2018年山东省滨州市中考数学试卷及解析

合集下载

【精编】山东滨州市2018年中考数学试题(含解析)

【精编】山东滨州市2018年中考数学试题(含解析)

2018年山东省滨州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1. 在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2. 若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2【答案】B【解析】分析:根据数轴上两点间距离的定义进行解答即可.详解:A、B两点之间的距离可表示为:2﹣(﹣2).故选B.点睛:本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3. 如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D详解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4. 下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5. 把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.6. 在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3)C. (3,4)D. (1,5)【答案】C【解析】分析:利用位似图形的性质,结合两图形的位似比进而得出C点坐标.详解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选C.点睛:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7. 下列命题,其中是真命题的为()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形【答案】D【解析】试题分析:A、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A 选项错误;B、对角线互相垂直的四边形也可能是一般四边形,故B选项错误;C、对角线相等的四边形有可能是等腰梯形,故C选项错误.D、一组邻边相等的矩形是正方形,故D选项正确.故选:D.考点:命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.8. 已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.【答案】C【解析】分析:根据圆周角定理和弧长公式解答即可.详解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选C.点睛:此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9. 如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A. 4B. 3C. 2D. 1【答案】A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10. 如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】分析:直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.11. 如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A. B. C. 6 D. 3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12. 如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.【答案】A【解析】分析:根据定义可将函数进行化简.详解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选A.点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.二、填空题(本大题共8小题,每小题5分,满分40分)13. 在△ABC中,若∠A=30°,∠B=50°,则∠C=_______.【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.14. 若分式的值为0,则x的值为______.【答案】-3【解析】分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.详解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.点睛:本题主要考查分式的值为0的条件,注意分母不为0.15. 在△ABC中,∠C=90°,若tanA=,则sinB=______.【答案】【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB=.故答案为:.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.16. 若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____.【答案】【解析】分析:列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.详解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是..故答案为:.点睛:本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=..【答案】【解析】分析:利用关于x、y的二元一次方程组,的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.18. 若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.【答案】y2<y1<y3【解析】分析:设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y1、y2、y3的值,比较后即可得出结论.详解:设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.19. 如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____.【答案】【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案为:.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20. 观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题(本大题共6小题,满分74分)21. 先化简,再求值:(xy2+x2y)×,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】【解析】分析:原式利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.详解:原式=xy(x+y)•=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.点睛:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22. 如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【答案】(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.23. 如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【答案】(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【解析】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24. 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.【答案】(1);(2);(3)x<﹣1或0<x<3.【解析】分析:(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.详解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:则直线AB解析式为y=﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.点睛:此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.25. 已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【答案】(1)证明见解析;(2)BE=AF,证明见解析.【解析】分析:(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.详(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.点睛:本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA证出△BDE≌△ADF;(2)根据全等三角形的判定定理ASA证出△EDB≌△FDA.26. 如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【答案】(1);(2)图象为开口向上的抛物线,见解析;(3)点A;x轴;(4)【解析】分析:(1)由题意得到AP=PB,求出y的值,即为圆P的半径;(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.详解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.点睛:此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.。

2018年山东省滨州市中考数学试卷(样题)(解析版)

2018年山东省滨州市中考数学试卷(样题)(解析版)

2018年山东省滨州市中考数学试卷(样题)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣22.(3分)如果□×(﹣3)=1,则“□”内应填的实数是()A.B.3 C.﹣3 D.3.(3分)如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5) D.(4,﹣5)4.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b5.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A.M B.N C.P D.Q7.(3分)关于x的分式方程+=3的解为正实数,则实数m的取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2 8.(3分)将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则∠EDP的大小为()A.80°B.100°C.120° D.不能确定9.(3分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.3210.(3分)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0 B.C.D.111.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误的是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG12.(3分)如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y 与x的函数关系的是()A.B. C.D.二、填空题:本大题共8个小题,每小题5分,满分40分.13.(5分)计算:﹣22﹣(﹣7)0+=.14.(5分)不等式组的解集为.15.(5分)有一组数据:3,a,4,6,7,它们的平均数是5,则a=,这组数据的方差是.16.(5分)经过两次连续降价,某药品销售单价由原来的49元降到30元,设该药品平均每次降价的百分率为x,根据题意可列方程是.17.(5分)如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是,面积是.18.(5分)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C 处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是海里.19.(5分)如图,在平面直角坐标系中,点A的坐标为(﹣2,),以原点O 为中心,将点A顺时针旋转165°得到点A′,则点A′的坐标为.20.(5分)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.三、解答题:本大题共6个小题,满分74分.解答时请写出必要的演推过程. 21.(10分)先化简后求值:,其中x=.22.(12分)已知:如图,在△ABC中,AD是角平分线,E是AD上一点,且AB:AC=AE:AD.求证:(1)BE=BD;(2).23.(12分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.24.(13分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.25.(13分)如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD的长度;(3)证明:无论点P在弧上的位置如何变化,CP•CQ为定值.26.(14分)在平面直角坐标系中,已知点B的坐标是(﹣1,0),点A的坐标是(4,0),点C的坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线的解析式.(2)点N是抛物线上的一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N的坐标.(3)设抛物线的对称轴为直线L,顶点为K,点C关于L的对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.2018年山东省滨州市中考数学试卷(样题)参考答案与试题解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣2【解答】解:,0,﹣2是有理数,是无理数,故选:A.2.(3分)如果□×(﹣3)=1,则“□”内应填的实数是()A.B.3 C.﹣3 D.【解答】解:(﹣)×(﹣3)=1,故选:D.3.(3分)如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5) D.(4,﹣5)【解答】解:由图可知,小手盖住的点的坐标位于第三象限,(﹣4,﹣5)(﹣4,5)(4,5)(4,﹣5)中,只有(﹣4,﹣5)在第三象限,所以,小手盖住的点的坐标可能为(﹣4,﹣5).故选:A.4.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【解答】解:a>b,A、a﹣7>b﹣7,故A选项正确;B、6+a>b+6,故B选项正确;C、>,故C选项正确;D、﹣3a<﹣3b,故D选项错误.故选:D.5.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°【解答】解:如图,∵直线l1∥l2,∠1=65°,∴∠AEF=∠1=65°,∵∠A=45°,∴∠2=∠AFE=180°﹣∠A﹣∠AEF=70°,故选:C.6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A.M B.N C.P D.Q【解答】解:∵在y=kx+2(k<0)中,令x=0可得y=2,∴一次函数图象一定经过第一、二象限,∵k<0,∴y随x的增大而减小,∴一次函数不经过第三象限,∴其图象不可能经过Q点,故选:D.7.(3分)关于x的分式方程+=3的解为正实数,则实数m的取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,实数m的取值范围是:m<6且m≠2.故选:D.8.(3分)将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则∠EDP的大小为()A.80°B.100°C.120° D.不能确定【解答】解:由旋转的性质可知,∠BAD=100°,AB=AD,∴∠B=∠ADB=40°,∴∠ADE=∠B=40°,∴∠EDP=180°﹣∠ADB﹣∠ADE=100°,故选:B.9.(3分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.32【解答】解:过C点作CD⊥x轴,垂足为D,∵点C的坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)的图象经过顶点B,∴k=32,故选:D.10.(3分)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0 B.C.D.1【解答】解:所有等可能的情况有3种,分别为①②⇒③;①③⇒②;②③⇒①,其中组成命题是真命题的情况有:①②⇒③;①③⇒②;②③⇒①,则P=1,故选:D.11.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误的是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG【解答】解:∵在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD 上,点A恰好与BD上的点F重合,∴∠GAD=45°,∠ADG=∠ADO=22.5°,∴∠AGD=112.5°,∴A正确;根据题意可得:AE=EF,AG=FG,又∵EF∥AC,∴∠FEG=∠AGE,又∵∠AEG=∠FEG,∴∠AEG=∠AGE,∴AE=AG=EF=FG,∴四边形AEFG是菱形,∴B正确.∵tan∠AED=,AE=EF<BE,∴AE<AB,∴tan∠AED=>2,∴C错误;∵在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2OG2,∴BE=2OG.∴D正确.故选:C.12.(3分)如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y 与x的函数关系的是()A.B. C.D.【解答】解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.二、填空题:本大题共8个小题,每小题5分,满分40分.13.(5分)计算:﹣22﹣(﹣7)0+=﹣5+2.【解答】解:原式=﹣4﹣1+2=﹣5+2.故答案为:﹣5+2.14.(5分)不等式组的解集为﹣1<x<3.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,所以不等式组的解集为﹣1<x<3,故答案为:﹣1<x<3.15.(5分)有一组数据:3,a,4,6,7,它们的平均数是5,则a=5,这组数据的方差是2.【解答】解:∵数据:3,a,4,6,7,它们的平均数是5,∴a=5×5﹣3﹣4﹣6﹣7=5;则这组数据的方差是S2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2;故答案为:5,2.16.(5分)经过两次连续降价,某药品销售单价由原来的49元降到30元,设该药品平均每次降价的百分率为x,根据题意可列方程是49(1﹣x)2=30;.【解答】解:由题意可得,49(1﹣x)2=30,故答案为49(1﹣x)2=30;17.(5分)如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是13,面积是.【解答】解:从上边看是一个梯形:上底是2,下底是5,两腰是3,周长是2+3+3+5=13.原三角形的边长是5,截去的三角形的边长是2,梯形的面积=原三角形的面积﹣截去的三角形的面颊=××52﹣××22=﹣=,故答案为:13,.18.(5分)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是海里.【解答】解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=20海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=10海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故答案为:.19.(5分)如图,在平面直角坐标系中,点A的坐标为(﹣2,),以原点O为中心,将点A顺时针旋转165°得到点A′,则点A′的坐标为(,﹣);.【解答】解:作AB⊥x轴于点B,∴AB=2、OB=2,则tan∠AOB=,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转165°得到点A′后,如图所示,OA′=OA=2OB=4,∠A′OC=45°,∴A′C=2、OC=2,即A′(2,﹣2),故答案为(,﹣);20.(5分)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是﹣2或﹣1或0或1或2.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.三、解答题:本大题共6个小题,满分74分.解答时请写出必要的演推过程. 21.(10分)先化简后求值:,其中x=.【解答】解:==,当x==2时,原式=.22.(12分)已知:如图,在△ABC中,AD是角平分线,E是AD上一点,且AB:AC=AE:AD.求证:(1)BE=BD;(2).【解答】证明:(1)∵AD是角平分线,∴∠BAD=∠CAD,又AB:AC=AE:AD,∴△ABE∽△ACD,∴∠AEB=∠ADC,∴∠BED=∠BDE,∴BE=BD;(2)如图,过点A作AH⊥BC,垂足为H,=,S△ADc=,则S△ABD∴=,又BE=BD,∴.23.(12分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.24.(13分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.【解答】解:(1)∵x=2是方程的一个根,∴4﹣2(2m+3)+m2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2﹣4(m2+3m+2)=1,=1;∴x=∴x1=m+2,x2=m+1,∵AB、AC(AB<AC)的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵BC=,△ABC是等腰三角形,∴当AB=BC时,有m+1=,∴m=﹣1;当AC=BC时,有m+2=,∴m=﹣2,综上所述,当m=﹣1或m=﹣2时,△ABC是等腰三角形.25.(13分)如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD的长度;(3)证明:无论点P在弧上的位置如何变化,CP•CQ为定值.【解答】证明:(1)如图,连接OP,∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴CP=BP,∴∠PAC=∠PAB,∴AP平分∠CAB;(2)∵PB=BD,∴∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴在Rt△OPD中,PD==6;(3)∵AC=BC,∴∠BAC=∠ABC,∵∠ABC=∠APC,∴∠APC=∠BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2=72,即CP•CQ为定值.26.(14分)在平面直角坐标系中,已知点B的坐标是(﹣1,0),点A的坐标是(4,0),点C的坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线的解析式.(2)点N是抛物线上的一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N的坐标.(3)设抛物线的对称轴为直线L,顶点为K,点C关于L的对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+3x+4;(2)如图1,设AC的解析式为y=kx+b,将A、C点坐标代入,得,解得,AC的解析式为y=﹣x+4,设N(m,﹣m2+3m+4),H(m,﹣m+4).NH=﹣m2+4m.由线段ON与CH互相平分,得NH=OC=4,即﹣m2+4m=4,解得m=2,﹣m2+3m+4=6,即N(2,6),当线段ON与CH互相平分时,点N的坐标为(2,6);(3)如图2,作K点关于y轴的对称点D,作J点关于x轴的对称点E,连接DE交y轴于R交x轴于Q点,y=﹣x2+3x+4=﹣(x﹣)2+,顶点K(,).由点C关于对称轴L=的对称点J,C(0,4),得J点坐标为(3,4).由K点关于y轴的对称点D,K(,),得D点坐标为(﹣,).由J点关于x轴的对称点E,J(3,4),得E点的坐标为(3,﹣4).由勾股定理,得KJ==;DE==,KJQR的周长最小=KR+RQ+QJ+KJ=DE+KJ=+.。

2018年山东省滨州市中考数学试题及解析

2018年山东省滨州市中考数学试题及解析

2018年山东省滨州市中考数学试卷
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)(2018•滨州)数5的算术平方根为()
A.B.25C.±25D.±
2.(3分)(2018•滨州)下列运算:sin30°=,=2,π0=π,2﹣2=﹣4,其中运算结果正确的个数为()A.4B.3C.2D.1
3.(3分)(2018•滨州)一元二次方程4x2+1=4x的根的情况是()
A.没有实数根B.只有一个实数根
C.有两个相等的实数根D.有两个不相等的实数根
4.(3分)(2018•滨州)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.
5.(3分)(2018•滨州)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()
A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19
6.(3分)(2018•滨州)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()
A.互余B.相等C.互补D.不等
7.(3分)(2018•滨州)在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()
A.45°B.60°C.75°D.90°
8.(3分)(2018•滨州)顺次连接矩形ABCD各边中点,所得四边形必定是()
A.邻边不等的平行四边形B.矩形
C.正方形D.菱形
9.(3分)(2018•滨州)某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.。

2018山东省中考数学真题试卷7套(含答案及名师解析)

2018山东省中考数学真题试卷7套(含答案及名师解析)

2018山东省中考数学真题试卷7套(含答案及名师解析)2018年山东省滨州市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.82.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣23.(3分)如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°4.(3分)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.45.(3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.6.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A 的对应点C的坐标为()A.(5,1) B.(4,3) C.(3,4) D.(1,5)7.(3分)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.(3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A.B.C.D.9.(3分)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.110.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.411.(3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.312.(3分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.二、填空题(本大题共8小题,每小题5分,满分40分)13.(5分)在△ABC中,若∠A=30°,∠B=50°,则∠C=.14.(5分)若分式的值为0,则x的值为.15.(5分)在△ABC中,∠C=90°,若tan A=,则sin B=.16.(5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M 在第二象限的概率是.17.(5分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.18.(5分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为.19.(5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为.20.(5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为.三、解答题(本大题共6小题,满分74分)21.(10分)先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣1,y=2sin45°﹣.22.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.23.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.(13分)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.26.(14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【参考答案】一、选择题(本大题共12小题,每小题3分,共36分)1.A【解析】∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.2.B故选:B.3.D【解析】如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.4.B【解析】①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.5.B【解析】解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.6.C【解析】∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.7.D【解析】A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.8.C【解析】如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选:C.9.A【解析】根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.10.B【解析】①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.11.D【解析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.12.A【解析】当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.二、填空题(本大题共8小题,每小题5分,满分40分)13.100°【解析】∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°14.﹣3【解析】因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.15.【解析】如图所示:∵∠C=90°,tan A=,∴设BC=x,则AC=2x,故AB=x,则sin B===.故答案为:.16.【解析】列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.17.【解析】方法一:∵关于x、y的二元一次方程组,的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组,的解是,由关于a、b的二元一次方程组可知解得:故答案为:18.y2<y1<y3【解析】设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.19.【解析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME==,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=,∴AF==.故答案为:.20.9【解析】由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.三、解答题(本大题共6小题,满分74分)21.解:原式=xy(x+y)••=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.22.证明:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.23.解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.24.解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:,则直线AB解析式为y=x﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.25.(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)解:BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.26.解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.2018年山东省东营市中考数学真题一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣的倒数是()A.﹣5B.5C.﹣D.2.(3分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6D.(xy2)2=x2y43.(3分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.(3分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣15.(3分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是306.(3分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.157.(3分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.9.(3分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.10.(3分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3分)分解因式:x3﹣4xy2=.13.(3分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.(3分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.(4分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.16.(4分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.(4分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M 为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.18.(4分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a=,b=,c=,d=;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.22.(8分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.23.(9分)关于x的方程2x2﹣5x sin A+2=0有两个相等的实数根,其中∠A是锐角三角形ABC 的一个内角.(1)求sin A的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.24.(10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(12分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【参考答案】一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.A【解析】﹣的倒数是﹣5,故选:A.2.D【解析】A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.3.B【解析】A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.4.C【解析】∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.5.B【解析】该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D不正确.故选:B.6.B【解析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.7.D【解析】正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.8.C【解析】把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.9.D【解析】过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.10.A【解析】∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.4.147×1011【解析】4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×101112.x(x+2y)(x﹣2y)【解析】原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)13.【解析】∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.14.y=【解析】设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=15.15【解析】如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.16.20π【解析】根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π17.【解析】取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)18.【解析】分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,则﹣1是不等式组的解,不是不等式组的解.20.解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.21.解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.22.(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.23.解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sin A=或,∵∠A为锐角,∴sin A=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sin A=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sin A=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.24.解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.25.解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM的中点,即OC为斜边BM的中线,∴OC=BC,∴点C的横坐标为,又OC=,点C在x轴下方,∴C(,﹣),设直线BM的解析式为y=kx+b,把点B(3,0),C(,﹣)代入得:,解得:b=﹣,k=,∴y=x﹣,又∵点C(,﹣)在抛物线上,代入抛物线解析式,解得:a=,∴抛物线解析式为y=x2﹣x+2;(3)点P存在,设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,则Q(x,x﹣),∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,当△BCP面积最大时,四边形ABPC的面积最大,S△BCP=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣,当x=﹣=时,S△BCP有最大值,四边形ABPC的面积最大,此时点P的坐标为(,﹣).2018 年山东省济宁市中考数学真题一、选择题:本大题共10 小题,每小题3 分,共30 分。

山东滨州市2018年中考数学试题(word版含解析)(合集)

山东滨州市2018年中考数学试题(word版含解析)(合集)

山东滨州市2018年中考数学试题(word版含解析)(合集)第一篇:山东滨州市2018年中考数学试题(word版含解析) 2018年山东省滨州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8 【答案】A 【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2 【答案】B 【解析】分析:根据数轴上两点间距离的定义进行解答即可.详解:A、B两点之间的距离可表示为:2﹣(﹣2).故选B.点睛:本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°【答案】D详解:如图,∵AB∥CD,∴∠3+∠5=180°又∵∠5=∠4,∴∠3+∠4=180°故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.a5=a,④(ab)3=a3b3,其中结果正确的个数4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷为()A.1B.2C.3D.4 【答案】B 【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.235详解:①a•a=a,故原题计算错误;326②(a)=a,故原题计算正确; 55a=1,故原题计算错误;③a÷333④(ab)=ab,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.把不等式组()A.【答案】B 【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,B.C.D.中每个不等式的解集在同一条数轴上表示出来,正确的为解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.6.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB 缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A.(5,1)B.(4,3)C.(3,4)D.(1,5)【答案】C 【解析】分析:利用位似图形的性质,结合两图形的位似比进而得出C点坐标.详解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选C.点睛:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【答案】D 【解析】试题分析:A、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A选项错误;B、对角线互相垂直的四边形也可能是一般四边形,故B选项错误;C、对角线相等的四边形有可能是等腰梯形,故C选项错误.D、一组邻边相等的矩形是正方形,故D选项正确.故选:D.考点:命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.8.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧A.B.C.D.的长为()【答案】C 【解析】分析:根据圆周角定理和弧长公式解答即可.详解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°∴劣弧故选C.点睛:此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答. 9.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.1 【答案】A 【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,22222所以这组数据的方差为[(6﹣6)+(7﹣6)+(3﹣6)+(9﹣6)+(5﹣6)]=4,的长=,=2x 故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;2③b﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1B.2C.3D.4 【答案】B 【解析】分析:直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.2详解:①∵二次函数y=ax+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;2③图象与x轴有2个交点,故b﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.11.如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.3【答案】D 【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°∴OH=OC=,CH=OH=, ∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【答案】A 【解析】分析:根据定义可将函数进行化简.详解:当﹣1≤x<0,[x]=﹣1,y=x+1 当0≤x<1时,[x]=0,y=x 当1≤x<2时,[x]=1,y=x﹣1 …… 故选A.点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.二、填空题(本大题共8小题,每小题5分,满分40分),∠B=50°13.在△ABC中,若∠A=30°,则∠C=_______.【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.,∠B=50°,详解:∵在△ABC中,∠A=30°﹣30°﹣50°=100°.∴∠C=180° 故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键. 14.若分式【答案】-3 【解析】分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.详解:因为分式的值为0,所以=0,的值为0,则x的值为______.22化简得x﹣9=0,即x=9.解得x=±因为x﹣3≠0,即x≠3 所以x=﹣3.故答案为﹣3.点睛:本题主要考查分式的值为0的条件,注意分母不为0.15.在△ABC中,∠C=90°,若tanA=,则sinB=______.【答案】【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:,tanA=,∵∠C=90°∴设BC=x,则AC=2x,故AB=x,则sinB=故答案为:..点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.16.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____.【答案】【解析】分析:列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.详解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是故答案为:.点睛:本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=....【答案】【解析】分析:利用关于x、y的二元一次方程组,的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.详解:∵关于x、y的二元一次方程组∴将解代入方程组的解是,可得m=﹣1,n=2 ∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.18.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系为________.【答案】y2<y1<y32【解析】分析:设t=k﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可(k为常数)求出y1、y2、y3的值,比较后即可得出结论.2详解:设t=k﹣2k+3,22∵k﹣2k+3=(k﹣1)+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.19.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____.(k为常数)【答案】【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,AD=BC=4,∴∠D=∠BAD=∠B=90°∴NF=,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°∴∠MEA=∠NAF,∴△AME∽△FNA,∴∴解得:x= ∴AF=故答案为:.,,点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20.观察下列各式:,,……请利用你所发现的规律,计算+++…+,其结果为_______.【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+ =9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题(本大题共6小题,满分74分)2221.先化简,再求值:(xy+xy)×,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】【解析】分析:原式利用除法法则变形,约分得到最简结果,把x 与y的值代入计算即可求出值.详解:原式=xy(x+y)•=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.点睛:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22.如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O 的切线;(2)AC2=2AD•AO.【答案】(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2A O,∠ACB=90°∵AD⊥DC,∴∠ADC=∠ACB=90°又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴2,即AC=AB•AD,∵AB=2AO,2∴AC=2AD•AO.点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.23.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【答案】(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【解析】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.【答案】(1);(2);(3)x<﹣1或0<x<3.【解析】分析:(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB 解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.详解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:解得:﹣2;,则直线AB解析式为y=(3)联立得:解得:1,﹣3),或,即一次函数与反比例函数交点坐标为(3,)或(﹣则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.点睛:此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.,AB=AC,点D为BC 的中点.25.已知,在△ABC中,∠A=90°(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F 分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【答案】(1)证明见解析;(2)BE=AF,证明见解析.【解析】分析:(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.详(1)证明:连接AD,如图①所示.,AB=AC,∵∠A=90°.∴△ABC为等腰直角三角形,∠EBD=45°∵点D为BC的中点,.∴AD=BC=BD,∠FAD=45°,∠EDA+∠ADF=90°,∵∠BDE+∠EDA=90°∴∠BDE=∠ADF.在△BDE和△ADF中,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.,∵∠ABD=∠BAD=45°.∴∠EBD=∠FAD=135°,∠BDF+∠FDA=90°,∵∠EDB+∠BDF=90°∴∠EDB=∠FDA.在△EDB和△FDA中,∴△EDB≌△FDA(ASA),∴BE=AF.点睛:本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA 证出△BDE≌△ADF;(2)根据全等三角形的判定定理ASA证出△EDB≌△FDA.26.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【答案】(1);(2)图象为开口向上的抛物线,见解析;(3)点A;x轴;(4)【解析】分析:(1)由题意得到AP=PB,求出y 的值,即为圆P的半径;(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.详解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到解得:y=,则圆P 的半径为;222(2)同(1),由AP=PB,得到(x﹣1)+(y﹣2)=y,2整理得:y=(x﹣1)+1,即图象为开口向上的抛物线,=y,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=∴D坐标为(1+,a+1),2代入抛物线解析式得:a+1=(1﹣a)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.点睛:此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.第二篇:2018中考数学试题及解析2018中考数学试题及解析科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了中考数学试题及解析。

详解滨州市2018中考数学试题

详解滨州市2018中考数学试题

详解滨州市2018中考数学试题一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.8解:∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.2.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2解:A、B两点之间的距离可表示为:2﹣(﹣2).故选:B.3.(3分)如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.4.(3分)下列运算:①a2?a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.4解:①a2?a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.5.(3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.6.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B (10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A.(5,1) B.(4,3) C.(3,4) D.(1,5)解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.7.(3分)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.8.(3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A.B.C.D.解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选:C.9.(3分)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.1解:根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.11.(3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N 分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.3解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.12.(3分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x ﹣[x]的图象为()A. B.C.D.解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.二、填空题(本大题共8小题,每小题5分,满分40分)13.(5分)在△ABC中,若∠A=30°,∠B=50°,则∠C=100°.解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°14.(5分)若分式的值为0,则x的值为﹣3.解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.15.(5分)在△ABC中,∠C=90°,若tanA=,则sinB=.解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB===.故答案为:.16.(5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.17.(5分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.解:方法一:∵关于x、y的二元一次方程组,的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组,的解是,由关于a、b的二元一次方程组可知解得:故答案为:。

2018年山东省滨州市中考数学试卷-答案

2018年山东省滨州市中考数学试卷-答案


(9

6)2

(5

6)2


4
,
故选:A.
【考点】平均数和方差的定义
10.【答案】B 【解析】直接利用二次函数的开口方向以及图象与 x 轴的交点,进而分别解析得出答案.
解:①∵二次函数 y ax2 bx c(a 0)图象的对称轴为 x 1 ,且开口向下,
∴ x 1 时, y a b c ,即二次函数的最大值为 a b c ,故①正确; ②当 x -1时, a-b c 0 ,故②错误; ③图象与 x 轴有 2 个交点,故 b2 -4ac>0 ,故③错误;
质 得 M P M , CNP ND , OP OD OC 3 , BOP BOD , AOP AOC , 所 以
C O D2 A O1B2,利0用两点之间线段最短判断此时△PMN 周长最小,作 OH CD 于 H,则 CH DH ,
然后利用含 30 度的直角三角形三边的关系计算出 CD 即可. 【解答】解:作 P 点分别关于 OA、OB 的对称点 C、D,连接 CD 分别交 OA、OB 于 M、N,如图,
【解答】解:解不等式 x 1 3 ,得: x 2 , 解不等式 -2x 6>-4 ,得: x<-1 ,
将两不等式解集表示在数轴上如下:
故选:B. 【考点】本解一元一次不等式组 6.【答案】C 【解析】利用位似图形的性质,结合两图形的位似比进而得出 C 点坐标. 解:∵以原点 O 为位似中心,在第一象限内将线段 AB 缩小为原来的 1 后得到线段 CD,
2 ∴端点 C 的横坐标和纵坐标都变为 A 点的横坐标和纵坐标的一半, 又∵ A(6,8), ∴端点 C 的坐标为(3,4). 故选:C. 【考点】位似图形的性质 7.【答案】D 【解析】解析是否为真命题,需要分别解析各题设是否能推出结论,从而利用排除法得出答案. 解:A.例如等腰梯形,故本选项错误;B.根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误; C.对角线相等且互相平分的平行四边形是矩形,故本选项错误;D.一组邻边相等的矩形是正方形,故本选项

精品解析汇报:山东省滨州市2018年中考数学试题(解析汇报版)

精品解析汇报:山东省滨州市2018年中考数学试题(解析汇报版)

2018年某某省滨州市中考数学试卷一、选择题〔本大题共12小题,每一小题3分,共36分〕1. 在直角三角形中,假如勾为3,股为4,如此弦为〔〕A. 5B. 6C. 7D. 8【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为应当选A.点睛:此题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2. 假如数轴上点A、B分别表示数2、﹣2,如此A、B两点之间的距离可表示为〔〕A. 2+〔﹣2〕B. 2﹣〔﹣2〕C. 〔﹣2〕+2D. 〔﹣2〕﹣2【答案】B【解析】分析:根据数轴上两点间距离的定义进展解答即可.详解:A、B两点之间的距离可表示为:2﹣〔﹣2〕.应当选B.点睛:此题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3. 如图,直线AB∥CD,如此如下结论正确的答案是〔〕A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D【解析】分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.详解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,应当选D.点睛:此题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4. 如下运算:①a2•a3=a6,②〔a3〕2=a6,③a5÷a5=a,④〔ab〕3=a3b3,其中结果正确的个数为〔〕A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法如此:底数不变,指数相减;同底数幂的乘法法如此:同底数幂相乘,底数不变,指数相加;幂的乘方法如此:底数不变,指数相乘;积的乘方法如此:把每一个因式分别乘方,再把所得的幂相乘进展计算即可.详解:①a2•a3=a5,故原题计算错误;②〔a3〕2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④〔ab〕3=a3b3,故原题计算正确;正确的共2个,应当选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法如此.5. 把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为〔〕A. B. C. D.【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:应当选B.6. 在平面直角坐标系中,线段AB两个端点的坐标分别为A〔6,8〕,B〔10,2〕,假如以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,如此点A的对应点C的坐标为〔〕A. 〔5,1〕B. 〔4,3〕C. 〔3,4〕D. 〔1,5〕【答案】C【解析】分析:利用位似图形的性质,结合两图形的位似比进而得出C点坐标.详解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A〔6,8〕,∴端点C的坐标为〔3,4〕.应当选C.点睛:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7. 如下命题,其中是真命题的为〔〕A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形【答案】D【解析】试题分析:A、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A选项错误;B、对角线互相垂直的四边形也可能是一般四边形,故B选项错误;C、对角线相等的四边形有可能是等腰梯形,故C选项错误.D、一组邻边相等的矩形是正方形,故D选项正确.应当选:D.考点:命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.8. 半径为5的⊙O是△ABC的外接圆,假如∠ABC=25°,如此劣弧的长为〔〕A. B. C. D.【答案】C【解析】分析:根据圆周角定理和弧长公式解答即可.详解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,应当选C.点睛:此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9. 如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为〔〕A. 4B. 3C. 2D. 1【答案】A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进展计算即可求出答案.详解:根据题意,得:=2x解得:x=3,如此这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为 [〔6﹣6〕2+〔7﹣6〕2+〔3﹣6〕2+〔9﹣6〕2+〔5﹣6〕2]=4,应当选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10. 如图,假如二次函数y=ax2+bx+c〔a≠0〕图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B〔﹣1,0〕,如此①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是〔〕A. 1B. 2C. 3D. 4【答案】B【解析】分析:直接利用二次函数图象的开口方向以与图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c〔a≠0〕图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B〔﹣1,0〕,∴A〔3,0〕,故当y>0时,﹣1<x<3,故④正确.应当选B.点睛:此题主要考查了二次函数的性质以与二次函数最值等知识,正确得出A点坐标是解题关键.11. 如图,∠AOB=60°,点P是∠AOB内的定点且OP=,假如点M、N分别是射线OA、OB上异于点O的动点,如此△PMN周长的最小值是〔〕A. B. C. 6 D. 3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,如此CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,如此MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,如此CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.应当选D.点睛:此题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12. 如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为〔〕A. B.C. D.【答案】A【解析】分析:根据定义可将函数进展化简.详解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……应当选A.二、填空题〔本大题共8小题,每一小题5分,总分为40分〕13. 在△ABC中,假如∠A=30°,∠B=50°,如此∠C=_______.【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.14. 假如分式的值为0,如此x的值为______.【答案】-3【解析】分析:分式的值为0的条件是:〔1〕分子=0;〔2〕分母≠0.两个条件需同时具备,缺一不可.据此可以解答此题.详解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.点睛:此题主要考查分式的值为0的条件,注意分母不为0.15. 在△ABC中,∠C=90°,假如tanA=,如此sinB=______.【答案】【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如下列图:∵∠C=90°,tanA=,∴设BC=x,如此AC=2x,故AB=x,如此sinB=.故答案为:.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.16. 假如从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,如此点M在第二象限的概率是____.【答案】【解析】分析:列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.详解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是..故答案为:.点睛:此题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=..17. 假如关于x、y的二元一次方程组的解是,如此关于a、b的二元一次方程组的解是_______.【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:此题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题表现明显.18. 假如点A〔﹣2,y1〕、B〔﹣1,y2〕、C〔1,y3〕都在反比例函数y=〔k为常数〕的图象上,如此y1、y2、y3的大小关系为________.【答案】y2<y1<y3【解析】分析:设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y1、y2、y3的值,比拟后即可得出结论.详解:设t=k2﹣2k+3,∵k2﹣2k+3=〔k﹣1〕2+2>0,∴t>0.∵点A〔﹣2,y1〕、B〔﹣1,y2〕、C〔1,y3〕都在反比例函数y=〔k为常数〕的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.点睛:此题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.19. 如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,假如AE=,∠EAF=45°,如此AF的长为_____.【答案】【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,如此NF=x,再利用矩形的性质和条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF 中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案为:.点睛:此题考查了矩形的性质、相似三角形的判断和性质以与勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20. 观察如下各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【答案】【解析】分析:直接根据数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+〔1﹣+﹣+﹣+…+﹣〕=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题〔本大题共6小题,总分为74分〕21. 先化简,再求值:〔xy2+x2y〕×,其中x=π0﹣〔〕﹣1,y=2sin45°﹣.【答案】【解析】分析:原式利用除法法如此变形,约分得到最简结果,把x与y的值代入计算即可求出值.详解:原式=xy〔x+y〕•=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.点睛:此题考查了分式的化简求值,以与实数的运算,熟练掌握运算法如此是解此题的关键.22. 如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:〔1〕直线DC是⊙O的切线;〔2〕AC2=2AD•AO.【答案】〔1〕证明见解析.〔2〕证明见解析.【解析】分析:〔1〕连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;〔2〕连接BC,证△DAC∽△CAB即可得.详解:〔1〕如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;〔2〕连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.点睛:此题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理与相似三角形的判定与性质.23. 如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y〔单位:m〕与飞行时间x〔单位:s〕之间具有函数关系y=﹣5x2+20x,请根据要求解答如下问题:〔1〕在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?〔2〕在飞行过程中,小球从飞出到落地所用时间是多少?〔3〕在飞行过程中,小球飞行高度何时最大?最大高度是多少?【答案】〔1〕在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;〔2〕在飞行过程中,小球从飞出到落地所用时间是4s;〔3〕在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【解析】分析:〔1〕根据题目中的函数解析式,令y=15即可解答此题;〔2〕令y=0,代入题目中的函数解析式即可解答此题;〔3〕将题目中的函数解析式化为顶点式即可解答此题.详解:〔1〕当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;〔2〕当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;〔3〕y=﹣5x2+20x=﹣5〔x﹣2〕2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.点睛:此题考查二次函数的应用,解答此题的关键是明确题意,利用二次函数的性质解答.24. 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为〔1,〕.〔1〕求图象过点B的反比例函数的解析式;〔2〕求图象过点A,B的一次函数的解析式;〔3〕在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值X围.【答案】〔1〕;〔2〕;〔3〕x<﹣1或0<x<3.【解析】分析:〔1〕由点C的坐标求出菱形的边长,利用平移规律确定出B的坐标,再利用待定系数法求出反比例函数解析式即可;〔2〕由菱形的边长确定出点A坐标,利用待定系数法求出直线AB的解析式即可;〔3〕联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意的x的X围即可.详解:〔1〕由点C的坐标为〔1,〕,得到OC=2,∵四边形OABC是菱形,∴BC=OC=OA=2,BC∥x轴,∴B〔3,〕,设反比例函数解析式为y=,把B坐标代入得:k=3,如此反比例函数解析式为y=;〔2〕设直线AB的解析式为y=mx+n,把A〔2,0〕,B〔3,〕代入得:,解得:如此直线AB的解析式为y=x﹣2;〔3〕联立得:,解得:或,即一次函数与反比例函数图象的交点坐标为〔3,〕或〔﹣1,﹣3〕,如此当一次函数的图象在反比例函数的图象下方时,自变量x的取值X围为x<﹣1或0<x<3.点睛:此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以与一次函数与反比例函数图象的交点,熟练掌握待定系数法是解此题的关键.25. ,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.〔1〕如图①,假如点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;〔2〕假如点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【答案】〔1〕证明见解析;〔2〕BE=AF,证明见解析.【解析】分析:〔1〕连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF〔ASA〕,再根据全等三角形的性质即可证出BE=AF;〔2〕连接AD,根据等腰三角形的性质与等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA〔ASA〕,再根据全等三角形的性质即可得出BE=AF.详〔1〕证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF〔ASA〕,∴BE=AF;〔2〕BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA〔ASA〕,∴BE=AF.点睛:此题考查了全等三角形的判定与性质、等腰直角三角形、补角与余角,解题的关键是:〔1〕根据全等三角形的判定定理ASA证出△BDE≌△ADF;〔2〕根据全等三角形的判定定理ASA证出△EDB≌△FDA.26. 如图①,在平面直角坐标系中,圆心为P〔x,y〕的动圆经过点A〔1,2〕且与x轴相切于点B.〔1〕当x=2时,求⊙P的半径;〔2〕求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;〔3〕请类比圆的定义〔图可以看成是到定点的距离等于定长的所有点的集合〕,给〔2〕中所得函数图象进展定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.〔4〕当⊙P的半径为1时,假如⊙P与以上〔2〕中所得函数图象相交于点C、D,其中交点D〔m,n〕在点C的右侧,请利用图②,求cos∠APD的大小.【答案】〔1〕;〔2〕图象为开口向上的抛物线,见解析;〔3〕点A;x轴;〔4〕【解析】分析:〔1〕由题意得到AP=PB,求出y的值,即为圆P的半径;〔2〕利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;〔3〕类比圆的定义描述此函数定义即可;〔4〕画出相应图形,求出m的值,进而确定出所求角的余弦值即可.详解:〔1〕由x=2,得到P〔2,y〕,连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,如此圆P的半径为;〔2〕同〔1〕,由AP=PB,得到〔x﹣1〕2+〔y﹣2〕2=y2,整理得:y=〔x﹣1〕2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;〔3〕给〔2〕中所得函数图象进展定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;〔4〕连接CD,连接AP并延长,交x轴于点F,交CD于E,设PE=a,如此有EF=a+1,ED=,∴D坐标为〔1+,a+1〕,代入抛物线解析式得:a+1=〔1﹣a2〕+1,解得:a=﹣2+或a=﹣2﹣〔舍去〕,即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,如此cos∠APD==﹣2.点睛:此题属于圆的综合题,涉与的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解此题的关键.。

2018年山东省滨州市中考数学试卷含答案

2018年山东省滨州市中考数学试卷含答案

数学试卷第1页(共22页)数学试卷第2页(共22页)绝密★启用前山东省滨州市2018年初中学业水平考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在直角三角形中,若勾为3,股为4,则弦为( ) A.5B.6C.7D.82.若数轴上点A 、B 分别表示数2、﹣2,则A 、B 两点之间的距离可表示为( ) A.22+(-)B.2(2)--C.(2)2+-D.(2)2-- 3.如图,直线AB CD ∥,则下列结论正确的是( )A.12∠=∠B.34∠=∠C.13180∠+∠=︒D.34180∠+∠=︒4.下列运算:①236•a a a =,②326a a =(),③55a a a ÷=,④333ab a b =(),其中结果正确的个数为 ( )A.1B.2C.3D.45.把不等式组x 132x 64+⎧⎨---⎩≥>中每个不等式的解集在同一条数轴上表示出来,正确的为( )ABCD 6.在平面直角坐标系中,线段AB 两个端点的坐标分别为68A (,),102B (,),若以原点O为位似中心,在第一象限内将线段AB 缩短为原来的12后得到线段CD ,则点A 的对应点C 的坐标为( )A.51(,)B.43(,)C.(3,5)D.15(,)7.下列命题,其中是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.已知半径为5的⊙O 是ABC △的外接圆,若25ABC ∠=︒,则劣弧»AB 的长为( )A.2536πB.12536πC.2518πD.365π9.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为 ( )A.4B.3C.2D.110.如图,若二次函数20y ax bx c a =++≠()图象的对称轴为1x =,与y 轴交于点C ,与x 轴交于点A 、点10B (-,),则 ( )①二次函数的最大值为a b c ++;②0a b c +-<; ③240b ac -<;④当0y >时,13x -<<,其中正确的个数是 ( )A.1B.2C.3D.411.如图,60AOB ∠=︒,点P 是AOB ∠内的定点且OP M 、N 分别是射线OA 、OB 上异于点O 的动点,则PMN △周长的最小值是( )毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共22页)数学试卷第4页(共22页)C.6D.312.如果规定[x ]表示不大于x 的最大整数,例如[2.3]2=,那么函数[]y x x =-的图象为( )ABCD第Ⅱ卷(选择题 共114)二、填空题(本大题共8小题,每小题5分,共40分.把答案填写在题中的横线上) 13.在ABC △中,若30A ∠=︒,50B ∠=︒,则C ∠= .14.若分式2x 9x 3--的值为0,则x 的值为 .15.在ABC △中,90C ∠=︒,若12tanA =,则sinB = . 16.若从1-,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .17.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()5,2()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解是 .18.若点12,A y (-)、2B 1,y (-)、31,C y ()都在反比例函数223k k y x-+=(k 为常数)的图象上,则1y 、2y 、3y 的大小关系为 .19.如图,在矩形ABCD 中,2AB =,4BC =,点E 、F 分别在BC 、CD 上,若AE =45EAF ∠=︒,则AF 的长为 .20.观察下列各式:112⨯123⨯134⨯, ……请利用你所发现的规律,…,其结果为 . 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)先化简,再求值:22222222x x y xy x y x xy y x y +⨯÷++-(),其中0112x π-=-(),245y sin =︒22.(本小题满分12分)如图,AB 为⊙O 的直径,点C 在⊙O 上,AD CD ⊥于点D ,且AC 平分DAB ∠,求证:(1)直线DC 是⊙O 的切线; (2)22AC AD AO =g .数学试卷第5页(共22页)数学试卷第6页(共22页)23.(本小题满分12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系2520y x x =-+,请根据要求解答下列问题: (1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.(本小题满分13分)如图,在平面直角坐标系中,点O 为坐标原点,菱形OABC 的顶点A 在x 轴的正半轴上,顶点C的坐标为. (1)求图象过点B 的反比例函数的解析式; (2)求图象过点A ,B 的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x 的取值范围.25.(本小题满分13分)已知,在ABC △中,A 90∠=︒,AB AC =,点D 为BC 的中点.(1)如图①,若点E 、F 分别为AB 、AC 上的点,且DE DF ⊥,求证:BE AF =; (2)若点E 、F 分别为AB 、CA 延长线上的点,且DE DF ⊥,那么BE AF =吗?请利用图②说明理由.26.(本小题满分14分)如图①,在平面直角坐标系中,圆心P x y 为(,)的动圆经过点12A (,)且与x 轴相切于点B .(1)当2x =时,求⊙P 的半径;(2)求y 关于x 的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到 的距离等于到 的距离的所有点的集合.(4)当⊙P 的半径为1时,若⊙P 与以上(2)中所得函数图象相交于点C 、D ,其中交点D m n (,)在点C 的右侧,请利用图②,求cos APD ∠的大小.山东省滨州市2018年初中学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】直接根据勾股定理求解即可.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________ 考生号________________ ________________ _____________数学试卷第7页(共22页)数学试卷第8页(共22页)解:∵在直角三角形中,勾为3,股为4,. 故选:A . 【考点】勾股定理 2.【答案】B【解析】根据数轴上两点间距离的定义进行解答即可. 解:A 、B 两点之间的距离可表示为:2(2)--. 故选:B .【考点】数轴上两点间的距离、数轴等知识 3.【答案】D【解析】解:如图,∵AB CD ∥, ∴35180∠+∠=︒, 又∵54∠=∠, ∴34180∠+∠=︒, 故选:D .【考点】平行线的性质 4.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可. 解:①235•a a a =,故原题计算错误; ②326a a =(),故原题计算正确; ③551a a ÷=,故原题计算错误;④333ab a b =(),故原题计算正确; 正确的共2个,故选:B .【考点】同底数幂的除法、乘法、幂的乘方、积的乘方 5.【答案】B【解析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集. 【解答】解:解不等式13x +≥,得:2x ≥, 解不等式264x -->-,得:1x <-, 将两不等式解集表示在数轴上如下:故选:B .【考点】本解一元一次不等式组 6.【答案】C【解析】利用位似图形的性质,结合两图形的位似比进而得出C 点坐标.解:∵以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD,∴端点C 的横坐标和纵坐标都变为A 点的横坐标和纵坐标的一半,又∵68A(,), ∴端点C 的坐标为34(,). 故选:C .【考点】位似图形的性质 7.【答案】D【解析】解析是否为真命题,需要分别解析各题设是否能推出结论,从而利用排除法得出答案.解:A .例如等腰梯形,故本选项错误;B .根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C .对角线相等且互相平分的平行四边形是矩形,故本选项错误;D .一组邻边相等的矩形是正方形,故本选项正确.故选:D . 【考点】平行四边形的判定、命题的真假区别 8.【答案】C【解析】根据圆周角定理和弧长公式解答即可. 解:如图:连接AO ,CO,数学试卷第9页(共22页)数学试卷第10页(共22页)∵25ABC ∠=︒, ∴50AOC ∠=︒, ∴劣弧»AC 的长50525==18018⨯ππ, 故选:C .【考点】三角形的外接圆与外心 9.【答案】A【解析】先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案.解:根据题意,得:6+7+9525x x ++=,解得:3x =,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为222221(66)(76)(36)(96)(56)45⎡⎤⨯-+-+-+-+-=⎣⎦, 故选:A .【考点】平均数和方差的定义 10.【答案】B【解析】直接利用二次函数的开口方向以及图象与x 轴的交点,进而分别解析得出答案. 解:①∵二次函数20y ax bx c a =++≠()图象的对称轴为1x =,且开口向下, ∴1x =时,y a b c =++,即二次函数的最大值为a b c ++,故①正确; ②当1x =-时,0a b c +=-,故②错误;③图象与x 轴有2个交点,故240b ac ->,故③错误;④∵图象的对称轴为1x =,与x 轴交于点A 、点10B (-,), ∴30A(,), 故当0y >时,13x -<<,故④正确.故选:B .【考点】二次函数的性质、二次函数最值 11.【答案】D【解析】作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP MC =,NP ND =,OP OD OC ==,BOP BOD ∠=∠,AOP AOC ∠=∠,所以2120COD AOB ∠=∠=︒,利用两点之间线段最短判断此时PMN △周长最小,作OH CD ⊥于H ,则CH DH =,然后利用含30度的直角三角形三边的关系计算出CD 即可.【解答】解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP MC =,NP ND =,OP OD OC ==BOP BOD ∠=∠,AOP AOC ∠=∠, ∴PN PM MN ND MN NC DC++=++=,2120COD BOP BOD AOP AOC AOB ∠=∠+∠+∠+∠=∠=︒,∴此时PMN △周长最小, 作OH CD ⊥于H ,则CH DH =, ∵30OCH ∠=︒,∴12OH OC ==,32CH ==, ∴23CD CH ==. 故选:D .数学试卷第11页(共22页)数学试卷第12页(共22页)【考点】轴对称、最短路线问题 12.【答案】A【解析】根据定义可将函数进行化简. 解:当10x ≤-<,[]1x =-,1y x =+ 当01x ≤<时,[]0x =,y x = 当12x ≤<时,[]1x =,1y x =- 故选:A .【考点】函数的图象第Ⅱ卷二、填空题 13.【答案】100︒【解析】直接利用三角形内角和定理进而得出答案. 解:∵在ABC △中,30A ∠=︒,50B ∠=︒,∴1803050100C ∠=︒︒︒=︒﹣﹣. 故答案为:100︒【考点】三角形内角和定理 14.【答案】3-【解析】分式的值为0的条件是:(1)分子0=;(2)分母0≠.两个条件需同时具备,缺一不可.据此可以解答本题.解:因为分式293x x --的值为0,所以29=03x x --, 化简得290x =-,即29x =.解得3x =±因为30x ≠-,即3x ≠ 所以3x =-. 故答案为3-.【考点】分式的值为0的条件15.【解析】直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案. 解:如图所示: ∵90C ∠=︒,1tan 2A =, ∴设BC x =,则2AC x =,故AB =,则sin AC B AB ==..【考点】锐角三角函数关系16.【答案】13【解析】列表得出所有等可能结果,从中找到点M 在第二象限的结果数,再根据概率公式计算可得. 解:列表如下:数学试卷第13页(共22页)数学试卷第14页(共22页)由表可知,共有6种等可能结果,其中点M 在第二象限的有2种结果,所以点M 在第二象限的概率是21=63,故答案为:13【考点】利用列表法与树状图法求概率的方法17.【答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【解析】利用关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩可得m 、n 的数值,代入关于A 、B 的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好. 解:方法一:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴将解12x y =⎧⎨=⎩代入方程组3526x my x ny -=⎧⎨+=⎩可得1m =-,2n =∴关于A 、B 的二元一次方程组3()()52()()6a b m a b a b n a b +--=⎧⎨++-=⎩可整理为:42546a b a +=⎧⎨=⎩解得:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩方法二:关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,由关于A 、B 的二元一次方程组3()()52()()6a b m a b a b n a b +--=⎧⎨++-=⎩可知12a b a b +=⎧⎨-=⎩解得:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩ 故答案为:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【考点】二元一次方程组的求解 18.【答案】213 y y y <<【解析】设223t k k -=+,配方后可得出0t >,利用反比例函数图象上点的坐标特征可求出1y 、2y 、3y 的值,比较后即可得出结论. 解:设223t k k -=+,∵2223120k k k +=+-(-)>, ∴0t >.∵点12A y (-,)、21,B y (-)、3(1,)C y 都在反比例函数223k k y x-+=(k 为常数)的图象上, ∴12ty =-,2y t =-,3y t =, 又∵2tt t -<<-,∴213y y y <<. 故答案为:213y y y <<.【考点】反比例函数图象上点的坐标特征 19.数学试卷第15页(共22页)数学试卷第16页(共22页)【解析】取AB 的中点M ,连接ME ,在AD 上截取ND DF =,设DF DN x ==,则NF ,再利用矩形的性质和已知条件证明AME FNA △∽△,利用相似三角形的性质:对应边的比值相等可求出x 的值,在直角三角形ADF 中利用勾股定理即可求出AF 的长. 解:取AB 的中点M ,连接ME ,在AD 上截取ND DF =,设DF DN x ==, ∵四边形ABCD 是矩形,∴90D BAD B ∠=∠=∠=︒,4AD BC ==,∴NF =,4AN x =-, ∵2AB =, ∴1AM BM ==,∵AE =2AB =, ∴1BE =,∴ME ∵45EAF ∠=︒,∴45MAE NAF ∠+∠=︒, ∵45MAE AEM ∠+∠=︒, ∴MEA NAF ∠=∠, ∴AME FNA △∽△, ∴AM MEFN AN=,=, 解得:43x =,∴AF =【考点】矩形的性质、相似三角形的判断和性质以及勾股定理的运用 20.【答案】9910【解析】直接根据已知数据变化规律进而将原式变形求出答案. 解:由题意可得:1111=1++1++1++...+1+122334910⨯⨯⨯⨯11111119(1...)22334410=+-+-+-++-9=9+109=910故答案为:9910【考点】数字变化规律.三、解答题21.【答案】解:2(x y)(x y)xy x y x yx y +-=+=-g原式(), 当121x ==--,y =,原式1.【解析】原式利用除法法则变形,约分得到最简结果,把x 与y 的值代入计算即可求出值. 【考点】分式的化简求值、实数的运算22.【答案】(1)解:如图,连接OC,数学试卷第17页(共22页)数学试卷第18页(共22页)∵OA OC =, ∴OAC OCA ∠=∠, ∵AC 平分DAB ∠, ∴OAC DAC ∠=∠, ∴DAC OCA ∠=∠, ∴OC AD ∥, 又∵AD CD ⊥, ∴OC DC ⊥, ∴DC 是⊙O 的切线; (2)连接BC , ∵AB 为⊙O 的直径, ∴2AB AO =,90ACB ∠=︒, ∵AD DC ⊥,∴90ADC ACB ∠=∠=︒, 又∵DAC CAB ∠=∠, ∴DAC CAB △∽△,∴AC ADAB AC=,即2AC AB AD =g , ∵2AB AO =, ∴22AC AD AO =g .【解析】(1)连接OC ,由OA OC =、AC 平分DAB ∠知OAC OCA DAC ∠=∠=∠,据此知OC AD ∥,根据AD DC ⊥即可得证;(2)连接BC ,证DAC CAB △∽△即可得. 【考点】圆的切线23.【答案】解:(1)当15y =时,215520x x =+-,解得,11x =,23x =,答:在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ; (2)当0y =时,20520x x =-+,解得,30x =,24x =, ∵404=-,∴在飞行过程中,小球从飞出到落地所用时间是4s ;(3)225205220y x x x =+=-+--(),∴当2x =时,y 取得最大值,此时,20y =,答:在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m. 【解析】(1)根据题目中的函数解析式,令15y =即可解答本题; (2)令0y =,代入题目中的函数解析式即可解答本题; (3)将题目中的函数解析式化为顶点式即可解答本题. 【考点】二次函数的应用24.【答案】解:(1)由C的坐标为,得到2OC =, ∵菱形OABC ,∴2BC OC OA ===,BC x ∥轴,∴B (,设反比例函数解析式为k y x=, 把B坐标代入得:k =,则反比例解析式为y =; (2)设直线AB 解析式为y mx n =+,把20A (,),B代入得:203m n m n +=⎧⎪⎨+=⎪⎩数学试卷第19页(共22页)数学试卷第20页(共22页)解得:m n ⎧=⎪⎨=-⎪⎩则直线AB解析式为y -(3)联立得:y y ⎧⎪⎨⎪⎩,解得:3x y =⎧⎪⎨⎪⎩或1x y =-⎧⎪⎨=-⎪⎩即一次函数与反比例函数交点坐标为或(1,--,则在第一象限内,当一次函数的图象在反比例函数的图象下方时,自变量x 的取值范围为03x <<.【解析】(1)由C 的坐标求出菱形的边长,利用平移规律确定出B 的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A 坐标,利用待定系数法求出直线AB 解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x 的范围即可.【考点】待定系数法求反比例函数解析式与一次函数解析式、一次函数和反比例函数的性质、一次函数与反比例函数的交点 25.【答案】(1)证明:连接AD ,如图①所示. ∵90A ∠=︒,AB AC =,∴ABC V 为等腰直角三角形,45EBD ∠=︒. ∵点D 为BC 的中点, ∴12AD BC BD ==,45FAD ∠=︒. ∵90BDE EDA ∠+∠=︒,90EDA ADF ∠+∠=︒, ∴BDE ADF ∠=∠.在BDE △和ADF △中,EBD FADBD AD BDE ADF =⎧⎪=⎨⎪=⎩∠∠∠∠,∴BDE ADF ASA △≌△(),∴BE AF =;(2)BE AF =,证明如下: 连接AD ,如图②所示. ∵45ABD BAD ∠=∠=︒, ∴135EBD FAD ∠=∠=︒.∵90EDB BDF ∠+∠=︒,90BDF FDA ∠+∠=︒, ∴EDB FDA ∠=∠.在EDB △和FDA △中,EBD FADBD AD EDB FDA =⎧⎪=⎨⎪=⎩∠∠∠∠,∴EDB FDA ASA △≌△(),∴BE AF =.【解析】(1)连接AD ,根据等腰三角形的性质可得出AD BD =、EBD FAD ∠=∠,根据同角的余角相等可得出BDE ADF ∠=∠,由此即可证出BDE ADF ASA △≌△(),再根据全等三角形的性质即可证出BE AF =;(2)连接AD ,根据等腰三角形的性质及等角的补角相等可得出EBD FAD ∠=∠、BD AD =,根据同角的余角相等可得出BDE ADF ∠=∠,由此即可证出EDB FDA ASA △≌△(),再根据全等三角形的性质即可得出BE AF =.【考点】全等三角形的判定与性质、等腰直角三角形、补角及余角数学试卷第21页(共22页)数学试卷第22页(共22页) 26.【答案】解:(1)由2x =,得到2P y (,),连接AP ,PB ,∵圆P 与x 轴相切,∴PB x ⊥轴,即PB y =,由AP PB =,y , 解得:54y =,则圆P 的半径为54;(2)同(1),由AP PB =,得到22212x y y -+-=()(), 整理得:21114y x =-+(),即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A 的距离等于到x 轴的距离的所有点的集合;故答案为:点A ;x 轴;(4)连接CD ,连接AP 并延长,交x 轴于点F ,CD 与AF 交于点E ,由对称性及切线的性质可得:CD AF ⊥,设PE a =,则有1EF a =+,ED ∴D坐标为(11)a +, 代入抛物线解析式得:211(1)14a a +=-+,解得:2a =+-或2a =-(舍去),即2PE =-在Rt PED △中,2PE =,1PD =,则cos 2PEAPD PD ∠=.【解析】(1)由题意得到AP PB =,求出y 的值,即为圆P 的半径; (2)利用两点间的距离公式,根据AP PB =,确定出y 关于x 的函数解析式,画出函数图象即可; (3)类比圆的定义描述此函数定义即可; (4)画出相应图形,求出m 的值,进而确定出所求角的余弦值即可. 【考点】两点间的距离公式、二次函数的图象与性质、圆的性质、勾股定理。

2018年山东省滨州数学解析版

2018年山东省滨州数学解析版

2018年山东省滨州市中考数学试卷试卷满分:150分 教材版本:人教版一、选择题:本大题共12小题,每小题3分,共36分.1.(2018滨州,1,3分)在直角三角形中,若勾为3,股为4,则弦为( ) A .5B .6C .7D .81.A ,解析:根据勾股定理直接求得弦长为223+4=5.2.(2018滨州,2,3分)若数轴上点A 、B 分别表示数2、-2,则A 、B 两点之间的距离可表示为( ) A .2+(-2) B .2-(-2) C .(-2)+2 D .(-2)-22.B ,解析:AB =|x A -x B |=|2-(-2)|=2-(-2).3.(2018滨州,3,3分)如图,直线AB ∥CD ,则下列结论正确的是( ) A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D . ∠3+∠4=180°第3题图3.D ,解析:根据平行线的性质对四个选项进行逐一判断,得出∠3+∠4=180°正确.4.(2018滨州,4,3分)下列运算:①a ²·a ³=a 6,②(a ³)²=a 6,③a 5÷a 5=a ,④(ab )³=a ³b ³,其中结果正确的个数为( ) A .1B .2C .3D .44.B ,解析:根据同底数幂的乘法法则可判断①错误,根据同底数幂的除法法则可判断③错误,根据幂的乘方与积的乘方可判断②,④正确.5.(2018滨州,5,3分)把不等式组1326x x +⎧⎨--⎩≥>-4中每个不等式的解集在同一条数轴上表示出来,正确的为( )–2–10123–2–10123–2–10123–2–10123A B C D5.B ,解析:先求出不等式组中每一个不等式的解集,再根据大于向右,小于向左,≥或≤用实心点,>或<用空心点.4321ABCD6.(2018滨州,6,3分)在平面直角坐标系中,线段AB 两个端点的坐标分别为A (6,8)、B (10,2).若以原点O 为位似中心,在第一象限内将线段AB 缩短为原来的12后得到线段CD ,则点A 的对应点C 的坐标为( )A .(5,1)B .(4,3)C .(3,4)D .(1,5) 6.C ,解析:根据位似图形的性质,结合将线段AB 缩短为原来的12后得到线段CD ,得出点C 的坐标为点A 的坐标的12.7.(2018滨州,7,3分)下列命题,其中是真命题的为( ) A .一组对边平行,另一组对边相等的四边形是平行四边形 B .对角线互相垂直的四边形是菱形 C .对角线相等的四边形是矩形 D .一组邻边相等的矩形是正方形7.D ,解析:一组对边平行,另一组对边相等的四边形也可能是梯形,故A 是假命题;对角线互相垂直的四边形未必一定是菱形,故B 是假命题;对角线相等的四边形也可能是等腰梯形,故C 是假命题;一组邻边相等的矩形是正方形是正确的,故D 是真命题.8.(2018滨州,8,3分)已知半径为5的⊙O 是△ABC 的外接圆,若∠ABC =25°,则劣弧AC 的长为( ) A .2536π B .12536π C .2518π D .536π8.C ,解析:先求出劣弧AC 所对的圆心角的度数,再根据弧长公式直接代入计算即可.9.(2018滨州,9,3分)如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4 B .3 C .2 D .19.A ,解析:先根据平均数是2x 求出x 的值,再根据方差公式求出方差即可.10.(2018滨州,10,3分)如图,若二次函数2y ax bx c =++(a ≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A 、点B (-1,0)则①二次函数的最大值为a +b +c ;②a -b +c <0;③b ²-4ac <0;④当y >0时,-1<x <3.其中正确的个数是( ) A .1 B .2 C .3 D .410.B ,解析:由图像可知,当x =1时,函数值取到最大值,最大值为:a +b +c,故①正确;因为抛物线经过点B (-1,0),所以当x =-1时,y =a -b +c =0,故②错误;因为该函数图象与x 轴有两个交点A 、B ,所以b²-4ac >0,故③错误;因为点A 与点B 关于直线x =1对称,所以A(3,0),根据图像可知,当y >0时,-1<x <3,故④正确;故选B .11.(2018滨州,11,3分)如图,∠AOB =60°,点P 是∠AOB 内的定点且OP =3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362 B .332C .6D .311.D ,解析:分别以OA 、OB 为对称轴作点P 的对称点P 1,P 2,连接点P 1,P 2,分别交射线OA 、OB 于点M 、N 则此时△PMN 的周长有最小值,△PMN 周长等于=PM +PN +MN = P 1N +P 2N +MN ,根据对称的性质可知,OP 1=OP 2=OP =3,∠P 1OP 2=120°,∠OP 1M =30°,过点O 作MN 的垂线段,垂足为Q ,在△OP 1Q 中,可知P 1Q =32,所以P 1P 2=2P 1Q =3,故△PMN 的周长最小值为3.12.(2018滨州,12,3分)如果规定[]x 表示不大于x 的最大整数,例如[]2.32=,那么函数[]y x x =-的AB OPMNxy -1BOCAx =1图象为( )xyxy –1–2–3123–11–1–2–3123–11O OA .B .xyxy –1–2–3123–11–1–2–3123–11O OC .D .12.A ,解析:根据题中的新定义,分x 为正整数,负整数两种情况进行验证,即可排除B ,C ,D ,故选A.二、填空题:本大题共8小题,每小题5分,共40分.不需写出解答过程,请把最后结果填在题中横线上.13.(2018滨州,13,5分)在△ ABC 中,若∠A =30°,∠B =50°,则∠C =___________. 13.100°,解析:直接根据三角形内角和定理求得∠C =180°-30°-50°=100°.14.(2018滨州,14,5分)若分式293x x --的值为0,则x 的值为________.14.-3,解析:分式的值为0,需要满足两个条件:分子为0,同时分母不为0,由分子x²-9=0,求得x =±3,再由分母不为0,求得x =-3.15.(2018滨州,15,5分)在△ABC 中,∠C =90°,若tan A =12,则sin B =__________. 15.255,解析:根据tan A =12可设b =1,则a =2,c =5,所以sin B =25=255.16.(2018滨州,16,5分)若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M在第二象限的概率是_________.16.13,解析:先根据题意将点M 的坐标的所有可能情况全部列出,再确定在第二象限的情形有几种,即可求出点M 在第二象限的概率.17.(2018滨州,17,5分)若关于x ,y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组3()()5,2()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解是___________.17.3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,解析:观察两个方程组的结构特点,a +b 相当于x ,a -b 相当于y ,故可直接得出:12a b a b +=⎧⎨-=⎩,从而得出元一次方程组3()()5,2()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解是3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.18.(2018滨州,18,5分)若点A (-2,y 1),B (-1,y 2),C (1,y 3)都在反比例函数y =223k k x-+(k 为常数)的图象上,则y 1,y 2,y 3的大小关系为_______________.18.y 3>y 1>y 2,解析:先根据x 的符号,得出为y 3>0,而y 1,y 2均<0,再根据y 随着x 的增大而减小,得出y 3>y 1>y 2.19. (2018滨州,19,5分)如图,在矩形ABCD 中,AB =2,BC =4,点E ,F 分别在BC ,CD 上,若AE =5,∠EAF =45°,则AF 的长为___________.19.4103,解析:取AD 、BC 中点M 、N ,由AD =4,AB =2,证得四边形ABNM 是正方形,连接MN ,EH ,由∠HAE =45°,四边形ABNM 是正方形,可知此处有典型的正方形内“半角模型”,故有EH =MH +BE 。

【精品】山东滨州市2018年中考数学试题(含解析)

【精品】山东滨州市2018年中考数学试题(含解析)

2018年山东省滨州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1. 在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2. 若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2【答案】B【解析】分析:根据数轴上两点间距离的定义进行解答即可.详解:A、B两点之间的距离可表示为:2﹣(﹣2).故选B.点睛:本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3. 如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D详解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4. 下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5. 把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.6. 在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3)C. (3,4)D. (1,5)【答案】C【解析】分析:利用位似图形的性质,结合两图形的位似比进而得出C点坐标.详解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选C.点睛:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7. 下列命题,其中是真命题的为()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形【答案】D【解析】试题分析:A、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故AB、对角线互相垂直的四边形也可能是一般四边形,故B选项错误;C、对角线相等的四边形有可能是等腰梯形,故C选项错误.D、一组邻边相等的矩形是正方形,故D选项正确.故选:D.考点:命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.8. 已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.【答案】C【解析】分析:根据圆周角定理和弧长公式解答即可.详解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选C.点睛:此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9. 如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A. 4B. 3C. 2D. 1【答案】A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10. 如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】分析:直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.11. 如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB 上异于点O的动点,则△PMN周长的最小值是()A. B. C. 6 D. 3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12. 如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.【答案】A【解析】分析:根据定义可将函数进行化简.详解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选A.点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.二、填空题(本大题共8小题,每小题5分,满分40分)13. 在△ABC中,若∠A=30°,∠B=50°,则∠C=_______.【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.14. 若分式的值为0,则x的值为______.【答案】-3【解析】分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.详解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.点睛:本题主要考查分式的值为0的条件,注意分母不为0.15. 在△ABC中,∠C=90°,若tanA=,则sinB=______.【答案】【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB=.故答案为:.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.16. 若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____.【答案】【解析】分析:列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.详解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是..故答案为:.点睛:本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=..【答案】【解析】分析:利用关于x、y的二元一次方程组,的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.18. 若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.【答案】y2<y1<y3【解析】分析:设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y1、y2、y3的值,比较后即可得出结论.详解:设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.19. 如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____.【答案】【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案为:.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20. 观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题(本大题共6小题,满分74分)21. 先化简,再求值:(xy2+x2y)×,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】【解析】分析:原式利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.详解:原式=xy(x+y)•=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.点睛:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22. 如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【答案】(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.23. 如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【答案】(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【解析】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24. 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.【答案】(1);(2);(3)x<﹣1或0<x<3.【解析】分析:(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.详解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:则直线AB解析式为y=﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.点睛:此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.25. 已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【答案】(1)证明见解析;(2)BE=AF,证明见解析.【解析】分析:(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.详(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.点睛:本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA证出△BDE≌△ADF;(2)根据全等三角形的判定定理ASA证出△EDB≌△FDA.26. 如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【答案】(1);(2)图象为开口向上的抛物线,见解析;(3)点A;x轴;(4)【解析】分析:(1)由题意得到AP=PB,求出y的值,即为圆P的半径;(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.详解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.点睛:此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.。

2018年山东省滨州市中考数学试卷和解析答案(样题)

2018年山东省滨州市中考数学试卷和解析答案(样题)

2018年山东省滨州市中考数学试卷(样题)一、选择题:本大题共12个小题,在每小题地四个选项中只有一个是正确地,请把正确地选项选出来,用2B铅笔把答题卡上对应题目地答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)在,,0,﹣2这四个数中,为无理数地是()A.B.C.0 D.﹣22.(3分)如果□×(﹣3)=1,则“□”内应填地实数是()A.B.3 C.﹣3 D.3.(3分)如图,小手盖住地点地坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5) D.(4,﹣5)4.(3分)已知实数a,b,若a>b,则下列结论错误地是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b5.(3分)如图,直线l1∥l2,且分别与△ABC地两边AB、AC相交,若∠A=45°,∠1=65°,则∠2地度数为()A.45°B.65°C.70°D.110°6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)地图象不可能经过地点是()A.M B.N C.P D.Q7.(3分)关于x地分式方程+=3地解为正实数,则实数m地取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2 8.(3分)将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC地延长线上,如图,则∠EDP地大小为()A.80°B.100°C.120° D.不能确定9.(3分)如图,菱形OABC地顶点C地坐标为(3,4).顶点A在x轴地正半轴上,反比例函数y=(x>0)地图象经过顶点B,则k地值为()A.12 B.20 C.24 D.3210.(3分)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成地命题是真命题地概率是()A.0 B.C.D.111.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上地点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误地是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG12.(3分)如图,点E为菱形ABCD边上地一个动点,并延A→B→C→D地路径移动,设点E经过地路径长为x,△ADE地面积为y,则下列图象能大致反映y 与x地函数关系地是()A.B. C.D.二、填空题:本大题共8个小题,每小题5分,满分40分.13.(5分)计算:﹣22﹣(﹣7)0+=.14.(5分)不等式组地解集为.15.(5分)有一组数据:3,a,4,6,7,它们地平均数是5,则a=,这组数据地方差是.16.(5分)经过两次连续降价,某药品销售单价由原来地49元降到30元,设该药品平均每次降价地百分率为x,根据题意可列方程是.17.(5分)如图,正三棱柱地底面周长为15,截去一个底面周长为6地正三棱柱,所得几何体地俯视图地周长是,面积是.18.(5分)如图,轮船从B处以每小时60海里地速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C 处观测灯塔A位于北偏东10°方向上,则C处与灯塔A地距离是海里.19.(5分)如图,在平面直角坐标系中,点A地坐标为(﹣2,),以原点O 为中心,将点A顺时针旋转165°得到点A′,则点A′地坐标为.20.(5分)规定:[x]表示不大于x地最大整数,(x)表示不小于x地最小整数,[x)表示最接近x地整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)地结果是.三、解答题:本大题共6个小题,满分74分.解答时请写出必要地演推过程.21.(10分)先化简后求值:,其中x=.22.(12分)已知:如图,在△ABC中,AD是角平分线,E是AD上一点,且AB:AC=AE:AD.求证:(1)BE=BD;(2).23.(12分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA地平分线于E,交∠DCA地平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你地结论.24.(13分)已知:关于x地一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程地一个根,求m地值;(2)以这个方程地两个实数根作为△ABC中AB、AC(AB<AC)地边长,当BC=时,△ABC是等腰三角形,求此时m地值.25.(13分)如图,⊙O为等腰△ABC地外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD地长度;(3)证明:无论点P在弧上地位置如何变化,CP•CQ为定值.26.(14分)在平面直角坐标系中,已知点B地坐标是(﹣1,0),点A地坐标是(4,0),点C地坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线地解析式.(2)点N是抛物线上地一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N地坐标.(3)设抛物线地对称轴为直线L,顶点为K,点C关于L地对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR地周长最小?若存在,请求出周长地最小值;若不存在,请说明理由.2018年山东省滨州市中考数学试卷(样题)参考答案与试题解析一、选择题:本大题共12个小题,在每小题地四个选项中只有一个是正确地,请把正确地选项选出来,用2B铅笔把答题卡上对应题目地答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)在,,0,﹣2这四个数中,为无理数地是()A.B.C.0 D.﹣2【解答】解:,0,﹣2是有理数,是无理数,故选:A.2.(3分)如果□×(﹣3)=1,则“□”内应填地实数是()A.B.3 C.﹣3 D.【解答】解:(﹣)×(﹣3)=1,故选:D.3.(3分)如图,小手盖住地点地坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5) D.(4,﹣5)【解答】解:由图可知,小手盖住地点地坐标位于第三象限,(﹣4,﹣5)(﹣4,5)(4,5)(4,﹣5)中,只有(﹣4,﹣5)在第三象限,所以,小手盖住地点地坐标可能为(﹣4,﹣5).故选:A.4.(3分)已知实数a,b,若a>b,则下列结论错误地是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【解答】解:a>b,A、a﹣7>b﹣7,故A选项正确;B、6+a>b+6,故B选项正确;C、>,故C选项正确;D、﹣3a<﹣3b,故D选项错误.故选:D.5.(3分)如图,直线l1∥l2,且分别与△ABC地两边AB、AC相交,若∠A=45°,∠1=65°,则∠2地度数为()A.45°B.65°C.70°D.110°【解答】解:如图,∵直线l1∥l2,∠1=65°,∴∠AEF=∠1=65°,∵∠A=45°,∴∠2=∠AFE=180°﹣∠A﹣∠AEF=70°,故选:C.6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)地图象不可能经过地点是()A.M B.N C.P D.Q【解答】解:∵在y=kx+2(k<0)中,令x=0可得y=2,∴一次函数图象一定经过第一、二象限,∵k<0,∴y随x地增大而减小,∴一次函数不经过第三象限,∴其图象不可能经过Q点,故选:D.7.(3分)关于x地分式方程+=3地解为正实数,则实数m地取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,实数m地取值范围是:m<6且m≠2.故选:D.8.(3分)将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC地延长线上,如图,则∠EDP地大小为()A.80°B.100°C.120° D.不能确定【解答】解:由旋转地性质可知,∠BAD=100°,AB=AD,∴∠B=∠ADB=40°,∴∠ADE=∠B=40°,∴∠EDP=180°﹣∠ADB﹣∠ADE=100°,故选:B.9.(3分)如图,菱形OABC地顶点C地坐标为(3,4).顶点A在x轴地正半轴上,反比例函数y=(x>0)地图象经过顶点B,则k地值为()A.12 B.20 C.24 D.32【解答】解:过C点作CD⊥x轴,垂足为D,∵点C地坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)地图象经过顶点B,∴k=32,故选:D.10.(3分)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成地命题是真命题地概率是()A.0 B.C.D.1【解答】解:所有等可能地情况有3种,分别为①②⇒③;①③⇒②;②③⇒①,其中组成命题是真命题地情况有:①②⇒③;①③⇒②;②③⇒①,则P=1,故选:D.11.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上地点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误地是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG【解答】解:∵在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上地点F重合,∴∠GAD=45°,∠ADG=∠ADO=22.5°,∴∠AGD=112.5°,∴A正确;根据题意可得:AE=EF,AG=FG,又∵EF∥AC,∴∠FEG=∠AGE,又∵∠AEG=∠FEG,∴∠AEG=∠AGE,∴AE=AG=EF=FG,∴四边形AEFG是菱形,∴B正确.∵tan∠AED=,AE=EF<BE,∴AE<AB,∴tan∠AED=>2,∴C错误;∵在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2OG2,∴BE=2OG.∴D正确.故选:C.12.(3分)如图,点E为菱形ABCD边上地一个动点,并延A→B→C→D地路径移动,设点E经过地路径长为x,△ADE地面积为y,则下列图象能大致反映y 与x地函数关系地是()A.B. C.D.【解答】解:点E沿A→B运动,△ADE地面积逐渐变大,设菱形地变形为a,∠A=β,∴AE边上地高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE地面积不变;点E沿C→D地路径移动,△ADE地面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.二、填空题:本大题共8个小题,每小题5分,满分40分.13.(5分)计算:﹣22﹣(﹣7)0+=﹣5+2.【解答】解:原式=﹣4﹣1+2=﹣5+2.故答案为:﹣5+2.14.(5分)不等式组地解集为﹣1<x<3.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,所以不等式组地解集为﹣1<x<3,故答案为:﹣1<x<3.15.(5分)有一组数据:3,a,4,6,7,它们地平均数是5,则a=5,这组数据地方差是2.【解答】解:∵数据:3,a,4,6,7,它们地平均数是5,∴a=5×5﹣3﹣4﹣6﹣7=5;则这组数据地方差是S2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2;故答案为:5,2.16.(5分)经过两次连续降价,某药品销售单价由原来地49元降到30元,设该药品平均每次降价地百分率为x,根据题意可列方程是49(1﹣x)2=30;.【解答】解:由题意可得,49(1﹣x)2=30,故答案为49(1﹣x)2=30;17.(5分)如图,正三棱柱地底面周长为15,截去一个底面周长为6地正三棱柱,所得几何体地俯视图地周长是13,面积是.【解答】解:从上边看是一个梯形:上底是2,下底是5,两腰是3,周长是2+3+3+5=13.原三角形地边长是5,截去地三角形地边长是2,梯形地面积=原三角形地面积﹣截去地三角形地面颊=××52﹣××22=﹣=,故答案为:13,.18.(5分)如图,轮船从B处以每小时60海里地速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A地距离是海里.【解答】解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=20海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=10海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故答案为:.19.(5分)如图,在平面直角坐标系中,点A地坐标为(﹣2,),以原点O为中心,将点A顺时针旋转165°得到点A′,则点A′地坐标为(,﹣);.【解答】解:作AB⊥x轴于点B,∴AB=2、OB=2,则tan∠AOB=,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转165°得到点A′后,如图所示,OA′=OA=2OB=4,∠A′OC=45°,∴A′C=2、OC=2,即A′(2,﹣2),故答案为(,﹣);20.(5分)规定:[x]表示不大于x地最大整数,(x)表示不小于x地最小整数,[x)表示最接近x地整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)地结果是﹣2或﹣1或0或1或2.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.三、解答题:本大题共6个小题,满分74分.解答时请写出必要地演推过程. 21.(10分)先化简后求值:,其中x=.【解答】解:==,当x==2时,原式=.22.(12分)已知:如图,在△ABC中,AD是角平分线,E是AD上一点,且AB:AC=AE:AD.求证:(1)BE=BD;(2).【解答】证明:(1)∵AD是角平分线,∴∠BAD=∠CAD,又AB:AC=AE:AD,∴△ABE∽△ACD,∴∠AEB=∠ADC,∴∠BED=∠BDE,∴BE=BD;(2)如图,过点A作AH⊥BC,垂足为H,=,S△ADc=,则S△ABD∴=,又BE=BD,∴.23.(12分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA地平分线于E,交∠DCA地平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你地结论.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA地外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.24.(13分)已知:关于x地一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程地一个根,求m地值;(2)以这个方程地两个实数根作为△ABC中AB、AC(AB<AC)地边长,当BC=时,△ABC是等腰三角形,求此时m地值.【解答】解:(1)∵x=2是方程地一个根,∴4﹣2(2m+3)+m2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2﹣4(m2+3m+2)=1,=1;∴x=∴x1=m+2,x2=m+1,∵AB、AC(AB<AC)地长是这个方程地两个实数根,∴AC=m+2,AB=m+1.∵BC=,△ABC是等腰三角形,∴当AB=BC时,有m+1=,∴m=﹣1;当AC=BC时,有m+2=,∴m=﹣2,综上所述,当m=﹣1或m=﹣2时,△ABC是等腰三角形.25.(13分)如图,⊙O为等腰△ABC地外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD地长度;(3)证明:无论点P在弧上地位置如何变化,CP•CQ为定值.【解答】证明:(1)如图,连接OP,∵PD是⊙O地切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴CP=BP,∴∠PAC=∠PAB,∴AP平分∠CAB;(2)∵PB=BD,∴∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴在Rt△OPD中,PD==6;(3)∵AC=BC,∴∠BAC=∠ABC,∵∠ABC=∠APC,∴∠APC=∠BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2=72,即CP•CQ为定值.26.(14分)在平面直角坐标系中,已知点B地坐标是(﹣1,0),点A地坐标是(4,0),点C地坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线地解析式.(2)点N是抛物线上地一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N地坐标.(3)设抛物线地对称轴为直线L,顶点为K,点C关于L地对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR地周长最小?若存在,请求出周长地最小值;若不存在,请说明理由.【解答】解:(1)设抛物线地解析式为y=ax2+bx+c,将A、B、C点坐标代入函数解析式,得,解得,抛物线地解析式为y=﹣x2+3x+4;(2)如图1,设AC地解析式为y=kx+b,将A、C点坐标代入,得,解得,AC地解析式为y=﹣x+4,设N(m,﹣m2+3m+4),H(m,﹣m+4).NH=﹣m2+4m.由线段ON与CH互相平分,得NH=OC=4,即﹣m2+4m=4,解得m=2,﹣m2+3m+4=6,即N(2,6),当线段ON与CH互相平分时,点N地坐标为(2,6);(3)如图2,作K点关于y轴地对称点D,作J点关于x轴地对称点E,连接DE交y轴于R交x轴于Q点,y=﹣x2+3x+4=﹣(x﹣)2+,顶点K(,).由点C关于对称轴L=地对称点J,C(0,4),得J点坐标为(3,4).由K点关于y轴地对称点D,K(,),得D点坐标为(﹣,).由J点关于x轴地对称点E,J(3,4),得E点地坐标为(3,﹣4).由勾股定理,得KJ==;DE==,KJQR地周长最小=KR+RQ+QJ+KJ=DE+KJ=+.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

2018年山东省滨州市中考数学试题含答案

2018年山东省滨州市中考数学试题含答案

2018年山东省滨州市中考数学试卷一、选择题(本大题共12小题,在每小题的四个选项里只有一个是正确的,请把正确的选项选出来,每小题3分,满分36分)1.(2018年山东省滨州市)估计在()A.0~1之间B.1~2之间C.2~3之间D.3~4之间分析:根据二次根式的性质得出,即:2,可得答案.解:∵出,即:2,所以在2到3之间.故答案选:C.点评:本题考查了估算无理数的大小和二次根式的性质,解此题的关键是知道在和之间.2.(2018年山东省滨州市)一个代数式的值不能等于零,那么它是()A.a2B.a0C.D.|a|分析:根据非0的0次幂等于1,可得答案.解:A、C、D、a=0时,a2=0,故A、C、D错误;B、非0的0次幂等于1,故B 正确;故选:B.点评:本题考查了零指数幂,非0的0次幂等于1是解题关键.3.(2018年山东省滨州市)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等分析:由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.点评:此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.4.(2018年山东省滨州市)方程2x﹣1=3的解是()A.﹣1 B.C.1D.2分析:根据移项、合并同类项、系数化为1,可得答案.解:2x﹣1=3,移项,得2x=4,系数化为1得x=2.故选:D.点评:本题考查了解一元一次方程,根据解一元次方程的一般步骤可得答案.5.(2018年山东省滨州市)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50 B.60 C.65 D.70分析:先根据OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°求出∠BOC与∠COD 的度数,再根据∠BOD=∠BOC+∠COD即可得出结论.解:∵OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°,∴∠BOC=∠AOB=40°,∠COD=∠COE=×60°=30°,∴∠BOD=∠BOC+∠COD=40°+30°=70°.故选D.点评:本题考查的是角的计算,熟知角平分线的定义是解答此题的关键.6.(2018年山东省滨州市)a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>分析:根据不等式的性质1,可判断A,根据不等式的性质3、1可判断B,根据不等式的性质2,可判断C、D.解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.点评:本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.7.(2018年山东省滨州市)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、12+()2=3≠32,不可以构成直角三角形,故本选项错误.故选B.点评:本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.(2018年山东省滨州市)有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A.平均数B.中位数C.众数D.方差分析:因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选B.点评:中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.学会运用中位数解决问题.9.(2018年山东省滨州市)下列函数中,图象经过原点的是()A.y=3x B.y=1﹣2x C.y=D.y=x2﹣1分析:将点(0,0)依次代入下列选项的函数解析式进行一一验证即可.解:∵函数的图象经过原点,∴点(0,0)满足函数的关系式;A、当x=0时,y=3×0=0,即y=0,∴点(0,0)满足函数的关系式y=3x;故本选项正确;B、当x=0时,y=1﹣2×0=1,即y=1,∴点(0,0)不满足函数的关系式y=1﹣2x;故本选项错误;C、y=的图象是双曲线,不经过原点;故本选项错误;D、当x=0时,y=02﹣1=﹣1,即y=﹣1,∴点(0,0)不满足函数的关系式y=x2﹣1;故本选项错误;故选A.点评:本题综合考查了二次函数、一次函数、反比例图象上的点的坐标特征.经过函数图象上的某点,该点一定满足该函数的解析式.10.(2018年山东省滨州市)如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直分析:先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB=,AO=OC=2,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选D.点评:本题考查了平移的性质,勾股定理,正确利用网格是解题的关键.。

2018年山东省滨州市中考数学试卷含答案解析

2018年山东省滨州市中考数学试卷含答案解析

C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形 8.已知半径为 5 的⊙O 是△ABC 的外接圆,若 ABC 25 ,则劣弧 » AB 的长为
()
A. 25π
36
B. 125π
36
C. 25π
18
D. 36π
5
9.如果一组数据 6、7、x、9、5 的平均数是 2x,那么这组数据的方差为 ( )
徐老师
山东省滨州市 2018 年初中学业水平考试
数学
本试卷满分 150 分,考试时间 120 分钟.
第Ⅰ卷(选择题 共 36 分)
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中, 只有一项是符合题目要求的)
1.在直角三角形中,若勾为 3,股为 4,则弦为
()
4.下列运算:① a2 • a3 a6 ,②(a3)2 a6 ,③ a5 a5 a ,④(ab)3 a3b3 ,其中结果
正确的个数为
()
A.1
B.2
C.3
D.4
5.把不等式组
x 1≥3 2x 6>
4
中每个不等式的解集在同一条数轴上表示出来,正确的

()
A
B
C
D
6.在平面直角坐标系中,线段 AB 两个端点的坐标分别为 A(6,8), B(10,2),若以原
A.5
B.6
C.7
D.8
2.若数轴上点 A、B 分别表示数 2、﹣2,则 A、B 两点之间的距离可表示为
()
A. 2 (-2)
B. 2 (2)
C. (-2) 2
D. (2) 2
3.如图,直线 AB∥CD ,则下列结论正确的是

山东省滨州市2018年中考数学试卷及答案解析

山东省滨州市2018年中考数学试卷及答案解析

2018年山东省滨州市中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2) B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2).故选:B.【点评】本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3.(3分)如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.【点评】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4.(3分)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.4【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.【点评】此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.(3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.6.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A.(5,1)B.(4,3)C.(3,4)D.(1,5)【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7.(3分)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.【点评】本题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,难度适中.8.(3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A.B.C.D.【分析】根据圆周角定理和弧长公式解答即可.【解答】解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选:C.【点评】此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9.(3分)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.1【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.【解答】解:根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.【点评】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.【点评】此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.11.(3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.3【分析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.【解答】解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.【点评】本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12.(3分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.二、填空题(本大题共8小题,每小题5分,满分40分)13.(5分)在△ABC中,若∠A=30°,∠B=50°,则∠C= 100°.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°【点评】此题主要考查了三角形内角和定理,正确把握定义是解题关键.14.(5分)若分式的值为0,则x的值为﹣3 .【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.【点评】本题主要考查分式的值为0的条件,注意分母不为0.15.(5分)在△ABC中,∠C=90°,若tanA=,则sinB= .【分析】直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.【解答】解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB===.故答案为:.【点评】此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.16.(5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.【分析】列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.【解答】解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.【点评】本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=.17.(5分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.【分析】利用关于x、y的二元一次方程组,的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组,的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组,的解是,由关于a、b的二元一次方程组可知解得:故答案为:【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.18.(5分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为y2<y1<y3.【分析】设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y 1、y2、y3的值,比较后即可得出结论.【解答】解:设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.19.(5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为.【分析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.【解答】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME==,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=,∴AF==.故答案为:.【点评】本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20.(5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题(本大题共6小题,满分74分)21.(10分)先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣1,y=2sin45°﹣.【分析】原式利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=xy(x+y)••=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.【点评】本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.23.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.【解答】解:(1)当y=15时,15=﹣5x 2+20x ,解得,x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)当y=0时,0═﹣5x 2+20x ,解得,x 3=0,x 2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s ;(3)y=﹣5x 2+20x=﹣5(x ﹣2)2+20,∴当x=2时,y 取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.(13分)如图,在平面直角坐标系中,点O 为坐标原点,菱形OABC 的顶点A 在x 轴的正半轴上,顶点C 的坐标为(1,).(1)求图象过点B 的反比例函数的解析式;(2)求图象过点A ,B 的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x 的取值范围.【分析】(1)由C 的坐标求出菱形的边长,利用平移规律确定出B 的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A 坐标,利用待定系数法求出直线AB 解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.【解答】解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:,则直线AB解析式为y=x﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x <3.【点评】此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.【解答】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA证出△BDE≌△ADF;(2)根据全等三角形的判定定理ASA证出△EDB≌△FDA.26.(14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到点A 的距离等于到x轴的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D (m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【分析】(1)由题意得到AP=PB,求出y的值,即为圆P的半径;(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.【解答】解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.【点评】此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.。

(完整版)山东省滨州市2018年中考数学试卷(解析版)

(完整版)山东省滨州市2018年中考数学试卷(解析版)

1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥
,根据AD⊥DC即可得证;
2)连接BC,证△DAC∽△CAB即可得.
1)如图,连接OC,
OA=OC,
OAC=∠OCA,
AC平分∠DAB,
OAC=∠DAC,
DAC=∠OCA,
OC∥AD,
AD⊥CD,
C的坐标为(1,).
1)求图象过点B的反比例函数的解析式;
2)求图象过点A,B的一次函数的解析式;
3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接
x的取值范围.
1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数
a2?a3=a5,故原题计算错误;
a3)2=a6,故原题计算正确;
a5÷a5=1,故原题计算错误;
ab)3=a3b3,故原题计算正确;
2个,
B.
.(3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确

. B. C. D.
x+1≥3,得:x≥2,
2x﹣6>﹣4,得:x<﹣1,
(解析版)
12小题,每小题3分,共36分)
.(3分)在直角三角形中,若勾为3,股为4,则弦为( )
.5 B.6 C.7 D.8
3,股为4,
=5.
A.
本题考查了勾股定理:在何一个直角三角形中,两条直角边长的平方之和一定等
.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为( )
OCH=30°,
OH=OC=,
OH=,

山东省滨州市2018年中考数学试题(解析)

山东省滨州市2018年中考数学试题(解析)

2018年山东省滨州市中考数学试卷一.选择题:本大题共12个小题,在每个小题的四个选项中只有一个是正确的,请把正确的选出来,并将其字母标号填写在答题栏内.每小题选对得3分,选错、不选或选出的答案超过一个均记0分,满分36分.1.<2018滨州)32-等于< )A.6-B.6 C.8-D.8考点:有理数的乘方。

解答:解:328-=-.故选C.2.<2018滨州)以下问题,不适合用全面调查的是< )A.了解全班同学每周体育锻炼的时间B.鞋厂检查生产的鞋底能承受的弯折次数C.学校招聘教师,对应聘人员面试D.黄河三角洲中学调查全校753名学生的身高huaTjpM9qW考点:全面调查与抽样调查。

解答:解:A、数量不大,应选择全面调查;B、数量较大,具有破坏性的调查,应选择抽样调查;C、事关重大,调查往往选用普查;D、数量较不大应选择全面调查.故选B.3.<2018滨州)借助一副三角尺,你能画出下面哪个度数的角< )A.65°B.75°C.85°D.95°考点:角的计算。

解答:解:利用一副三角板可以画出75°角,用45°和30°的组合即可,故选:B.4.<2018滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是< )A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形考点:三角形内角和定理。

解答:解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选D.huaTjpM9qW5.<2018滨州)不等式211841x xx x-≥+⎧⎨+≤-⎩的解集是< )A.3x≥B.2x≥C.23x≤≤D.空集考点:解一元一次不等式组。

山东省滨州市2018年中考数学试卷及参考答案

山东省滨州市2018年中考数学试卷及参考答案
(1) 如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF; (2) 若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由. 26. 如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.
(1) 当x=2时,求⊙P的半径; (2) 求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象; (3) 请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:
A.
B.
C.
D.
6. 在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象 限内将线段AB缩短为原来的 后得到线段CD,则点A的对应点C的坐标为( )
A . (5,1) B . (4,3) C . (3,4) D . (1,5) 7. 下列命题,其中是真命题的为( ) A . 一组对边平行,另一组对边相等的四边形是平行四边形 B . 对角线互相垂直的四边形是菱形 C . 对角线相等的四边形是矩形 D . 一组邻边相等的矩形是正方形 8. 已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧 的长为( )
此函数图象可以看成是到的距离等于到的距离的所有点的集合.
(4) 当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请 利用图②,求cos∠APD的大小.
参考答案 1. 2. 3. 4. 5. 6.
7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
____.
20. 观察下列各式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年山东省滨州市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分)
1.(3分)在直角三角形中,若勾为3,股为4,则弦为()
A.5 B.6 C.7 D.8
2.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()
A.2+(﹣2) B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2
3.(3分)如图,直线AB∥CD,则下列结论正确的是()
A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°
4.(3分)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()
A.1 B.2 C.3 D.4
5.(3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()
A.B.C.
D.
6.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()
A.(5,1) B.(4,3) C.(3,4) D.(1,5)
7.(3分)下列命题,其中是真命题的为()
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
8.(3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()
A.B.C.D.
9.(3分)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为() A.4 B.3 C.2 D.1
10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是()
A.1 B.2 C.3 D.4
11.(3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()
A.B.C.6 D.3
12.(3分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()
A.B.
C.D.
二、填空题(本大题共8小题,每小题5分,满分40分)
13.(5分)在△ABC中,若∠A=30°,∠B=50°,则∠C=.
14.(5分)若分式的值为0,则x的值为.
15.(5分)在△ABC中,∠C=90°,若tanA=,则sinB=.
16.(5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M 在第二象限的概率是.
17.(5分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.
18.(5分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为.
19.(5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为.
20.(5分)观察下列各式:
=1+,
=1+,
=1+,
……
请利用你所发现的规律,
计算+++…+,其结果为.
三、解答题(本大题共6小题,满分74分)
21.(10分)先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣
1,y=2sin45°﹣.
22.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD•AO.
23.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?
(2)在飞行过程中,小球从飞出到落地所用时间是多少?
(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
24.(13分)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x 轴的正半轴上,顶点C的坐标为(1,).
(1)求图象过点B的反比例函数的解析式;
(2)求图象过点A,B的一次函数的解析式;
(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.
25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.
(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;
(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图
②说明理由.
26.(14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x 轴相切于点B.
(1)当x=2时,求⊙P的半径;
(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;
(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.
(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.。

相关文档
最新文档