最新数字逻辑电路指导书合集

合集下载

0级《数字逻辑电路》实验指导书 1

 0级《数字逻辑电路》实验指导书 1

课程名称:数字逻辑电路实验指导书课时:8学时集成电路芯片一、简介数字电路实验中所用到的集成芯片都是双列直插式的,其引脚排列规则如图1-1所示。

识别方法是:正对集成电路型号(如74LS20)或看标记(左边的缺口或小圆点标记),从左下角开始按逆时针方向以1,2,3,…依次排列到最后一般排在左上端,接地一脚(在左上角)。

在标准形TTL集成电路中,电源端VCC,7脚为GND。

若集端GND一般排在右下端。

如74LS20为14脚芯片,14脚为VCC成芯片引脚上的功能标号为NC,则表示该引脚为空脚,与内部电路不连接。

二、TTL集成电路使用规则1、接插集成块时,要认清定位标记,不得插反。

2、电源电压使用范围为+4.5V~+5.5V之间,实验中要求使用Vcc=+5V。

电源极性绝对不允许接错。

3、闲置输入端处理方法(1)悬空,相当于正逻辑“1”,对于一般小规模集成电路的数据输入端,实验时允许悬空处理。

但易受外界干扰,导致电路的逻辑功能不正常。

因此,对于接有长线的输入端,中规模以上的集成电路和使用集成电路较多的复杂电路,所有控制输入端必须按逻辑要求接入电路,不允许悬空。

(也可以串入一只1~10KΩ的固定电阻)或接至某一固定(2)直接接电源电压VCC电压(+2.4≤V≤4.5V)的电源上,或与输入端为接地的多余与非门的输出端相接。

(3)若前级驱动能力允许,可以与使用的输入端并联。

4、输入端通过电阻接地,电阻值的大小将直接影响电路所处的状态。

当R ≤680Ω时,输入端相当于逻辑“0”;当R≥4.7KΩ时,输入端相当于逻辑“1”。

对于不同系列的器件,要求的阻值不同。

5、输出端不允许并联使用(集电极开路门(OC)和三态输出门电路(3S)除外)。

否则不仅会使电路逻辑功能混乱,并会导致器件损坏。

6、输出端不允许直接接地或直接接+5V电源,否则将损坏器件,有时为了使后,一般取R=3~5.1K 级电路获得较高的输出电平,允许输出端通过电阻R接至VccΩ。

数字逻辑实验指导书(1)

数字逻辑实验指导书(1)

实验一 实验箱及小规模集成电路的使用一 实验目的1 掌握实验箱的功能及使用方法2 学会测试芯片的逻辑功能二 实验仪器及芯片1 实验箱2 芯片:74LS00 二输入端四与非门 1片74LS86 二输入端四异或门 1片 74LS04 六非门 1片三 实验内容1 测试芯片74LS00和74LS86的逻辑功能并完成下列表格。

(1) 74LS00的14脚接+5V 电源,7脚接地;1、2、4、5、9、10、12、13脚接逻辑开关,3、6、8、11接发光二极管。

(可以将1、4、9、12接到一个逻辑开关上,2、5、10、13接到一个逻辑开关上。

)改变输入的状态,观察发光二极管。

74LS86的接法74LS00基本一样。

表 74LS00的功能测试表 74LS86的功能测试(2)分析74LS00和74LS86的四个门是否都是完好的。

2 用74LS00和74LS04组成异或门,要求画出逻辑图,列出异或关系的真值表。

(3)利用74LS00和74LS04设计一个异或门。

画出设计电路图。

实验二译码器和数据选择器一实验目的1继续熟悉实验箱的功能及使用方法2掌握译码器和数据选择器的逻辑功能二实验仪器及芯片1 实验箱2 芯片:74LS138 3线-8线译码器 1片74LS151 八选一数据选择器 1片74LS20 四输入与非门 1片三实验内容1 译码器功能测试(74LS138)芯片管脚图如图所示,按照表连接电路,并完成表格。

其中16脚接+5V,8脚接地,1~6脚都接逻辑开关,7、9、10、11、12、13、14、15接发光二极管。

表2 数据选择器的测试(74LS151)按照表连接电路,并完成表格。

其中16脚接+5V,8脚接地;9、10、11,为地址输入端,接逻辑开关;4、3、2、1、12、13、14、15为8个数据输入端,接逻辑开关;G为选通输入端,Y为输出端,接发光二极管。

表选通端地址输入端 数据输入端 输出 GA 2 A 1 A 0 D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 Y 1 × × × × × × × × × × × 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 11111113 分别用74LS138(配合74LS20)和74LS151实现逻辑函数),,,(7421m m m m F ∑=,要求画出逻辑图。

数字电路-实验指导书汇总

数字电路-实验指导书汇总

数字电路-实验指导书汇总TPE-D型系列数字电路实验箱数字逻辑电路实验指导书实验⼀门电路逻辑功能及测试实验⼆组合逻辑电路(半加器、全加器及逻辑运算)实验三时序电路测试及研究实验四集成计数器及寄存器实验⼀门电路逻辑功能及测试⼀、实验⽬的1、熟悉门电路逻辑功能。

2、熟悉数字电路实验箱及⽰波器使⽤⽅法。

⼆、实验仪器及器件1、双踪⽰波器;2、实验⽤元器件74LS00 ⼆输⼊端四与⾮门 2 ⽚74LS20 四输⼊端双与⾮门 1 ⽚74LS86 ⼆输⼊端四异或门 1 ⽚74LS04 六反相器 1 ⽚三、预习要求1、复习门电路⼯作原理及相应逻辑表达式。

2、熟悉所⽤集成电路的引线位置及各引线⽤途。

3、了解双踪⽰波器使⽤⽅法。

四、实验内容实验前检查实验箱电源是否正常。

然后选择实验⽤的集成电路,按⾃⼰设计的实验接线图接好连线,特别注意Vcc 及地线不能接错(Vcc=+5v,地线实验箱上备有)。

线接好后经实验指导教师检查⽆误可通电实验。

实验中改动接线须先断开电源,接好后在通电实验。

1、测试门电路逻辑功能⑴选⽤双四输⼊与⾮门74LS20 ⼀只,插⼊⾯包板(注意集成电路应摆正放平),按图接线,输⼊端接S1~S4(实验箱左下⾓的逻辑电平开关的输出插⼝),输出端接实验箱上⽅的LED 电平指⽰⼆极管输⼊插⼝D1~D8中的任意⼀个。

⑵将电平开关按表置位,分别测出输出逻辑状态值及电压值填表。

表2、异或门逻辑功能测试⑴选⼆输⼊四异或门电路74LS86,按图接线,输⼊端1、2、4、5 接电平开关输出插⼝,输出端A 、B 、Y 接电平显⽰发光⼆极管。

⑵将电平开关按表的状态转换,将结果填⼊表中。

表3、逻辑电路的逻辑关系⑴⽤ 74LS00 双输⼊四与⾮门电路,按图、图接线,将输⼊输出逻辑关系分别填⼊表,表中。

⑵写出两个电路的逻辑表达式。

4、逻辑门传输延迟时间的测量⽤六反相器(⾮门)按图接线,输⼊80KHz 连续脉冲(实验箱脉冲源),⽤双踪⽰波器测输⼊、输出相位差。

数字逻辑实验指导书(multisim)

数字逻辑实验指导书(multisim)

实验一集成电路的逻辑功能测试一、实验目的1、掌握Multisim软件的使用方法。

2、掌握集成逻辑门的逻辑功能。

3、掌握集成与非门的测试方法。

二、实验原理TTL集成电路的输入端和输出端均为三极管结构,所以称作三极管、三极管逻辑电路(Transistor -Transistor Logic )简称TTL电路。

54 系列的TTL电路和74 系列的TTL电路具有完全相同的电路结构和电气性能参数。

所不同的是54 系列比74 系列的工作温度范围更宽,电源允许的范围也更大。

74 系列的工作环境温度规定为0—700C,电源电压工作范围为5V±5%V,而54 系列工作环境温度规定为-55—±1250C,电源电压工作范围为5V±10%V。

54H 与74H,54S 与74S 以及54LS 与74LS 系列的区别也仅在于工作环境温度与电源电压工作范围不同,就像54 系列和74 系列的区别那样。

在不同系列的TTL 器件中,只要器件型号的后几位数码一样,则它们的逻辑功能、外形尺寸、引脚排列就完全相同。

TTL 集成电路由于工作速度高、输出幅度较大、种类多、不易损坏而使用较广,特别对我们进行实验论证,选用TTL 电路比较合适。

因此,本实训教材大多采用74LS(或74)系列TTL 集成电路,它的电源电压工作范围为5V±5%V,逻辑高电平为“1”时≥2.4V,低电平为“0”时≤0.4V。

它们的逻辑表达式分别为:图1.1 分别是本次实验所用基本逻辑门电路的逻辑符号图。

图1.1 TTL 基本逻辑门电路与门的逻辑功能为“有0 则0,全1 则1”;或门的逻辑功能为“有1则1,全0 则0”;非门的逻辑功能为输出与输入相反;与非门的逻辑功能为“有0 则1,全1 则0”;或非门的逻辑功能为“有1 则0,全0 则1”;异或门的逻辑功能为“不同则1,相同则0”。

三、实验设备1、硬件:计算机2、软件:Multisim四、实验内容及实验步骤1、基本集成门逻辑电路测试 (1)测试与门逻辑功能74LS08是四个2输入端与门集成电路(见附录1),请按下图搭建电路,再检测与门的逻辑功能,结果填入下表中。

数电实验指导书(无删减版)

数电实验指导书(无删减版)

目录第1章数字逻辑电路实验基础知识 (1)1.1 实验的基本过程 (1)1.1.1 实验预习 (1)1.1.2 实验数据记录 (1)1.2.3 实验报告 (2)1.2 实验操作规范和常见故障检查方法 (3)1.2.1 实验基本操作规程 (3)1.2.2 电路连接操作 (4)1.2.3 故障检查方法 (5)1.3 常用数字集成芯片的参数与主要性能 (6)1.3.1 集成电路的型号命名法 (6)1.3.2 数字集成电路的分类 (6)1.3.3 数字集成电路特点及使用须知 (9)1.4 数字逻辑电路的测试方法 (11)1.4.1组合逻辑电路的测试 (11)1.4.2时序逻辑电路的测试 (11)第2章数字逻辑实验基本技能 (12)2.1 实验基本目标要求 (12)2.2 实验技能基本要求 (12)2.3 实验内容基本要求 (14)第3章数字逻辑电路基本实验 (16)实验一:EDA软件QuartusII的使用 (16)实验二:实验仪器的使用及元器件测试 (16)实验三:组合电路险象观察与排除 (17)实验四:简单逻辑电路功能分析与变换 (18)实验五:运算器电路分析与设计 (18)实验六:状态监测电路设计 (19)i实验七:符合判别电路设计 (20)实验八:多数表决器设计 (22)实验九:译码器测试实验 (22)实验十:数据选择器测试实验 (24)实验十一:逻辑函数发生器设计 (25)实验十二:二进制码∕BCD码变换器设计 (26)实验十三:格雷码变换器设计 (27)实验十四:BCD码加法器设计 (27)实验十五:触发器功能测试 (28)实验十六:四相时钟分配器设计 (29)实验十七:四位二进制计数器功能测试 (31)实验十八:异步十进制计数器设计 (32)实验十九:集成计数器测试实验 (33)实验二十:集成计数器应用设计 (34)实验二十一:数码显示电路实验 (35)第4章数字逻辑综合设计实验 (37)设计项目一:数字时钟设计 (37)设计项目二:出租车计价器设计 (40)设计项目三:交通灯控制器设计 (50)设计项目四:电子密码锁设计 (55)设计项目五:智力竞赛抢答器设计 (59)其他参考选择题目 (64)ii第1章数字逻辑电路实验基础知识随着科学技术的发展,数字逻辑电路技术在各个科学领域中都得到了广泛的应用。

数字逻辑电路指导书

数字逻辑电路指导书

实验一 门电路逻辑功能及测试一.实验目的1.熟悉门电路逻辑功能 2.熟悉数字电路学习机使用方法 二.实验仪器及材料1.DVCC-D2JH 通用数字电路实验箱 2.器件74LS00 二输入端四与非门 1片 74LS08 二输入端四与门 1片 74LS86 二输入端四异或门 1片 74LS32 二输入端四或门 1片2、按附录中引脚图接线,分别验证或门74LS32、与门74LS08、异或门74LS86的逻辑功能3、信号对门的控制作用利用与非门控制输出.用一片74LS00按图接线,S接任一电平开关,用发光二极管观察S对输出脉冲的控制作用.四.实验报告1.按各步聚要求填表。

2.回答问题:(1)怎样判断门电路逻辑功能是否正常?(2)与非门一端输入接连续脉冲,其余端什么状态时允许脉冲通过?什么状态时禁止脉冲通过?实验二组合逻辑电路(半加器、全加器及逻辑运算)一、实验目的1、掌握组合逻辑电路的功能测试2、验证半加器和全加器的逻辑功能二、实验器件74LS00 二输入端四与非门1片74LS86 二输入端四异或门1片74LS32 二输入端四或门1片74LS08 二输入端四与门1片三、实验内容1、测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。

根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B相与。

故半加器可用一个集成异或门和二个与非门组成如右图(1)在学习机上用异或门和与门接成以上电路。

A、B接电平开关Y、Z接电平显示。

(2)按下表要求改变A、B状态,填表2、测试全加器的逻辑功能。

(1)按右图接线,A 、B 、C 接电平开关,SO 、C 接发光二极管(2)按下表要求改变A 、B 、C 状态,填表四、实验报告 (1)按要求填表(2)分析如何使用适当的门电路实现半加器与全加器的功能实验三 译码器、数据选择器和总线驱动器一、实验目的1、熟悉集成译码器。

2、了解集成译码器应用。

二、实验仪器及材料74LS138 3—8线译码器2片74LS153 双4选1数据选择器1片74LS244 单向三态数据缓冲器1片74LS245 双向三态数据缓冲器1片74LS20 四输入端二与门1片三、实验内容1、译码器功能测试图为3—8线74LS138引脚图。

数字逻辑新数电指导书

数字逻辑新数电指导书

实验一基本逻辑门电路实验类型:验证性实验按照实验要求,由学生操作,对基本逻辑门电路进行相应测试,验证课堂所学的理论,加深对门电路的理解,掌握基本的实验知识、实验方法和实验技能,并能对实验数据进行处理,撰写规范的实验报告。

一、实验目的1、了解(TTL)与非门各参数的意义;2、掌握(TTL)与非门主要参数的测试方法。

3、加深对(TTL)与非门的逻辑功能的认识;4、学习查阅集成电路器件手册,熟悉与非门的外形和引脚。

二、实验仪器数字电路实验箱三、实验内容及步骤1、测试与门的逻辑功能在实验系统(箱)上找到相应的与门。

按图1.1(a)连接实验线路,把输入端接实验箱的逻辑开关,输出端接LED显示器。

按表1.2.2 输入A、B的信号0或1(逻辑开关高电平时为1,逻辑开关低电平时为0),观察输出结果(看LED显示器,如果灯亮为1,灯灭为0)填入表1.1 中。

图1.1 与门、或门实验接线图2、测试或门的逻辑功能在实验系统(箱)上找到相应的或门。

按图1.2.4 (b) 连接实验线路,把输入端接实验箱的逻辑开关,输出端接LED显示器。

按表1.2.2 输入A、B的信号0或1(逻辑开关高电平时为1,逻辑开关低电平时为0),观察输出结果(看LED 显示器,如果灯亮为1,灯灭为0)填入表1.1 中。

3、测非门的逻辑功能在实验系统(箱)上找到相应的非门。

按图1.2(a)连接实验线路,把输入端接实验箱的逻辑开关,输出端接LED显示器。

按表1.2 输入A的信号0或1(逻辑开关高电平时为1,逻辑开关低电平时为0),观察输出结果(看LED显示器,如果灯亮为1,灯灭为0)填入表1.2.3中。

4、测二输入与非门的逻辑功能在实验系统(箱)上找到相应的二输入与非门。

按图1.2.5(b)连接实验线路,把输入端接实验箱的逻辑开关,输出端接LED显示器。

按表1.2.3 输入A、B的信号0或1(逻辑开关高电平时为1,逻辑开关低电平时为0),观察输出结果(看LED显示器,如果灯亮为1,灯灭为0)填入表1.2.3 中。

级《数字逻辑电路》实验指导书

级《数字逻辑电路》实验指导书

课程名称:数字逻辑电路实验指导书课时:8学时集成电路芯片一、简介数字电路实验中所用到的集成芯片都是双列直插式的,其引脚排列规则如图1-1所示。

识别方法是:正对集成电路型号<如74LS20)或看标记<左边的缺口或小圆点标记),从左下角开始按逆时针方向以1,2,3,…依次排列到最后一脚<在左上角)。

在标准形TTL集成电路中,电源端V一般排在左上CC,7脚为端,接地端GND一般排在右下端。

如74LS20为14脚芯片,14脚为VCCGND。

若集成芯片引脚上的功能标号为NC,则表示该引脚为空脚,与内部电路不连接。

二、TTL集成电路使用规则1、接插集成块时,要认清定位标记,不得插反。

2、电源电压使用范围为+4.5V~+5.5V之间,实验中要求使用Vcc=+5V。

电源极性绝对不允许接错。

3、闲置输入端处理方法(1> 悬空,相当于正逻辑“1”,对于一般小规模集成电路的数据输入端,实验时允许悬空处理。

但易受外界干扰,导致电路的逻辑功能不正常。

因此,对于接有长线的输入端,中规模以上的集成电路和使用集成电路较多的复杂电路,所有控制输入端必须按逻辑要求接入电路,不允许悬空。

<也可以串入一只1~10KΩ的固定电阻)或接至某一 (2> 直接接电源电压VCC固定电压(+2.4≤V≤4.5V>的电源上,或与输入端为接地的多余与非门的输出端相接。

(3> 若前级驱动能力允许,可以与使用的输入端并联。

4、输入端通过电阻接地,电阻值的大小将直接影响电路所处的状态。

当R ≤680Ω时,输入端相当于逻辑“0”;当R≥4.7 KΩ时,输入端相当于逻辑“1”。

对于不同系列的器件,要求的阻值不同。

5、输出端不允许并联使用<集电极开路门(OC>和三态输出门电路(3S>除外)。

否则不仅会使电路逻辑功能混乱,并会导致器件损坏。

6、输出端不允许直接接地或直接接+5V电源,否则将损坏器件,有时为,一般取R 了使后级电路获得较高的输出电平,允许输出端通过电阻R接至Vcc=3~5.1 KΩ。

数字逻辑电路实验指导书.

数字逻辑电路实验指导书.

数字逻辑电路实验指导书2013年6月前言数字逻辑电路是计算机科学与技术及相关专业的一门专业基础课,是一门重点课程。

在计算机硬件的各个领域中均会用到数字逻辑的有关知识。

本实验课程的主要目的是使学生通过实验手段掌握各种集成电路及其设计,同时训练学生一定的实验动手能力,也使学生系统科学地受到分析问题和解决问题的训练。

本实验指导书的内容主要包括门电路逻辑功能及测试、组合逻辑电路的分析与设计、译码器、选择器、触发器、计数器、时序逻辑电路的分析与设计等的综合实验。

实验的重点是通过实验认识并验证各种集成芯片工作原理及其相关注意事项;实验的难点也在于用所学知识设计综合性实验。

数字逻辑电路实验作为计算机各专业数字逻辑课程的一个重要环节。

在这一环接中,数字逻辑侧重讨论各种集成芯片,学会设计简单的电路。

因此,它的先修课程是计算机基础、离散数学、大学物理、模拟电子线路等。

本实验指导书以素质教育为目标,力求使学生通过实验加深对基础知识的理解,同时强化实际的动手能力,切实做到理论与实际应用相结合。

本书中所涉及的实验都是以启东市东疆计算机有限公司生产的DJ-SD型数字逻辑实验箱为模板进行讲解,由于编者水平有限,书中难免存在纰漏之处,恳请各位同仁赐教。

实验须知数字逻辑电路实验课程是一门专业基础课,具有很强的实践性,是数字逻辑电路教学中必不可少的环节。

使学生通过实验手段掌握各种集成电路及其设计,同时训练学生一定的实验动手能力,也使学生系统科学地受到分析问题和解决问题的训练,为后续专业课的学习打下坚实的基础。

在实验的过程中需要注意一下两点问题:一、实验要求:1.做好课前的预习准备工作。

为了能够保证实验的顺利进行,且提高实验效率,实验前必须做好充分的预习,仔细阅读将要做的实验内容,复习相关理论知识,明确实验目的和要求,熟悉实验要用到的芯片功能及各引脚的作用,熟悉实验原理、实验步骤和实验注意事项,对思考题、实验的结果和可能出现的问题进行分析和预估,并将相应的预习结果记录下来,以备使用。

数字电路实验指导书

数字电路实验指导书

数字逻辑电路实验指导书南京师范大学计算机系2017.10数字逻辑电路实验Digital Logic Circuits Experiments一、实验目的要求:数字逻辑电路实验是计算机科学与技术专业的基础实验,与数字逻辑电路理论课程同步开设(不单独设课),是理论教学的深化和补充,同时又具有较强的实践性,其目的是通过若干实验项目的学习,使学生掌握数字电子技术实验的基本方法和实验技能,培养独立分析问题和解决问题的能力。

二、实验主要内容:教学内容分为基础型、综合型,设计型和研究型,教学计划分为多个层次,学生根据其专业特点和自己的能力选择实验,1~2人一组。

但每个学生必须选做基础型实验,综合型实验,基础型实验的目的主要是培养学生正确使用常用电子仪器,掌握数字电路的基本测试方法。

按实验课题要求,掌握设计和装接电路,科学地设计实验方法,合理地安排实验步骤的能力。

掌握运用理论知识及实践经验排除故障的能力。

综合型实验的目的就是培养学生初步掌握利用EDA 软件的能力,并以可编程器件应用为目的,培养学生对新技术的应用能力。

初步具有撰写规范技术文件能力。

设计型实验的目的就是培养学生综合运用已经学过的电子技术基础课程和EDA软件进行电路仿真实验的能力,并设计出一些简单的综合型系统,同时在条件许可的情况下,可开设部分研究型实验,其目的是利用先进的EDA软件进行电路仿真,结合具体的题目,采用软、硬件结合的方式,进行复杂的数字电子系统设计。

数字逻辑电路实验实验1 门电路逻辑功能测试实验预习1 仔细阅读实验指导书,了解实验内容和步骤。

2 复习门电路的工作原理及相应逻辑表达式。

3 熟悉所用集成电路的引线位置及各引线用途。

4 熟悉TTL门电路逻辑功能的测试。

5 了解数字逻辑综合实验装置的有关功能和使用方法。

实验目的1 熟悉数字逻辑实验装置的有关功能和使用方法。

2 熟悉双踪示波器的有关功能和使用方法。

3 掌握门电路的逻辑功能,熟悉其外形和外引线排列。

数字电路实验指导书

数字电路实验指导书

数字电路实验指导书江汉大学计科系计算机硬件教研室目录一实验的一般程序二实验台介绍三实验一逻辑门功能验证及应用电路实验四实验二组合电路功能验证及应用电路实验五实验三触发器功能验证及应用电路实验六实验四时序电路功能验证及应用电路实验七实验五串行加法器的设计八实验六汽车尾灯控制器的设计九实验七数字马表的设计十实验八数字密码锁电路的设计一.实验的一般程序数字电路是计算机专业的基础课之一,它的实践性较强。

通过实验,旨在巩固,加深和开拓课堂教学的内容,使学生加深理解数字系统(计算机系统是最常见的数字系统之一)基本组件的逻辑组成及其工作原理,掌握各基本组件的设计和调试方法,提高实践能力,逐步培养学生独立分析和解决问题的能力。

实验的一般程序可分为准备阶段,布线阶段,调试阶段以及实验完毕后书写实验报告等。

1准备阶段实验前做好充分的准备是必须的和有益的,每个实验者在实验前必须对实验目的,要求,内容,及其相关理论知识认真了解,做到心中有数,完成预习报告,预习报告是实验操作的依据。

预习报告没有固定的书写格式,只要实验者看懂就可以了。

一般要尽可能写得简洁,思路清楚,重点突出,一目了然。

其内容主要是画出实验所用的逻辑电路图和布线图,并附以简要的文字说明或注释,记录数据所用的表格,以及主要的注意事项。

2.布线阶段在布线前,必须校准集成电路组件两排引脚的距离,使之与实验台的插孔距相吻合,将集成电路组件插入时,用力要轻,均匀,开始不要插得太紧,待确定集成电路组件的引脚和插孔位置一致后,再用力将其插牢。

这样可避免集成电路组件引脚弯曲或折断。

布线最好有顺序地进行,不要随意接线,以免漏接。

布线时应首先将电源地线以及实验过程中始终不改变电平的输入端接好,然后接信号流向顺序依次布线。

布线时可考虑用不同颜色导线以区别不同信号,这样便于观察与察错。

布线用的导线不宜太长,且应尽量避免导线相互重叠,跨越集成电路组件的上空以及无规则的交错连接在空中搭成网状等现象。

答案数字逻辑实验指导书(multisim)答案

答案数字逻辑实验指导书(multisim)答案

答案数字逻辑实验指导书(Multisim)答案本文档旨在为数字逻辑实验中使用Multisim软件的学生提供详细的步骤和答案解析。

以下是针对常见实验的答案。

实验一:简单门电路实验1. 题目描述设计一个两输入门电路,使用Multisim软件验证其功能。

2. 答案在Multisim软件中,选择“逻辑门”部分。

在工作区中拖动两个输入开关和一个输出指示灯到工作区。

在两个输入开关的属性设置中,将“初始状态”设置为1(ON)。

连接两个开关和输出指示灯,使电路完成。

3. 实验过程1.打开Multisim软件。

2.在组件库中找到“逻辑门”部分,并从中选择两个输入开关和一个输出指示灯。

3.拖动这些组件到工作区。

4.右键单击其中一个输入开关,选择属性编辑。

5.在属性编辑对话框中,将“初始状态”设置为1(ON),然后点击“确定”。

6.重复上一步,将另一个输入开关的属性也设置为1(ON)。

7.连接两个输入开关和输出指示灯,以完成电路。

8.在工具栏上点击“运行”按钮,观察输出指示灯的状态。

4. 实验结果在两个输入开关的状态均为1(ON)时,输出指示灯也将亮起。

实验二:组合逻辑电路实验1. 题目描述设计一个组合逻辑电路,使用Multisim软件验证其功能。

2. 答案在Multisim软件中,选择“逻辑门”部分。

在工作区中拖动两个输入开关和一个输出指示灯到工作区。

在两个输入开关的属性设置中,将“初始状态”设置为1(ON)。

连接两个开关和输出指示灯,使电路完成。

3. 实验过程1.打开Multisim软件。

2.在组件库中找到“逻辑门”部分,并从中选择两个输入开关和一个输出指示灯。

3.拖动这些组件到工作区。

4.右键单击其中一个输入开关,选择属性编辑。

5.在属性编辑对话框中,将“初始状态”设置为1(ON),然后点击“确定”。

6.重复上一步,将另一个输入开关的属性也设置为1(ON)。

7.连接两个输入开关和输出指示灯,以完成电路。

8.在工具栏上点击“运行”按钮,观察输出指示灯的状态。

数字电路实验指导书_13通信1班2班指导老师阳清课件

数字电路实验指导书_13通信1班2班指导老师阳清课件

《数字逻辑电路》电子技术实验室编闽江学院计算机科学系目录目录实验一数字逻辑电路实验的配套仪器设备的使用方法与练习 (3)实验二TTL集成逻辑门的参数测试与使用 (6)实验三组合逻辑电路实验分析 (13)实验四触发器及其应用 (19)实验一数字逻辑电路实验的配套仪器设备的使用方法与练习一、实验目的1、掌握THD-1型数字电路实验箱的结构及各模块的功能。

2、熟悉数字万用表、数字示波器、函数信号发生器、稳压电源等仪器仪表的使用方法二、实验原理1、THD-1型数字电路实验箱的结构及各模块的功能数字电路实验箱是对TTL门电路、COMS门电路、组合逻辑电路、时序逻辑电路等电路的功能进行验证和相关参数测量的多功能实验箱。

其包括数码管及LED灯显示模块、脉冲信号输出模块、逻辑电平输出模块,低压直流电源模块、IC(集成电路)座与管脚接口模块以及蜂鸣器继电器等组成部分。

其各个模块都有一定的功能,能模拟IC的输入输出信号,使我们能更直观的认识各种集成电路。

2、数字万用表我们使用的数字万用表是三位半液晶显示小型数字万用表。

它可以测量交、直流电压和交、直流电流,电阻、三极管β值、二极管导通电压和电路短接等,由一个旋转波段开关改变测量的功能和量程。

(使用方法实验课堂我将会进行讲解和演示)3、数字示波器数字示波器就将输入的电压、电流等电信号进行采样、存储并以图形的形式直观的显示出来的测量仪器。

数字示波器将被测信号采用和量化,并将其以二进制的形式存储起来,再从存储器中取出信号的离散值。

通过一定的算法将离散的信号以连续的形式在屏幕上显示出来。

(具体操作我将在课堂上演示讲解)示波器的面板介绍如下:4、函数信号发生器本实验使用的是RIGOLDG1022双通道函数/任意波形发生器,其采用直接数字频率合成(DDS ) 技术设计,能够产生精确、稳定、低失真的输出信号,且操作简单。

其有两个输出通道CH1和CH2,可分别选择:正弦波、方波、锯齿波、脉冲波、噪声波、任意波输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 门电路逻辑功能及测试一.实验目的1.熟悉门电路逻辑功能 2.熟悉数字电路学习机使用方法 二.实验仪器及材料1.DVCC-D2JH 通用数字电路实验箱 2.器件74LS00 二输入端四与非门 1片 74LS08 二输入端四与门 1片 74LS86 二输入端四异或门 1片 74LS32 二输入端四或门 1片2、按附录中引脚图接线,分别验证或门74LS32、与门74LS08、异或门74LS86的逻辑功能3、信号对门的控制作用利用与非门控制输出.用一片74LS00按图接线,S接任一电平开关,用发光二极管观察S对输出脉冲的控制作用.四.实验报告1.按各步聚要求填表。

2.回答问题:(1)怎样判断门电路逻辑功能是否正常?(2)与非门一端输入接连续脉冲,其余端什么状态时允许脉冲通过?什么状态时禁止脉冲通过?实验二组合逻辑电路(半加器、全加器及逻辑运算)一、实验目的1、掌握组合逻辑电路的功能测试2、验证半加器和全加器的逻辑功能二、实验器件74LS00 二输入端四与非门1片74LS86 二输入端四异或门1片74LS32 二输入端四或门1片74LS08 二输入端四与门1片三、实验内容1、测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。

根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B相与。

故半加器可用一个集成异或门和二个与非门组成如右图(1)在学习机上用异或门和与门接成以上电路。

A、B接电平开关Y、Z接电平显示。

(2)按下表要求改变A、B状态,填表2、测试全加器的逻辑功能。

(1)按右图接线,A 、B 、C 接电平开关,SO 、C 接发光二极管(2)按下表要求改变A 、B 、C 状态,填表四、实验报告 (1)按要求填表(2)分析如何使用适当的门电路实现半加器与全加器的功能实验三 译码器、数据选择器和总线驱动器一、实验目的1、熟悉集成译码器。

2、了解集成译码器应用。

二、实验仪器及材料74LS138 3—8线译码器2片74LS153 双4选1数据选择器1片74LS244 单向三态数据缓冲器1片74LS245 双向三态数据缓冲器1片74LS20 四输入端二与门1片三、实验内容1、译码器功能测试图3.1为3—8线74LS138引脚图。

表3.1为74LS138功能表,其中A2 、A1 、A0 为地址输入端,0Y~7Y为译码输出端,S1、2S、3S为使能端。

表3.1为74LS138功能表,当S1=1,2S+3S=0时,器件使能,地址码所指定的输出端有信号(为0)输出,其它所有输出端均无信号(全为1)输出。

当S1=0,2S+3S=X时,或S1=X,2S+3S=1时,译码器被禁止,所有输出同时为1。

表3.12、用一片74LS138和适当的与非门实现全减器的功能(1)写出全减器的真值表(2)画出实现其功能的逻辑电路图3、用两片74LS138组合成一个4—16线译码器,理解3.2电路接线图,并进行实验验证逻辑功能0124、数据选择器的测试及应用(1)将双4选1数据选择器74LS153参照图3.3接线,测试其功能并填写功能表。

(2)用双4选1数据选择器74LS153实验全加器 a 写出设计过程 b 画出接线图 c 验证逻辑功能5、总线驱动器74LS244、74LS245逻辑功能测试74LS244是8路3态单向缓冲驱动,也叫做总线驱动门电路或线驱动。

它有8个三态驱动器,分成两组,分别由控制端1G 和2G 控制,可以增加信号的驱动能力,其引脚图与功能表如下:74LS245为双向三态数据缓冲器,可以双向传输数据,具有双向三态功能,既可以输出,也可以输入数据,内部有16个三态驱动器,每个方向8个 其中G 为控制端,DIR 端控制驱动方向。

输 入 输 出 SA 1 A 0 Q 1 × × 0 0 0 0 D 0 0 0 1 D 1 01 0 D2 011D 3输入输出GA Y L L L L H H HXZ1D 01D 11D 21D 3A 0A 11Q V CCGND 74LS1531234567891011121314151612Q2D 02D 12D 22D 3S 2图3.3 74LS153引脚功能当G =0时:DIR=1 数据方向从左到右(输出允许) DIR=0 数据方向从右到左(输入允许) 74LS245引脚图与功能表如下:四、实验报告 1.画出实验内容要求的接线图2.总结译码器和数据选择与总线驱动器的使用体会实验四 时序逻辑电路 触发器一、实验目的1、 熟悉并掌握R-S ,D 触发器的构成,工作原理和功能测试方法2、 学会用D 触发器构造寄存器、加1、减1计数器的方法。

二、实验器件74LS00 二输入端四与非门 1片74LS74 双D 触发器 1片 74LS112 双下降沿JK 触发器 1片 三、实验内容1、 基本R-S 功能测试:两个TTL 与非门首尾相接构成的基本R-S 的电路如图所示(1) 试按下面的顺序在Sd ,Rd 端加信号:观察并记录Q 、Q 端的状态。

将结果填入下表中,并说明其功能?输入数据传送方向GDIR L L B →A L H A →B HX高阻状态Sd 0Sd 1Sd 1Sd 1====Rd 1Rd 1Rd 0Rd 1====(2) 当Sd ,Rd 都接低电平时,观察Q 、Q 端的状态。

当Rd ,Sd 同时由低电平跳为高电平时,注意观察Q 、Q 端的状态,重复3~5次看Q ,Q 端的状态是否相同,以正确理解“不定”状态的含义。

2、 维持——阻塞型D 触发器功能测试双D 型正边沿维持——阻塞型触发器74LS74的逻辑符号如图所示。

图中Sd ,Rd 端为异步置1端,置0端(或称异步置位,复位端)。

CP 为时钟脉冲端。

试按下面步骤做实验:按图接线,改变输入端Sd 、Rd 、CP 、D 端,观察并记录输出端nQ 、n-1Q的状态并填表。

D 触发器逻辑符号3、负边沿J-k触发器功能测试双J-K负边沿触发器74LS112芯片的逻辑符号如图4.3所示。

自拟实验步骤测试其功能,并将结果填入表4.3中。

若令J=K=1时,CP端加连续脉冲,用双踪示波器观察Q~CP的波形,和DFF的D和Q端相连时观察到的Q端的波形相比较,有何异同点?表4.34、触发器功能转换(1)分别将D触发器和J-K触发器转换成T触发器,列出逻辑表达式,画出实验电路图(2)接入连续脉冲,观察各触发器CP及Q端波形,比较两者关系。

四、实验报告1、整理实验数据并填表。

2、写出实验内容3、4的实验步骤及表达式3、画出实验4的电路图及相应表格。

实验五寄存器及其应用一、实验目的通过实验进一步熟悉寄存器的工作原理,熟悉和了解寄存器芯片的功能测试及其应用电路。

学会正确使用集成寄存器的电路。

二、实验仪器及材料74LS194 4位双向移位寄存器2片74LS00 四2输入与非门1片74LS373 8D型锁存器1片三、实验内容1、移位寄存器功能测试4位双向移位寄存器 74LS194芯片的逻辑符号如图5.1所示。

芯片具有下述功能:.具有4位串入、并入与并出结构。

.脉冲上升沿触发;可完成同步并入,串入左移位、右移位和保持等四种功能。

.有直接清零端Cr图中D0~D3为并行输入端,Q0~Q3为并行输出端;Dsr,Dsl为右移,左移串行输入端;Cr为清零端;MB、MA为方式控制,作用如下:MBMA=00 保持MBMA=01 右移操作MBMA=10 左移操作图5.1 74LS194逻辑符号MBMA=11 并行送数熟悉各引脚的功能,完成芯片的接线,测试74LS194的功能,并将结果填入下表中。

表5.1M B M A CP D SR D SL d0 d1 d2 d3 Q0 Q1 Q2 Q3 cr0 X X X X X X X X X1 X X 0 X X X X X X1 1 1 ↑X X d0 d1 d2 d31 0 1 ↑ 1 X X X X X1 0 1 ↑0 X X X X X1 1 0 ↑X 1 X X X X1 1 0 ↑X 0 X X X X1 0 0 X X X X X X X2、移位寄存器的应用74LS194芯片构成的8位移位寄存器用两片74LS194芯片构成的8位移位寄存器电路如图所示.当M B M A的取值分别为(00,01,10,11)时逐一检测电路的功能,结果列成功能表的形式。

8位移位寄存器3、验证8D锁存器的逻辑功能74LS373是一种带输出三态门的8D锁存器,其芯片引脚图如下图其中:1D~8D为8个输入端;1Q~8Q为8个输出端G为数据打入端:当G为“1”是,锁存器输出状态(1Q~8Q)同输入状态(1D~8D)当G由“1”变“0”,数据打入锁存器中。

OE 为输出允许端:当OE =0时,三态门打开; 当OE =1时,三态门关闭,输出呈高阻。

其功能表如下:实验六 计数器MSI 芯片的应用一、实验目的学会正确使用计数器芯片,熟悉和了解其应用电路。

二、实验仪器及材料TTL 芯片:74LS160/161 十进制/十六进制同步计数器 2片 74LS00 四2输入与非门 1片 74LS20 四输入双与非门 1片 三、实验内容1、计数器芯片74LS160/161功能测试 74LS160为同步十进制计数器,74LS161为同步十六进制计数器。

带直接清除端的同步可预置数的计数器74LS160/161的逻辑符号如图6.1所示:19置数端 LD 清零端CrS1S2 工作方式端 Qcc 进位信号 D0,D1,D2,D3 数据输入端 QD,QC,QB,QA 数据输出端 完成芯片的接线,测试74LS160或74LS161芯片的功能,将结果填入表6.1中3、 任意进制计数器设计方法采用脉冲反馈法(称复位法或置位法)。

可用74LS160/74LS161组成任意模(M )计数器。

图A.B 是用74LS161实现模6计数器的两种方案。

图(A )采用复位法。

即计数计到M 异步清0。

图(B )采用置位法。

即计数计到M-1异步置0。

图A 图B当实现十以上进制计数器时可将多片级连使用。

图6.2是60进制计数的一种方案, 两片74LS160芯片构成的同步六十进制计数电路如图6.2所示。

(1) 按图接线。

用点动脉冲作为CP 的输入,74LS160(II)、(I)的输出端QD 、QC 、QB 、QA 分别接学习机上七段LED数码管的输入端。

观察在点动脉冲作用下,数码管显示的数字变化。

(2) 图6.2接线是否正确,若不正确如何改正,并分析为什么?CrS 1 S 2 LDCP 芯片功能 0 X X X X 1 X X 0 ✁ 1 1 1 1 ✁ 1 0 1 1 X 1X1X“1”&“1”“1”“1”&表6.1 74LS160/74LS161功能表3、除图6.2所示六十进制计数电路之外,请用两片74LS161芯片实现六十进制计数电路.试画出电路接线图,并用实验验证其功能。

相关文档
最新文档