勾股定理的简单应用()
2华东师大版: 勾股定理的简单应用(一)
x 64 152 289 17 x 225 81 306 9 34 3 34
例5、如图, △ABC为直角三角形,斜边为c,直角 边为a和b,正方形F的面积为9,正方形G的面积为 16,长方形ABDE的边AE=3,求长方形ABDE的面 积。 E
解
a 16, b 9
C a
B
2、假期中,王强和同学到某海岛 上去玩探宝游戏,按照探宝图,他们登陆后先 往东走10千米,又往北走5千米,遇到障碍后 又往西走6千米,再折向北走到7千米处往东一 拐,仅走1千米就找到宝藏,问登陆点A 到宝 B 1 藏埋藏点B的距离是多少千米?
7 6 5 A 10 C
3.如图,小方格都是边长为1的正方形, 求四边形ABCD的面积与周长.
2 2
A F b C c a G B D
根据勾股定理可得 c a 2 b 2 16 9 5
即AB=5
S长方形ABCD AB AE 5 3 15
1、你能求出图中三 角形DEF的面积和周长吗?
解:在Rt△DEF中, ∠DEF=900,DE=3,EF=3, ∴S△DEF=DE· DF÷2 =3×3÷2=4.5 由勾股定理得, ∴三角形DEF的面积为4.5, 周长为6+ 3 2
D
E
F
DF DE2 EF 2 32 32 18 3 2
八年级数学(下册)•
华师大版
勾股定理的简单应用(一)
你能说说勾股定理的内容吗?
直角三角形两直角边的平方和等于斜边的平方 若直角三角形的两条直角边分别为a,b, 斜边为c,则 a2+b2=c2 . A 公式变形: c2=a2+b2
c ቤተ መጻሕፍቲ ባይዱ a b
勾股定理的应用
勾股定理的应用勾股定理作为数学中著名的定理之一,广泛应用于各个领域。
它是数学中的基础定理之一,也是几何学中三角形研究的重要工具。
本文将从几个应用角度介绍勾股定理在实际生活中的运用。
一、建筑工程中的应用勾股定理在建筑工程中有着广泛的应用。
举个例子,我们在修建某一斜坡时,需要确定其坡度,勾股定理可以帮助我们准确计算出坡度。
此外,在设计斜面道路、楼梯等结构时,勾股定理也能帮助我们确保结构的稳定与安全。
二、航海导航中的应用在航海导航中,勾股定理被广泛用于测量船只的航向和航速。
通过测量船只相对于岸上两个点的距离,结合勾股定理可以计算出船只的位移和速度,为航海者提供准确的导航信息。
三、地理测量中的应用在地理测量中,勾股定理被用于测量两个相隔较远的地点之间的距离。
通过在地面上进行三角测量,即测量两个点与另一个点的夹角以及距离,再利用勾股定理求解,可以得到精确的距离数据,为地理测量和地图绘制提供重要支持。
四、天文学中的应用在天文学中,勾股定理被用于测量遥远星体之间的距离和角度。
天文学家通过观测星体的位置和角度,结合勾股定理的计算方法,可以确定天体的距离和大小,进而推断宇宙的形态和结构。
五、计算机图形学中的应用计算机图形学中,勾股定理被广泛应用于图形处理和渲染。
图形引擎通过勾股定理来计算线段的长度、图形的形状和倾斜度等信息,为计算机生成的图像提供基础数学支持。
综上所述,勾股定理作为数学中一项重要的基础定理,在实际生活中有着广泛的应用。
它在建筑工程、航海导航、地理测量、天文学和计算机图形学等领域中都起着重要的作用。
通过勾股定理的运用,我们可以提高工作效率,确保工程安全,促进科学发展。
因此,深入理解和应用勾股定理对我们的日常生活和社会发展都具有重要意义。
第1章勾股定理第2课时 勾股定理的简单应用PPT课件(北师大版)
13.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5 和11,则b的面积为( C)
A.4 B.6 C.16 D.55
14.如图,隔湖有两点A,B,从与BA方向成直角的BC方向 上的点C,测得CA=50米,CB=40米,求:
(1)A,B两点间的距离; (2)点B到直线AC的距离.
解:作BD⊥AC于点D.(1)由勾股定理得AB=30米 (2)由面积 法: 12 AB×BC= 12 AC×BD,得BD=24(米).答:A,B两点间的距离 是30米,B点到直线AC的距离是24米
A.0.7米 B.0.8米 C.0.9米 D.1.0米
9.如图所示是一段楼梯,高BC=3 cm,斜边AB是5 m,如果 在楼梯上铺地毯,那么至少需要地毯( C )
A.5米 B.6米 C.7米 D.8米
10.如图,一个透明的圆柱形状的玻璃杯,由内部测得其底面 半径为3 cm,高为8 cm,今有一支12 cm的吸管任意斜放于杯中, 若不考虑吸管的粗细,吸管露出杯口长度最少为____cm2.
17.为了丰富少年儿童的业余文化生活,某社区要在如图的 AB所在的直线上建一图书阅览室.该社区有两所学校,所在 的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B.已知AB =25 km,CA=15 km,DB=10 km.试问:阅览室E建在距点A 多少千米处,才能使它到C,D两所学校的距离相等.
11.如图,小李准备建一个蔬菜大棚,棚宽4 m,高3 m,长20 m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请你帮他计算 阳光透过的最大面积.
解:在直角三角形中,由勾股定理可得,直角三角形的斜边长 为5 m,所以长方形塑料薄膜的面积是5×20=100(m2)即阳光 透过的最大面积是100 m2
勾股定理的实际运用
勾股定理的实际运用一、勾股定理内容回顾勾股定理是指在直角三角形中,两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别为和,斜边长度为,那么。
二、勾股定理实际运用的常见类型1. 工程测量中的应用测量建筑物高度例如,想要知道一座垂直于地面的大楼的高度。
我们可以在大楼旁边的平地上选一点,从点向大楼底部点拉一条绳子,测量出的距离。
然后在点用测角仪测量出大楼顶部点与点连线和地面的夹角。
此时在直角三角形中,,如果我们知道和,可以求出。
然后再根据勾股定理求出大楼的高度。
测量两点间的距离(不可直接测量的情况)假设在一个池塘的两边有、两点,我们要测量、两点间的距离。
我们可以在池塘边找一点,使得。
测量出的长度和的长度,然后根据勾股定理,就可以得到、两点间的距离。
2. 航海问题中的应用一艘船从港口出发,向正东方向航行海里后到达点,然后改变航向,向正南方向航行海里到达点。
此时船从港口到点的距离就是直角三角形的斜边长度。
根据勾股定理,海里。
航海中利用勾股定理可以计算船只的航行轨迹和距离等信息。
3. 生活中的简单应用梯子问题有一个长度为的梯子靠在墙上,梯子底部与墙的距离为,梯子顶端与地面的垂直高度为。
如果梯子底部向外滑动了距离,那么顶端下滑的距离可以通过勾股定理来计算。
初始时,滑动后,通过这两个等式联立求解可以得到的值。
电视屏幕尺寸问题电视屏幕的尺寸是按照对角线长度来衡量的。
如果屏幕的长为单位,宽为单位,那么对角线长度就满足。
我们可以根据这个关系来判断不同尺寸屏幕的实际大小关系等。
三、勾股定理实际运用的解题步骤总结1. 分析问题,确定是否为直角三角形问题。
如果是,找出直角三角形的三条边(已知边和未知边)。
2. 根据勾股定理(为斜边)列方程。
3. 解方程求出未知边的值。
4. 检验答案的合理性,看是否符合实际问题的情境。
四、练习题1. 在一个直角三角形中,一条直角边的长度为米,斜边长度为米,求另一条直角边的长度。
勾股定理的简单应用课件
6cm 10cm
6cm
E xcm 4cm B xcm D (8-x)cm C 8cm
讨论与交流
勾股定理与它的逆定理在应用上有什么区分?
勾股定理的前提必须是直角三角形; 勾股定理主要应用于求线段的长度、图形的周长、面积; 勾股定理的逆定理用于判断三角形的形状.
课堂小结
勾
几何问
求三角形的边
股
题中的
A
F
18cm
C
E
30cm
C
B
两点的距离最短问题 —转化成平面展开图中两点之间的连线段最
短.
拓展延伸
变式1 如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿 纸箱表面爬到B点,那么它所行的最短路线的长是多少?
B
B
B
8 8
3 A3
A
CA
图①
图②
解:如图①, AB2=AC2+BC2=32+(3+8)2=130. B 如图②, AB2=AC2+BC2=62+82=100. ∵130>100, ∴AB=10. 答:它所行的最短路线的长是10.
•第3章 · 勾股定理
•3.3 勾股定理的简单应 用
学习目标
1. 能应用勾股定理及其逆定理解决简单的实际问 题; 2. 感受“转化”“建模”的数学思想,提高分析问 题、解决问题的能力.
知识回顾
图形
勾股定理
A
b
∟
C
a
B
文字 直角三角形两直角边分别为a、b 语言 的平方和等于斜边c的平方.
勾股定理的逆定理
D
C
A
B
(1)求这个梯子顶端距地面的高度;
江苏省丹阳市第三中学八年级数学苏科版上册3.3.勾股定理的简单应用(2)教案
主备:蔡辉审核:管华敏编号:80305班级姓名备课组长签名【学习目标】1.能运用勾股定理及直角三角形的判定条件解决实际问题。
2.在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。
【课前预习】△若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状。
【学习过程】例1.如图,在△ABC中,AB=26,BC=20,BC边上的中线AD=24,求AC.例2.在△ABC中, AB=15,AD=12,BD=9,AC=13,求△ABC的周长和面积。
△例3.如图,一个高20m,周长10m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)【当堂训练】1. 已知:如图①,在Rt △ABC 中,两直角边AC 、BC 的长分别为6和8,现将直角边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于 ( )A.2B.3C.4D.52.将上题中的Rt △ABC 折叠,使点B 与A 重合,折痕为DE (如图②),则CD 的长为 ( )A.1.50B.1.75C.1.95D.以上都不对3.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200m ,他在水中实际游了520m ,那么该河的宽度为 ( )A.440 mB.460 mC.480 mD. 500 m4.已知一个直角三角形的两直角边长分别为5和12,则其周长为______________.5.旗杆上的绳子垂到地面还多出1m ,如果把绳子的下端拉开距旗杆底部5m 后,绷紧的绳子的末端刚好接触地面,则旗杆的高度为___________m.6.一架5m 长的梯子靠在一面墙上,梯子的底部离建筑物3m ,若梯子底部滑开1m ,则梯子顶部下滑的距离是___________.7.如图,已知:在Rt △ABC 中,∠ACB=90º,AC=12,BC=5,AM=AC ,BN=BC 。
勾股定理与生活
勾股定理与生活
勾股定理是数学中一个基本的定理,主要描述了在直角三角形中,两条直角边的平方和等于斜边的平方。
这个定理在生活中有非常广泛的应用:
1. 建筑和工程:在建筑和工程领域,勾股定理被用来确保结构的准确性和稳定性。
例如,工人会用它来检查墙壁、地板是否垂直或水平,或者在测量电线杆、塔等的高度时。
2. 装修设计:在室内设计中,比如确定家具的位置,计算最佳视角等,都会用到勾股定理。
3. 体育运动:在篮球、足球、田径等运动中,运动员利用勾股定理来判断投篮角度、传球距离等。
4. 导航和地理:在地图制作和导航系统中,勾股定理用于计算两点之间的最短距离。
5. 电子设备:手机、电脑等电子设备的屏幕尺寸,往往通过勾股定理来计算对角线长度。
6. 日常生活:比如测量窗户、门的尺寸,计算梯子的安全角度等,都会用到勾股定理。
7. 交通:驾驶员在倒车入库时,可以通过勾股定理判断车尾与障碍物的距离。
这些都是勾股定理在我们日常生活中的实际应用,体现了数学的实用性和普遍性。
八年级数学下册【勾股定理】4种简单应用
八年级数学下册【勾股定理】4种简单应用一、勾股定理在网格中的应用例1、已知正方形的边长为1,(1)如图a,可以计算出正方形的对角线长为根号2.①分别求出图(b),(c),(d)中对角线的长_.②九个小正方形排成一排,对角线的长度(用含n的式子表示)为_.分析:借助于网格,构造直角三角形,直接利用勾股定理.二、勾般定理在最短距离中的应用例2、如图,已知C是SB的中点,圆锥的母线长为10cm,侧面展开图是一个半圆,A处有一只蜗牛想吃到C处的食物,它只能沿圆锥曲面爬行.请你求出蜗牛爬行的最短路程.分析在求解几何图形两点间最短距离的问题时,将几何体表面展开,求展开图中两点之间的距离,展开过程中必须要弄清楚所要求的是哪两点之间的距离,以及它们在展开图中的相应位置.点评在求立体几何图形的问题时,一般是通过平面展开图,将其转化成平面图形问题,然后求解.三、勾股定理在生活中的应用例3、如图,学校有一块长方形花园,有较少数同学为了避开拐角走“捷径”,在校园内走出了一条“路”.请同学们算一算,其实这些同学仅仅少走多少步路,却踩伤了花草.(假设1步为0.5m)点评:走“捷径”问题为出发点是常遇到情况,在考查勾股定理的同时,融入了环保教育:少走几步路,就可以留下一片期待的绿色.四、勾股定理在实际生活中的应用例4 小华想知道自家门前小河的宽度,于是按以下办法测出了如下数据:小华在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°,小华沿河岸向前走30m 选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小华计算小河的宽度.点评:此题考查直角三角形的应用,解答本题的关键在于画出示意图,将问题转化为解直角三角形的问题.。
勾股定理生活中的应用
勾股定理生活中的应用
勾股定理是数学中的一个重要定理,可以应用于许多实际问题中。
在生活中,勾股定理有以下应用:
1. 测量直角三角形的直角边和斜边的长度。
例如在建筑工程中,
使用勾股定理可以测量房间的对角线长度、屋顶的倾斜角度等。
2. 计算物体的投影距离。
例如,在射击运动中,使用勾股定理可
以计算弹道的投影距离,帮助射手瞄准目标。
3. 计算电路中电压、电流和电阻之间的关系。
例如,在电子工程中,使用勾股定理可以计算电路中不同元件之间的参数,帮助工程师
设计电路。
4. 计算航空航天器的飞行轨迹和速度。
例如,在航空航天领域中,使用勾股定理可以计算卫星的轨道位置和速度,帮助天文学家和工程
师进行航天探测任务。
总之,勾股定理是一种非常实用的数学工具,可以广泛应用于生
活中的各个领域,帮助人们解决实际问题。
勾股定理在实际生活中的应用
勾股定理在实际生活中的应用
勾股定理是古希腊数学家勾股所提出的,它表明了一个有三个正整
数组成的三角形的三条边(a,b,c)之间的关系,即a^2+b^2=c_2,主要
用于计算三角形中各边的长度,这个定理应用广泛。
1. 三棱锥和其他几何体
勾股定理在解决三角形问题的同时也有助于计算立体几何图面的表面
积和体积,特别是可以用来计算三棱锥的表面积和体积,对于任何一
个具有两个边长的三棱锥,可以使用勾股定理来求解它的底面和顶面
之间的距离,从而算出它的表面积和体积。
2. 建筑计算
勾股定理在建筑计算中也有用到,它可以帮助计算建筑物外墙和屋顶
坡度的高度,或者确定其他三角形形状建筑物的高度。
同时,屋面的
坡度也可以使用勾股定理来计算,因为屋面的坡度也是一个三角形,
勾股定理可以用来确定屋面的高度和角度。
3. 水利
建纳水利也是勾股定理的常用应用,它可以用来计算水渠或水坝底开
口的高度。
由于受水库底部和上部水平面之间的水头高度受到引水渠
容积受限,进一步受到引水渠斜度限制,那么可以使用勾股定理来求
解引水渠底开口高度。
因此,可以用勾股定理确定引水渠中水的流量,从而计算出正确的储水渠的容积。
4. 导航测量
导航测量中也使用到勾股定理,比如用它来计算从某一特定点到特定方位的垂直距离。
对角线距离也可以通过使用勾股定理来进行计算,这是由于当测量站和要测量的点之间存在着三角形关系,用勾股定理就可以求出两点之间的距离。
勾股定理的应用八年级数学
勾股定理的应用八年级数学勾股定理是数学中比较基本的一条定理,它可以解决很多有关直角三角形的问题。
在实际应用中,勾股定理有着广泛的应用,下面将介绍勾股定理的应用。
1. 测量地图上的距离当我们看地图时,往往需要测量两个点之间的距离。
在有些情况下,这个距离可能是斜线距离,而非水平或垂直距离,这时候我们就可以用勾股定理来求斜线距离。
我们可以把地图上的两个点看成直角三角形的直角点,然后利用勾股定理求得斜线距离。
2. 建筑设计在建筑设计中,我们往往需要计算建筑物的高度或者长度等。
在有些情况下,我们需要测量无法直接测得的高度或者长度,这时候也可以使用勾股定理来计算。
例如,我们可以通过测量某一楼层地面到天花板的距离以及该楼层到地面的距离,就可以利用勾股定理计算出该建筑物的高度。
3. 计算斜坡的高度和长度4. 求解导弹打靶问题导弹打靶问题是勾股定理应用于瞄准问题的典型案例。
假设导弹从一个点出发,需要打中地面上的目标点,我们可以将导弹的路程看成直角三角形的斜边,然后利用勾股定理计算出导弹需要调整的角度和方向。
5. 计算船舶航行距离在海上航行时,需要计算船舶的航行距离。
假设船舶向东行驶一定距离,然后向南行驶一定距离,这时候我们可以将船舶行驶的距离看成直角三角形的两条直角边,然后利用勾股定理计算出船舶的航行距离和方向。
6. 计算斜面上的物体滑动速度在物理学中,斜面上的物体滑动速度计算是一个重要问题。
假设滑动的物体滑到底部所需要的时间是已知的,我们可以将斜面看成直角三角形,然后利用勾股定理计算出物体下滑的速度和加速度。
综上所述,勾股定理在数学和实际应用中都有着广泛的应用。
随着科技的不断发展,勾股定理也会被应用到更多的领域中,为我们的生活带来更多便利。
勾股定理的简单应用
10 A1
1
C
6
ห้องสมุดไป่ตู้
B
展示交流
1.如图,太阳能热水器的支架AB长为90cm, 与AB垂直的BC长120cm.太阳能真空管AC有多长? 2.要登上9m高的建筑物,为了 安全需要,需使梯子固定在一个 高1m的固定架上,并且底端离 建筑物6m,梯子至多需要多长? 3、如图是一个育苗棚,棚宽 a=6m, 棚高b=2.5m,棚长 d=10m,则覆盖在棚斜面 上的塑料薄膜的面积为__m2.
勾股定理的简单应用
例1:在平静的湖面上,有一朵美丽的红莲,它高出 水面1m,一阵大风吹过,红莲被吹至一边,花朵齐 及水面.已知红莲移动的水平距离为2m,问水深多少?
A
B
C
如图,将长为10米的梯子AC 斜靠在墙上,BC长为6米。 (1)求梯子上端A到墙的 底端B的距离AB。 A
(2)若梯子下部C向后 移动1米到C1点,那么梯 子上部A向下移动了多少 米?
A D E B F C
如图,以△ABC的三边为直径向外 作半圆,且 S1+S3=S2 ,试判断△ ABC 的 形状?
S1 S3 S2
课
本节课我们学了哪些知识?
堂
小
结
(A)20cm (B)10cm (C)14cm (D)无法确定
如图是一个正方体盒子,在正方体 下底部的A点有一只蚂蚁,它想吃到上 底面B点的食物(BC=3cm),需爬行的最 短路程是多少?
3.一张长方形纸片宽AB=8cm,长BC=10cm.现将纸片折 叠,使顶点D落在BC边上的点F处(折痕为AE),求EC的 长.
b d a
4. 一种盛饮料的圆柱形杯(如图),测得内 部底面半径为2.5㎝,高为12㎝,吸管放进杯 里,杯口外面至少要露出4.6㎝,问吸管要做 多长?
勾股定理应用实例
勾股定理应用实例
1. 建筑工程中:勾股定理可以用于测量和计算建筑物中的角度和边长。
例如,可以使用勾股定理来计算屋顶的倾斜角度或墙壁之间的角度。
2. 地理测量学中:勾股定理可以用于计算地面上两个点之间的直线距离。
例如,可以使用勾股定理来计算一个城市中两个建筑物之间的距离。
3. 飞行导航中:勾股定理可以用于计算飞机的航向和距离。
例如,可以使用勾股定理来计算两个导航点之间的航向和距离,以帮助导航员正确引导飞机。
4. 游戏开发中:勾股定理可以用于计算游戏中角色之间的距离或检测游戏中的碰撞。
例如,可以使用勾股定理来判断玩家角色是否与敌人角色发生碰撞。
5. 三角形解析几何中:勾股定理被广泛应用于解决三角形的各种问题,例如计算三角形的面积、边长或未知角度。
通过应用勾股定理,可以解决和证明许多三角形的性质和关系。
勾股定理的应用(3种题型)
第03讲勾股定理的应用(3种题型)【知识梳理】一.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.二.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】题型一.勾股定理的实际应用例1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是() A.8m B.5m C.9m D.7m【变式】如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是()A.8m B.10m C.12m D.15m例2.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.题型二.平面展开-最短路径问题例3.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm例4.一个上底和下底都是等边三角形的盒子,等边三角形的高为70cm,盒子的高为240cm,M为AB的中点,在M处有一只飞蛾要飞到E处,它的最短行程多少?【变式】如图①,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)题型三:勾股定理中的折叠问题例5.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1B.43C.32D.2【变式】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知3CE cm=,8AB cm=,求图中阴影部分的面积.【过关检测】一.选择题1.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺2.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.cm D.100cm3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.0.8米B.2米C.2.2米D.2.7米4.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.如图,圆柱的高为8cm,底面半径为2cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径,问:蚂蚁吃到食物爬行的最短距离是cm.(π取3)6.《九章算术》中的“引葭赴岸”问题:今有池方一丈,葭(一种芦苇类植物)生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边(如图所示),则水深________尺.7.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为.8.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB =10,BC=4,求AC的长.9.如图,一架25米长的梯子AB斜靠在一竖直的墙AO上,梯子底端B离墙AO有7米.(1)求梯子靠墙的顶端A距地面有多少米?(2)小燕说“如果梯子的顶端A沿墙下滑了4米,那么梯子的底端B在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?11.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:尺)原处还有多高的竹子?(1丈1012.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB是多少?13.(2022春•蜀山区期中)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.14.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC =7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B 1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.。
勾股定理在解决实际问题中的应用
勾股定理在解决实际问题中的应用勾股定理是解决数学问题中最基础的定理之一。
不过,它的应用远不止数学领域。
在现实世界中,勾股定理可以被广泛应用于建筑、制造、科学及其他领域。
本文将介绍一些勾股定理在实际问题中的应用。
一、建筑领域1.房屋布局在建造住宅或其他建筑物时,勾股定理可以帮助工程师确定布局和边角的角度。
例如,在设计一个房间时,可以使用勾股定理确保其拐角处形成一个精确的90度角,使得角落更符合设计标准。
2.斜坡建造斜坡的建造也需要使用勾股定理。
在建设跑道或楼梯时,勾股定理可以帮助工程师确定斜坡的正确角度,以确保它们安全合适。
二、科学领域1.热力学热力学是一门研究热量、压力和温度的学科,在这个学科中,勾股定理被用来计算三角形的斜边长度,并在计算气体和流体的压力和体积方面得到了应用。
2.物理学在物理学中,勾股定理被广泛应用于计算运动物体的速度、加速度和其他参数。
它常常被用于确定投掷物体的轨迹和速度,以及计算两个运动物体之间的距离。
三、万能应用1.测量距离在现实应用中,我们经常需要测量一些难以到达的地方的距离。
勾股定理可以帮助我们测量这些距离。
例如,当我们测量建筑物高度时,可以使用勾股定理计算出梯子爬升的高度,以确定建筑物的高度。
2.导航勾股定理还可以帮助我们在导航时定位。
例如,在导航仪上输入两个坐标,勾股定理可以计算出两个坐标之间的距离,帮助我们确定正确的方向并找到目的地。
以结束语的形式,无论是建筑、制造还是科学领域,勾股定理都有着广泛的应用。
它是解决实际问题的基础,也是进一步发展的基石。
通过这些应用,我们可以更好地理解这个基本的数学原理的真正意义。
初二数学勾股定理的简单应用
初二数学勾股定理的简单应用数学是一门非常重要的学科,在我们的日常生活中,数学无处不在。
而勾股定理则是数学中的一个重要理论。
在初二数学课程中,我们需要学习如何应用勾股定理来解决一些简单的问题。
下面,我将介绍勾股定理的基本原理以及其在初二数学中的简单应用。
一、勾股定理的基本原理勾股定理,又称毕达哥拉斯定理,是指直角三角形的两条直角边的平方和等于斜边的平方。
用数学符号表示为:a^2+b^2=c^2。
其中a、b分别表示直角三角形的两条直角边,c表示斜边。
这是一个非常重要的数学公式,它是很多数学问题的基础。
二、勾股定理在初二数学中的简单应用1. 求斜边当我们已知一个直角三角形的两条直角边的长度时,我们可以用勾股定理求出斜边的长度。
具体方法是,将已知的两条直角边的平方和相加,再开平方根即可。
2. 判断一个三角形是否为直角三角形如果一个三角形的三条边的长度满足勾股定理,那么它就是一个直角三角形。
如果三角形不是直角三角形,那么它的三条边的长度就不满足勾股定理。
3. 求两点间的距离我们可以将两点看作平面直角坐标系中的两个坐标点,然后用勾股定理求出这两个点之间的距离。
具体方法是,将两个点的坐标差的平方和相加,再开平方根即可。
4. 确定角度当我们已知直角三角形的两条直角边的长度时,我们可以用勾股定理求出斜边与某一直角边的夹角的正弦、余弦和正切值。
具体方法是,对于正弦、余弦和正切,分别用一个已知边的长度除以斜边的长度即可。
总结:初学勾股定理时,应该首先掌握它的基本原理,例如勾股定理公式的含义和用法。
随后,需要了解勾股定理在初二数学中的简单应用,比如求斜边、判断一个三角形是否为直角三角形、求两点间的距离和确定角度等。
只有掌握了勾股定理的基本原理,并能熟练应用其简单的应用,才能在以后的学习和应用中更加轻松自如。
勾股定理的纯数学应用
勾股定理的纯数学应用
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
在实际生活中,勾股定理有许多应用,以下是一些常见的例子:
1.计算面积:通过使用勾股定理,可以计算出不规则图形的面积。
例如,在
计算梯形、三角形和圆形的面积时,可以使用勾股定理来确定某些边长或
半径的长度。
2.确定高度:在建筑和工程领域,勾股定理可以用于确定建筑物或构筑物的
高度。
例如,如果已知一个建筑物的底部长度和宽度,以及其高度与底部
长度的比值,可以使用勾股定理来计算其高度。
3.设计图形:在设计和艺术领域,勾股定理可以用于设计各种形状和图案。
例如,可以使用勾股定理来设计具有特定比例和对称性的图形,如等边三
角形、正方形和圆形。
4.测量距离:在测量和测绘领域,勾股定理可以用于测量距离。
例如,可以
使用勾股定理来测量两点之间的距离,或者计算某一点到某一直线的距离。
5.确定时间:在天文学领域,勾股定理可以用于确定天体的位置和时间。
例
如,可以使用勾股定理来计算太阳系中的行星和卫星的位置,以及计算地
球的自转和公转周期。
总的来说,勾股定理是数学中的一个重要工具,它在实际生活中的应用非常广泛,包括建筑、工程、设计、艺术、测量、天文学等领域。
勾股定理的简单应用
勾股定理的简单应用
嘿,朋友们!今天咱来唠唠勾股定理的那些简单应用。
你说勾股定理是啥呀?不就是那个直角三角形里两条直角边的平方和等于斜边的平方嘛!这可太有用啦!
咱就说,家里要装修个房子啥的。
你得算算那面墙要挂多大的画才合适吧。
这时候勾股定理就能派上用场啦!知道了墙的高度和宽度,就能算出斜边的长度,这不就知道画得挂多大尺寸的啦!这就好像你知道了自己有多少零花钱,就能计划着怎么花一样。
还有啊,出去野营的时候。
你想搭个帐篷,总得找个平坦的地儿吧。
那怎么判断地面平不平呢?嘿嘿,用勾股定理呀!在地上找三个点,量量距离,算一算是不是符合勾股定理,要是符合,那地面就差不多平啦!这多方便呀,就像你找朋友,得找个靠谱的一样。
再比如,你在路上看到个电线杆斜了。
那你怎么知道它斜了多少呢?还是勾股定理呀!量量电线杆底部到一个固定点的距离,再量量顶部到同一个点的距离,一算,哇塞,倾斜程度就出来啦!这感觉就像你发现了一个小秘密一样有趣。
你想想,要是没有勾股定理,那得多麻烦呀!难道都靠感觉吗?那可不行,咱得有点科学依据不是?勾股定理就像是我们生活中的一个小助手,随时能帮我们解决一些小问题。
哎呀,这勾股定理可真是无处不在呀!它就像我们的好朋友,关键时刻总能帮上忙。
不管是在小小的生活琐事中,还是在一些大工程里,都有它的身影呢!我们可得好好利用它,让我们的生活变得更方便、更有趣呀!
所以呀,可别小瞧了这勾股定理,它的用处大着呢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 勾股定理的简单应用
例1 九章算术中的“折竹”问题:今有竹高 一丈,末折抵地,去根三尺,问折者高几何?
意思是:有一根竹子原高1丈(1丈=10尺), 中部有一处折断,竹梢触地面处离竹根3尺,试 问折断处离地面多高?
3.3 勾股定理的简单应用
解:如图,我们用线段OA和线段 A
AB来表示竹子,其中线段AB表示
竹子折断部分,用线段OB来表示 X 竹梢触地处离竹根的距离.设OA
=x,则AB=10-x.
O
∵∠AOB=90°,
∴OA2+OB2=AB2,
∴x2+32=(10-x)2.
.ቤተ መጻሕፍቲ ባይዱ
(10-X) B
3
3.3 勾股定理的简单应用
练习
“引葭赴岸”是《九章算术》中 另一道题“今有池方一丈,葭生其中央,出 水一尺,引葭赴岸,适与岸齐.问水深、 葭长各几何?”
A
C
则BC =( x +1)尺,
根据勾股定理得:
x2+52=(x+1)2,
即:(x+1)2-x2 =52,
解得:x=12,
所以芦苇长为12+1=13(尺),
B
答:水深为12尺,芦苇长为13尺.
• 例2 如图,在△ABC中, • AB=26,BC=20,BC边上的 A
• 中线AD=24,求AC.
BD
2.如图,在△ABC中,AD⊥BC,AB=15, AD=12,AC=13,求△ABC的周长和面积.
A
B
在上题中把如图去掉结果怎样?
DC
3.3 勾股定理的简单应用
如图,以△ABC的三边为直径向外作半圆,且 S1+S3=S2,试判断△ABC的形状?
3.3 勾股定理的简单应用
从勾股定理的应用中我们进一步体会到直角 三角形与等腰三角形有着密切的联系;把研究等 腰三角形转化为研究直角三角形,这是研究问题 的一种策略.
∴AC=AB=26.
3.3 勾股定理的简单应用
勾股定理与它的逆定理在应用上有什么区别?
勾股定理主要应用于求线段的长度、图形的周 长、面积;
勾股定理的逆定理用于判断三角形的形状.
3.3 勾股定理的简单应用
1.如图,在△ABC中, AB=AC=17,BC=16,求 △ABC的面积.
A
B DC
3.3 勾股定理的简单应用
题意是:有一个边长为10尺的正方形池塘,在水 池正中央有一根新生的芦苇,它高出水面1尺,如果把
这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰 好到达岸边.请问这个水池的深度和这根芦苇的长度各 是多少?
3.3 勾股定理的简单应用
解:如图,
BC为芦苇长,AB为水深,AC为池中心点距
岸边的距离. 设AB =x尺,
C
3.3 勾股定理的简单应用
A
例2 如图,在△ABC中, AB=26,BC=20,BC边上的 中线AD=24,求AC.
解:∵AD是BC边上的中线, ∴∵ABDD2=+CBDD=2=1257B6C+=1012 0×=2607=6,10. AB 2=262=676,
BD
C
∴AD2+BD2=AB2,
∴ ∠ADB=90°,AD垂直平分BC.
初中数学 八年级(上册)
3.3 勾股定理的简单应用
把勾股定理送到外星
球,与外星人进行数学交流 ! ——华罗庚
3.3 勾股定理的简单应用
交流
从远处看,斜拉桥的索塔、桥面与拉索组 成许多直角三角形.
3.3 勾股定理的简单应用
思考
A
G B CDE F
已知桥面以上索塔AB的高,怎样计算
AC、AD、AE、AF、AG的长.