古典回归模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E Y Xi 0 1Xi
样本回归模型
样本回归函数(直线)
Yi ˆ0 ˆ1Xi ei
残差
Yˆi ˆ0 ˆ1Xi
根据课本例题p17~20进行说明
回归分析的目的
用样本回归函数去估计总体回归函数 由于样本对总体总是存在代表性误差,SRF总
会过高或过低估计PRF。 要解决的问题 寻求一种规则和方法,使得到的SRF的参数尽 可能接近总体回归函数的参数。这样的规则和 方法有很多,最常用的就是最小二乘法。
• Y的条件期望
对于X的每一个取值, 对Y所形成的分布确定其期 望或均值,称为Y的条件期 望或条件均值E(YXi)
图2.2
xi
⒌回归线与回归函数
回归线:对于每一个X的取值,都有Y的条件 期的望点E的(Y轨X迹i)所与形之成对的应直,线代或表曲这线些,Y的称条为件回期归望线。
回归函数:被解释变量Y的条件期望随解释变 量X的变化而有规律的变化,如果把Y的条件 期望E(YXi)表示为X的某种函数 E(YXi)=f(Xi) 这个函数称为回归函数。
引例
从2004年中国国际旅游交易会上获悉,到2020 年,中国旅游业总收入将达到3000亿美元,相 当于GDP的8%至11%。 ?
是什么决定性因素能使中国旅游业总收入到 2020年达到3000亿美元? 旅游业的发展与这种决定性因素的数量关系究竟 如何?
怎样具体测定旅游业发展与这种决定性因素的数 量关系?
可分为:总体回归函数;样本回归函数
㈡总体回归函数(PRF)
⒈总体回归函数的概念 前提:假如已知所研究的经济现象的总体被解 释变量Y和解释变量X的每个观测值,可以计 算出总体被解释变量Y的条件期望E(YXi),并 将其表现为解释变量X的某种函数 E(YXi)=f(Xi) 这个函数称为总体回归函数(PRF)
⒊相关程度的度量
X和Y的总体线性相关系数:
CovX ,Y VarX VarY
X和Y的样本线性相关系数:
XY
2 XY
XY
Xi X Yi Y N
Xi X 2 N Yi Y 2 N
相关系数的特点
⑴相关系数取值在[-1,1] ⑵当r=0时,表明X与Y没有线性相关关系 ⑶当0<|r|<1时,表明X与Y存在一定的线性相关
区别:
从研究目的上,相关分析用一定的数量指标(相关系 数)度量变量间相关联系的方向和程度;回归分析却是要 寻求变量间联系的具体数学形式,是要根据解释变量的固 定值去估计和预测被解释变量的平均值。
从对变量的处理上,相关分析对称的对待相互联系的 变量,相关的变量不一定具有因果关系,均视为随机变量; 回归分析是建立在变量因果关系的基础上的,研究解释变 量的变动对被解释变量的具体影响。回归分析必须划定解 释变量和被解释变量,对变量的处理是不对称的。
由固定的解释变量去估计应变量的平均值。
相关分析与回归分析的联系及区别
联系:二者都是对变量间依存关系的研究,二 者可以互相补充。相关分析可以表明变量间相 关关系的性质和程度,只有当变量间存在一定 程度的相关关系时,进行回归分析去寻求相关 的具体数学形式才有意义。同时,在进行相关 分析时如果要具体确定变量间相关的具体数学 形式,又要依赖回归分析,而且相关分析中相 关系数的确定也是建立在回归分析的基础上。
⑵个别值表现形式(随机设定形式) 对于一定的Xi,Y的每一个值Yi分布在E(YXi)的周围, 若 是令随每机一变个量值Yi与条件均值E(YXi)的偏差i,显然i
则有 i= Yi-E(YXi)= Yi- 1-2Xi Yi= 1+2Xi + i
对线性回归模型线性的两种解释
对变量而言是线性的——Y的条件均值是X的 线性函数
二者都只是从数据出发定量分析经济变量间相互联系的手 段,并不能决定经济现象之间的本质联系。本质需要结合 实际经验分析,并要从经济学原理上加以说明。对本来没 有内在联系的经济现象,仅凭数据进行相关分析和回归分 析,可能是一种“伪相关”和“伪回归”。
注意的几个概念
•Y的条件分布
当解释变量X取某固定 Y 值时(条件),Y的值不确 定,Y的不同取值形成一定 的分布,这就是Y 的条件 分布。
应对考虑的问题
确定作为研究对象的经济变量(如我国旅游业总收 入)
分析影响研究对象变动的主要因素(如我国居民收 入的增长)
分析各种影响因素与所研究经济现象的相互关系 (决定相互联系的数学关系式)
确定所研究的经济问题与影响因素间具体的数量关 系(需要特定的方法)
分析并检验所得数量结论的可靠性(多种检验) 运用数量研究结果作经济分析和预测(实际应用)
精品课件!
精品课件!
复习
理解掌握总体回归模型和样本回归模型的区别; 比较总体回归模型、样本回归模型和总体回归函 数、样本回归函数。
了解随机误差项产生的原因;比较随机误差项和 残差项。
着重理解古典假设。
对参数而言是线性的——Y的条件均值是的线 性函数 例子
计量经济学中的线性回归模型主要指参数“线 性”
㈢随机误差项
概念
各个Yi值与条件均值
E(YXi)的偏差i代表排
除在模型以外的所有因
素对Y的影响
Y
性质
i是期望为0,有一定
分布的随机变量
随机误差项的性质决
定着计量经济方法的选
X
择。
关系。若r>0表明为正相关,r<0表明为负相关。 ⑷当|r|=1时,表明X与Y完全线性相关。
使用相关系数应注意的问题
X和Y 都是相互对称的随机变量。 简单相关系数只反映变量间的线性相关程度,
不能说明非线性相关关系。 样本相关系数是总体相关系数的样本估计值,
由于抽样波动,样本相关系数是个随机变量, 其统计显著性有待检验。 相关系数只能反映线性相关程度,不能确定因 果关系,不能说明相关关系具体接近哪条直线
一、回归分析
㈠相关与回归(统计学知识介绍)
在统计学中考察经济变量间的依存关系,通常分
确定性的函数 Y=f(X)
函数关系
例子,商品销售量X和销售额Y Y=PX
不确定性的随机关系
相关关系
Y=f(X)+ (为随机变量)
例子,居民消费函数 Y=a+bX+
没有关系
⒈相关关系的表现 对相关关系的描述通常最直观的是座标图
均值,二者之差用ei 表示,ei 称为剩余项或残差项:
或者
ei Yi Yˆi
Yi ˆ1 ˆ2 Xi ei
对样本回归的理解
Yi ˆ1 ˆ2 Xi ei
如果能够获得 ˆ1和ˆ2 的数值,显然:
ˆ1 和 ˆ2 是对总体回归函数参数 1和 2 的估计
Yˆi 是对总体条件期望E(YXi)的估计
注意
实际的经济研究中总体回归函数通常是未知的, 只能根据经济理论和实践经验去设定。“计量” 的目的就是寻找PRF。
总体回归函数中Y和X的关系可以是线性的, 也可以是非线性的。
⒉总体回归函数的表现形式
⑴条件均值表现形式 假如Y的条件均值E(YXi)是解释变量X的线性函数, 可表示为 E(YXi)=f(Xi)=1+2Xi 1 和 2 分别是总体回归函数的总体回归参数参数
百度文库
⒋回归分析
回归的古典意义: 高尔顿在1889年发表的著作《自然的遗传》中,首次
提出了回归的概念 (父母身高与孩子身高的关系)
回归的现代意义: 一个应变量对若干解释变量依存关系的研究
回归分析的基本思想: 在相关分析的基础上,对具有相关关系的两个或多个变
量之间的数量变化的一般关系进行测定,确定一个相应的数 学表达式,以便从一个已知量来推断另一个未知量. 回归的目的(实质):
ei 在概念上类似总体回归函数中的 i ,可以视 为对 i 的估计
样本回归函数与总体回归函数的关系
Y
Yi
Yˆi
E(YXi)
SRF
i
ei
PRF
图2.5
Xi
X
总体回归模型
Yi E Y Xi i 0 1Xi i
总体回归函数(直线)
系统变 化部分
非系统 变化部分
研究变量相互之间的依存关系时,首先需要分 析它们是否存在相关关系,随后要明确相关关 系的类型,而且还应计量其相关关系的密切程 度,在统计上这种分析研究称为相关分析。相 关分析主要是指用一个指标(相关系数)去表 明现象间相互依存关系的性质和密切程度。
计量经济学关心的是:变量间的因果关系及隐 藏在随机性后面的统计规律性,这靠相关分析 无法完成.相关分析并不能说明变量间相关关 系的具体形式,还不能从一个变量的变化去推 测另一个变量的具体变化。这时就需要运用回 归分析。
图2.3
产生随机误差的原因
(1)模型中被忽略的因素的影响; (2)变量观测值的观测误差的影响; (3)模型函数形式的设定误差的影响; (4)其它随机因素的影响。 见p20-21 设置随机误差的意义: p21
㈣样本回归函数(SRF)
样本回归线:
对于X的一定值,取得Y Y 的样本观测值,可计算其条 件均值,样本观测值条件均 值的轨迹,称为样本回归线。
y
...
...
.. .
. ..
..
.
x
图2.1
⒉相关关系的类型
•从涉及的变量数量看 简单相关——只有两个变量的相关关系 多重相关(复相关)——三个或三个以上变量的 相关关系。例:某人身高与体重与年龄的关系 •从变量相关关系的表现形式(可根据散点图) 线性相关 非线性相关 •从变量相关关系变化的方向 正相关:收入 对消费量影响 负相关:价格 不相关
样本回归函数:
如果把被解释变量Y的 样本条件均值表示为解释变 量X的某种函数,这个函数 称为样本回归函数(SRF)
图2.4
xi
样本回归函数的特点
每次抽样都能获得一个样本,就可以拟合一条 样本回归线,所以样本回归线随抽样波动而变 化,可以有很多条(SRF不唯一)
样本回归函数的函数形式应与设定的总体回归 函数的函数形式一致
第一节 古典回归模型
对经济变量相互关系的计量,最基本的方法 是回归分析。回归分析是计量经济学的主要工具, 也是计量经济学理论和方法的主要内容。只有一 个解释变量的线性回归模型是最简单的,称为简 单线性回归模型或一元线性回归模型。本章从一 元线性回归模型入手,讨论在基本假定满足的条 件下,对经济变量关系计量的基本理论和方法, 这也是我们学习的基础。
样本回归线还不是总体回归线,至多只是未知 总体回归线的近似表现。
样本回归函数的表现形式
样本回归函数如果为线性函数,则表示为
Yˆi ˆ1 ˆ2 Xi
其中,Yˆi是与 X i相对应的Y的样本条件均值
ˆ1和 ˆ2分别是样本回归函数的参数
被解释变量Y的实际观测值 Yi 不完全等于样本条件
二、古典回归模型的基本假定
为什么要作基本假定? 模型中随机误差项,估计的参数是随机变量, 只有对随机误差的分布作出假定,才能确定所 估计的参数分布性质,也才可能进行假设检验 和区间估计。 只有具备一定的假设条件,所作出的估计才具 有较好的统计性质。
六大假定
⑴解释变量非随机,被解释变量随机 ⑵零均值假定(正态性假定) ⑶同方差假定 ⑷非自相关性假定 ⑸解释变量与随机误差项不相关假定 ⑹无多重共线性假定 补充:延伸到y