这一天中小明体温T(单位:℃)的范围是36.5T37.5D.从5时至24时,小明体温一直在升高7.如图是某市一天的气温T(℃)随时间t(时)变化的图象,那么这天的()A.最高气温是10 ℃,最低气温是2 ℃B.最高气温是6 ℃,最低气温是2 ℃C.最高气温是6 ℃,最低气温是-2 ℃D.最高气温是10 ℃,最低气温是-2 ℃8.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据:支撑物高度h1020304050607080(cm)小车下滑时间t4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50(s)下列说法错误的是()A.当h=50cm时,t=1.89sB.随着h逐渐升高,t逐渐变小C .h 每增加10cm ,t 减小1.23sD .随着h 逐渐升高,小车的速度逐渐加快9.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( ) A .Q =0.2t B .Q =20﹣0.2t C .t =0.2Q D .t =20﹣0.2Q10.根据如图所示的程序,若输入的自变量x 的值为1-,则输出的因变量y 的值为( ).A .1-B .2-C .13D .311.如图,在ABC △中,6BC =,AD 为BC 边上的高,A 点沿AD 所在的直线运动时,三角形的面积发生变化,当ABC △的面积为48时,AD 的长为( ).A .8B .16C .4D .2412.如图,在梯形ABCD 中,AD ∥BC ,∠ABC=60º,AB=DC=2,AD=1,R 、P 分别是BC 、CD 边上的动点(点R 、B 不重合,点P 、C 不重合),E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C.D.二、填空题13.某物流公司的快递车和货车每天沿同一条路线往返于A、B两地,快递车比货车多往返一趟.如图所示,表示货车距离A地的路程y(单位:h)与所用时间x(单位h)的图像,其间在B地装卸货物2h.已知快递车比货车早1h出发,最后一次返回A地比货车晚1h.若快递车往返途中速度不变,且在A、B两地均不停留,则两车在往返途中相遇的次数为________次.14.地面温度为15 ºC,如果高度每升高1千米,气温下降6 ºC,则高度h(千米)与气温t(ºC)之间的关系式为___________15.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.16.根据图中的程序,当输入x=2时,输出的结果y=_______.17.若用一根长16米的铁丝围成一个长方形,长方形的面积S(m2)与长方形的一条边长x(m)之间的关系如下表:x/m1234567S/m2712151615127根据表格中两个变量之间的关系,写出你发现的一条信息___________________.18.用一水管向某容器内持续注水,设单位时间内注入的水量保持不变;在注水过程中,表示容器内水深h与注水时间t的关系有如图所示的A,B,C,D四个图象,它们分别与E,F,G,H四种容器中的其中一种相对应,请你把相对应容器的字母填在下面的横线上.A→____________;B→____________;C→____________;D→____________.19.小英、爸爸、妈妈同时从家中出发到达同一目的地后都立即返回,小英去时骑自行车,返回时步行;妈妈去时步行,返回时骑自行车;爸爸往返都步行,三人步行的速度不等,小英与妈妈骑车的速度相等,每个人的行走路程与时间的关系分别是下图中的一个,走完一个往返,小英用时____________,爸爸用时____________,妈妈用时____________.20.如图,梯形的上底长是5 cm,下底长是11 cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是____________,因变量是____________;(2)梯形的面积y(cm2)与高x(cm)之间的关系式为____________;(3)当梯形的高由10 cm变化到1 cm时,梯形的面积由____________变化到____________.三、解答题21.如图①所示,在△ABC中,AD是三角形的高,且AD=6 cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8 cm.(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(2)当E点停止后,求△ABE的面积.22.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.23.弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如表所示.kg01234567所挂物体的质量()cm1212.51313.51414.51515.5弹簧的长度()(1)上表反映了哪些变量之间的关系?哪个是自变量,哪个是因变量?(2)当物体的质量为2kg时,弹簧的长度是多少?(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)如果物体的质量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;(5)当物体的质量为2.5kg时,根据(4)的关系式,求弹簧的长度.24.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念257101213141720所用时间(x)对概念的47.853.556.359.059.859.959.858.355.0接受能力(y)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是5分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?25.已知函数y=x3+2,不画图象,解答下列问题:(1)判断A(0,2)、B(2,0)、C39﹣1)三点是否在该函数图象上,说明理由;(2)若点P(a,0)、Q3 b)都在该函数的图象上,试求a、b的值.26.科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(°C)有关,当气温是0°C时,音速是331米/秒;当气温是5°C时,音速是334米/秒;当气温是10°C时,音速是337米/秒;气温是15°C时,音速是340米/秒;气温是20℃时,音速是343米/秒;气温是25°C时,音速是346米/秒;气温是30°C时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪一个是对应的值?(3)当气温是35°C时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据图象分析判断即可.【详解】由图象可得:星期二的平均气温最高,故A正确;星期四到星期日天气逐渐转暖,故B正确;这一周最高气温与最低气温相差12-4=8℃,故C错误;星期四的平均气温最低,故D正确;故选C.【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.2.A解析:A【解析】【分析】本题通过观察表格内的x与y的关系,可知y的值相对x=1时是成倍增长的,由此可得出方程.【详解】依题意得:y=(8+0.3)x;故选A.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.3.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t 的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.4.C解析:C【解析】A. 表格可以准确的表示两个变量的数值关系,正确;B. 图象能直观的反应两个变量之间的数量关系,正确;C. 两个变量间的关系能用关系式表示,还能用列表法和图象法表示,故错误;D. 当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应,正确, 故选C.5.C解析:C 【解析】从速度变化情况来看,先匀加速行驶,再匀速行驶,最后减速为0, 故选C .【点睛】本题考查了函数的图象,解题的关键是此题主要看速度变化即可,时间只是个先后问题.6.D解析:D 【解析】 观察图象可知:A. 清晨5时体温最低,正确;B. 下午5时体温最高,正确;C. 这一天中小明体温T (单位:℃)的范围是36.537.5T ≤≤,正确;D. 从5时至17时,小明体温一直在升高,故D 选项错误, 故选D.7.D解析:D 【解析】 试题横轴表示时间,纵轴表示温度.温度最高应找到函数图象的最高点所对应的x 值与y 值:为12时,10℃,;温度最低应找到函数图象的最低点所对应的x 值与y 值:为4时,-2℃.D 正确. 故选D .8.C解析:C 【解析】A .当h=50cm 时,t=1.89s ,故A 正确;B .随着h 逐渐升高,t 逐渐变小,故B 正确;C .h 每增加10cm ,t 减小的值不一定,故C 错;D .随着h 逐渐升高,小车的时间减少,小车的速度逐渐加快,故D 正确; 故选:C .9.B解析:B 【分析】根据“油箱中剩余的油量=原有存油量-流出的油量”结合题中已知条件列式表达即可.【详解】由题意可得:Q=20-0.2t.故选B.【点睛】读懂题意,知道“油箱中剩余的油量=原有存油量-流出的油量”是解答本题的关键. 10.B解析:B【解析】∵输入的自变量x的值为−1,y=x−1的自变量x的取值范围是−1⩽x<0,∴将x=−1代入y=x−1,得y=−1−1=−2,故选:B.11.B解析:B【解析】在△ABC中,BC=6,AD为BC边上的高,A点沿AD所在的直线运动时,三角形的面积发生变化,当△ABC的面积为48时,1482BC AD⋅=,即12×6·AD=48,∴AD=16,故选B.12.C解析:C【解析】试题过点A作AG⊥BC,垂足为G,∵∠ABC=60°,AB=2,∴AG=sin∠33BG=cos∠ABC•AB=12×2=1,∵BR=x,∴GR=|x−1|,∴AR2=AG2+GR2=3)2+(1-x)2=4+x2-2x,∵E、F分别是AP、RP 的中点,∴EF=12 AR,∴EF 2=14AR 2, ∴y 2=14(4+x 2-2x ) ∵y >0,∴y=21-2+42x x , ∵当x=3时,y=7, ∴从图象可知A 、B 、D 不符合题意,C 符合, 故选C .【点睛】此题考查了动点问题的函数图象,解题的关键是根据余弦定理和中位线定理得出y 与x 的函数关系,是一道综合题.二、填空题13.2【分析】根据图象可知货车往返AB 一趟需8小时则快递车往返AB 一趟需5小时依此画出图象再观察其图象与货车图象相交的次数即可【详解】解:根据题意可知货车往返AB 一趟需8小时则快递车往返AB 一趟需5小时解析:2 【分析】根据图象可知货车往返A 、B 一趟需8小时,则快递车往返A 、B 一趟需5小时,依此画出图象,再观察其图象与货车图象相交的次数即可. 【详解】解:根据题意可知货车往返A 、B 一趟需8小时,则快递车往返A 、B 一趟需5小时,在图上作出快递车距离A 地的路程y (单位:km )与所用时间x (单位:h )的图象,由图象可知:两车在往返途中相遇的次数为2次. 故答案为:2.【点睛】本题考查了利用图象表示变量之间的关系,正确理解题意、画出快递车的函数图象是解题关键.14.h=15-t6【解析】【分析】升高h (千米)就可求得温度的下降值进而求得h千米处的温度【详解】高度h(千米)与气温t(℃)之间的关系式为:h=15-t6【点睛】正确理解高度每升高1千米气温下降6℃的解析:h=.【解析】【分析】升高h(千米)就可求得温度的下降值,进而求得h千米处的温度.【详解】高度h(千米)与气温t(℃)之间的关系式为:h=.【点睛】正确理解高度每升高1千米,气温下降6℃,的含义是解题关键.15.①②③【分析】分析图象x=2时y值相等故买两件时售价一样当买1件时乙家的售价比甲家低买3件时甲家较合算【详解】分析题意和图象可知:①售2件时甲乙两家售价一样故此题正确;②买1件时买乙家的合算故此题正解析:①②③【分析】分析图象,x=2时y值相等,故买两件时售价一样,当买1件时乙家的售价比甲家低.买3件时,甲家较合算.【详解】分析题意和图象可知:①售2件时甲、乙两家售价一样,故此题正确;②买1件时买乙家的合算,故此题正确;③买3件时买甲家的合算,故此题正确;④买乙家的1件售价约为1元,故此题错误.故答案为①②③.【点睛】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16.3【解析】解:当输入x=2时因为x>1所以y=﹣x+5=﹣2+5=3故答案为3 解析:3【解析】解:当输入x=2时,因为x>1,所以y=﹣x+5=﹣2+5=3.故答案为3.17.长方形的周长不变时长与宽的差越小长方形的面积越大(答案不唯一)【解析】观察表格可以发现:长方形的周长不变时长与宽的差越小长方形的面积越大故答案为长方形的周长不变时长与宽的差越小长方形的面积越大(答案解析:长方形的周长不变时,长与宽的差越小,长方形的面积越大.(答案不唯一)【解析】观察表格可以发现:长方形的周长不变时,长与宽的差越小,长方形的面积越大,故答案为长方形的周长不变时,长与宽的差越小,长方形的面积越大.(答案不唯一)18.GEHF【解析】试题分析:先根据函数的四个图象分析其变化再找出相应的容器即可试题解析:G E H F【解析】试题分析:先根据函数的四个图象分析其变化,再找出相应的容器即可.试题A、由函数的图象可知,当向容器中注水时,水面先急剧升高,再缓慢升高,所以对应的容器应是底部较窄,缓慢变宽,故应对应G;B、由函数的图象可知,当向容器中注水时,一开始一段容器应较宽,且时直面,后一段较窄,也是直面,故应对应E;C、函数图象先缓慢上升,再急剧上升,故应对应H;D、由函数的图象可知,当向容器中注水时,水的高度应先上升较快,再比较缓慢,最后急剧上升,故应对应F.故答案为G、E、H、F.19.min24min26min【解析】∵小英去时骑自行车返回时步行∴小英去的时候速度比回来的快即它去的时候花的时间比回来时少∴小英对应的应该是图(2)因此一个往返的时间是21分钟∵妈妈去时步行返回时骑自解析:min 24 min 26 min【解析】∵小英去时骑自行车,返回时步行,∴小英去的时候速度比回来的快,即它去的时候花的时间比回来时少,∴小英对应的应该是图(2).因此一个往返的时间是21分钟.∵妈妈去时步行,返回时骑自行车,∴妈妈去的时候的速度比回来时速度慢,即妈妈去的时候用的时间比回来时长.∴妈妈对应的是图(1).因此妈妈一个往返需要的时间是26分钟.∵爸爸往返都是步行,所以爸爸的往返速度是一样的,即爸爸往返所花的时间一样,∴爸爸对应的是图(3).因此爸爸往返用时是24分钟.故答案为: 21 min, 24 min, 26 min.点睛:本题的关键是找准对应的图象,需要我们从题目出发,根据给出的交通工具,根据实际经验来判断所用的时间.20.梯形的高梯形的面积y=8x80cm28cm2【解析】(1)由题意可知:在上述变化过程中自变量是梯形的高;因变量是梯形的面积;(2)梯形的面积y(cm2)与高x(cm)之间的关系式为:;(3)∵当梯形解析:梯形的高 梯形的面积 y=8x 80cm 2 8cm 2 【解析】(1)由题意可知:在上述变化过程中,自变量是“梯形的高”;因变量是“梯形的面积”;(2)梯形的面积y(cm 2)与高x(cm)之间的关系式为:1(511)82y x x =+=; (3)∵当梯形的高10x =时,梯形的面积10880y =⨯=(cm 2),当梯形的高1x =时,梯形的面积188y =⨯=(cm 2),∴当梯形的高由10cm 变化到1cm 时,梯形的面积由80cm 2变化到8cm 2. 故答案为:(1). 梯形的高 (2). 梯形的面积 (3). y=8x (4). 80cm 2 (5). 8cm 2.三、解答题21.(1)y=9x (0<x≤2);(2)△ABE 的面积是18cm 2. 【分析】根据三角形的面积公式,可得答案. 【详解】(1)由图2可知E 点的速度为3, ∴y=12×3x×AD=9x ,即y=9x (0<x≤2); (2)当E 点停止后,BE=6, ∴x=2时,y=9×2=18. ∴△ABE 的面积是18cm 2. 【点睛】本题考查了函数关系式,三角形的面积公式是解题关键.22.(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息;(3)爷爷每天散步45分钟;(4)爷爷散步时最远离家为900米;(5)爷爷离开家后:20分钟内平均速度是45米/分;30分钟内平均速度是30米/分;45分钟内平均速度是40米/分. 【分析】(1)根据图象中的横纵坐标的意义解答即可;(2)根据图象可看出20分钟到30分钟之间,时间在增加,而路程不变,据此解答即可; (3)根据图象可得45分钟后爷爷离家的距离为0,说明回到了家中,由此可得答案; (4)图象最高点的纵坐标即为爷爷散步时最远离家的距离,据此即可解答; (5)利用时间=路程÷速度求解即可. 【详解】解:(1)爷爷散步的时间与距离之间的关系; (2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).【点睛】本题考查了利用图象表示变量之间的关系,属于常考题型,正确理解图象的横纵坐标表示的意义是解题关键.23.(1)反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)13cm;(3)当物体的质量逐渐增加时弹簧的长度增长;(4)=+;(5)13.25cm.y x120.5【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)由表可知,当物体的质量为2kg时,弹簧的长度是13cm;(3)由表格中的数据可知,弹簧的长度随所挂物体的重量的增加而增加;(4)由表中的数据可知,x=0时,y=12,并且每增加1千克的重量,长度增加0.5cm,所以y=0.5x+12;(5)令x=2.5,代入函数解析式,即可求解.【详解】解:(1)反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)当物体的质量为2kg时,弹簧的长度是13cm;(3)当物体的质量逐渐增加时,弹簧的长度增长;(4)由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量,∴弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式为y=0.5x+12,(5)当x=2.5时,代入函数关系式得:y=12+0.5×2.5=13.25cm.【点睛】本题考查了一次函数的应用,属于基础题,关键在于根据图表信息列出等式,然后变形为函数的形式.24.(1)提出概念所用的时间x和对概念接受能力y两个变量;(2)当时间是5分钟时,学生的接受能力是53.5;(3)当提出概念13分钟时,学生的接受能力最强59.9(4)当2≤x≤13时,y值逐渐增大,学生的接受能力逐步增强;当13≤x≤20时,y值逐渐减小,学生的接受能力逐步降低【分析】(1)根据x,y表示的意义以及函数的概念即可判定;(2)学生的接受能力最强,即y的值最大,即可确定x的值;(3)根据表格信息即可直接写出;(4)根据表格可以得到y的值超过13分钟以后越来越小,即可解题.【详解】解:(1)反映了提出概念所用的时间x和对概念接受能力y两个变量之间的关系;其中x是自变量,y是因变量;(2)提出概念所用的时间为5分钟时, 学生的接受能力是53.5;(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强,当x在13分钟至20分钟的范围内,学生的接受能力逐步降低,∴当提出概念13分钟时,学生的接受能力最强为59.9;(4)当2≤x≤13时,y值逐渐增大,学生的接受能力逐步增强;当13≤x≤20时,y值逐渐减小,学生的接受能力逐步降低.【点睛】本题主要考查了变量的定义,以及正确读表,中等难度,正确理解表中的变量的意义是解题的关键.-25.(1) B,C点不在该函数图象上,A点在该函数图象上;(2) a=36-,b=23【解析】试题分析:(1)分别将A,B,C点代入函数关系式进而判断即可;(2)分别将P,Q点代入函数关系式进而得出答案.试题(1)当x=0时,y=2,当x=2时,y=+2=,当x=时,y=5,故B,C点不在该函数图象上,A点在该函数图象上;(2)当y=0时,0=x3+2,即0=a3+2,-,解得;a==36当x=﹣时,b=×(﹣)3+2,解得:b=2﹣.点睛:本题主要考查了函数关系式以及函数图象上点的坐标性质,正确理解图象上点的坐标性质是解题关键.26.答案见解析【解析】试题分析:(1)将题干中的数据填写在有关气温和音速的2行8列的表格中即可(2)根据变量的定义分析即可完成;(3)结合表格数据,根据传播速度与温度的变化规律即可得出答案;(4)结合表格数据,通过分析得出两个变量之间的关系.试题(1)填表如下:(3)当气温是35℃时,估计音速y可能是:352m/s;(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0,y=331,故两个变量之间的关系为:y=331+35 x.。
(必考题)初中数学七年级数学上册第三单元《整式及其运算》检测(答案解析)(3)
一、选择题1.一串数字的排列规律是:第一个数是2,从第二个数起每一个数与前一个数的倒数之和为1,则第2020个数是( ) A .12-B .1-C .2-D .22.对于多项式534ax bx ++,当1x =时,它的值等于5,那么当1x =-时,它的值为( ) A .5-B .5C .3-D .33.若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式201520172016a b c ++的值为( ) A .2014B .2016C .2-或0D .04.若关于x ,y 的多项式()()222232x xy yxnxy y +---+中不含xy 项,则n 值是( ) A .3-B .3C .32-D .325.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中①,②两张正方形纸片既不重叠也无空隙.已知①号正方形边长为a ,②号正方形边长为b ,则阴影部分的周长是( )A .22a b +B .42a b +C .24a b +D .33a b +6.下列各式的计算,正确的是( )A .235a b ab +=B .2222y y -=C .1055t t t-+=-D .2232m n mn mn -=7.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 8.下列计算正确的是( )A .3a +2a =5a 2B .﹣2ab +2ab =0C .2a 3+3a 2=5a 5D .3a ﹣a =39.已知:)(2320b a ++-=,则a b 的值为( ) A .-6B .6C .9D .-910.若代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关,则代数式2+a b 的值为( ) A .0B .1-C .2或2-D .611.如图,平面内有公共端点的六条射线OA 、OB 、OC ,OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7、…,则数字“2020”在射线( )A .OB 上 B .OC 上 C .OD 上 D .OE 上12.图①②③④……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第100个“广”字中的棋子个数是( )A .105B .205C .305D .405二、填空题13.当1x =-时,多项式31mx nx ++的值等于2,那么当1x =时,则该多项式的值为________.14.观察后面的一列单项式:23446;810;,;x x x x --…根据你发现的规律,第10个单项式为___________.15.按如图所示的程序计算,若开始输入的x 的值为16,我们发现第1次得到的结果为8,第2次得到的结果为4,……,请你探索第2021次得到的结果为________.16.将正整数按如图所示的规律排列下去,若用有序数对(n ,m)表示第n 排、第m 个数,比如(4,2)表示的数是8,则若(25,6)表示的数是______.17.观察下列一组数:123451361015,,=,, (3591733)a a a a a ====它们是按一定规律排列的,请利用其中规律,写出第10个数10a = _________.18.如图,将一个正三角形纸片剪成四个完全相同的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,剪的次数记为n ,得到的正三角形的个数记为a n ,则a 2020=_____.19.下列图形都是由同样大小的黑色正方形纸片组成,其中图①有3张黑色正方形纸片,图②有5张黑色正方形纸片,图③有7张黑色正方形纸片,……按此规律排列下去,图n 中黑色正方形纸片的张数为________.(用含有n 的代数式表示)20.若241x x -=,则2(2)x -=__________.三、解答题21.先化简,再求值:(1)()()2345n n n -+--+,其中54n =-; (2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭,其中7a =,17b =-.22.观察下面的三行单项式 x ,2x 2,4x 3,8x 4,16x 5…① 2x ,﹣4x 2,8x 3,﹣16x 4,32x 5…② 3x ,5x 2,9x 3,17x 4,33x 5…③ 根据你发现的规律,完成以下各题:(1)第①行第7个单项式为 ;第②行第7个单项式为 . (2)第③行第n 个单项式为 .(3)取每行的第10个单项式,令这三个单项式的和为A .计算当x =12时,256[3A ﹣2(A+14)]的值. 23.整体思想就是在解决数学问题时把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.请利用你对整体思想的理解解决下列问题. (1)若235x y +=,则代数式463x y ++=________;(直接填入答案) (2)若8a b +=,4ab =-,求代数式(432)(6)a b ab a b ab -----的值; (3)若23a ab +=,2238b ab +=,求代数式22106a ab b ++的值.24.若21202x y ⎛⎫++-= ⎪⎝⎭,求323211223533x x y x x y ⎛⎫---+ ⎪⎝⎭的值. 25.已知多项式22172589x y xy xy ---+的次数为a ,常数项为b . (1)直接写出:a =________,b =_________.(2)若22325M b a ab =-+,2242N ab b a =--,求34M N -的值. 26.先化简,再求值:2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦,其中3x =,13y =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据要求写出符合要求的数并找到数字变化的规律,利用规律求解即可.【详解】解:∵第一个数是2,第二个数是12,第三个数是-1,第四个数是2,…∴每三个数按照2,12,-1循环,∵2020÷3=673 (1)∴第2020个数和第1个数一致,即:2.故选:D.【点睛】本题主要考查数字的变化规律,解决此类问题时通常需要确定数列与序数的关系或者数列的循环周期等,此题得出这列数每3个数为一周期循环是解题的关键.2.D解析:D【分析】把x=1代入多项式ax5+bx3+4=5,得a+b=1,把x=-1代入ax5+bx3+4得原式=-a-b+4=-(a+b)+4,根据前面的结果即可求出最后的值.【详解】解:把x=1代入多项式ax5+bx3+4=5,得a+b+4=5,即a+b=1,把x=-1代入ax5+bx3+4得,原式=-a-b+4=-(a+b)+4=3.∴多项式ax5+bx3+4当x=-1时的值为3.故选:D.【点睛】本题考查了代数式的求值,解题时要利用x的值是1或-1的特点,代入原式,将(a+b)作为一个整体来看待.3.D解析:D【分析】确定a、b、c的值,再代入计算即可.【详解】解:∵a是最大的负整数,∴1a=-,∵b是绝对值最小的有理数,∴0b =,∵c 是倒数等于它本身的自然数, ∴1c =,2015220011572017(1)20160021610a b c =-+⨯++=+,故选:D . 【点睛】本题考查了与有理数有关负整数、绝对值和倒数,解题关键是确定a 、b 、c 的值.4.C解析:C 【分析】先合并同类项,令xy 的系数为0即可得出n 的值. 【详解】()()222232x xy y x nxy y +---+ =()()22223222x xy y x nxy y +---+=22223222x xy y x nxy y +--+- =22(32)3x n xy y -++-, ∵多项式()()222232x xy y xnxy y +---+中不含xy 项,∴320n +=,∴n=32-, 故选C . 【点睛】本题考查了合并同类项法则及对多项式“项”的概念的理解,关键是掌握合并同类项与去括号法则.5.B解析:B 【分析】根据题意,得外层最大正方形的边长为(a+b ),利用平移思想,把阴影的周长表示为2AC+2(AB-b ),化简即可. 【详解】 根据题意,得阴影的周长表示为2AC+2(AB-b )=4AC-2b, ∵AC=a+b ,∴阴影部分的周长是=4a+4b-2b=4a+2b , 故选B. 【点睛】本题考查了用代数式表示图形的周长,熟练用字母表示正方形的边长和周长,运用平移思想表示图形的周长是解题的关键.6.C解析:C【分析】根据整式的加减法,即可解答.【详解】解:A、2a+3b≠5ab,故错误;B、2y2−y2=y2,故错误;C、−10t+5t=−5t,故正确;D、3m2n−2mn2≠mn,故错误;故选:C.【点睛】本题考查了整式的加减法,解决本题的关键是熟记整式的加减法法则.7.A解析:A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.8.B解析:B【分析】先分析是否为同类项,再计算判断.【详解】A、3a+2a=5a,故该选项不符合题意;B、-2ab+2ab=0,故该项符合题意;C、2a3与3a2不是同类项,不能合并,故该项不符合题意;D、3a-a=2a,故该项不符合题意;故选:B . 【点睛】此题考查同类项的定义及合并同类项法则,熟记同类项定义是解题的关键.9.C解析:C 【分析】先根据偶次方的非负性、绝对值的非负性可得a 、b 的值,再代入计算有理数的乘方即可得. 【详解】由偶次方的非负性、绝对值的非负性得:30,20b a +=-=, 解得2,3a b ==-, 则()239a b =-=, 故选:C . 【点睛】本题考查了偶次方的非负性、绝对值的非负性、代数式求值,熟练掌握偶次方与绝对值的非负性是解题关键.10.B解析:B 【分析】利用去括号、合并同类项法则化简代数式,得到()()22237b x a x -+++,根据代数式()()2226231xax bx x ++---(,a b 为常数)的值与字母x 的取值无关可得220b -=,30a +=,求出a 和b 的值即可. 【详解】解:()()2226231x ax bx x ++---2226231x ax bx x ++-++= ()()22237b x a x -+++=,∵代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关, ∴220b -=,30a +=, ∴1b =,3a =-, ∴2321a b +=-+=-, 故选:B . 【点睛】本题考查整式的加减—字母无关型,掌握去括号、合并同类项法则是解题的关键.11.C解析:C 【分析】由题意知,6个数字循环一次,则可求2020与4在一条射线上; 【详解】由题意可知,6个数字循环一次, ∵20206=3364÷,∴2020与4在一条射线上, ∴“2020”在射线OD 上; 故答案选C . 【点睛】本题主要考查了规律型数字变化类,准确分析判断是解题的关键.12.B解析:B 【分析】首先观察每个广字横有几个原点,然后观察撇有几个原点,找到规律后即可解答. 【详解】解:由题目得,第1个“广”字中的棋子个数是7; 第2个“广”字中的棋子个数是9; 第3个“广”字中的棋子个数是11; 4个“广”字中的棋子个数是13; 发现第5个“广”字中的棋子个数是15…进一步发现规律:第n 个“广”字中的棋子个数是(2n+5). 所以第100个“广”字中的棋子个数为2×100+5=205, 故选:B . 【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.0【分析】把代入多项式得出关于mn 的等式再代入计算即可;【详解】把代入中得解得:当时=;故答案是0【点睛】本题主要考查了代数式求值准确计算是解题的关键解析:0 【分析】把1x =-代入多项式得出关于m ,n 的等式,再代入1x =计算即可; 【详解】把1x =-代入31mx nx ++中得,12--+=m n ,解得:1m n +=-, 当1x =时,31mx nx ++=1m n ++110=-+=; 故答案是0. 【点睛】本题主要考查了代数式求值,准确计算是解题的关键.14.【分析】把单项式的系数的绝对值系数的符号指数分别与单项式出现的序号建立起联系寻找出其中的规律即可【详解】仔细观察发现奇数项为正偶数项为负可用表示;系数的绝对值依次为4=2×(1+1)6=2×(2+1解析:1022x -. 【分析】把单项式的系数的绝对值,系数的符号,指数分别与单项式出现的序号建立起联系,寻找出其中的规律即可. 【详解】仔细观察,发现奇数项为正,偶数项为负,可用n 1(-1)+表示;系数的绝对值依次为4=2×(1+1),6=2×(2+1),8=2×(3+1),10=2×(4+1),第n 个单项式的系数为2×(n+1);指数依次为1,2,3,4,第n 个单项式的指数为n ; 所以第n 个单项式为n 1(-1)+×2×(n+1)n x ,所以当n=10时,单项式为n 1(-1)+×2×1110x =1022x -.故答案为:1022x -. 【点睛】本题考查了单项式中的规律探究,熟练将单项式的系数,指数与单项式的序号建立起正确的关系是解题的关键.15.6【分析】把x =16代入程序中计算以此类推得到一般性规律求出第2021次得到的结果即可【详解】解:第1次得到的结果为16×=8第2次得到的结果为8×=4第3次得到的结果为4×=2第4次得到的结果为2解析:6 【分析】把x =16代入程序中计算,以此类推得到一般性规律,求出第2021次得到的结果即可. 【详解】解:第1次得到的结果为16×12=8, 第2次得到的结果为8×12=4,第3次得到的结果为4×12=2,第4次得到的结果为2×12=1,第5次得到的结果为1+5=6,第6次得到的结果为6×12=3,第7次得到的结果为3+5=8,第8次得到的结果为8×12=4,第9次得到的结果为4×12=2,第10次得到的结果为2×12=1,第11次的到的结果为1+5=6,第12次得到的结果为6×12=3,……∴结果是8,4,2,1,6,3六个为周期循环,∵2021÷6=335…5,∴第2021次得到的结果为6,故答案为:6.【点睛】此题考查了数字的变化规律、代数式求值,由题意得出规律是解本题的关键.16.306【分析】据(42)表示整数8对图中给出的有序数对进行分析可以发现:对所有数对(nm)(n≥m)有:(nm)=(1+2+3+…+n−1)+m=+m 【详解】解:有序数对(nm)表示第n排第m个数对解析:306【分析】据(4,2)表示整数8,对图中给出的有序数对进行分析,可以发现:对所有数对(n,m)(n≥m)有:(n,m)=(1+2+3+…+n−1)+m=()12n n-+m.【详解】解:有序数对(n,m)表示第n排、第m个数,对如图中给出的有序数对和(4,2)表示整数8可得,(4,2)=()4412-+2=8;(3,1)=()3312-+1=4;…,由此可以发现,对所有数对(n ,m )(n≥m)有:(n ,m )=(1+2+3+…+n−1)+m =()12n n -+m . 所以,(25,6)=()252512-+6=300+6=306. 故答案为:306.【点睛】此题考查对数字变化类知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形、数值、数列等已知条件,认真分析,找出规律,解决问题. 17.【分析】分子的规律是:11+21+2+3第n 个数的分子为第1个分母为1+2第2个分母为1+第3个分母为1+第n 个分母为1+这样就可以确定第n 个分数让n=10即可得到答案【详解】∵分子的规律是:11+ 解析:11205【分析】 分子的规律是:1,1+2,1+2+3,第n 个数的分子为(1)2n n +, 第1个分母为1+2,第2个分母为1+22,第3个分母为1+32,第n 个分母为1+2n , 这样就可以确定第n 个分数,让n=10即可得到答案.【详解】∵分子的规律是:1,1+2,1+2+3,第n 个数的分子为(1)2n n +, 第1个分母为1+2,第2个分母为1+22,第3个分母为1+32,第n 个分母为1+2n ,∴第n 个分数为(1)212nn n ++, 当n=10时,10a =10101155112121025205⨯==+. 故答案为:11205. 【点睛】本题考查了有理数的规律探索,分别确定分子与分数序号,分母与分数序号之间的关系是解题的关键.18.6061【分析】根据规律得出数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1【详解】解:所剪次数1次正三角形个数为4个所剪次数2次正三角形个数为7个所剪次数3次正三角形个数解析:6061【分析】根据规律得出数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.【详解】解:所剪次数1次,正三角形个数为4个,所剪次数2次,正三角形个数为7个,所剪次数3次,正三角形个数为10个,…剪n次时,共有4+3(n-1)=3n+1,把n=2020代入3n+1=6061,故答案为:6061.【点睛】此类题考查图形的规律,从数据中,很容易发现规律,再分析整理,得出结论.19.【分析】设图n中有an(n为正整数)张黑色正方形纸片观察图形根据各图形中黑色正方形纸片张数的变化可找出变化规律an=2n+1(n为正整数)此题得解【详解】解:设图n中有an(n为正整数)张黑色正方形n解析:21【分析】设图n中有a n(n为正整数)张黑色正方形纸片,观察图形,根据各图形中黑色正方形纸片张数的变化可找出变化规律“a n=2n+1(n为正整数)”,此题得解.【详解】解:设图n中有a n(n为正整数)张黑色正方形纸片,观察图形,可知:a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1,a4=9=2×4+1,…,∴a n=2n+1(n为正整数).故答案是:2n+1.【点睛】本题考查了规律型:图形的变化类,根据图形中黑色正方形纸片张数的变化,找出变化规律“a n=2n+1(n为正整数)”是解题的关键.20.【分析】根据等式左边利用完全平方公式展开求出x2-4x+4的值即可【详解】解:因为x2-4x=1所以(x-2)²=x2-4x+4=1+4=5;故答案为:5【点睛】本题考查了代数式求值利用了整体代入的解析:5【分析】根据等式左边利用完全平方公式展开求出x2-4x+4的值即可.【详解】解:因为x2-4x=1,所以(x-2)²=x2-4x+4=1+4=5;故答案为:5.【点睛】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解题的关键.三、解答题21.(1)413n -,18-;(2)22a ab -,99【分析】(1)先去括号合并同类项化简,再将n 的值代入计算即可;(2)先去括号合并同类项化简,再将a 和b 的值代入计算即可.【详解】解:(1)()()2345n n n -+--+=685n n n -+---=413n -, 当54n =-时, 原式=54134⎛⎫⨯-- ⎪⎝⎭=51318--=-; (2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭ =222236252a ab b a ab b ---++=22a ab -,当7a =,17b =-时, 原式=212777⎛⎫⨯-⨯- ⎪⎝⎭=()2491⨯--=98199+=. 【点睛】本题主要考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握法则是解决本题的关键.22.(1)26x 7,27x 7;(2)(2n +1)x n ;(3)14 【分析】(1)观察所给的①与②式子可得①的特点,第n 个数是2n ﹣1x n ,②的特点,第n 个数是(﹣1)n ﹣1(2x )n ;(2)观察③式子的特点,可得第n 个数是(2n +1)x n ,即可求出解;(3)先求出A =29x 10﹣210x 10+(210+1)x 10,再将x =12代入求出A ,最后再求256[3A ﹣2(A+14)]即可. 【详解】解:(1)①的特点,第n 个数是2n ﹣1x n ,∴第7个单项式是26x 7;②的特点,第n 个数是(﹣1)n ﹣1(2x )n ,∴第7个单项式是27x 7;故答案为:26x 7,27x 7;(2)③的特点,第n 个数是(2n +1)x n ,故答案为:(2n +1)x n ;(3)①的第10个单项式是29x 10,②的第10个单项式是﹣210x 10,③的第10个单项式是(210+1)x 10,∴A =29x 10﹣210x 10+(210+1)x 10=(29+1)x 10,当x =12时,A =(29+1)×(12)10, ∴256[3A ﹣2(A+14)]=256(A ﹣12)=256×[(29+1)×(12)10﹣12]=28×(12)10=14. 【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,列出每行第n 个式子的代数式是解题的关键.23.(1)13;(2)28;(3)27【分析】(1)把原式化为2(2x+3y)+3,再把235x y +=代入即可;(2)把原式化为3()a b ab +-,再把8a b +=,4ab =-代入即可;(3)把原式化为()()22323a ab b ab +++,再把23a ab +=,2238b ab +=代入即可.【详解】解:(1)463x y ++=2(2x+3y)+3=2×5+3=13(2)(432)(6)a b ab a b ab ----- 4326a b ab a b ab =---++33a b ab =+-3()a b ab =+-.∵8a b +=,4ab =-,∴原式38(4)24428=⨯--=+=.(3)22106a ab b ++2296a ab ab b =+++()()22323a ab b ab =+++.∵23a ab +=,2238b ab +=,∴原式33827=+⨯=.【点睛】本题考查了代数式求值,解题的关键是注意整体代入思想的运用.24.32+25x x y +;1【分析】整式的加减运算,先去括号,合并同类项化简,然后根据绝对值和偶次幂的非负性确定x 和y 的值,从而代入求值即可.【详解】 解:323211223533x x y x x y ⎛⎫---+ ⎪⎝⎭ =3232124++6533x x y x x y -+ =32+25x x y + 又∵21202x y ⎛⎫++-= ⎪⎝⎭且2120,02x y ⎛⎫+≥-≥ ⎪⎝⎭ ∴20x +=且2102y ⎛⎫-= ⎪⎝⎭,解得:2x =-,1=2y 当2x =-,1=2y 时,原式=()()3212+22584512-⨯-⨯+=-++=. 【点睛】本题考查整式的加减运算,掌握运算顺序和计算法则正确计算是解题关键.25.(1)3,5;(2)392.【分析】(1)根据多项式的次数,常数项的定义确定即可;(2)先化简,后代入求值.【详解】 (1)∵22172589x y xy xy ---+的最高次数为3,常数项为5, ∴a=3,b=5,故答案为:3,5; (2)∵22325M b a ab =-+,2242N ab b a =--,∴()()2222343325442M N b a ab ab b a-=-+---=222296151684b a ab ab b a -+-++ 22172b a ab =--,当a=3,b=5时,原式221752335392=⨯-⨯-⨯=.【点睛】本题考查了多项式的次数与常数项,多项式的化简求值,熟练化简方法是解题的关键.26.226xy xy +,0【分析】根据整式加减法的性质计算,即可完成化简;结合3x =,13y =-,根据代数式、含乘方的有理数混合运算性质计算,即可得到答案.【详解】 2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦ 222252258x y xy xy x y xy ⎡⎤=--++⎣⎦222252258x y xy xy x y xy =-+-+226xy xy =+∵3x =,13y =-∴2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦226xy xy =+ 21123+6333⎛⎫⎛⎫=⨯⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭2+2=-0=.【点睛】本题考查了整式加减、代数式、有理数运算的知识;解题的关键是熟练掌握整式加减、代数式、含乘方的有理数混合运算的性质,从而完成求解.。
鲁教版五四制七年级数学下册第三单元评价检测.docx
单元评价检测第三章(45分钟 100分)一、选择题(每小题4分,共28分)1.在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2的值是( )(A)4 (B)6 (C)8 (D)92.下列各组数是勾股数的为( )(A)2,4,5 (B)8,15,17 (C)11,13,15 (D)4,5,63.已知△ABC的三边长分别为a,b,c,且满足(a-17)2+|b-15|+(c-8)2=0,则△ABC是( )(A)以a为斜边的直角三角形(B)以b为斜边的直角三角形(C)以c为斜边的直角三角形(D)不是直角三角形4.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1.其中正确的是( )(A)①②(B)①③(C)①④(D)②④5.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )(A)14 (B)14或4 (C)8 (D)4或86.折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想.把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )(A)角的平分线上的点到角的两边的距离相等(B)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半(C)直角三角形斜边上的中线等于斜边的一半(D)如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形7.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a,b,那么(a+b)2的值是( )(A)12 (B)16 (C)20 (D)25二、填空题(每小题5分,共25分)8.如图,在Rt△ABC中,∠C=90°,若BC=3,AC=4,则AB的长是________.9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为________mm.10.如图(1)所示,在矩形ABCD中,动点P从点B出发,沿BC→CD→DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,那么△ABC的面积是________.11.已知:如图,在四边形中ABCD中,AB=1,BC=,CD=,AD=3,且AB⊥BC,则四边形ABCD的面积为________.12.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为________cm2.三、解答题(共47分)13.(10分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)14. (12分)如图,将长方形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F 点处,已知CE=3cm,AB=8cm,求图中阴影部分的面积.15.(12分)如图,已知长方体的长AC=2cm,宽BC=1cm,高AA′=4cm.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?16.(13分)如图,等腰三角形ABC的底边BC长为8cm,腰AB,AC的长为5cm,一动点P在底边上从B向C以0.25cm/s的速度移动,当点P运动到PA与腰垂直的位置时,求点P运动的时间.答案解析1.【解析】选C.因为斜边AB=2,所以AB2=BC2+AC2=4,所以AB2+BC2+AC2=4+4=8.2.【解析】选B.A中22+42=20≠52,故不是;B中82+152=289=172,故是勾股数;C中112+132=290≠152,故不是;D中42+52=41≠62,故不是.3.【解析】选A.因为(a-17)2≥0,|b-15|≥0,(c-8)2≥0.又因为(a-17)2+|b-15|+(c-8)2=0,所以a-17=0,b-15=0,c-8=0,所以a=17,b=15,c=8.又因为172=152+82,所以△ABC是以a为斜边的直角三角形.4.【解析】选C.①正确,因为a2+b2=c2,所以(4a)2+(4b)2=(4c)2;②错误,直角三角形两边为3,4,则斜边可能是4或5;③错误,因为122+212≠252,所以不是直角三角形;④正确,因为b=c,c2+b2=2b2=a2,所以a2∶b2∶c2=2∶1∶1.5.【解析】选 B.当高AD在△ABC内部时得:CD2=152-122=81,所以CD=9,又BD2=132-122=25,所以BD=5,所以BC=14;当AD在△ABC外部时,易得BC=9-5=4.所以BC的长为14或4.6.【解析】选C.如图,由第一步得△ADE≌△CDE,由全等性质得AD=DC,由第二步得△BDF≌△CDF,由全等的性质得BD=DC,故AD=DC=BD,即DC为直角三角形斜边上的中线,且长度为斜边的一半.7.【解析】选 D.每个直角三角形的面积是:(13-1)÷4=3,即ab=3,则ab=6.又因(a-b)2=1,所以(a+b)2=(a-b)2+4ab=1+4×6=25.8.【解析】在Rt△ABC中,∠C=90°,因为BC=3,AC=4,所以AB2=BC2+AC2=25=52,则AB的长是5.答案:59.【解析】如图构造直角△ABC,因为AC=150-60=90(mm),BC=180-60=120(mm),所以AB2=AC2+BC2=902+1202=1502.故AB=150mm.答案:15010.【解析】由图(2)可知,矩形的宽BC=4,长CD=9-4=5,所以△ABC的面积为×5×4=10.答案:1011.【解析】连接AC,因为AB⊥BC,所以△ABC是直角三角形,所以AC2=AB2+BC2=12+()2=()2,所以AC=.S△ABC=AB·BC=×1×=.因为在△ACD中,AC2+AD2=()2+32=()2=CD2,所以△ACD是直角三角形.所以S△ACD=AC·AD=××3=.所以四边形ABCD的面积为S△ABC+S△ACD=+=.答案:12.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36cm,则AB+BC+AC=36cm,所以3x+4x+5x=36,得x=3,所以AB=9cm,BC=12cm,AC=15cm,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1813.【解析】在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC2=AB2-AC2=502-302=402,所以BC=40(m),所以小汽车的速度为v=40÷2=20(m/s)=20×3.6(km/h)=72(km/h).因为72km/h>70km/h,所以这辆小汽车超速了.14.【解析】由折叠可知△ADE和△AFE关于AE成轴对称,故AF=AD,EF=DE=DC-CE=8-3=5(cm),所以CF=4cm.设BF=xcm,则AF=AD=BC=(x+4)cm.在Rt△ABF中,由勾股定理,得82+x2=(x+4)2.解得x=6,故BC=10cm.所以阴影部分的面积为:10×8-2S△ADE=80-50=30cm2.15.【解析】根据题意,如图所示,可能最短路径有三种情况:(1)沿AA′,A′C′,C′B′,B′B,BC,CA剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为图(1)所示,且最短路程为5cm.16.【解析】如图,当点P运动到PA与腰AC垂直时,过点A作AD⊥BC于点D,则BD=4.在Rt△ABD中,易知AD=3cm,设PD=xcm,在Rt△APD中,PA2=x2+9,在Rt△PAC中,PC2=x2+9+25,PC=x+4,所以x=,所以BP=BD-PD=4-=(cm),所以=7(s).所以此时点P运动的时间为7秒.当P点运动到PA与腰AB垂直时,同理可得BP=cm,此时点P运动的时间为25s.故当点P运动到PA与腰垂直的位置时,点P运动的时间应为7s或25s.初中数学试卷鼎尚图文**整理制作。
(必考题)初中数学九年级数学下册第三单元《圆》检测题(答案解析)(3)
一、选择题1.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=12(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB ,“矢”等于半径长与圆心O 到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos ∠OAB =( )A .35B .2425C .45D .12252.如图,A B C D 、、、是O 上的点,180AOD BOC ∠+∠=︒.若2,6AD BC ==,则BOC ∆的面积为( )A .3B .6C .9D .123.已知△ABC 是半径为2的圆内接三角形,若BC =23,则∠A 的度数( ) A .30° B .60° C .120° D .60°或120° 4.已知⊙O 的半径是一元二次方程2690x x -+=的解,且点O 到直线AB 的距离为2,则⊙O 与直线AB 的位置关系为( )A .相交B .相切C .相离D .无法确定 5.边长为2的正六边形的边心距为( ) A .1 B .2 C .3 D .23 6.如图,已知⊙O 的直径8CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为M ,2OM =,则AB 的长为( )A.2 B.23C.4 D.437.如图,P是正方形ABCD内的一点,将△ABP绕点B顺时针方向旋转到与△CBP'重合,若PB=3,则点P经过的路径长度为()A.23B.32C.32πD.34π8.如图,P是⊙O外一点,射线PA、PB分别切⊙O于点A、点B,CD切⊙O于点E,分别交PA、PB于点D、点C,若PB=4,则△PCD的周长()A.4 B.6 C.8 D.109.已知正六边形ABCDEF内接于O,若O的直径为2,则该正六边形的周长是()A.12B.63C.6D.3310.往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm,则水面AB的宽度为()A.12cm B.18cm C.20cm D.24cm11.如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则cos∠ADC的值为()A.21313B.1313C.31313D.2312.下列说法正确的是()A.有一组邻边相等的平行四边形是菱形B.平分弦的直径垂直于弦C.两条边对应成比例且有一个内角相等的两个三角形相似D.对角线相等的四边形是矩形二、填空题13.如图,从点P引⊙O的切线PA,PB,切点分别为A,B,DE切⊙O于C,交PA,PB于D,E.若△PDE的周长为20cm,则PA=______cm.14.如图,AB、CD是O的两条弦,连接AD、BC.若60BAD∠=︒,则BCD∠的度数为______度.15.如图,已知AB为O直径,若CD是O内接正n边形的一边,AD是O内接正()4n+边形的一边,BD AC=,则n=_____.16.如图,已知矩形ABCD中3AB=,4BC=,将三角板的直角顶点P放在矩形内,移动三角板保持两直角边分别经过点B、C,则PD的最小值为________.17.已知扇形的弧长为4π,半径为9,则此扇形的圆心角为_______度.18.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,70A ∠=,50C ∠=,那么tan AEB ∠=___________.19.如图,在边长为2的正六边形ABCDEF 中,P 是ED 的中点,则AP =_______.20.如图,半圆O 的直径12,AB cm =弦6,AC cm AD =平分BAC ∠,则弧BD 的长为__.cm (结果用π表示)三、解答题21.如图,在Rt △ABC 中,∠ACB=90°,点D 在边AC 上,∠DBC=∠BAC .O 经过A 、B 、D 三点. 连接DO 并延长交O 于点E ,连接AE ,DE 与AB 交于点F . (1)求证:CB 是O 的切线;(2)求证:AB=EB ;(3)若DF=3,EF=7,求BC 的长.22.在下列网格图中,每个小正方形的边长均为1个单位.Rt ABC 中,∠C =90°,AC =3,BC =4(1)试在图中作出ABC 绕A 顺时针方向旋转90°后的图形11AB C △;(2)求1BB 的长.23.如图,AB 为O 的直径,点C 为AB 上方的圆上一动点,过点C 作O 的切线l ,过点A 作直线l 的垂线AD ,交O 于点D ,连接OC ,CD ,BC ,BD ,且BD 与OC 交于点E .(1)求证:CDE CBE ≅△△;(2)若6AB =,填空:①当CD 的长是________时,OBE △是等腰三角形;②当BC =________时,四边形OADC 为菱形.24.如图,将弧长为6π,圆心角为120°的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘连部分忽略不计),求圆锥的底面圆半径及圆锥的侧面积.25.如图,在平面直角坐标系中,正方形网格中每个小正方形的边长是一个单位长度,其中点B 的坐标为()2,1.(1)在平面直角坐标系中画出OAB ∆先向左平移4个单位长度,再向下平移3个单位长度后得到111O A B ∆.并写出点1B 的坐标.(2)在平面直角坐标系中画出OAB ∆绕点O 逆时针旋转90︒得到22OA B ∆,并求出旋转过程中线段OA 所扫过的面积(结果保留π).26.如图,已知AB 是O 的直径,C ,D 是O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE DE =;(2)若8AB =,30CBD ∠=︒,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】如图,作射线OH⊥AB于H.交圆弧于C,利用垂径定理以及勾股定理构建方程组求出OA,OH,利用余弦函数定义即可解决问题.【详解】解:如图,作OH⊥AB于H.交圆弧于C,由题意:AB=8,HC=3,∴OA﹣OH=3,∵OH⊥AB,OC为半径,∴AH=BH=1AB2=4,在Rt△OAH中由勾股定理得AH2+OH2=OA2,∴42=(OA+OH)(OA﹣OH),∴OA+OH=163,∴OA=256,OH=76,∴cos∠OAB=AH424==25OA256,故选:B.【点睛】本题考查垂径定理与勾股定理,三角函数的定义,掌握垂径定理与勾股定理的条件与结论,三角函数的定义是解题关键.2.A解析:A【分析】作出辅助线延长BO 交O 于点E ,连接CE ,由此构建圆心角AOD COE ∠=∠,根据圆周角与弧长和弦长的关系得到2AD CE ==,再据此求出BEC △的面积,经由OB OE =即可求出BCE 的面积.【详解】解:如图延长BO 交O 于点E ,连接CE ,∵B O E 、、三点共线∴180COE BOC ∠+∠=︒,90BCE ∠=︒,∴CE BC ⊥,∵180AOD BOC ∠+∠=︒,∴AOD COE ∠=∠,∴AD CE =,∴2AD CE ==,∵6BC =, ∴1162622S BC CE ==⨯⨯=△BCE , ∵OB OE =, ∴116322S S ==⨯=△BOC △BEC . 故选A.【点睛】本题主要考查圆心角所对弧、弦的关系,圆周角定理,关键在于作出OB 的延长线OE ,来构造出圆心角相等,以此来解决问题.3.D解析:D首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.【详解】解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23∴BD=4,∴22BD BC-,∴CD=12BD,∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°-∠A=120°,∴∠A的度数为:60°或120°.故选:D.【点睛】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.4.A解析:A【分析】解方程确定圆的半径为3,圆心距d=2,比较半径与圆心距的大小,根据法则判断即可.【详解】∵2690x x-+=,∴123x x==,∴圆的半径为3,∵点O到直线AB的距离为2,即d=2,∴d<R,∴直线与圆相交,故选A.【点睛】本题考查了用半径、圆心距判定直线和圆的位置关系,熟练解方程,熟记d,R法则是解题的关键.5.C【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用勾股定理即可求出.【详解】解:连接OA ,作OM ⊥AB ,垂足为M ,连接OB ,∵六边形ABCDEF 是正六边形∴△AOB 是等边三角形∴∠AOM =30°,AO =AB∵正六边形ABCDEF 的边长为2,∴AM =12AB =12×2=1,OA =2. ∴正六边形的边心距是OM 2222213OA AM -=-=故选:C .【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算. 6.D解析:D【分析】连接OB ,根据勾股定理计算BM=3AB=2BM 计算即可.【详解】连接OB ,∵直径8CD =,AB CD ⊥,2OM =∴22OB OM - =2242-=3根据垂径定理,得 AB=2BM=43故选D .【点睛】本题考查了垂径定理,勾股定理,熟练掌握连接半径构造直角三角形,灵活运用垂径定理和勾股定理求解是解题的关键.7.C解析:C【分析】根据旋转的性质,可得BP′的长,∠PBP′的度数,得到P 点运动轨迹为四分之一圆,圆的半径为3,根据弧长公式即可求解.【详解】由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°,P 点运动轨迹为四分之一圆,圆的半径为3,∴弧PP ' =90331801802n r πππ⨯⨯== 故选C .【点睛】此题考查旋转的性质、正方形的性质、弧长公式,重点是熟记弧长公式. 8.C解析:C【分析】由切线长定理可求得PA =PB ,BC =CE ,AD =ED ,则可求得答案.【详解】解:∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA =PB =4,BC =EC ,AD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PC+BC+PD+AD =PB+PA =4+4=8,即△PCD 的周长为8,故选:C .【点睛】本题考查了切线长定理以及三角形的周长,熟练掌握切线长定理是解题的关键; 9.C解析:C【分析】如图,连接OA 、OB ,由正六边形ABCDEF 内接于O 可得∠AOB=60°,即可证明△AOB 是等边三角形,根据O 直径可得OA 的长,进而可得正六边形的周长.【详解】如图,连接OA、OB,∵O的直径为2,∴OA=1,∵正六边形ABCDEF内接于O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=1,∴该正六边形的周长是1×6=6,故选:C.【点睛】本题考查正多边形和圆,正确得出∠AOB=60°是解题关键.10.D解析:D【分析】连接OB,过点O作OC⊥AB于点D,交圆O于点C,由题意可知CD为8,然后根据勾股定理求出BD的长,进而可得出AB的长.【详解】如图,连接OB,过点O作OC⊥AB于点D,交圆O于点C,则AB=2BD,∵圆的直径为26cm,∴圆的半径r=OB=13cm,由题意可知,CD=8cm,∴OD=13-8=5(cm),∴()221692512=-=-=,BD OB OD cm∴AB=24cm,故选:D.【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键. 11.C解析:C【分析】根据圆周角定理得到ADC ABC ∠=∠,再根据余弦的定义计算即可;【详解】由图可知ADC ABC ∠=∠,在Rt △ABC 中,2AC =,3BC =, ∴223213AB +=∴cos ∠ADC 3313cos 1313BC ABC AB =∠===; 故答案选C .【点睛】本题主要考查了圆周角定理、余弦定理、勾股定理,准确计算是解题的关键. 12.A解析:A【分析】根据菱形的判定定理、垂径定理的推论、相似三角形的判定定理、矩形的判定定理依次对选项进行判断即可.【详解】A :根据菱形的判定定理可知,有一组邻边相等的平行四边形是菱形,故此选项符合题意;B :根据垂径定理可知,平分弦的直径不一定垂直于弦,但垂直于弦的直径一定平分这条弦,故此选项不符合题意;C :根据三角形相似的判定定理可知,两条边对应成比例且夹角相等的两个三角形相似,故此选项不符合题意;D :对角线相等且平分的四边形是矩形,故此选项不符合题意;故选:A .【点睛】本题考查矩形、菱形、相似三角形的判定定理及垂径定理的推论,掌握各判定定理是解题的关键.二、填空题13.10【分析】由于PAPBDE 都是⊙O 的切线可根据切线长定理将△PDE 的周长转化为切线PAPB 长的和【详解】解:∵PAPBDE 分别切⊙O 于ABC ∴PA=PBDA=DCEC=EB ;∴C △PDE=PD+D解析:10【分析】由于PA 、PB 、DE 都是⊙O 的切线,可根据切线长定理将△PDE 的周长转化为切线PA 、PB 长的和.【详解】解:∵PA 、PB 、DE 分别切⊙O 于A 、B 、C ,∴PA =PB ,DA =DC ,EC =EB ;∴C △PDE =PD +DE +PE =PD +DA +EB +PE =PA +PB =20;∴PA =PB =10,故答案为10.【点睛】此题主要考查的是切线长定理,能够发现△PDE 的周长和切线PA 、PB 长的关系是解答此题的关键.14.【分析】利用同圆中同弧上的圆周角相等求解即可【详解】∵∴故答案为:60°【点睛】本题考查了圆的基本性质熟练掌握性质并灵活运用是解题的关键解析:【分析】利用同圆中,同弧上的圆周角相等求解即可.【详解】∵BAD ∠=BCD ∠,60BAD ∠=︒∴60BCD ∠=︒,故答案为:60°.【点睛】本题考查了圆的基本性质,熟练掌握性质并灵活运用是解题的关键.15.【分析】连接ODOCBC 根据题意首先证明∠AOD=∠BOC 再根据题意分别用含n 的式子表示出∠AOD 和∠COD 建立关于n 的方程求解即可【详解】如图连接ODOCBC ∵AB 为直径∴∠ADB=∠BCA=90解析:4【分析】连接OD ,OC ,BC ,根据题意首先证明∠AOD=∠BOC ,再根据题意,分别用含n 的式子表示出∠AOD 和∠COD ,建立关于n 的方程求解即可.【详解】如图,连接OD ,OC ,BC ,∵AB 为直径,∴∠ADB=∠BCA=90°,又∵BD AC =,∴Rt △ABD ≌Rt △BAC (HL ),∴AD=BC ,∠AOD=∠BOC ,∵CD 是O 内接正n 边形的一边, ∴360COD n ︒∠=, 同理:AD 是O 内接正()4n +边形的一边, ∴3604AOD BOC n ︒∠=∠=+, 由180AOD BOC COD ∠+∠+∠=︒, 得:36036021804n n︒︒⨯+=︒+, 解得:4n =,或2n =-(不符合题意,舍去) 经检验,4n =是原分式方程的解,故答案为:4.【点睛】本题主要考查了正多边形与圆,理解正多边形与圆的关系是解题关键.16.【分析】点P 的运动轨迹是以BC 为直径在矩形内的半圆圆心在线段BC 的中点处连接圆心和点D 交半圆于点P 则此时PD 最短利用勾股定理求出OD 的长再减去OP 的长即可【详解】由题意可得:点P 的运动轨迹是以BC 为 132【分析】点P的运动轨迹是以BC为直径,在矩形内的半圆,圆心在线段BC的中点处,连接圆心和点D,交半圆于点P,则此时PD最短,利用勾股定理求出OD的长,再减去OP的长即可【详解】由题意可得:点P的运动轨迹是以BC为直径,在矩形内的半圆,圆心在线段BC的中点处,设圆心为点O,如图:连接OD,交半圆与点P,则此时PD最短,4BC=∴圆的半径122OP OC BC===3AB DC==在Rt DCO中22222313OD DC OC+=+132PD OD OP∴=-=132.【点睛】本题考查了最值问题,矩形的性质,勾股定理,解题关键是能准确分析出点P的运动轨迹.17.80【分析】设此扇形的圆心角为x°代入弧长公式计算得到答案【详解】解:设此扇形的圆心角为x°由题意得解得x=80故答案为:80【点睛】本题考查的是弧长的计算掌握弧长的公式是解题的关键解析:80【分析】设此扇形的圆心角为x°,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x°,由题意得,94 180xππ=,解得,x=80,故答案为:80.【点睛】 本题考查的是弧长的计算,掌握弧长的公式180n r l π=是解题的关键. 18.【分析】求出∠AEB 的度数再求三角函数值即可【详解】解:∵∠B=∠C=50°∠A=70°∴∠AEB=180°-∠A-∠B=60°故答案为:【点睛】本题考查了圆周角的性质三角形内角和特殊角的三角函数值解析:3【分析】求出∠AEB 的度数,再求三角函数值即可.【详解】解:∵∠B=∠C=50°,∠A=70°,∴∠AEB=180°-∠A-∠B=60°,tan tan 603AEB ∠=︒=,故答案为:3.【点睛】本题考查了圆周角的性质,三角形内角和,特殊角的三角函数值,解题关键是灵活运用圆中角的关系,把已知条件集中在一个三角形中求角.19.【分析】连接AE 过点F 作FH ⊥AE 根据正六边形的内角和得出∠AFE =∠DEF =120°再根据等腰三角形的性质可得∠FAE =∠FEA =30°得出∠AEP =90°由直角三角形的性质和勾股定理求得FHAE解析:13【分析】连接AE ,过点F 作FH ⊥AE ,根据正六边形的内角和得出∠AFE =∠DEF =120°,再根据等腰三角形的性质可得∠FAE =∠FEA =30°,得出∠AEP =90°,由直角三角形的性质和勾股定理求得FH ,AE ,再利用勾股定理即可得出AP .【详解】解:如图,连接AE ,过点F 作FH ⊥AE ,∵六边形ABCDEF 是正六边形,∴AB =BC =CD =DE =EF =AF =2,∠AFE =∠DEF =120°,∴∠FAE =∠FEA =30°,∴∠AEP =90°,∴FH =12AF =1, ∴AH =223AF FH -=,∴AE =2AH =23,∵P 是ED 的中点,∴EP =12DE =1, ∴AP =2212113AE EP +=+=.故答案为:13.【点睛】本题考查了正多边形、勾股定理及等腰三角形的性质等知识,掌握相关图形的性质并作辅助线构造出直角三角形是解题的关键.20.【分析】连接OCOD 可求得即△OAC 为等边三角形再根据角平分线的定义求得∠BAD=30°根据圆周角定理求得∠BOD=60°最后根据弧长公式计算即可【详解】解:如图连接OCOD ∵∴∴△OAC 为等边三角解析:2π【分析】连接OC ,OD ,可求得6AO OC AC cm ===,即△OAC 为等边三角形,再根据角平分线的定义求得∠BAD=30°,根据圆周角定理求得∠BOD=60°,最后根据弧长公式计算即可.【详解】解:如图,连接OC ,OD ,∵12,AB cm =6AC cm =,∴6OB AO OC AC cm ====,∴△OAC 为等边三角形,∠CAO=60°,∵AD 平分BAC ∠,∴1302BAD CAO ∠=∠=︒, ∴260BOD BAD ∠=∠=︒, ∴弧BD 的长=6062180ππ⋅=. 故答案为:2π.【点睛】 本题考查圆周角定理,等边三角形的性质和判定,弧长的计算.正确作出辅助线,得出△OAC为等边三角形,从而由边的关系求出角度是解题关键.三、解答题21.(1)见解析;(2)见解析;(3)57【分析】(1)连接OB,在⊙O中,由等腰三角形的性质∠ODB=∠OBD,由圆周角的性质得到∠DBC=∠BED,根据圆的切线的判定定理即可得结论;(2)由圆周角定理∠ABD=∠AED,根据平行线的判定定理得到AE∥BC,得到∠ABC=∠BAE,进而得到∠BEA=∠BAE,根据等腰三角形的判定即可证得结论;(3)延长BO交AE于H,由矩形的判定证得四边形ACBH是矩形,由垂径定理得到BC=AH=12AE,由已知可得直径DE=10,可得DO=EO=5,进而求出OF=2,根据相似三角形的判定的性质可求得AD,根据勾股定理求得AE,即可求得结果.【详解】(1)证明:连接OB=OA,在⊙O中,OB=OD,∠BAC=∠BED,∴∠ODB=∠OBD,∵∠DBC=∠BAC,∴∠DBC=∠BED,∵DE是⊙O的直径,∴∠DBE=90°,∴∠ODB+∠BED=90°,∴∠OBD+∠DBC=90°,∴OB⊥BC,∵OB是⊙O的半径,∴CB是⊙O的切线;(2)证明:在⊙O中,∠ABD=∠AED,由(1)得:∠DBC=∠BED,∴∠ABD+∠DBC=∠AED+∠BED,∴∠ABC=∠BEA,∵DE是⊙O的直径,∴∠EAC=90°,∵∠ACB=90°,∴∠EAC+∠ACB=180°,∴AE ∥BC ,∴∠ABC=∠BAE ,∴∠BEA=∠BAE ,∴AB=EB ;(3)解:延长BO 交AE 于H ,由∠HAC=∠ACB=∠OBC=90°,得四边形ACBH 是矩形,∴OH ⊥AE ,∴BC=AH=12AE , ∵DF=3,EF=7,∴直径DE=10,即半径DO=EO=5,∴OF=2,∵OB ∥AC ,∴△OBF ~△DAF , ∴OF OB DF AD =,即253AD=, ∴AD =152, ∴在Rt △ADE 中,AE 2257-DE AD =, ∴BC =AH =12AE 57= 【点睛】 本题考查了切线的判定,相似三角形的判定和性质,平行线的判定和性质,勾股定理,矩形的判定和性质,正确的作出辅助线是解题的关键.22.(1)见解析;(2)52π. 【分析】(1)根据△ABC 绕A 顺时针方向旋转90°,即可得到△AB 1C 1;(2)根据弧长计算公式,即可得出点B 运动路径的长.【详解】解:(1)如图所示,△AB 1C 1即为所求;(2)Rt ABC 中,∠C =90°,AC =3,BC =4 ∴2222AB AC BC 345=++=又∠BAB 1=90°,∴点B 的运动路径的长为:90551802ππ⨯=. 【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 23.(1)见解析;(2)①34π;②3【分析】(1)根据题意可证//OC AD ,OC BD ⊥,再结合垂径定理即可证明(2)①根据等腰三角形的性质,结合(1)得CD CB =根据等弦对等弧得CD BC =,再根据弧长公式求解即可;②根据菱形的性质即可求解【详解】解:(1)∵过点C 作O 的切线l , ∴OC l ⊥,∵AD l ⊥,∴//OC AD ,∵AB 为O 的直径,点D 为AB 上方的圆上一点, ∴AD BD ⊥,∴BD OC ⊥90CED CEB ∴∠=∠=︒,∴点E 为BD 中点,∴BE DE =,∴在CDE △和CEB △中DB BE CED CEB CE CE =⎧⎪∠=∠⎨⎪=⎩∴()CDE CBE SAS ≅;(2)①若OBE △为等腰三角形,OC BD ⊥ ∴OBE △为等腰直角三角形∴45EOB EBO ∠=∠=︒CDE CBE ≅△△CD CB ∴=CD BC ∴=6345331801804AB OB n r BC πππ=∴=⨯∴=== 34CD π∴= ∴当34CD π=时OBE △为等腰三角形 ②若四边形OADC 为菱形132AO OC CD DA AB ∴===== CD BC =3BC ∴=∴当3BC =时OADC 为菱形【点睛】本题考查了切线的性质定理,平行线的判定,全等三角形的判定,等腰三角形的性质,菱形的性质,熟练掌握以上性质和定理是解题关键.24.圆锥的底面圆半径为3;圆锥的侧面积为27π.【分析】直接利用圆的周长公式即可求出圆的半径长,根据扇形的面积公式即可求出圆锥的侧面展开图的面积;【详解】设圆锥的底面圆的半径为r ,则2π6πr =,解得3r =,设扇形AOB 的半径为R ,则120π6π180R ⋅⋅=,解得9R =,∴圆锥的侧面积16π927π2=⨯⨯=. 【点睛】 本题考查了圆锥的展开图问题,正确以及圆的周长公式以及扇形面积公式是解题的关键; 25.(1)见详解;(2)134π,图形见详解 【分析】(1)分别画出OAB ∆各个顶点的对应点,再顺次连接起来,即可;(2)分别画出OAB ∆各个顶点绕点O 逆时针旋转90︒后的对应点,再顺次连接起来,最后利用扇形的面积公式,即可求解.【详解】(1)111O A B ∆如图所示,点1B 的坐标为(-2,-2),(2)22OA B ∆如图所示,∵OA=2223=13+,∴线段OA 所扫过的面积=()29013360π⨯=134π,【点睛】本题主要考查平移和旋转变换以及扇形的面积公式,掌握扇形的面积公式,是解题的关键.26.(1)见解析;(2)16433π-【分析】(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可.(2)根据S 阴=S 扇形OAD -S △ADO 计算即可.【详解】证明:(1)AB 是O 的直径,90ADB ∴∠=︒,//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,AE DE ∴=;(2)连接CD ,OD ,//OC BD ,30OCB CBD ∴∠=∠=︒,OC OB =,30OCB OBC60AOC OCB OBC ∴∠=∠+∠=︒,260COD CBD ∠=∠=︒,120AOD ∴∠=︒,在直角三角形AOE 中,AO =4,∠BAD =30°,∴OE =2,AE 23=,∴43AD =,212041164324336023ADO OAD S S S ππ∆⋅⋅∴=-=-⨯⨯=-阴扇形.【点睛】本题考查扇形的面积公式,垂径定理,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
初中三年级(上)数学教学目标单元检测题(三)
初中三年级(上)数学教学目标单元检测题(三)《第二十四章:图形的相似》一、选择题:(每小题3分,共39分)1、画在图纸上的某一零件的长度是32mm ,如果比例尺是1:15,则该零件的实际长度是( )A 、 mmB 、480mmC 、48mmD 、408mm 2、把d= 写成比例式,下列写法中正确的是( )A 、B 、C 、D 、 3、一个四边形的四条边长分别是50、20、35、40,另一个与它相似的四边形的最短边的长是10cm ,那么这个四边形最长边的长是( )A 、25B 、C 、D 、20 4、一个四边形的三个内角分别是60°、120°、50°,则另一个与它相似的四边形的四个内角分别是( )A 、110°、50°、120°、70°B 、130°、50°、130°、50°C 、120°、50°、60°、130°D 、60°、120°、60°、120°5、下列条件中,不能判断△ABC 与△A ′B ′C ′相似的是( )A 、∠A=∠A ′=70°,∠B=∠B ′=50°B 、AB=AC ,A ′B ′=A ′C ′,∠B=∠B ′ C 、 ,∠C=∠C ′=90°D 、 ,∠A=∠A ′ 6、下列说法中正确的是( )A 、所有的矩形都相似B 、所有的菱形都相似C 、所有的正方形都相似D 、所有的等腰梯形都相似 7、若 则下列各式中正确的是( ) A 、 B 、2x=3y=4z C 、 D 、 8、 如图,DE ∥FG ∥BC ,则图中相似的三角形共用( ) A 、1对 B 、2对 C 、3对 D 、4对 1532c ab dc b a =cd b a =d c a b =b d c a =710045C B B A BC AB ''''=C B BC B A AB ''='',z y x 0432≠==5z y x =+19=++z y x 3443+=+y x9、ABC 中,AB >AC ,D 是AC 上一定点,过D 作直线交AB 于E ,使△ADE 与△ABC 相似,这样的直线有( )A 、1条B 、2条C 、3条D 、4条10、△ABC 中,DE ∥BC ,DE 交AB 于D ,交AC 于E ,若 ,S △ABC =25cm 2,则S △ADE =( )A 、 cm 2B 、 cm 2C 、9cm 2D 、4cm 2 11、△ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=4,AB=13,则CD=( )A 、9B 、6C 、D 、12、等腰梯形的腰长是5cm ,中位线的长是4cm ,这个等腰梯形的周长是( )A 、9cmB 、13cmC 、18cmD 、20cm13、如图,图案上各点的横坐标不变,纵坐标分别加上2,则连结各点所得到的图案与原图案相比( )A 、位置向上平移2个单位长度B 、位置向下平移2个单位长度C 、位置向左平移2个单位长度D 、位置向右平移2个单位长度二、填空题:(每小题3分,共33分)14、在比例线段a:b=c:d 中,a 、d 叫做比例的 项,b 、c 叫做比例的 项,并且 a × = ×15、若b 2=ac ,且a=4cm ,c=5cm ,则b= cm 。
初中数学(人教版)九(下)单元测试卷3—相似(含答案解析)
初中数学(人教版)九(下)单元测试卷3—相似(含答案解析)一.选择题1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.2.若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.53.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.4.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.5.若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4B.1:2C.2:1D.4:16.)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.27.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABC C.=D.=9.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.510.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:1611.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1C.D.212.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)二.填空题13.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.14.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.15.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ABC∽△ACD.(只填一个即可)16.已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.三.解答题17.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.18.如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.19.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.20.如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC上,且BE=AF,FG∥AB交线段AD于点G,连接BG、EF.(1)求证:四边形BGFE是平行四边形;(2)若△ABG∽△AGF,AB=10,AG=6,求线段BE的长.21.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.22.如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?答案解析一.选择题1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.【考点】比例的性质.【分析】根据比例的性质,对选项一一分析,选择正确答案.【解答】解:A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、=⇒b:a=2:3,故选项错误;D、=⇒a:b=4:3,故选项错误.故选B.【点评】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.2.若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.5【考点】比例的性质.【专题】计算题.【分析】根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.【点评】本题考查了比例的性质,利用“设k法”分别表示出x、y、z可以使计算更加简便.3.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.【考点】平行线分线段成比例.【分析】直接利用平行线分线段成比例定理写出答案即可.【解答】解:∵DE∥BC,∴==,故选C.【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大.4.(2016•淄博)如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.【考点】平行线分线段成比例.【专题】线段、角、相交线与平行线.【分析】先作出作BF⊥l3,AE⊥l3,再判断△ACE≌△CBF,求出CE=BF=3,CF=AE=4,然后由l2∥l3,求出DG,即可.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CFB=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故选A.【点评】此题是平行线分线段成比例试题,主要考查了全等三角形的性质和判定,平行线分线段成比例定理,勾股定理,解本题的关键是构造全等三角形.5.若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4B.1:2C.2:1D.4:1【考点】相似多边形的性质.【分析】根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比,就可求解.【解答】解:∵两个相似多边形面积比为1:4,∴周长之比为=1:2.故选:B.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.6.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.2【考点】相似多边形的性质.【分析】可设AD=x,根据四边形EFDC与矩形ABCD相似,可得比例式,求解即可.【解答】解:∵沿AE将△ABE向上折叠,使B点落在AD上的F点,∴四边形ABEF是正方形,∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(负值舍去),经检验x1=是原方程的解.故选B.【点评】考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.7.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个【考点】相似三角形的判定.【分析】直接利用平行四边形的性质得出AD∥BC,AB∥DC,再结合相似三角形的判定方法得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.故选:C.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,正确掌握相似三角形的判定方法是解题关键.8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABC C.=D.=【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.9.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.5【考点】相似三角形的判定与性质.【分析】根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=5且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=8,由EF=DE﹣DF可得答案.【解答】解:∵AF⊥BF,∴∠AFB=90°,∵AB=10,D为AB中点,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴=,即,解得:DE=8,∴EF=DE﹣DF=3,故选:B.【点评】本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.10.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:16【考点】相似三角形的性质.【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.11.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1C.D.2【考点】相似三角形的性质.【专题】网格型.【分析】根据题意平移AB使A点与P点重合,进而得出,△QPB′是直角三角形,再利用tan∠QMB=tan∠P=,进而求出答案.【解答】解:如图所示:平移AB使A点与P点重合,连接B′Q,可得∠QMB=∠P,∵PB′=2,PQ=2,B′Q=4,∴PB′2+PB′2=B′Q2,∴△QPB′是直角三角形,∴tan∠QMB=tan∠P===2.故选:D.【点评】此题主要考查了勾股定理以及锐角三角函数关系,正确得出△QPB′是直角三角形是解题关键.12.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)【考点】平面直角坐标系中的位似变换.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.二.填空题13.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.【考点】比例的性质.【分析】根据等比性质,可得答案.【解答】解:由等比性质,得k===3,故答案为:3.【点评】本题考查了比例的性质,利用了等比性质:===k⇒k==.14.(2016•济宁)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是准确找出图形中的对应线段,正确列出比例式求解、计算.15.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件∠ACD=∠ABC(答案不唯一),使△ABC∽△ACD.(只填一个即可)【考点】相似三角形的判定.【专题】开放型.【分析】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件.【解答】解:由题意得,∠A=∠A(公共角),则可添加:∠ACD=∠ABC,利用两角法可判定△ABC∽△ACD.故答案可为:∠ACD=∠ABC.【点评】本题考查了相似三角形的判定,解答本题的关键是熟练掌握三角形相似的三种判定方法,本题答案不唯一.16.已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.【考点】相似多边形的性质.【专题】压轴题.【分析】可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可.【解答】解:∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(不合题意舍去),经检验x1=是原方程的解.故答案为.【点评】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.三.解答题(共52分)17.(2016•福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.18.如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.【考点】相似三角形的判定.【分析】(1)利用相似三角形的判定以及全等三角形的判定方法得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.【解答】解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.【点评】此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.19.(2016•广州)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【考点】相似三角形的性质.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到或,代入数据即可得到结论.【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BEC相似,∴或,∴==或,∴BE=2,CE=,或CE=,∵BC•EF=BE•CE,∴EF=2,CF==1,∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.20.如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC上,且BE=AF,FG∥AB交线段AD于点G,连接BG、EF.(1)求证:四边形BGFE是平行四边形;(2)若△ABG∽△AGF,AB=10,AG=6,求线段BE的长.【考点】相似三角形的性质.【专题】综合题.【分析】(1)根据FG∥AB,又AD平分∠BAC,可证得,∠AGF=∠GAF,从而得:AF=FG=BE,又因为FG∥AB,所以可知四边形BGFE是平行四边形;(2)根据△ABG∽△AGF,可得,求出AF的长,再由(1)的结论:AF=FG=BE,即可得BE的长.【解答】(1)证明:∵FG∥AB,∴∠BAD=∠AGF.∵∠BAD=∠GAF,∴∠AGF=∠GAF,AF=GF.∵BE=AF,∴FG=BE,又∵FG∥BE,∴四边形BGFE为平行四边形.(4分)(2)解:△ABG∽△AGF,∴,即,∴AF=3.6,∵BE=AF,∴BE=3.6.【点评】解决此类题目,要掌握平行四边形的判定及相似三角形的性质.21.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.【考点】利用标杆测量物体的高度.【分析】根据题意可得:△DEF∽△DCA,进而利用相似三角形的性质得出AC 的长,即可得出答案.【解答】解:由题意可得:△DEF∽△DCA,则=,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m),答:旗杆的高度为11.5m.【点评】此题主要考查了相似三角形的应用,得出△DEF∽△DCA是解题关键.22.如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?【考点】利用镜子测量物体的高度.【分析】(1)利用相似三角形对应边上的高等于相似比即可列出比例式求解;(2)和上题一样,利用物体的高和拍摄点距离物体的距离及像高表示求相机的焦距即可.【解答】解:根据物体成像原理知:△LMN∽△LBA,∴.(1)∵像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,∴,解得:LD=7,∴拍摄点距离景物7米;(2)拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,∴,解得:LC=70,∴相机的焦距应调整为70mm.【点评】本题考查了相似三角形的应用,解题的关键是根据题意得到相似三角形,并熟知相似三角形对应边上的高的比等于相似比.。
2022-2022人教版初中数学9年级上册单元评价检测(3)
单元评价检测(三)第二十三章(45分钟100分)一、选择题(每题4分,共28分)1.(2022·河北中考)以下列图形中,既是轴对称图形又是中心对称图形的是( )【解析】选C.选项B、选项C和选项D是轴对称图形;选项A、选项C是中心对称图形,所以既是轴对称图形又是中心对称图形的是选项C.2.m<0,那么点P(m2,-m+3)关于原点的对称点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选C.∵m<0,∴m2>0,-m+3>0,即点P在第一象限,所以点Q在第三象限. 【变式训练】假设点P(m,-m+3)关于原点的对称点Q在第三象限,那么m的取值范围是( )A.0<m<3B.m<0C.m>0D.m≥0【解析】选A.∵点Q在第三象限,∴点P在第一象限,解得0<m<3.即{m>0,−m+3>0,3.△ABC绕点A按顺时针方向旋转了60°,得到△AEF,那么以下结论一定正确的选项是( ) A.∠BAE=60° B.EF=BCC.AC=AFD.∠EAF=60°【解析】选B.如果点B和点E是对应点,那么选项A、选项B和选项C是正确的;如果点B和点F是对应点,那么选项B是正确的,所以,无论是哪一种情况,选项B 一定正确.【特别提醒】利用分类讨论思想,分析点B的对应点,点B可能和点E对应,还有可能和点F对应,做题时,常常忽略了其中的一种情况.4.点A(x,y-4)与点B(1-y,2x)关于原点对称,那么y x的值是( )A.2B.1C.4D.8【解析】选A.根据题意,列方程组,得{x=y−1,y−4=−2x,那么y x=21=2.解得{x=1,y=2,5.如下列图,△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:(1)点E和点F,点B和点D是关于中心O的对称点.(2)直线BD必经过点O.(3)四边形DEOC与四边形BFOA的面积必相等.(4)△AOE与△COF成中心对称,其中正确的个数为( )A.1B.2C.3D.4【解析】选D.△ABC与△CDA关于点O对称,那么AB=CD,AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,那么有:(1)点E和点F,点B和点D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形DEOC与四边形BFOA的面积必相等,正确;(4)△AOE与△COF成中心对称,正确.所以正确的个数为4.6.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,那么其旋转中心可能是( )A.点AB.点BC.点CD.点D【解析】选B.根据对应点到旋转中心的距离相等,可知旋转中心在对应点连线的垂直平分线上,作图可以得到对应点连线的交点为点B.7.(2022·日照模拟)在△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕点A旋转180°,点C落在C′处,那么C,C′两点之间的距离是( )A.2B.4C.2√3D.无法计算【解题指南】此题涉及的两个知识点1.两个图形关于某一点成中心对称,对应点的连线经过对称中心,且被对称中心平分.2.在直角三角形中,30°所对的直角边等于斜边的一半.【解析】选B.在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2AB=2;又∵点C和点C′关于点A对称,即点C,A,C′在同一直线上,且CC′=2AC=4.二、填空题(每题5分,共25分)8.一个正方形绕它的中心旋转后如果能和原来的图形重合,那么它至少要旋转. 【解析】正方形绕它的中心旋转90n°(n为正整数)后都能够与原来的图形重合,所以它至少要旋转90°.答案:90°9.如下列图,将△ABC绕点A按逆时针旋转30°后,得到△ADC′,那么∠ABD的度数是.【解析】根据旋转的性质,得∠BAD=30°,且AB=AD,所以∠ABD=(180°-∠BAD)÷2=(180°-30°)÷2=75°.答案:75°【互动探究】题中条件不变,那么∠ACC′的度数是.【解析】根据旋转的性质,得∠CAC′=30°,且AC′=AC,所以∠ACC′=(180°-∠CAC′)÷2=(180°-30°)÷2=75°.答案:75°10.如图,点A在射线OX上,OA的长等于2cm.如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示.如果将OA′再沿逆时针方向继续旋转45°,到OA″,那么点A″的位置可以用表示.【解析】第一个坐标为原点到此点的距离,旋转前后线段长度不变,所以OA″=OA=2,第二个坐标为与射线OX的夹角,为∠A″OA′+∠A′OA=45°+30°=75°,那么点A″的位置可以用(2,75°)表示.答案:(2,75°)11.(2022·聊城模拟)点A与点A′关于原点对称,且点A的坐标为(-5,y),点A 到原点的距离为13,那么点A′的坐标为.【解析】点A到原点的距离为13,即(-5)2+y2=132,解得y=±12,即点A的坐标为(-5,12)或(-5,-12),那么点A′的坐标为(5,-12)或(5,12).答案:(5,-12)或(5,12)12.假设m,n是实数,且m,n是方程x2+3x+2=0的两根,那么点P(m,n)关于原点的对称点Q的坐标是.【解析】解方程x2+3x+2=0,得x1=-1,x2=-2,所以点P的坐标为(-1,-2)或(-2,-1),那么对称点Q的坐标是(1,2)或(2,1).答案:(1,2)或(2,1)三、解答题(共47分)13.(10分)(2022·安徽中考)如图,A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标.假设将点B2向上平移h个单位,使其落在△A1B1C1的内部,指出h的取值范围.【解析】(1)根据中心对称画图如下:(2)点B2的坐标是(2,-1),2<h<3.5.14.(12分)如图,∠BAC=30°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合.(1)△ABC旋转了多少度(2)连接CE,试判断△AEC的形状.(3)求∠AEC的度数.【解析】(1)因为∠BAD=180°-∠BAC=180°-30°=150°,所以△ABC旋转了150°(2)根据旋转的性质,可知AC=AE,所以△AEC是等腰三角形.(3)在△AEC中,∠CAE=∠BAD=150°,所以∠AEC=(180°-∠CAE)÷2=(180°-150°)÷2=15°.15.(12分)如图,在△ABC 和△EDC 中,AC=CE=CB=CD,∠ACB=∠ECD=90°,AB 与CE 交于F,ED 与AB,BC 分别交于M,H.(1)求证:CF=CH.(2)△ABC 不动,将△EDC 绕点C 旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形 并证明你的结论.【解题指南】解答此题的两个关键1.读懂图,通过旋转的性质找出三角形全等的条件.2.熟定理,根据旋转角找出判定菱形所需要的条件.【解析】(1)在△ACB 和△ECD 中,∵∠ACB=∠ECD=90°,∴∠1+∠ECB=∠2+∠ECB,∴∠1=∠2;又∵AC=CE=CB=CD,∴∠A=∠D=45°;在△CFA 和△CHD 中,{∠1=∠2,∠A =∠D,CA =CD,∴△CFA ≌△CHD,∴CF=CH.(2)四边形ACDM 是菱形.证明:∵∠ACB=∠ECD=90°,∠BCE=45°,∴∠1=45°,∠2=45°.又∵∠E=∠B=45°,∴∠1=∠E,∠2=∠B,∴AC ∥MD,CD ∥AM,∴四边形ACDM 是平行四边形,又∵AC=CD,∴平行四边形ACDM 是菱形.16.(13分)把两个全等的等腰直角三角板ABC 和EFG(其直角边均为4)叠放在一起(如图1),且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合,现将三角板EFG 绕点O 按顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角形的重叠局部(如图2).在上述旋转过程中,BH 与CK 有怎样的数量关系 四边形CHGK 的面积有何变化 请证明你的发现.【解析】BH=CK.四边形CHGK 的面积没有变化.∵△ABC 是等腰直角三角形,O 为斜边中点,∴CG=BG,CG ⊥AB,∴∠ACG=∠B=45°,∵∠BGH 与∠CGK 均为旋转角,∴∠BGH=∠CGK,因此△CGK 可以看作是由△BGH 绕点O 顺时针旋转而得,故BH=CK,S △CGK =S △BGH ,∴S 四边形CHGK =S △CGK +S △CGH =S △BGH +S △CGH =S △BCG=12S △ABC =12×12×4×4=4. 即四边形CHGK 的面积在旋转过程中没有变化,始终为4.。
(常考题)人教版初中数学九年级数学上册第三单元《旋转》检测(答案解析)(3)
一、选择题1.如图,在ABC 中,75CAB ∠=︒,在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置,使得CC //AB ',则BAB '∠=( )A .30B .35︒C .40︒D .50︒2.如图,将△ABC 绕点A 旋转,得到△AEF ,下列结论正确的个数是( ) ①△ABC ≌△AEF ;②AC=AE ;③∠FAB=∠EAB ;④∠EAB=∠FAC .A .1B .2C .3D .43.下列图形中,是中心对称图形的是( )A .B .C .D . 4.如图,△ABC 中,AB =6,AC =4,以BC 为对角线作正方形BDCF ,连接AD ,则AD 长不可能是( )A .2B .4C .6D .85.如图,将一个含30角的直角三角尺AOB 放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知30OAB ∠=︒,12AB =,点D 为斜边AB 的中点,现将三角尺AOB 绕点O 顺时针旋转90︒,则点D 的对应点D 的坐标为( )A .(33,3)B .(63,6)-C .(3,33)-D .(33,3)- 6.下列命题的逆命题是真命题的是( )A .等边三角形是等腰三角形B .若22ac bc >,则a b >C .成中心对称的两个图形全等D .有两边相等的三角形是等腰三角形7.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 8.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转90︒得到月牙②,则点A 的对应点A’的坐标为 ( )A .(2,2)B .(2,4)C .(4,2)D .(1,2) 9.如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为( )A .3B .3C 13D 1510.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 11.如果齿轮A 以逆时针方向旋转,齿轮E 旋转的方向( )A .顺时针B .逆时针C .顺时针或逆时针D .不能确定 12.若点A (3-m ,n+2)关于原点的对称点B 的坐标是(-3,2),则m ,n 的值为( )A .m=-6,n=-4B .m=O ,n=-4C .m=6,n=4D .m=6,n=-4二、填空题13.如图,将矩形ABCD 绕点A 顺时针旋转90︒后,得到矩形AB C D ''',若8CD =,6DA =,那么AC '=______.14.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.15.如图,在正方形ABCD 中,3AB =,点E 在CD 边上,1DE =,把ADE 绕点A 顺时针旋转90°,得到ABE '△,连接EE ',则线段EE '的长为______.16.已知点()2,3A x -与点()4,5B y -关于原点对称,则xy 的值等于______. 17.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.18.如图,△ABC 中,∠A =60°,∠ABC =80°,将△ABC 绕点B 逆时针旋转,得到△DBE ,若DE ∥BC ,则旋转的最小度数为_____.19.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.20.如图,在Rt △ABC 中,已知∠C=90°,∠A=60°,AC=3cm ,以斜边AB 的中点P 为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt △A′B′C′,则旋转前后两个直角三角形重叠部分的面积为______________.三、解答题21.把两个全等的等腰直角三角板ABC 和EFG 叠放在一起(如图①),两直角三角板的直角边长均为4,且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点按顺时针方向旋转(旋转角α满足条件:090α︒<<︒),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH 与CK 有怎样的数量关系:________.(2)四边形CHGK 的面积有何变化?证明你发现的结论.(3)连接HK ,在上述旋转过程中,设BH x =,GKH △的面积为y ,求y 与x 之间的关系,并通过“配方法”求出GKH △面积的最小值.22.如图,P 是正方形ABCD 内一点,△ABP 绕着点B 旋转后能到达△CBE 的位置. (1)旋转的角度是多少度?(2)若BP =3cm ,求线段PE 的长.23.如图,在正方形网格中,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC 以x 轴为对称轴,画出对称后的△A 1B 1C 1;(2)将△ABC 绕点C 逆时针旋转90°,画出旋转后的△A 2B 2C 2.24.某学习小组在探究三角形全等时,发现了下列两种基本图形,请给予证明.(1)如图1,AC 与BD 交于点O ,AB ∥CD ,AB=CD ,求证:OA=OC .(2)如图2,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .求证:BD =AE .(3)数学老师赞赏了他们的探索精神,并鼓励他们用图1或图2的基本图形来解决问题:如图3,把一块含45°的直角三角板ABC (即ABC ∆是等腰直角三角形,90C =∠,AC BC =)绕点A 逆时针旋转后成为ADE ∆,已知点B 、C 的对应点分别是点D 、E .连结BD ,并作射线CE 交BD 于点F ,试探究在旋转过程中,DF 与BF 的大小关系如何,并证明.25.如图所示,△ ABC 和△ AEF 为等边三角形,点 E 在△ ABC 内部,且 E 到点 A 、B 、C 的距离分别为 3、4、5,求∠AEB 的度数.26.在6×6方格中,每个小正方形的边长为1,点A ,B 在小正方形的格点上,请按下列要求画一个以AB 为一边的四边形,且四边形的四个顶点都在格点上.(1)在图甲中画一个是中心对称图形但不是轴对称图形;(2)在图乙中画一个既是中心对称图形又是轴对称图形.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△AC C′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数.【详解】解:∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°-2∠C′CA=30°.故选:A.【点睛】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.2.B解析:B【分析】由旋转的性质得到△ABC≌△AEF,再由全等三角形的性质逐项判断即可.【详解】∵△ABC绕点A旋转得到△AEF,∴△ABC≌△AEF,∴AC=AF ,不能确定AC=AE,故①正确,②错误;∵∠EAF=∠BAC,∴∠EAF-∠BAF=∠BAC-∠BAF,∴即∠EAB=∠FAC,但不能确定∠EAB等于∠FAB,故③错误,④正确;综上所述,结论正确的是①④,共2个.故选:B.【点睛】此题考查了旋转的性质.掌握旋转前后的图形全等是解答此题的关键.3.D解析:D【分析】根据中心对称图形的定义和图形的特点即可求解.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4.D解析:D【分析】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC,DE=AD,等腰Rt△ADE中,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<<10求出AD的范围即可.【详解】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC=6,DE=AD,在Rt△ADE中由勾股定理得,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<<10,<,8故选:D.【点睛】本题考查AD 的范围问题,掌握正方形的性质,和旋转性质,由条件分散,将已知与未知化归一个三角形中,利用旋转构造等腰直角三角形△ACE 实现转化,利用三边关系确定AE 的范围是解题关键.5.D解析:D【分析】先利用直角三角形的性质、勾股定理分别求出OB 、OA 的长,再根据旋转的性质可得,OA OB ''的长,从而可得点,A B ''的坐标,然后根据中点坐标公式即可得.【详解】在Rt AOB 中,30OAB ∠=︒,12AB =,2216,632OB AB OA AB OB ∴===-=, 由旋转的性质得:63,6OA OA OB OB ''====,点D 为斜边A B ''的中点, 将三角尺AOB 绕点O 顺时针旋转90︒,∴点A 的对应点A '落在x 轴正半轴上,点B 的对应点B '落在y 轴负半轴上, (63,0),(0,6)A B ''∴-, 又点D 为斜边A B ''的中点,63006()2D +-'∴,即(33,3)D '-, 故选:D .【点睛】本题考查了直角三角形的性质、勾股定理、旋转的性质、中点坐标公式,熟练掌握旋转的性质是解题关键.6.D解析:D【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据等腰三角形的性质、不等式的性质、中心对称的性质等进行判断.【详解】A、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误;B、逆命题是:如果a>b,则ac2>bc2,是假命题,故本选项错误;C、逆命题为:全等的两个图形成中心对称,是假命题,故本选项错误;D、逆命题为:等腰三角形是有两边相等的三角形,故本选项正确;故选:D【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,并熟悉课本中的性质定理.7.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点睛】本题考查了轴对称与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.B解析:B【详解】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(-2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.9.C解析:C【分析】连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可.【详解】连接BM,如图,由旋转的性质得:AM=AF.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠BAD=∠C=90°,∵ΔAEM与ΔA DM关于AM所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE≌△AMB∴FE=BM.在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,∴2222+=+=BC CM3213∴13故选C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.10.C解析:C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称图形,故本选项不符合题意;C 、既是轴对称图形,也是中心对称图形,故本选项符合题意;D 、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 11.B解析:B【分析】根据图示进行分析解答即可.【详解】齿轮A 以逆时针方向旋转,齿轮B 以顺时针方向旋转,齿轮C 以逆时针方向旋转,齿轮D 以顺时针方向旋转,齿轮E 以逆时针方向旋转,故选B .【点睛】此题考查旋转问题,关键是根据图示进行解答.12.B解析:B【解析】试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.考点:原点对称二、填空题13.10【分析】根据旋转的性质可得在中利用勾股定理即可求解【详解】ABCD 为矩形CD=8DA=6由旋转的性质可得:在中由勾股定理得:即故答案为:10【点睛】本题考查旋转性质及勾股定理的综合应用根据旋转性解析:10【分析】根据旋转的性质可得8CD C D ''==,6DA D A '==,在Rt ''△AD C 中利用勾股定理即可求解.【详解】ABCD 为矩形,CD=8,DA=6由旋转的性质可得:8CD C D ''==,6DA D A ='=,90CDA C D A ''∠=∠=︒∴在Rt ''△AD C 中由勾股定理得:22AC D A C D ''''=+,即226810AC '=+= 故答案为:10.【点睛】本题考查旋转性质及勾股定理的综合应用,根据旋转性质得到直角三角形的基础上应用勾股定理求出边的长度是解题关键.14.【分析】延长BN 交CM 与E 判定△NME 为等腰直角三角形求出NE 的长再据勾股定理可计算得MN 的长【详解】解:如下图在正方形ABCD 中延长BN 交CM 于E 由题意据中心对称的性质得∠ABE=∠CDM ∠MDC解析:2【分析】延长BN 交CM 与E ,判定△NME 为等腰直角三角形,求出NE 的长,再据勾股定理可计算得MN 的长. 【详解】解:如下图在正方形ABCD 中延长BN 交CM 于E ,由题意据中心对称的性质,得∠ABE=∠CDM ,∠MDC 与∠MCD 互余,∠ABE 与∠EBC 互余 ∴∠EBC=∠DCM ;同理可得∠MCB=∠ABN又∠ABN=∠CDM∴∠MCB=∠MDC又BC=CD∴△BEC ≌△CMD∴∠BEC=∠CMD=90° BE=CM=4 CE=DM=3∴ME=CM-CE=1,NE=BE-BN=1所以△MNE 为等腰直角三角形,且∠NEM 是直角,ME=NE=1,由勾股定理得222NE ME +=2【点睛】此题考查综合运用中心对称的性质解决问题.其关键是要运用中心对称的性质找全等条件,证明△BEC ≌△CMD .15.【分析】先根据正方形的性质可得再根据旋转的性质可得从而可得点在同一条直线上然后根据线段的和差可得最后在中利用勾股定理即可得【详解】四边形ABCD 是正方形由旋转的性质得:点在同一条直线上则在中故答案为解析:【分析】先根据正方形的性质可得90,3ABC D C CD BC AB ∠=∠=∠=︒===,再根据旋转的性质可得1,90BE DE ABE D ''==∠=∠=︒,从而可得点,,E B C '在同一条直线上,然后根据线段的和差可得4E C '=,最后在Rt ECE '中,利用勾股定理即可得.【详解】四边形ABCD 是正方形,90,3ABC D C CD BC AB ∴∠=∠=∠=︒===,1DE =,312CE CD DE ∴=-=-=,由旋转的性质得:1,90BE DE ABE D ''==∠=∠=︒,180ABC ABE '∴∠+∠=︒,∴点,,E B C '在同一条直线上,134E C BE BC ''∴=+=+=,则在Rt ECE '中,EE '==,故答案为:【点睛】本题考查了正方形的性质、旋转的性质、勾股定理等知识点,熟练掌握正方形与旋转的性质是解题关键.16.-4【分析】利用关于原点对称点的性质求出xy 的值进而求出答案【详解】解:∵点与点关于原点对称∴x-2=-4y-5=-3∴x=-2y=2∴xy=(-2)×2=-4故答案为:-4【点睛】本题考查了关于原解析:-4【分析】利用关于原点对称点的性质求出x ,y 的值,进而求出答案.【详解】解:∵点()2,3A x -与点()4,5B y -关于原点对称,∴x-2=-4,y-5=-3,∴x=-2,y=2,∴xy=(-2)×2=-4.故答案为:-4【点睛】本题考查了关于原点对称点的性质,根据与原点对称的点的坐标特点(纵坐标,横坐标都互为相反数)得出x,y的值是解题关键.17.40【分析】由旋转的性质可得∠A=∠A=50°∠BCB=∠ACA由直角三角形的性质可求∠ACA=40°=∠B′CB【详解】解:∵把△ABC绕点C顺时针旋转得到△ABC∴∠A=∠A=50°∠BCB=∠解析:40【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=40°=∠B′CB.【详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=40°∴∠BCB'=40°故答案为40.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.18.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论【详解】∵在△ABC中∠A=60°∠ABC=80°∴∠C=180°﹣60°﹣80°=40°∵将△ABC绕点B逆时针旋转得到△DB解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点B逆时针旋转,得到△DBE,∴∠E=∠C=40°,∵DE∥BC,∴∠CBE=∠E=40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.19.40【分析】根据旋转的性质得出AD=AC∠DAE=∠BAC=20°求出∠DAE=∠CAE=20°再求出∠DAC的度数即可【详解】解:∵△ABC绕点A逆时针旋转至△AED ∠BAC =20°∴AD =AC ∠解析:40【分析】根据旋转的性质得出AD =AC ,∠DAE =∠BAC =20°,求出∠DAE =∠CAE =20°,再求出∠DAC 的度数即可.【详解】解:∵△ABC 绕点A 逆时针旋转至△AED ,∠BAC =20°,∴AD =AC ,∠DAE =∠BAC =20°,∵AE 垂直平分CD 于点F ,∴∠DAE =∠CAE =20°,∴∠DAC =20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.20.【分析】由点P 是AB 的中点∠A=60°AC=3cm 可得BP 的长再由逆时针旋转90°根据旋转的性质和30°直角三角形的三边比值就可求出BMMP 的长在Rt △B′MN 和Rt △BNG 中根据30°直角三角形的 解析:94【分析】由点P 是AB 的中点,∠A=60°,AC=3cm 可得BP 的长,再由逆时针旋转90°,根据旋转的性质和30°直角三角形的三边比值,就可求出BM ,MP 的长,在Rt △B ′MN 和Rt △BNG 中根据30°直角三角形的三边比值同样可以求出相应线段长,然后利用S 阴影部分=BNG BPM S S ∆∆-进行计算即可.【详解】如图,∵∠C =90°,∠A =60°,AC =6,∴AB =2AC =6,∠B =30°,∵点P 为AB 的中点,∴BP =3,∵△ABC 绕点P 按逆时针方向旋转90︒得到Rt △A′B′C′,∴B 'P =BP =3,在Rt △BPM 中,∠B =30°,∠BPM =90°,∴BM =2PM ,∴PM =3,BM =23, ∴B ′M =B ′P -PM =3-3,在Rt △B ′MN 中,∠B ′=30°,∴MN =12B ′M =3322-,∴BN =BM +MN =33322+, 在Rt △BNG 中,BG =2NG ,BG 2=NG 2+BN 2,∴NG =3322+, ∴S 阴影=S △BNG -S △BMP =13333193332222224⎛⎫⎛⎫⨯+⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭, 故答案为:94. 【点睛】 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系和三角形面积公式.三、解答题21.(1)BH CK =;(2)不变,证明见解析;(3)2482x x y -+=;2 【分析】(1)连接CG ,可通过证明KCG HBG ≅△△则可证得BH=CK ;(2)由KCG HBG ≅△△可得它们的面积相等,进而得出四边形CHGK 的面积不变; (3)过点G 作GQ BC ⊥于点Q ,利用等腰三角形的性质和勾股定理可求得222248GH GQ QH x x =+=-+,再利用KCG HBG ≅△△证得KGH 为等腰直角三角形,再根据三角形的面积公式可得到y 与x 之间的关系式,然后利用二次函数的最值求法即可解答.【详解】(1)连接CG ,如图:∵ABC 为等腰直角三角形,G 为AB 中点,∴CG BG =,45ACG CBG ∠=∠=︒,90CGB ∠=︒,∵90KGC CGF ∠+∠=︒,90CGF FGB ∠+∠=︒,∴KGC FGB ∠=∠,∴在KCG △与HBG 中,KCG HBG CG BGCGK BGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()KCG HBG ASA ≅△△,∴BH CK =,故答案为:BH=CK .(2)∵KCG HBG ≅△△,∴CGK S △=GHB S∴CHGK CGK CGH S S S =+△△四边形CGH GHB S S =+△△CGB S =△12ABC S =△ 4=.故四边形CHGK 面积不变,为4.(3)过点G 作GQ BC ⊥于点Q ,∵ABC 为等腰直角三角形,G 为AB 中点,∴2GQ =,2BQ =, ∴2QH x =-.故222248GH GQ QH x x =+=-+.由(1)可知GH KG =,又∵90KGH ∠=︒,∴GKH △为等腰直角三角形, ∴212GKH S GH =⨯△, ∴2482x x y -+=. ∵旋转角度为090α<<︒,∴x 的取值范围为02x <≤.又GKH △的面积:2482x x y -+= 2(2)42x -+= 2(2)2(02)2x x -=+<≤ ∵()220x -≥, ∴022y ≥+=(当x=2时取等号).故GKH △面积最小值为2.【点睛】本题考查了旋转的性质、等腰三角形的性质、同角的余角相等、全等三角形的判定与性质、勾股定理、二次函数的性质,通过全等三角形将面积进行转换是解答的关键,综合性很强,平时应加强对各知识的综合运用.22.(1)90,(2)2cm .【分析】(1)找出对应边AB 、BC 的夹角的度数就是旋转角的度数;(2)根据旋转变换的性质可知BP=BE ,∠PBE=∠ABC ,再根据勾股定理列式求解即可得到PE 的长度.【详解】 解:(1)∵△ABP 绕着点B 旋转后能到达△CBE 的位置,∴∠ABC 为旋转角.∵四边形ABCD 是正方形,∴∠ABC =90°,即旋转的角度是90度;(2)∵△ABP 绕着点B 旋转后能到达△CBE 的位置,∴BP =BE =3cm ,∠PBE =∠ABC =90°,∴PE 222233BP BE =+=+=2cm .【点睛】本题主要考查了旋转变换的性质,根据对应边的夹角的度数就等于旋转角的度数求解是解题的关键.23.(1)见解析;(2)见解析【分析】(1)依据轴对称的性质,即可画出对称后的△A 1B 1C 1;(2)依据旋转变换,即可画出旋转后的△A 2B 2C 2.【详解】解:(1)如图,△A 1B 1C 1为所求的三角形;(2)如图,△A 2B 2C 2为所求的三角形;【点睛】本题考查了利用轴对称变换和旋转变换作图以及勾股定理的运用,解答本题的关键是掌握旋转的性质及轴对称的性质.24.(1)见解析;(2)见解析;(3)DF BF =,理由见解析【分析】(1)利用三角形ABD CDO ∆∆,全等来证即可(2)利用一线三直角证2B ∠=∠,再证两三角形全等即可(3)证F 为BD 中点,构造一个三角形,过点D 作DG ∥BC ,交CF 延长线于点G ,只要证GDF CBF ∆∆≌,看看条件DG ∥BC ,有BCF G ∠=∠,以及DFG CFB =∠∠,差一边,由旋转知BC D E =,只要证GD=DE ,由90AED ∠=︒,得90AEC DEG ∠+∠=︒,90ACB ∠=︒,则90BCF ACE ∠+∠=︒,AE=AC ,=ACE AEC ∠∠,得到BCF DEF=G ∠=∠∠,DG=DE=BC ,为此GDF CBF ∆∆≌得证即可.【详解】证明:(1)∵AB ∥CD ∴A C ∠=∠,B D ∠=∠,又∵AB CD =∴()ABD CDO ASA ∆∆≌,∴OA OC =,(2)∵BD l ⊥,CE l ⊥,∴90BDA CEA ∠=∠=︒∴190B ∠+∠=︒,∵90BAC ∠=︒∴1290∠+∠=︒∴2B ∠=∠,又∵AB AC =∴()ABD CAE AAS ∆∆≌,∴BD AE =,,(3)DF BF =.理由如下:,法一:过点D 作DG ∥BC ,交CF 延长线于点G ,∴G BCF ∠=∠∵90ACB ∠=︒∴90BCF ACE ∠+∠=︒,由旋转得:AC AE =∴ACE AEC ∠=∠,∵90AED ∠=︒∴90AEC DEG ∠+∠=︒,∴BCF DEG ∠=∠∴G DEG ∠=∠∴DE DG =,又∵DE BC =∴DG BC =,又∵DFG CFB =∠∠∴()GDF CBF AAS ∆∆≌,∴DF BF =,法二:作AH EC ⊥,BM CF ⊥,DN CF ⊥交CF 延长线于N ,∵AC AE =∴CH EH =,∵90ACB ∠=︒∴90BCF ACH ∠+∠=︒,又∵90ACH HAC ∠+∠=︒,AC BC =,∴ACH CBM ∆∆≌∴CH BM =∴EH BM =,在AEH ∆与EDN ∆中,由图2可证:EH DN =∴DN BM =,∵DN CF ⊥,BM CF ⊥∴DN ∥BM ,在DNF ∆与BMF ∆中,由图1可证:DF BF =.【点睛】本题考查利用全等证线段相等问题,利用好平行线,使问题得以解决,利用好一线三直角,找到∠B=∠CAE,使问题得以解决,利用好旋转,有线等就有角等,使∠G=∠DEG=∠BCG,GD=DE=BC,使问题得以解决.25.150°【分析】连接FC,可证△AEB≌△AFC(SAS),然后根据勾股定理的逆定理可求的∠EFC=90°,然后根据全等的性质可求解.【详解】连接FC,则△AEB≌△AFC(SAS).在△EFC中,EF=3,FC=4,EC=5,所以是直角三角形,则∠EFC=90°,∠AEB=∠AFC=90°+60°=150°26.(1) (2)【分析】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形;(2)根据是中心对称图形又是轴对称图形可以确定是菱形或者正方形;【详解】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形画图如下:(2)根据是中心对称图形又是轴对称图形可以确定是正方形画图如下:【点睛】本题考查了作图应用设计,熟练掌握轴对称图形和中心对称图形是解题关键.。
(压轴题)初中数学七年级数学上册第三单元《一元一次方程》检测题(含答案解析)(3)
一、选择题1.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1 C .5 D .11 2.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣13.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( )A .14B .14-C .4D .-44.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .665.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++6.下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯C .126p - D .2y z ÷7.下面去括号正确的是( ) A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ 8.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣49.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-211.式子5x x-是( ). A .一次二项式 B .二次二项式 C .代数式 D .都不是 12.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题13.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.14.已知等式:2222233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___. 15.观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形. 16.化简:226334xx x x_________.17.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④18.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.19.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.20.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.三、解答题21.设A =2x 2+x ,B =kx 2-(3x 2-x+1). (1)当x= -1时,求A 的值;(2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由.22.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>,求112210101010a b a b a b -+-++-的所有可能值.23.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c . (1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?24.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.25.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象. 26.化简: (1)()()22224232a b ababa b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.A解析:A【分析】根据由题意可得被减式为5x2+4x-1,减式为3x2+9x,求出差值即是答案.【详解】由题意得:5x2+4x−1−(3x2+9x),=5x2+4x−1−3x2−9x,=2x2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.3.B解析:B【分析】直接利用同类项的概念得出n,m的值,即可求出答案.【详解】21412na b--与83mab是同类项,∴21184nm-=⎧⎨=⎩解得:121mn⎧=⎪⎨⎪=⎩则()()5711n m+-=14-故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.4.C解析:C【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.5.B解析:B 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.6.A解析:A 【分析】根据代数式的书写要求判断各项. 【详解】 A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2yz,故选项D 错误; 故选:A . 【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写; (2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.7.B解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.8.A解析:A 【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案. 【详解】由题意,得3m =6,n =2. 解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1, 故选:A . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.9.C解析:C 【分析】由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案. 【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B , ∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈ 在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈ ∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.10.A解析:A【分析】由BC=2,C点所表示的数为x,求出B表示的数,然后根据OA=OB,得到点A、B表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C点所表示的数为x,∴B点表示的数是x-2,又∵OA=OB,∴B点和A点表示的数互为相反数,∴A点所表示的数是-(x-2),即-x+2.故选:A.【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.C解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】式子5xx分母中含有未知数,因而不是整式,故A、B错误,是代数式,故C正确.故选:C.【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.12.C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题13.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2). 【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答. 【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子, ∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子. 故答案为:(4n+2). 【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.14.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10 ∴a+b=10+99=109. 故答案为109. 【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.15.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规 解析:42n +【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形. 【详解】解:第一个图形中有6个白色六边形, 第二个图形有6+4个白色六边形, 第三个图形有6+4+4个白色六边形, 根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形. 故答案是:4n +2. 【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式.16.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键 解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可. 【详解】 解:226334xx x x226334xx x x2(64)(33)xx=2106x x -+, 故答案为:2106x x -+. 【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键.17.加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律 【分析】直接利用整式的加减运算法则进而得出答案. 【详解】解:原式=2a 2b+5ab+a 2b-3ab =2a 2b+a 2b+5ab-3ab=(2a 2b+a 2b )+(5ab-3ab )=3a 2b+2ab .第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.18.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值 解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 19.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴== ∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=- 故答案为:-2【点睛】 本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.20.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+,∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 三、解答题21.(1)A =1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A 进行计算即可得;(2)先计算出A-B ,根据结题即可得.试题(1)当x=-1时,A=2x 2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x 2+x )-[kx 2-(3x 2-x+1)]=(5-k )x 2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.22.1020100【分析】由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.23.(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.24.(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.25.见解析.【分析】设原来的两位数十位数字为a ,个位数字为b ,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a ,个位数字为b ,则原来两位数为10a+b ,交换后的新两位数为10b+a ,(10a+b )-(10b+a )=10a+b-10b-a=9a-9b=9(a-b ),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键. 26.(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.。
数学七年级上人教福建单元评价检测(三)
单元评价检测(三)(第三章)(时间60分钟 满分100+20分)一、选择题(本题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列方程中,①x 2+2x =1,②1x -3x =9,③15 x =0,④3-13 =223,⑤y -23 =y +13是一元一次方程的有________个( B ) A .1 B .2 C .3 D .42.已知x =y ,a 是任意数,则下列结论错误的是( D )A .a -x =a -yB .x -y =0C .ax =ayD .x a +1 =y a +13.已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( D )A .-7B .7C .-5D .54.(2020·重庆中考A 卷)解一元一次方程12 (x +1)=1-13x 时,去分母正确的是( D )A .3(x +1)=1-2xB .2(x +1)=1-3xC .2(x +1)=6-3xD .3(x +1)=6-2x5.在有理数范围内定义运算“☆”:a ☆b =a +b -1,例如:2☆3=2+3-1=4.如果2☆x =1,则x 的值是( C )A .-1B .1C .0D .26.(2020·内江中考)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( A )A .12 x =(x -5)-5B .12x =(x +5)+5 C .2x =(x -5)-5 D .2x =(x +5)+5二、填空题(本题共4小题,每小题4分,共16分)7.将方程2x =x +7移项得2x -x =7.这种变形的依据是__等式的性质1__.8.关于x 的方程x n +1-(2n -3)=0是一元一次方程,则这个方程的解是__x =-3__.9.已知方程x -2y +3=8,则整式2y -x 的值为__-5__.10.(2020·绍兴中考)有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是__85或100__元.三、解答题(本题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)11.(20分)解下列方程:(1)2x +2=7x -8; (2)3-x 2 =x -43; (3)2(x -2)-3(4x -1)=9(1-x); (4)1-2x 3 =3x +14-1. 【解析】(1)移项合并同类项得:-5x =-10,解得:x =2;(2)去分母得:3(3-x)=2(x -4),去括号得:9-3x =2x -8, 移项合并同类项得:5x =17,解得:x =175; (3)去括号得:2x -4-12x +3=9-9x ,移项合并同类项得:-x =10,解得:x =-10;(4)去分母得:4(1-2x)=3(3x +1)-12 去括号得:4-8x =9x +3-12移项合并同类项得:-17x =-13 解得:x =1317. 12.(8分)已知方程12 x -4=m 3 与方程x -62+m =0有相同的解,求m 的值. 【解析】解方程12 x -4=m 3 ,得x =2m +243. 解方程x -62+m =0,得x =6-2m. 所以2m +243 =6-2m ,解得m =-34. 13.(8分)在某年全国足球甲级A 组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?分析:设该队共胜了x 场,根据题意,用含x 的式子填空:(1)该队平了________场;(2)按比赛规则,该队胜场共得________分;(3)按比赛规则,该队平场共得________分.【解析】(1)11-x ;(2)3x ;(3)(11-x).根据题意可得:3x+(11-x)=23,解得:x=6.答:该队共胜了6场.14.(8分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1 200元,问该照相机的原售价是多少元?【解析】设该照相机的原售价是x元,根据题意得:0.8x=1 200×(1+14%),解得:x=1 710.答:该照相机的原售价是1 710元.15.(8分)(2021·大东区期末)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作.(1)求甲、乙两队合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2 500元,乙队每天的施工费用为3 000元,求完成此项工程需付给甲、乙两队共多少元.【解析】(1)设甲、乙两队合作x天才能把该工程完成,根据题意得140×4+(140+150)x=1,解得x=20.答:甲、乙两队合作20天才能把该工程完成.(2)甲队的费用为2 500×(20+4)=60 000(元),乙队的费用为3 000×20=60 000(元),60 000+60 000=120 000(元).答:完成此项工程需付给甲、乙两队共120 000元.16.(8分)如图,长方形ABCD被分割成六个正方形,其中最小正方形的边长等于1,求长方形ABCD的面积.【解析】设右下角的正方形的边长为x.则长方形的宽AB=x+1+(x+2)=2x+3,长方形的长BC=2x+(x+1)=3x+1.因为最大正方形的边长可表示为2x-1,也可表示为x+3,所以2x-1=x+3,解得x=4.所以AB=11,BC=13,所以长方形的面积=11×13=143.四、附加题17.(20分)(2020·安徽中考)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);销售总额时间线上销售额(元) 线下销售额(元)(元)2019年4月份 a x a-x2020年4月份 1.1a 1.43x ____________(2)求2020年4月份线上销售额与当月销售总额的比值.【解析】(1)因为与2019年4月份相比,该超市2020年4月份线下销售额增长4%,所以该超市2020年4月份线下销售额为1.04(a -x)元.答案:1.04(a -x)(2)依题意,得1.1a =1.43x +1.04(a -x),解得x =213 a ,所以1.43x 1.1a =1.43·213a 1.1a =0.22a 1.1a=0.2. 答:2020年4月份线上销售额与当月销售总额的比值为0.2.。
初中数学八年级下册第二十章数据的分析单元检测练习题三(含答案) (48)
初中数学八年级下册第二十章数据的分析单元检测练习题三(含答案)一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是()A.90 B.95 C.100 D.105【答案】B【解析】试题分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.将数据按照从小到大的顺序排列为:90,90,95,105,110,根据中位数的概念可得中位数为95.故答案选B.考点:中位数.42.某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表:请你估计这100名同学的家庭一个月节约用水的总量大约是()A .180tB .230tC .250tD .300t【答案】B 【解析】利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量=1624384220⨯+⨯+⨯+⨯ =2.3,∴估计这100名同学的家庭一个月节约用水的总量大约是=2.3×100=230t . 故选B.43.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:则这四个人种成绩发挥最稳定的是( ) A .甲 B .乙C .丙D .丁【答案】B 【解析】 【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.【详解】解:∵S甲2,=0.035,S乙2=0.016,S,丙2=0.022,S,丁2=0.025,∴S乙2最小.∴这四个人种成绩发挥最稳定的是乙.故选B.44.随机抽取九年级某班10位同学的年龄情况为:17岁1人,16岁5人,15岁2人,14岁2人.则这10位同学的年龄的中位数和平均数分别是(单位:岁)()A.16和15 B.16和15.5 C.16和16 D.15.5和15.5【答案】B【解析】试题分析:考点:.分析:根据中位数的定义:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.因此先把这些数从小到大排列,求出最中间的两个数的平均数,由于共有10位同学,中位数是第5和6的平均数,因此这组数据的中位数是16;这组数据的平均数是:(17+16×5+15×2+14×2)÷10=(17+80+30+28)÷10=155÷10=15.5.故选B.考点:中位数;加权平均数45.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( ) A.25,23 B.23,23 C.23,25 D.25,25【答案】D【解析】【分析】【详解】解:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间的两个数的平均数),众数是这一组出现最多的数,从小到大重新排列:23,23,25,25,25,27,30,所以最中间的那个是25,即中位数是25,这一组出现最多的数是25,所以众数是25,故选D46.若一组数据2、4、6、8、x的方差比另一组数据5、7、9、11、13的方差大,则x的值可以为()A.12B.10 C.2D.0【答案】A【解析】试题解析:5,7,9,11,13,这组数据的平均数为9,方差为S12=1 5×(42+22+0+22+42)=8;数据2,4,6,8,x 的方差比这组数据方差大,则有S 22>S 12=8,当x=12时,2,4,6,8,12的平均数为 6.4,方差为15×(4.42+2.42+0.42+1.62+5.62)=11.84,满足题意, 故选A47.要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次测试,经过数据分析,3人的平均成绩均为92分,他们的方差分别为20.024S =甲,20.08S =乙,20.015S =丙,则这10次测试成绩比较稳定的是( )A .甲B .乙C .丙D .无法确定【答案】C 【解析】 【分析】平均成绩一样,需要根据方差来判断稳定性,从而做出决策. 【详解】∵三位同学的平均成绩相同又∵2S 乙>2S 甲>2S 丙∴丙的方差最小,即丙最稳定 故选:C 【点睛】本题考查利用方差最决策,注意方差越小代表越稳定.48.在对一组样本数据进行分析时,小华列出了方差的计算公式()222222(3)(3)(4)x x x x s n-+-+-+-=,由公式提供的信息,则下列说法错误的是( )A .样本的容量是4B .样本的中位数是3C .样本的众数是3D .样本的平均数是3.5【答案】D 【解析】 【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数与众数的定义、平均数的计算公式逐项判断即可得.【详解】由方差的计算公式得:这组样本数据为2,3,3,4 则样本的容量是4,选项A 正确样本的中位数是3332+=,选项B 正确样本的众数是3,选项C 正确样本的平均数是233434+++=,选项D 错误故选:D . 【点睛】本题考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.二、填空题49.根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是_____________.(填主要来源的名称)【答案】机动车尾气【解析】试题分析:根据扇形统计图可得:机动车尾气所占的百分比最大,则主要来源就是机动车尾气.考点:扇形统计图.50.如图是某校七年一班全班同学1min心跳次数频数直方图,那么,心跳次数在___之间的学生最多,占统计人数的____%.(精确到1%)【答案】59.5~69.5 48【解析】【分析】【详解】解:心跳次数在59.5~69.5之间的学生最多,占统计人数的262614104+++100%≈48%;故答案为59.5~69.5,48%.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元评价检测(三)
第二十三章
(45分钟100分)
一、选择题(每小题4分,共28分)
1.(2013·河北中考)下列图形中,既是轴对称图形又是中心对称图形的是( )
【解析】选C.选项B、选项C和选项D是轴对称图形;选项A、选项C是中心对称图形,所以既是轴对称图形又是中心对称图形的是选项C.
2.已知m<0,则点P(m2,-m+3)关于原点的对称点Q所在的象限为( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【解析】选C.∵m<0,∴m2>0,-m+3>0,即点P在第一象限,所以点Q在第三象限. 【变式训练】若点P(m,-m+3)关于原点的对称点Q在第三象限,那么m的取值范围是( )
A.0<m<3
B.m<0
C.m>0
D.m≥0
【解析】选A.∵点Q在第三象限,
∴点P在第一象限,
即解得0<m<3.
3.△ABC绕点A按顺时针方向旋转了60°,得到△AEF,则下列结论一定正确的是
( ) A.∠BAE=60° B.EF=BC
C.AC=AF
D.∠EAF=60°
【解析】选B.如果点B和点E是对应点,则选项A、选项B和选项C是正确的;如果点B和点F是对应点,则选项B是正确的,所以,无论是哪一种情况,选项B 一定正确.
【特别提醒】利用分类讨论思想,分析点B的对应点,点B可能和点E对应,还有可能和点F对应,做题时,常常忽略了其中的一种情况.
4.已知点A(x,y-4)与点B(1-y,2x)关于原点对称,则y x的值是( )
A.2
B.1
C.4
D.8
【解析】选A.根据题意,列方程组,得
解得则y x=21=2.
5.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC 于点E,F,下面的结论:
(1)点E和点F,点B和点D是关于中心O的对称点.
(2)直线BD必经过点O.。