第3章运输问题习题
管理运筹学第3章-运输规划1
6
9 u2=-2
5
9
10
6
3
-11
-3
6
13 u3=6
v1=10
v2=6
v3=4
v4=0
c32 - z32= c32 – (u3+v2)= 9 – 6-6=-3
3.3 迭代规则 运算方法—闭回路调整法
调整的步骤如下: (1)先确定最小检验数:; (2)找出以空格为一个顶点,其余顶点全是数字
-----退化解出现
3.3 迭代规则 运算方法—闭回路调整法
1
2
3
4
6
7
1
14
5
5
3
5
u1=-4
7
8
4
2
7
2
8
13
6
9 u2=-2
5
9
10
6
3
-11
-3
6
13 u3=6
v1=10
v2=6
v3=4
v4=0
x31进基, min{x21,x33}=min{8,6}=6, x33离基
转轴运算,重新计算检验数,确定进基、离基变量
第三章 运输问题
运输问题及其数学模型 运输问题表上作业法
3.1 运输问题及其数学模型
一、一般运输问题
设某种货物有m个产地A1,A2,…,Am,产量分 别为a1,a2,…,am,有n个销地B1,B2,…,Bn,销量分 别为b1,b2,…,bn,而且从Ai到Bj的单位运价为 Cij。若产销平衡( ai= bj),问如何制定调 运方案,可以使总运费最小?
v3=4
4 3
u1
7 u2=-2
6
13 u3=6
第三章运输问题习题
第三章 运输问题一、疑问:运输问题中,若出现退化情形,应该在什么地方补0? 答:为了使产销平衡表上有(m + n - 1)个数字格,这时需要添加“0”,它的位置可以对应同时划去的那行或那列的任一空格处。
(这时填数字格不构成闭回路) 二、判断下列说法是否正确 :(a) 运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列情况之一:有唯一最优解、有无穷多最优解、无界解和无可行解;(b) 在运输问题中,只要给出一组含(m + n –1)个非负的{x ij },且满足axinj ij=∑=1,bxjm i ij=∑=1,就可以作为一个初始基可行解;(c) 表上作业法实质上就是求解运输问题的单纯形法; (d) 按最小元素法(或伏格尔法)给出的初始基可行解,从每一空格出发可以找出而且仅能找出唯一的闭回路; (e) 如果运输问题的单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案将不会发生变化; (f) 如果运输问题的单位运价表的某一行(或某一列)元素分别乘上一个常数k ,最优调运方案将不会发生变化; 三、选择:1.在产销平衡运输问题中,设产地为m 个,销地为n 个,那么解中非零变量的个数()。
A.不能大于(m+n-1);B.不能小于(m+n-1);C.等于(m+n-1);D.不确定。
2.在运输问题中,每次迭代时,如果有某非基变量的检验数等于零,则该运输问题()。
A.无最优解;B.有无穷多个最优解;C.有唯一最优解;D.出现退化解。
四、判断表(a),(b),(c)中给出的调运方案能否作为作业法求解时的初始解,为什么?表(a)表(b)表(c)解:(a) 可以作为初始方案。
(b) 中非零元素小于9(产地+销地-1),不能作为初始方案。
(c) 中存在以非零元素为顶点的闭回路,不能作为初始方案。
五、已知某运输问题的产销平衡表,单位运价表及给出的一个调运方案分别见下表。
判断所给出的调运方案是否为最优?如是,说明理由,如否,也说明理由。
运筹学习题答案(第三章)
page 15 3 April 2020
School of Management
运筹学教程
第三章习题解答
表3-35
食品厂
面粉厂
1
2
3
产量
Ⅰ
3 10
2 20
Ⅱ
4 11
8 30
Ⅲ
8 11
4 20
销量
15 25 20
page 16 3 April 2020
School of Management
运筹学教程
page 19 3 April 2020
School of Management
运筹学教程
第三章习题解答
(4)若所有价值系数均乘以2,最优解是否改变? 为什么?
答:最优解不变。因为检验数不变。
(5)写出该运输问题的对偶问题,并给出其对偶问 题的最优解。
解:对偶问题如下:
m
n
max Z aiui bjv j
page 8 3 April 2020
School of Management
运筹学教程
第三章习题解答
3.7 试判断表3-30和表3-31中给出的调运方案可 否作为表上作业法迭代时的基可行解?为什么?
答:都不是。数字格的数量不等于m+n-1。
销地
产地
B1
A1
0
A2
A3
5
销量
5
表3-30
B2
B3
15 15
3
8
56
3
3
2
2
page 13 3 April 2020
School of Management
运筹学教程
第三章习题解答
运筹学(胡运权版)第三章运输问题课后习题答案
P66: 8.某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点出售,各工厂A 1, A 2,A 3的生产量、各销售点B 1,B 2,B 3,B 4的销售量(假定单位为t )以及各工厂到销售点的单位运价(元/t )示于下表中,问如何调运才能使总运费最小?表解:一、该运输问题的数学模型为:可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6.34333231242322213141141312116115893102114124min x x x x x x x x x x x x x c z i j ij ij +++++++++++==∑∑==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,01412148221016342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111⨯⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭二、给出运输问题的初始可行解(初始调运方案)1. 最小元素法思想:优先满足运价(或运距)最小的供销业务。
其余(非基)变量全等于零。
此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6).总运费为(目标函数值) ,1013=x ,821=x ,223=x ,1432=x ,834=x ,614=x ∑∑===3141i j ijij x c Z2. 伏格尔(Vogel)法伏格尔法的基本思想:运输表中各行各列的最小运价与次小运价之差值(罚数)应尽可能地小。
或者说:优先供应罚数最大行(或列)中最小运费的方格,以避免将运量分配到该行(或该列)次小运距的方格中。
二三版兼用《运筹学教程》胡运权主编课后习题答案(第三章)
城市
电站
1
2
3
Ⅰ
15
18
22
Ⅱ
21
25
16
第三章习题解答
习题3.12的解答
城市 城市
电站
1-1
城市 1-2
城市2
城市 3-1
城市 3-2
产量
Ⅰ
150 15
15 250 18
22
22 400
Ⅱ
140 21
第三章习题解答
表3-35
食品厂
面粉厂
1
2
3
产量
Ⅰ
3 10
2 20
Ⅱ
4 11
8 30
Ⅲ
8 11
4 20
销量
15 25 20
第三章习题解答
习题3.10的解答
食品厂 面粉厂
Ⅰ Ⅱ Ⅲ 销量
1
3 15 4
8 15
2
10 5 11 20 11 25
3
20 2 8 4
20
4
0 10 0
0 10
产量
20 30 20
B3
B4 产量
A1 A2 A3 销量
3
7
6
45
2
4
3
22
4
3
8
56
3
3
2
2
第三章习题解答
习题3.9的解答
销地
产地
B1 B2 B3 B4 B5 产量A1源自33 7 6 24 0 5
A2
2 4 23 2 0 2
A3 销量
4 33 8 5 30 6 33223
第三章习题解答
3.10 某市有三个面粉厂,它们供给三个面食加工 厂所需的面粉。各面粉厂的产量、各面食加工厂加工 面粉的能力、各面食加工厂和各面粉厂之间的单位运 价,均表示于表3-35中。假定在第1,2和3面食加工厂 制作单位面粉食品的利润分别为12元、16元和11元, 试确定使总效益最大的面粉分配计划(假定面粉厂和面 食加工厂都属于同一个主管单位)。
第3章运输问题
ui + v j cij i = 1,2,..,m s.t. j = 1,..,n ui ,v j的符号不限
运输问题
解 的 最 优 性 检 验
检验数:目标函数的系数减去对偶变量之和
原问题检验数:σij=cij-(ui+vj) 特别对于m+n-1个基变量,有 σij=0
运输问题
B4 4 4 11 2 12 2 10 1 3 2 9 14 5 12 11 8 6 14 12 14
B2
B3 12
产量
16 10 22 48
ij 0, 此时的解为最优解。 z 8 2 14 5 12 4 4 11 2 9 8 6 244 246 2
运输问题
2.对偶变量法(位势法)
解 的 最 优 性 检 验
位势:设对应基变量xij的m+n-1个i、j , 存 在 ui,vj 满 足 ui+vj=cij,i=1,2,..,m; j=1,2 ,… ,n称这些ui , vj 为该基本可 行解对应的位势。
运输问题
2.对偶变量法(位势法)
解 的 最 优 性 检 验
运输问题
最小元素法举例
A1 A2 A3
销量
B1 B2 B3 B4
4 12
产量
60 16 10 2 3 9 10 8 2 20 8 14 5 11 8 6 22 80 8 14 12 14 48 0 0 10 6 10
4
6
11
0
0
运输问题
最小元素法举例
A1 A2 A3
销量
B1 B2 B3 B4
4 12
2 列 罚 3 数 4
2
2
第三章运输问题习题及答案(2012春)
运输问题习题1.甲、乙、丙三个城市每年分别需要煤炭320、250、350吨,由A 、B 两处煤矿负责供应。
已知煤炭年供应量为A ——400万吨,B ——450万吨。
由煤矿至各城市的单位运价(万元/万吨)。
见表1:由于需大于供,经研究平衡决定,甲城市供应量可减少0~30万吨,乙城市需要量应全部满足,丙城市供应量不少于270万吨。
试求将供应量分配完又使总运费为最低的调运方案。
2.已知运输问题的产销平衡表、单位运价表及最优调运方案分别见表2和表3。
(1) 从A 2→B2的单位运价C 22在什么范围内变化时,上述最优调运方案不变?提示: 只需检验数220σ≥(2) A 2→B4的单位运价C 24变为何值时,有无穷多最优调运方案。
提示: 检验数242424()c u v σ=-+=03.试分析分别发生下列情况时,运输问题的最优调运方案及总运价有何变化.(a) 单位运价表第i 行的每个ij c 都加上一个常数λ;对于任意基变量的检验数,在没加常数λ以前,有 ij ij i j c u v σ=--加常数后令**,i i j j u u v v λ==+,那么基变量的检验数等于***()()ij ij i j ij i j ij c u v c u v σλσ=+-+=--=也就是检验数没有变化,因而最优调运方案没有变化 (b) 单位运价表第j 列的每个ij c 都加上一个常数λ; 对于第j 列基变量的检验数,在没加常数λ以前,有 ij ij i j c u v σ=--加常数后令**,i i j j u u v v λ==+,那么基变量的检验数等于***()()ij ij i j ij i j ij c u v c u v σλσ=+-+=--=又由于其它列的位势不改变,因而检验数也不改变 也就是检验数没有变化,因而最优调运方案没有变化 (c) 单位运价表所有ij c 都乘上一个常数λ。
对于第j 列基变量的检验数,在没加常数λ以前,有 ij ij i j c u v σ=--加常数后令**,i i j j u u v v λλ==,那么基变量的检验数等于***()()()ij ij i j ij i j ij c u v c u v σλλλσ=-+=--= 因此,当0λ≥时检验数的符号没有改变,因而最优调运方案没有变化;而0λ<时检验数的符号改变,因而最优调运方案变化。
产销不平衡的运输问题
贮存问题。将各产地的仓库设成一个假想销地Bn+1,该地总需 求量为
m
n
bn
1
i1
i a
j1bj
再令运价表中各地到虚设销地Bn+1的单位运价Ci,n+1 =0,i=1,2…m, 则该问题就转化成一个产销平衡问题,可以用表上作业法求解 了。在最优解中,产地Ai到虚设销地Bn+1的运量实际上就是产 地Ai就地贮存的多余物资数量。
3 13 0 5 4 62 0 6 2 85 0 8
4 86 1
(B1 B2 B3
B4
产 量
A1 A2 A3 销量
4
15
0
6
6
44
8
4 86 1
(2) 用位势法计算检验数 如黄表所示:
销地 产地
B1 B2
B3
B4
ui
A1 (8) 4(10) 1 0
A2 A3
A2 (9)(5) 6 0 0
A3
4 4(-4)(-7) 7
vj
-5 1 2 0
销地 产地
产 B1 B2 B3 B4 量
A1 A2 A3 销量
3 13 0 5 4 62 0 6 2 85 0 8
4 86 1
(5)第二次调整量θ=1,调 整后的方案如下表所示:
销地 产地
产 B1 B2 B3 B4 量
A1 A2 A3 销量
调运方案。
解:产地总产量为19 吨,
销地 产地
A1 A2 A3
B1 B2 B3
3 13 4 62 2 85
产量
销地总销量为18 吨,产
大于销。故虚设销地B4,
5
令其销量b4=1 吨,运价
运筹学教材编写组《运筹学》章节题库-运输问题(圣才出品)
需进行进一步调整。
利用闭回路法进行解的改进。
在初始方案表中以(丙,A)出发作一闭回路,利用闭回路进行调整,得到的结果如表
3-4 所示:
表 3-4
A
B
C
D
供应量
甲
7
6
483Leabharlann M145 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台
乙
10 5
6
6
8
M
16
丙
0
3
四、简答题 1.用表上作业法解运输问题时,在什么情况下会出现退化解?当出现退化解时如何处理? 答:当运输问题某部分产地的产量和,与某一部分销地的销量和相等时,在迭代过程中 间有可能在某个格填入一个运量时需同时划去运输表的一行和一列,这时就出现了退化。 当出现退化时,为了使表上作业法的迭代工作能顺利进行下去,退化时应在同时划去的 一行或一列中的某个格中填入数字 0,表示这个格中的变量是取值为 0 的基变量,使迭代过 程中基变量个数恰好为(m+n-1)个。
采用最小元素法得初始调运方案如表 3-2 所示:(因为基格个数=7-1=6 个,故在一空
格中填入 0)
表 3-2
A
B
C
D
供应量
甲
7
6
48
3
M
14
乙
10 5
6
6
8
M
16
丙
3
50
8 15 7
15
4 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台
需求量
10
12
2.一个运输问题,如果其单位运价表的某一行元素分别加上一个常数,最优调运方案 是否发生变化,试说明理由(用表或直接用公式);[武汉大学 2007 研]
第3章 运输问题
第三章运输问题一、选择1、运输问题在用表上作业法计算得时候,用闭回路法进行调整检验时,通过任一空格可以找到( )闭回路A、惟一B、多个 C、零个D不能确定2、在产销不平衡得运输问题中,如果产大于销,我们(B )把她变成一个产销平衡得运输问题A 假想一个产地B 假想一个销地C 去掉一个产地D 没有办法3、最小元素法得基本思想就就是( D)。
A依次供应B全面供应 C 选择供应D就近供应4、运输问题中在闭回路调整中,使方案中有数字得格为( C )。
A m B n C m+n D m+n-15、在表上作业法中,调运方案中有数字得格为( C )Am+n B m-n Cm+n-1 D m*n6、运输问题得数学模型中,包含有(D)变量。
A m+n Bm-n C m+n-1 Dm*n7、运输问题得数学模型中,包含有(A)个约束条件。
A m+nB m-n Cm+n-1 D m*n8、运输问题得数学模型中,系数矩阵中线性独立得列向量得最大个数为(C)Am+n B m-n C m+n-1 Dm*n9、运输问题得解中得基变量数一般为(C )A m+nB m-nC m+n-1D m*n10、运输问题中,在检验数表上所有检验数都(C ),此时运输表中给出得方案就就是最优方案。
A大于零B等于零C大于等于零D小于零11.在产销不平衡得运输问题中,如果销大于产时,可以在产销平衡表上( A),把她变成一个产销平衡得运输问题A 假想一个产地B 假想一个销地C 去掉一个产地D 没有办法12、运输问题数学模型得特点之一就是( )A一定有最优解B不一定有最优解C 一定有基可行解D不一定有基可行解13、运输问题得数学模型得约束条件得系数矩阵得元素由()组成。
A 0B1C0,1D不确定14、二、填空1、求解不平衡得运输问题得基本思想就是(设立虚供地或虚需求点,化为供求平衡得标准形式) 。
2、运输问题中求初始基本可行解得方法通常有(最小元素法)、(伏格尔法)两种方法。
运筹学 第三章 运输问题
mn
Min Z = cij xij i1 j1 m xij =ai (i=1, ..., m)产量约束 i 1 n xij =bj(j=1, ..., n)销量约束 j1
xij ≥ 0(i=1, ..., m;j=1, ..., n)
15
2. 伏格尔法(Vogel)
例5
销地 产地
A1
B1 3
②
B2
B3
11
3
⑤
B4
ai
10 7 0 0 0 0
1
A2
①
9
2③ 8 4 1 1 1 1
A3
7
4
⑥
10
③
5 9 12 - -
bj
3
6
5
6 20
2513
2 - 13
2 - 12
2-1-
Z=2×3 +1×1+6×4+5×3+3×8+3×5=85 16
0
2.决策变量xij的系数列向量为:
1
i位 置
aij
1
m
j位 置
3. 线性无关的行数为m+n-1.
0
5
四、闭回路
1. 概念
例3
销地 产地
A1
A2
A3 bj
B1
B2
B3
B4
ai
3
11 ④
3 ③
10 7
1 ③
9
2
①
84
7
4
⑥
10 ③
59
3
6
5
6 20
1) 数字格 2) 空格
第三章:CPLEX在运输问题中的应用
T3 2 禁止 3 2 1 0 4 1 8 2 4
T4 4 3 2 1 2 4 0 1 禁止 2 6
B1 4 9 3 2 4 1 1 0 3 4 1
ቤተ መጻሕፍቲ ባይዱ
B2 8 5 11 8 5 8 禁止 3 0 1 2
B3 8 6 4 4 2 2 2 4 1 0 3
B4 4 3 2 6 7 4 6 1 2 3 0
B1 A1 A2 A3 A4 销量 5 3 4 20-60 B2 9 4 6 8 50-70 B3 2 7 4 10 35 B4 3 8 2 11 45 产量 60 40 30 50
总产量为180,最低需求量为20+50+35+45=150, 最高需求量为210. 设一个虚拟的厂A5,其产量为210-180=30,并且 令A5只能供应B1或B2. 将B1和B2进行拆分,得到的产销平衡表如下:
例4: 光明公司是一家专门提供盒装早餐的企业, 现在该公司的经营方式是通过全市不同未 知的三个生产车间(设为Ai,i=1,2,3)为4 个配送站(设为Bj,j=1,2,3,4)提供质量一 致的早餐。光明公司现在拥有自己的运输 车队,并在每天4点前必须完成所有的配送 业务。公司还有4个中转站(Tk, k=1,2,3,4),其运价表如下表:
四、非标准运输问题的建模与求解
运输问题的一般模型会发生一些如下变化: 1.当某些运输线路的运输能力有一定限制时, 这时要在线性规划的模型的约束条件上要 加上运输能力限制的约束条件。例如 A2 运 到 B3的物品的数量受到运输能力的限制, 最多运送180单位,这时只要在原来的模型 上加上约束条件x23≤180 即可。也有这种情 况:有些线路规定不能运输。
计算机网络 第三章 运输层(练习题)
第3章运输层练习题一、选择题1.当一个TCP报文段到达目的主机时,通过什么来定向套接字?A.封装报文段的数据报中的源IP地址B.目的端口号C.源端口号D.以上所有答案:D提示:TCP套接字是通过一个四元组:(IP地址,源端口号,目的IP地址,目的端口号)来标识的。
当一个TCP报文段从网络到达一台主机时,主机使用全部四个值来将报文段定向(多路分解)到相应的套接字。
2. UDP具有以下哪些特征?A.在服务器上维护连接状态信息B.通过三次握手建立连接C.调节发送速率D.以上都不是答案:D3.当一个UDP报文段到达某个主机时,为了将报文段提交给合适的套接字,操作系统使用:A.源IP地址B.源端口号C.目的端口号D.以上全部答案:C提示:UDP套接字是由一个包含目的IP地址和目的端口号组成的二元组来全面标识的。
在多路分解时,目标主机通过检查报文段中的目的端口号,将报文段定向到相应套接字。
4.在什么样的情况下,停止等待协议的效率会变得很低:疑难:▇重点:★一般:▲了解:◆自学:※3章运输层A.当源主机和目的主机之间的距离很近而且传输速率很高时B.当源主机和目的主机之间的距离很远而且传输速率很高时C.当源主机和目的主机之间的距离很近而且传输速率很低时D.当源主机和目的主机之间的距离很远而且传输速率很低时答案:B提示:使用停止等待协议,发送方在确认接收方已经正确地接收了当前传送的分组之前不会发送新的数据。
所以在传输效率很高的前提下,主机之间距离越远,不必要的等待时间就越长。
流水线操作具有以下哪些特点:A.发送方必须能缓存它已发送了但还没有收到确认的分组B.每一个正在传输的分组具有独一无二的顺序号C.发送方在收到确认信号之前可传输多个分组D.以上都是答案:D6.TCP什么时候对报文段采用快速重传?A.报文段的定时器过期B.估计往返时延过长C.收到之前发出的一个报文段的三个重复ACK以上都不是答案:C提示:当接收方检测到数据流中出现了缺失,它会简单的对收到的最后一个有序字节给出重复确认,即产生一个该数据的重复的ACK。
运筹学(胡运权第三版)第三章 运输问题
§1 运 输 问 题 及 其 数 学 模 型
二、运输问题数学模型的特点:
1. 运输问题一定有最优解;基变量的个数 =m+n-1
2. 运输问题约束条件的系数矩阵:
x11 x12
1 1 1
…
x1m x21 x22
1 1 1
…
x2m
1
… xm1
1
解 的 最 优 性 检 验
1.闭回路法 闭回路:从空格出发,遇到数 字格可以旋转90度,最后回到空 格所构成的回路; 原理:利用检验数的经济含义; 检验数:非基变量增加一个单 位引起的成本变化量。 当所有非基变量的检验数均大 于或等于零时,现行的调运方案 就是最优方案,因为此时对现行 方案作任何调整都将导致总的运 输费用增加。 闭回路法的主要缺点是:当变 量个数较多时,寻找闭回路以及 计算两方面都会产生困难。
B4
11
-1
产量
16
10 22 48
ui
A1 A2
A3 销量 vj
2
10
1 10
9 6
1 0
-4
8 14
5 12
8
14
2
检验数σ
9
3
10
13=8-(-4)-2=10;
2.对偶变量法(位势法)
解 的 最 优 性 检 验
m in Z = c 1 1 x 1 1 + c 1 2 x 1 2 + ... + c 1 n x 1 n + ... + c m 1 x m 1 + c m 2 x m 2 + ... + c m n x m n
第三章 运输问题的特殊解法
收点 发点 A1 A2 A3 销量
B1 2 1
B2
B3 5
B4
产量 75 4 1 93 20
B1 3 1 7 2
B2 11 9 4 5
B3 3 2 10 1
B4 12 8 5 4 3
行差 0 1 2 1
3 6 3 5 6 3 6
32
对应的目标函数值为: 对应的目标函数值为:
z=3×2+3×5十1×1十8×3+4×6十5×3=85(元) = × + × 十 × 十 × + × 十 × = 元
收点 发点 A1 A2 A3 销量
B1
B2
B3 4
B4 3 3 63
产量 73 41 93 20
B1 3 1 7 ①
B2 11 9 4 ④
B3 3 2 10 ③
B4 12 8 5 ⑥ ② ⑤
3 3 6 6
1 54
对应的目标函数值为: 对应的目标函数值为:
z=3×4+12×3十1×3十2×1+4×6十5×3=92(元) = × + × 十 × 十 × + × 十 × = 元
收点 发点 A1 A2 A3 销量 3 6 5 6 B1 B2 B3 B4 产量 7 4 9 20 B1 3 1 7 B2 11 9 4 B3 3 2 10 B4 12 8 5
(一)确定初始调运方案
1、最小元素法 、
思路:就近供应,优先安排运价最小的收发点之间 的物资调运量,然后次小,直到给出初始基可行解 解题步骤: 解题步骤:
min s = cx
矩
T
阵 形 式
(2)产大于销时 )
min s = ∑∑ cij xij
i =1 j =1
m
n
n ∑ xij ≤ ai (i = 1,2, L, m) j =1 m ∑ xij = b j ( j = 1,2, L, n) i =1 xij ≥ 0(i = 1,2, L, m; j = 1,2, L, n)
管理运筹学第三章运输问题
供 = 5 应 地 = 2 约 = 3 束 = 2 = 3 需 求 = 1 地 = 4 约 束 ≥ 0
第二节 表上作业法求初始解、 初始值 一、西北角法 (梯形下降)
运价 收点
(元/吨)
B1 B2 B3 B4
4 18 30 0 14 4 4
发量 (吨)
4
0 0 0
发点
A1
2
12 5 20 25
10
015 4 20
4
第二节 表上作业法求初始解、 初始值 初始解: 初始值:
X12=4吨 • S0=4×12+4×10+1×25+6×15 X14=4吨 • +4×14+1×18 X22=1吨 X23=6吨 •=48+40+25+90+56+18 X31=4吨 X32=1吨 • =277元<329元(起点优于西北角法) 变量个数=行数加列数减1 20吨
发量 5 (吨)
3 1 0《产大于需》增加源自5虚拟收点B1 B2 B3 B4 B
2 1
(元/吨)
4
A1 A2 A3
收 量(吨)
2 10 7
0
311
3
2 4
4
3 9 3 2 6 0
0 7 0 5 0 7
0
2
0
3 8
0
5 1
3 0
2 4
0
2
3
4
19
初 始 可 行 解 : 初 始 值 : S0=22+41+04+33+92+14 C 23 X11=2吨 +23=45元 C12 X14=1吨 =11-4+9-3>0; = 5-9+2-1=C 25 C13 3 X15=4吨 C 21 X22=3吨 =3-4+2-1=0 C31 ; = 0-0+4-9=5 C 32 C 35 X24=2吨 Cij C25 5; X25 进基 X33=4吨 =10-2+4-9>0; =7-2+4-2>0 X34=3吨
《运筹学》习题集汇总
第一章线性规划1.1 将下述线性规划问题化成标准形式 1 min z =-3x 1 + 4x 2 - 2x 3 + 5 x 4st.4x 1 - x 2 + 2x 3 - x 4 =-2 x 1 + x 2 - x 3 +2 x4 ≤ 14 -2x 1 + 3x 2 +x 3 -x 4 ≥ 2 x 1 ,x 2 ,x 3 ≥ 0,x 4 无约束2 min z = 2x 1 -2x 2 +3x 3- x 1 + x 2 + x 3 = 4 -2x 1 + x 2 -x 3 ≤ 6 x 1≤0 ,x 2 ≥ 0,x 3无约束st。
1.2用图解法求解LP 问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1 min z =2x 1+3x 24x 1+6x 2≥6st 2x 1+2x 2≥4 x 1,x 2≥02 max z =3x 1+2x 2 2x 1+x 2≤2 st 3x 1+4x 2≥12x 1,x 2≥03 max z =3x 1+5x 2 6x 1+10x 2≤120 st 5≤x 1≤103≤x 2≤84 max z =5x 1+6x 2 2x 1-x 2≥21.3 找出下述LP 问题所有基解,指出哪些是基可行解,并确定最优解(1)min z =5x 1-2x 2+3x 3+2x 41st -2x 1+3x 2≤2 x 1,x 2≥0x 1+2x 2+3x 3+4x 4=7 st 2x 1+2x 2+x 3 +2x 4=3x 1,x 2,x 3,x 4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1 maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02 maxz =2x 1+x 23x 1+5x 2≤15 st 6x 1+2x 2≤24x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
国际物流第三章练习题
国际物流练习题(二)一、单选题1.在实际业务中,FOB条件下,买方常委托卖方代为租船、订舱,其费用由买方负担,如到期订不到舱,租不到船,( A )。
A.卖方不承担责任,其风险由买方承担 B.卖方承担责任,其风险也由卖方承担C.买卖双方共同承担责任、风险 D.双方均不承担责任,合同停止履行2.某公司与国外一家公司以EXW条件成交了一笔买卖,在这种情况下,其交货地点是在( C )。
A.出口国港口B.进口国港口 C.出口商工厂 D 进口商仓库3.《INCOTEMS 2000》C 组贸易术语与其它各组贸易术语的重要区别之一是( C )。
A. 交货地点不同B. 风险划分地点不同C. 风险和费用划分的地点相分离 D运输方式不一样4.按 CIF 术语成交的合同,货物在运输途中因火灾被焚,应由( C )。
A. 卖方负担货物损失B. 卖方负责请求保险公司赔偿C. 买方负责请求保险公司赔偿D. 船公司负担货物损失5. CIF 和 CFR 两种贸易术语相比,就卖方承担的风险而言,( C )。
A.CIF 比 CFR 大B.CFR 比 CIF 大C.CIF 与 CFR 相同6. 在使用下列何种贸易术语进行交易时,卖方及时向买方发出“已装船通知”至关重要,因为它将直接影响买卖双方对运输途中的风险承担。
( D )A. CIPB. DESC. FCAD. CFR7.根据《INCOTERM2000》,买方负责出口报关的贸易术语是( A )。
A.EXW B.FOB C.CIF D.FAS8.我外贸公司按 FOB 条件从国外进口一批散装化肥,采用程租船运输,如买方不愿负担装船费用,应在合同中规定使用( C )。
A.FOB Liner TermsB.FOB under TackleC.FOB TrimmedD.FOB Stowed9.按 CIF Singapore 条件成交出口大宗商品,程租船运输,卖方欲不负担卸货费,应采用( C )。
运筹学第三章课后习题答案
5
表3-29
销地 B1
B2
B3
B4
产量
产地
A1
3
7
6
4
5
A2
2
4
3
2
2
A3
4
3
8
5
6
销量
3
3
3
2
解:(1)表3-28用三种方法计算,用闭回路法检验。 ①用最小元素法计算如下表所示
2020/1/1
6
① 最小元素法求解如下:
销地 B1
B2
B3
B4
产量
产地
A1
4 5 1 34
68
⑤
A2 A3 销量
51
2020/1/1
17
①最小元素法求解:
销地 B1
B2
产地
A1
13
7
A2
22
4
A3
4
33
销量
3
3
B3
B4 B5 产量
6 3 28 2
1 4 30
2
0
15 0
2
3
5⑤ 2② 6⑧
③
④
⑦
⑥
①
x11=1,x14=1,x15=3,x21=2,x32=3,x33=2,x34=1,总 费用=1×3+1×4+3×0+2×2+3×3+2×8+1×5=41
量 1 2 34
4 51 34
6 8 302
④
A2 A3 销量
31
2
25
30 8 1 1 5
⑤
3
7 15
1 4 224 ⑥
6
5
6
3
列12 罚22 数3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
i a j b i
A j
B 1A 2A 3A 1B 2B 3B 4B 311310719284741059
365620
运输问题
作业
题目1:对下表所给运输问题: (1) 用西北角法求初始解;(2)用最小元素法求初始解,并求出最优解
解:
(1) 用西北角法求初始解:
131421243234(,,,,,)(3,4,2,2,3,6)B x x x x x x x *T T ==
(2) 用最小元素法求初始解:
2
用位势法求最优解:
由于241a =-,所以表3-49所示的解不是最优解,选择24a 为进基变量,闭回路如上图,调整为下图所示基可行解。
由此看出检验数均为非负,即位最优解,此时
131421243234(,,,,,)(5,2,3,1,6,3)B x x x x x x x *T T ==111222233133(,,,,,)(0,0,0,0,0,0)D x x x x x x x *T T ==
3
351021381465385f *=⨯+⨯+⨯+⨯+⨯+⨯=
5.题目
123123123X X X Y Y Y a a a 设有和三个化肥厂供应和三个化肥厂,有关参数如表,假设三个化肥厂供应量和必须全部运完。
建模使总运量最优。
i
x 1
x 2x 3x j
y 1y 2y 3y ij
w i a 单位运价'j
b "
i b 供应量506040
16132214--19--2023700
30
70
30不限
解答:最低需求总量:7030100.+=
供应总量:
506040150++=
3301501008070308018018015030
y ∴+∴++=∴-=最高需求量为(-)=最高需求量为供应量缺少
1
23451
2345
1613222250
1419196020232340
0030
70
30
30
50
B B B B B A A M A M A M M A
4
题目3
某厂月底安排某一产品在下月四周生产计划。
估计每件产品在第一周与第二周的生产成本为150元,后两周的生产成本为170元,各周产品需求量分别为700件,800件,1000件和1200件,工厂每周至多生产产品900件,在第二周,第三周可加班生产。
加班生产时每周可增产三百件,但生产成本每件需增加30元。
过剩产品的储存费为每周15元,安排生产,使总成本最小,建立运输模型。
解答:
700800100012003700900900300900
300900
4200
42003700
500
+++=+++++=-
=需求总量:最高需求量:
需求缺少:
1
2345
123
456150165180195
9001501651800900180195210030017018509002002150300
170
0900700
800
1000
1200
500
i
j
B B B B B a A A M A M A M M A M M A M M M
b。