BlackScholes期权定价模型(2)
bs模型定价公式
bs模型定价公式一、布莱克 - 斯科尔斯(Black - Scholes,BS)模型定价公式概述。
1. 公式的基本形式。
- 对于欧式看涨期权的定价公式:C = S_0N(d_1)-Ke^-rtN(d_2)- 对于欧式看跌期权的定价公式:P = Ke^-rtN( - d_2)-S_0N( - d_1)- 其中:- S_0是标的资产的当前价格。
- K是期权的执行价格。
- r是无风险利率(连续复利)。
- t是期权的到期时间(以年为单位)。
- σ是标的资产价格的波动率。
- N(x)是标准正态分布的累积分布函数,x = d_1或者d_2。
- d_1=frac{ln(S_0 / K)+(r+frac{σ^2}{2})t}{σ√(t)}- d_2 = d_1-σ√(t)2. 公式中各参数的意义。
- 标的资产当前价格S_0- 这是在当前时刻标的资产(如股票、期货等)的市场价格。
它是确定期权价值的基础,如果标的资产价格上涨,看涨期权价值可能增加,看跌期权价值可能减少(在其他条件不变的情况下)。
- 执行价格K- 是期权合约中规定的,在到期日时可以按照该价格买入(对于看涨期权)或卖出(对于看跌期权)标的资产的价格。
执行价格与标的资产当前价格的相对关系对期权价值有重要影响。
当S_0> K(对于看涨期权)时,期权处于实值状态,有更大的内在价值。
- 无风险利率r- 无风险利率反映了资金的时间价值。
在BS模型中,无风险利率越高,执行价格的现值Ke^-rt越低,对于看涨期权价值有正向影响,对看跌期权价值有反向影响(因为看涨期权持有者希望以更低的现值购买资产,而看跌期权持有者希望以更高的现值出售资产)。
- 到期时间t- 期权距离到期日的剩余时间。
一般来说,到期时间越长,期权的价值越高(在其他条件不变的情况下)。
对于看涨期权,较长的到期时间给予标的资产更多的时间上涨超过执行价格;对于看跌期权,给予更多时间下跌低于执行价格。
- 标的资产价格的波动率σ- 波动率衡量了标的资产价格的波动程度。
期权定价及风险参数或希腊字母计算公式一览
期权定价风险参数/希腊字母计算公式一览一、Black —Scholes 期权定价模型Black —Scholes 期权定价模型适用于无红利欧式期权的定价,看涨期权定价公式如下:)()(2)(1d N Ke d SN C t T r ---=其中:t T t T r K S d --++=σσ))(2()ln(21;t T d d --=σ12。
二、风险参数/希腊字母Delta :对标的物价格进行一阶求导,反映的是期权价格对标的物价格的敏感程度。
)(1d N Delta C =;1-)(1d N Delta P =Gamma对标的物价格进行二阶求导,反映的是期权价格对Delta 的敏感度。
t T s d N Gamma Gamma P C -)(1σ'==Vega对波动率进行一阶求导,反映的是期权价格对标的物波动率的敏感程度。
t T S d N Vega Vega P C -'==)(1Theta对时间进行一阶求导,反映的是期权价格对时间流逝的敏感程度。
)(2)(2)(1d N rKe tT S d N Theta t T r C ----'-=σ )-(2)(2)(1d N rKe tT S d N Theta t T r P --+-'-=σ Pho对无风险收益率进行一阶求导,反映的是期权价格对无风险收益率的敏感程度。
)()(2)(d N e t T K ho t T r C ---=ρ)-()(-2)(d N et T K ho t T r P ---=ρ 此外,极值波动率的计算公式为: ∑==N i i i l h N 12)ln(2ln 41σ。
布莱克—舒尔斯期权定价模型
布莱克—舒尔斯期权定价模型期权定价是现代金融学中一项非常重要的内容,同时也是一个比较复杂、难度较大的问题。
目前关于期权定价主要有两种方法:(1)二项式模式;(2)布莱克—舒尔斯期权定价模型(B-S 模型)。
较为适用的是布莱克—舒尔斯期权定价模型。
布莱克—舒尔斯期权定价模型是美国经济学家布莱克—舒尔斯于1973年提出来的。
这是现代金融学金融衍生工具研究领域的一个重大突破,布莱克—舒尔斯因此获得了1997年诺贝尔经济学奖。
1、 基本原理:(模型建立的基础)期权的完全套期保值功能,即期权具备完全消除股票投资组合中市场风险的套期保值功能。
2、 假设条件:(1) 市场是无摩擦的:即不计佣金费用,无交易成本,没有卖空限制,可以根据市场情况经常地调整套期保值的比率,调整期权与股票的比率。
(2) 在期权到期前,股票不支付股利。
(3) 在期权到期前,无风险利率r 和股票收益的方差2σ保持不变。
(4) 股票价格变化是连续的,不会发生突然及大的波动。
3、 基本公式:在上述原理及假设条件的基础上,布莱克—舒尔斯提出了这样一个公式:TTr X S T d d TTr X S d d N Xe d N S C rT σσσσσ)5.0()/ln()5.0()/ln()()(20122012100-+=-=++=-=-其中:其中:0C 为期权价格;0S 为股票当前的价格;)(d N 为服从于标准正态分布的随机变量小于d 的概率;即:}{)1,0(,N Y d y P -<X 为协定价格;e 为2.71828;r 为无风险利率(以连续复利计算) t 为距离到期日所剩的时间,单位为年 σ为股票收益率的标准差。
在这个公式中,)(1d N 、)(2d N 代表期权到期是处于实值的概率,也就是能够执行给投资者带来实质性收益的概率。
如果假定1)()(21==d N d N ,也就是看涨期权极其有可能被执行。
公式的解释:期权价值=内在价值+时间价值期权到期前处于三种状态,虚值—平价—实值时间价值虚值 协定 实值 价格(平价) 从这个图形可以看出,随着股价的进一步升高,期权到期被执行的可能性越来越大,相应地,期权的内在价值越来越大,其价格波动的可能性即时间价值越来越小。
Black-Scholes期权定价模型和特性
Black-Scholes期权定价模型和特性Black-Scholes期权定价模型是一个广泛应用于金融市场的数学模型,它被用来计算欧式期权的价格。
该模型是由美国经济学家费希尔·布莱克(Fischer Black)和莱蒙德·斯科尔斯(Myron Scholes)于1973年开发的,并获得了1997年诺贝尔经济学奖。
Black-Scholes模型基于一些假设,包括市场无摩擦、标的资产价格服从几何布朗运动、无风险利率恒定不变、期权可以无限制地买卖等。
它利用随机微分方程和偏微分方程来描述期权价格的变化以及与标的资产价格和时间的关系。
Black-Scholes模型的公式如下:C = S*N(d1) - X*e^(-r*T)*N(d2)P = X*e^(-r*T)*N(-d2) - S*N(-d1)其中,C代表期权的买入价格,P代表期权的卖出价格,S代表标的资产的当前价格,X代表期权的行权价格,r代表无风险利率,T代表期权的时间,在期权到期日之间的年份,N(d1)和N(d2)代表标准正态分布的累积分布函数。
Black-Scholes模型的特性有以下几点:1. 理论完备性:Black-Scholes模型是一个完备的期权定价模型,可以通过输入特定的参数来计算期权的价格。
它提供了一种可行的方法,用来解决期权定价的问题。
2. 自洽性:Black-Scholes模型是自洽的,意味着如果市场满足了模型的所有假设条件,那么模型计算的期权价格将与实际市场价格一致。
3. 敏感性分析:Black-Scholes模型可以用来分析期权价格对各个因素的敏感性。
通过改变模型中的参数,例如标的资产价格、无风险利率、期权行权价格和时间等,我们可以研究它们如何影响期权的价格。
4. 适用性:Black-Scholes模型广泛适用于欧式期权的定价,包括股票期权、货币期权和商品期权等。
然而,对于美式期权和一些特殊类型的期权,Black-Scholes模型可能不适用。
期权二叉树定价模型
期权二叉树定价模型期权二叉树定价模型是一种常用的金融衍生品定价模型,用于计算期权合约的公平价格。
该模型基于二叉树的数据结构,将时间分为离散的步长,在每个步长上模拟期权的价格变化。
在期权二叉树定价模型中,二叉树的每个节点表示期权的一个可能价格,树的每一层表示时间的一个步长。
从根节点开始,根据期权的流动性和到期前可执行的次数,构建二叉树模型。
在每个节点上,计算期权的价值,以确定其合理价格。
在构建二叉树模型时,需要考虑期权的标的价格、波动率、到期时间和无风险利率等因素。
这些因素将被用来计算每个节点上的期权价格。
在每个步长上,通过向上或向下移动树的节点,模拟标的价格的波动,从而更新节点上的期权价格。
在二叉树的叶子节点上,期权的价值是已知的,可以直接计算。
在其他节点上,通过对未来价格的概率分布进行加权,计算期权的合理价格。
树的最后一层即为到期时间,即期权到期时的状态。
根据到期状态计算出期权的现值,并通过向根节点回溯,确定期权的公平价格。
期权二叉树定价模型的优点在于能够在离散时间步长上快速确定期权的价格,并且可以灵活地应用于不同类型的期权合约。
此外,该模型对于包含多个期权合约的复杂结构,如欧洲期权、美式期权和亚洲期权等,也具有较高的适用性。
然而,期权二叉树定价模型也存在一些局限性。
首先,该模型假设标的价格的波动服从几何布朗运动,这在实际市场中并不成立,因此模型的有效性有一定的限制。
其次,通过选择适当的步长数和树的深度来平衡精确度和计算效率是一个挑战。
总的来说,期权二叉树定价模型是一个常用且有效的金融工具,可以用于估计期权合约的公平价格。
该模型基于二叉树的数据结构,通过离散时间步长模拟期权的价格变化,并通过回溯计算确定期权的公平价格。
虽然该模型存在一定的局限性,但在实际应用中仍被广泛应用。
期权二叉树定价模型是一种基于离散时间步长和二叉树结构的金融衍生品定价模型。
它是Black-Scholes模型的一种改进方法,通过模拟期权价格的变化来计算期权的公平价格。
对期权定价模型的偏微分方程分析--Black-Scholes期权定价模型
对期权定价模型的偏微分方程分析--Black-Scholes期权定
价模型
Black-Scholes(BS)期权定价模型是20世纪70年代由Fisher Black、Myron Scholes和Robert Merton独立发明和发展的。
BS模型将期权定价问题转化为偏微分方程问题,并提供了一种通过经济因素来解决期权定价的方法。
BS模型假设股票价格服从几何布朗运动,并使用随机微分方程来描述它们的漂移和随机波动性。
该模型还假定期权的价格服从Black-Scholes PDE:
$$\\frac{\\partial V}{\\partial
t}+\\frac{1}{2}\\sigma^2S^2\\frac{\\partial^2 V}{\\partial S^2}+rS\\frac{\\partial V}{\\partial S}-rV=0$$
其中,$V(S,t)$是期权价格,$S$是标的资产价格,
$\\sigma$是波动率,$r$是无风险利率,$t$是时间。
该方程可以被解释为投资组合在动态套利环境中的漂移和随机波动性,其中投资组合由一单股票和一个期权组成。
该方程的求解需要使用特殊函数,如Black-Scholes方程的解析解。
这个解析解有助于我们理解期权价格如何受到各种因素的影响,例如股票价格、波动率、时间和无风险利率。
总之,BS模型的偏微分方程分析提供了一种方法,使我们能够根据标的资产价格、波动率、时间和无风险利率来定价期权。
Black-Scholes期权定价模型
Black-Scholes 期权定价模型我们在第五章用二叉树定价方法介绍了动态无套利均衡分析方法并引入了风险中性假设。
本章将通过介绍Black-Scholes 期权定价模型来深化这些概念。
在该模型中我们假设标的资产遵循几何布朗随机过程(这是一个特殊的马尔可夫过程)。
因此在讨论之前,我们必须作一些有关概念和数学知识的准备。
一、预备知识(一)正态和对数正态分布1、均值为μ,方差为σ2的正态分布随机变量x 的密度函数为:)2)(exp(21)(22σμσπ--=x x f ⑴ 如果正态变量的均值为0,方差为1,则称为标准正态随机变量,它的密度于分布函数分别为n(x )和N (x )表示,这里2221)(x ex n -=π dt e x N x t ⎰∞--=2221)(π2、如果x 是均值为x μ,方差为2x σ的正态分布变量,那么称x e Z =是对数正态分布的,其中)2exp(2xx Z σμμ+=且]1))[exp(2exp(222-+=x x x Z σσμσ。
证明:由于x ~),(2x x N σμ,则x 的密度函数为)2)(exp(21)(22xx xx x f σμσπ--=又因为x e Z =,则Z 的密度函数为 )2)(ln exp(21])([ ))(()(2211xx x Z ZZ g Z g f Z g σμσπ--='=--。
Z 的截断均值,定义为):(a Z Z E >,其值为:)ln ()2exp()(1)2exp( )22)]([exp(21)2)(exp(2 )( )():(2ln 222ln 24222ln 22x xx xx a xxx xxx axxx x x x xa xx x x x aaN dx x n dx x dx x e e Z dZ Z Zg a Z Z E σσμσμσσμσσμσσσμσμσπσμσπ+-+=--+=--+--=--===>⎰⎰⎰⎰∞+∞+∞++∞当0→a 时,截断均值成为普通的均值,则对数正态变量Z 的均值即为:)2exp(2xx Z σμμ+= (2)其中)()(x N x n 和分别表示为标准正态分布的密度和分布函数。
第十一章Black-Scholes-Merton期权定价模型
Myron Scholes
(1941-)
由于他给出了著名的Black-Scholes期权定价公式, 该法则已成为金融机构涉及金融新产品的思想方法, 由此获得1997年的诺贝尔经济学奖。
求学与供职简历:
1941年出生于加拿大;1962年在Mc-Master大学 获学士学位;1964年获芝加哥MBA学位;1968年获 芝加哥大学商学院金融学博士学位;1969年获芝加哥 大学经济学博士学位;1972-1983执教芝加哥大学; 1983年至今执教斯坦福大学。
d xa (x,t)d t b (x,t)d z(11.6)
其中,dz仍为标准布朗运动;a和b是变量x和t 的函数,变量x的漂移率为a,方差为b2。
在此基础上,伊藤进一步推导出,若变量x遵 循伊藤过程,则变量x和t的函数G(x,t)将遵循如下 过程:
14
d G ( G xa G t1 2 2 x G 2b2)d t G xb d z (11.7)
8
根据伊藤引理(ItôLemma,1961),当股票价格 符合几何布朗运动时,作为股票衍生品的期权价 格f将服从:
d f ( f S f 1 2fSFra bibliotek t 2 S 2
2 S 2 )d t f S d z S
(11.2)
可以发现,影响期权价格的随机因素也体现在等式 右边的第二项的dz上,所以,股票价格及其衍生产品— —期权价格都只受到同一种不确定性的影响,其区别在 于随机因素dz前面的系数不同,也就是随机因素变化的 反应程度不同。
5
第一节 B-S-M期权定价模型的基本思路
6
本章涉及到随机过程等较为复杂的概念,为了便 于理解,我们首先对B-S-M模型的整体思路做一个 简要的归纳,以便大家更好的掌握期权定价的内 容。
Black-Scholes期权定价模型
Black-Scholes期权定价模型Black-Scholes期权定价模型是一种能用来计算股票期权价格的数学模型。
它是由费希尔·布莱克和默顿·斯科尔斯于20世纪70年代初提出的,因此得名。
该模型的基本假设是市场条件持续稳定,且不存在利率和股票价格变动的趋势。
此外,它还假设股票价格服从几何布朗运动,即价格的波动是随机的。
根据这些假设,Black-Scholes模型将股票价格与利率、期权行权价、到期时间以及波动率等因素联系起来,以计算期权的合理价格。
Black-Scholes模型的公式为:C = S_0 * N(d1) - X * e^(-r * T) * N(d2)其中,C为期权的价格,S_0为股票的当前价格,N(d1)和N(d2)分别为标准正态分布函数的值,X为期权的行权价,r为无风险利率,T为期权的到期时间。
d1和d2是通过一系列数学计算得出的。
利用Black-Scholes模型,投资者可以根据个人的风险偏好和市场条件来评估一个期权的合理价格。
它对市场参与者来说是一种有用的工具,因为它能够帮助他们理解和衡量期权的价值。
然而,Black-Scholes模型也存在一些局限性。
首先,它假设市场条件持续稳定,而实际上市场是非常复杂和动态的。
其次,它假设股票价格服从几何布朗运动,这在现实中并不总是成立。
另外,模型中的波动率是一个固定的参数,而实际上波动率是随着时间和市场条件的变化而变化的。
因此,在使用Black-Scholes模型时,投资者需要慎重考虑其局限性,并结合其他因素和分析来作出投资决策。
此外,人们也一直在尝试改进这个模型,以更好地适应实际市场的复杂性和动态性。
Black-Scholes期权定价模型是金融领域中最著名的定价模型之一。
它提供了一个基于几何布朗运动的股票价格模型,可以计算欧式期权的合理价格。
该模型的公式给出了欧式期权的理论价格,而不考虑市场上的任何其他因素。
Black-Scholes模型的創始人费希尔·布莱克和默顿·斯科尔斯在1973年发布了这一模型,并以此获得了1997年诺贝尔经济学奖。
(最新整理)BLACK-SCHOLES期权定价模型
BLACK-SCHOLES期权定价模型
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(BLACK-SCHOLES期权定价模型)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为BLACK-SCHOLES期权定价模型的全部内容。
正态分布变量的累积概率分布函数,
—
其中
,~可以证明,相对价格期望值大于
之中。
中国金融体制不健全、资本市场不完善,但是随着改革的深入和向国际化靠拢,资本市场将不断发展,汇兑制度日渐完善,企业也将拥有更多的自主权从而面临更大的风险.因此,对规避风险的金融衍生市场的培育是必需的,对衍生市场进行探索也是必要的,人们才刚刚起步.。
BLACKSCHOLES期权定价模型计算公式套用数据
BLACKSCHOLES期权定价模型计算公式套用数据Black-Scholes期权定价模型是一种用于计算欧式期权价格的数学模型,它基于以下假设:资产价格的波动性是已知且恒定的、市场无摩擦、无风险利率是已知且恒定的、欧式期权只能在到期日行使以获得支付。
根据Black-Scholes模型,欧式期权的价格可以通过以下公式计算:C=S*N(d1)-X*e^(-rT)*N(d2)P=X*e^(-rT)*N(-d2)-S*N(-d1)其中C表示认购期权的价格P表示认沽期权的价格S表示标的资产的当前价格X表示期权的行权价格r表示无风险利率T表示剩余期限,单位为年份d1 = (ln(S/X) + (r + σ^2/2)T) / (σ * √T)d2=d1-σ*√TN(d)和N(-d)是标准正态分布函数。
标准正态分布函数可以通过查找Z表或使用计算机程序进行近似计算。
在应用Black-Scholes模型时,需要提供以下数据:1.标的资产的当前价格(S)2.期权的行权价格(X)3.无风险利率(r)4.剩余期限(T)(以年为单位)5.标的资产的波动率(σ)下面举一个实例来说明如何使用Black-Scholes模型计算期权价格。
假设只股票的当前价格为100美元,期权的行权价格为105美元,无风险利率为5%,剩余期限为6个月(0.5年),股票的波动率为20%。
首先,根据给定的数据,计算d1和d2:d1 = (ln(100/105) + (0.05 + 0.2^2/2) * 0.5) / (0.2 * √0.5) d2=d1-0.2*√0.5然后,使用标准正态分布函数计算N(d1)、N(d2)、N(-d1)和N(-d2)的值。
假设N(d1)=0.6、N(d2)=0.5、N(-d1)=0.4和N(-d2)=0.3接下来,根据公式可计算出认购期权和认沽期权的价格:C=100*0.6-105*e^(-0.05*0.5)*0.5=7.16美元P=105*e^(-0.05*0.5)*0.3-100*0.4=3.84美元因此,在给定的条件下,该认购期权的价格为7.16美元,认沽期权的价格为3.84美元。
第六章 black-schols期权定价模型
的值
相互独立。
考察变量z在一段较长时间T中的变化情形,我们可得:
(6.2)
N
z(T ) z(0) i t i 1
T i
(6.2)式t均值0为0,方差为
( 是相互独立的 )
当
时d,z我们就可dt以得到极限的标准布朗运动:
(6.3)
2.普通布朗运动
我们先引入两个概念: 漂移率和方差率。
标准布朗运动的漂移率为0,方差率为1.0。
( f t
1 2
2 f S 2
2S 2 )t
r( f
f S
S )t
布莱克——舒尔斯微分分程
化简为:
f rS f t S
1 2S2
2
2 f S 2
rf
(6.18)
这就是著名的布莱克——舒尔斯微分分程,它 适用于其价格取决于标的证券价格S的所有衍生 证券的定价。
(二)风险中性定价原理
假设所有投资者都是风险中性的, 那么所有现金流量都可以通过无 风险利率进行贴现求得现值。
我们令漂移率的期望值为a,方差率的期望值为b2,就可得到变量x 的 普通布朗运动:
dx adt bdz
其中,a和b均为常数,dz遵循标准布朗运动。
(6.4)
(三)伊藤过程 普通布朗运动假定漂移率和方差率为常数,若
把变量x的漂移率和方差率当作变量x和时间t的
函数,dx我们a可(以x,从t )公dt式(b6(.x4), 得t )d到z伊藤过程
S f
t
1 2
2 f S 2
2S
2
)dt
f S
Sdz
(6.10)
根据伊藤引理,衍生证券的价格 f 应遵循如
伊藤引理证明:
BLACK-SCHOLES期权定价模型
BLACK-SCHOLES期权定价模型Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。
他们创立和发展的布莱克-斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础,特别是为评估组合保险成本、可转换债券定价及认股权证估值等提供了依据。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式(看涨和看跌)。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表。
所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型(含红利的)。
默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。
(一)B-S模型有5个重要的假设1、金融资产收益率服从对数正态分布;(股票价格走势遵循几何布朗运动)2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本;4、该期权是欧式期权,即在期权到期前不可实施;5、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷。
(二)荣获诺贝尔经济学奖的B-S 定价公式)()(21d N Le d SN c rT --=其中:C —期权初始合理价格L —期权交割价格S —所交易金融资产现价T —期权有效期r —连续复利计无风险利率2σ—年度化方差(波动率)N()—正态分布变量的累积概率分布函数,(标准正态分布 μ=0)在此应当说明两点: 第一,该模型中无风险利率必须是连续复利形式。
布莱克斯克尔斯期权定价模型
布莱克斯克尔斯期权定价模型汇报人:日期:目录CATALOGUE•引言•布莱克斯克尔斯模型原理•模型应用•模型优势与局限•布莱克斯克尔斯模型与其他模型的比较•未来展望与研究方向01 CATALOGUE引言1背景介绍23布莱克斯克尔斯模型起源于1973年,由费雪·布莱克斯克尔斯(Fischer Black)和迈伦·斯科尔斯(Myron Scholes)提出。
当时,该模型是为了解决金融衍生品,特别是期权定价的问题而建立的。
金融衍生品是一种金融合约,其价值取决于其他金融资产或指标。
模型发展历程布莱克斯克尔斯模型的发展得益于许多重要的突破,其中包括无套利原则:模型利用无套利原则,这意味着在市场上不能通过买卖资产来赚取无风险利润。
欧式期权定价:该模型适用于欧式期权,即只能在到期日行使的期权。
随机过程:模型运用随机过程来描述股票价格的变化。
模型应用领域布莱克斯克尔斯模型被广泛应用于金融衍生品市场,包括期权:该模型用于定价欧式和美式期权。
互换:该模型用于定价利率互换和其他类型的互换合约。
其他衍生品:该模型还可用于定价其他金融衍生品,如期货、认股权证等。
02CATALOGUE布莱克斯克尔斯模型原理基础概念布莱克斯克尔斯模型是一种用于定价欧式期权的数学模型,该模型基于随机过程,并使用偏微分方程来描述。
在该模型中,期权价格被表示为时间t和股票价格S的函数,用C(t,S)表示。
股票价格服从几何布朗运动,即dS = μSdt + σSdwt,其中μ是股票的预期收益率,σ是股票的波动率,wt是威纳过程。
布莱克斯克尔斯模型的期权定价公式为:C(t, S) = SN(d1) - Ke^(-r)(T-t)N(d2),其中N是正态分布函数,d1和d2是由模型参数确定的公式。
d2 = d1 - σ√(T - t)K 是期权的执行价格,r 是无风险利率,T 是到期时间,t 是当前时间,σ是股票的波动率。
d1 = (ln(S/K) + (r + 0.5σ^2)(T - t)) / (σ√(T - t))期权定价公式参数确定方法参数σ(波动率)通常由历史数据估计得出,也可以使用市场波动率作为其近似值。
BlackScholes期权定价模型(2)
独立。
特征的理解
特征1: 特征2: 马尔可夫过程:只有变量的当前值才与未来的 2024/预1/29 测有关,变量过去的历史和变量从过去到现在的演5
标准布朗运动〔续〕
考察变量z在一段较长时间T中的变化情形:
z〔T〕-z(0)表示变量z在T中的变化量
这正好与μ作为预期收益率的定义相符。
2024/1/29
15
〔2〕股票价格对数收益率服从正态分 布 由于dG实际上就是连续复利的对数收益率。
因此几何布朗运动实际上意味着对数收益率遵 循普通布朗运动,对数收益率的变化服从正态 分布,对数收益率的标准差与时间的平方根成 比例。
将t与T之间的连续复利年收益率定义为η,那
衍较生长证时券间的段定后价的与连标续的复资利产收的益预率期的收期益望率值等μ是于无关的22。 ,这是因 为较长时间段后的连续复利收益率的期望值是较短时间内收益率 几何平均的结果,而较短时间内的收益率那么是算术平均的结果。
σ:
是证券价格的年波动率,又是股票价格对数收益率的年标准差
因此一般从历史的价格数据中计算出样本对数收益率的标准差, 再对时间标准化,得到年标准差,即为波动率的估计值。
时间变化。这就是伊藤过程。
I假to设引变理量dGx遵(循Gx a伊 G藤t 过12 2x程G2 b,2)dt那 G么x bd变z 量x和t的函数G将遵
循如下过程:
b都是x和(tG其的x )2中函b2 ,数z,遵因循此一函个数标G准也布遵朗循运伊动藤。G过x a由程 于,Gt a它12和2xG2 b2
几何布朗运动的深入分析
在很短的时间Δt后,证券价格比率的变化值 为: S t t
BS期权定价公式
Black-Scholes 期权定价模型一、Black-Scholes 期权定价模型的假设条件Black-Scholes 期权定价模型的七个假设条件如下:1. 风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。
S 遵循几何布朗运动,即dz dt SdS σμ+=。
其中,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率,σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。
μ和σ都是已知的。
简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一是单位时间内已知的一个收益率变化μ,被称为漂移项,可以被看成一个总体的变化趋势;二是随机波动项,即dz σ,可以看作随机波动使得股票价格变动偏离总体趋势的部分。
2.没有交易费用和税收,不考虑保证金问题,即不存在影响收益的任何外部因素。
3. 资产价格的变动是连续而均匀的,不存在突然的跳跃。
4. 该标的资产可以被自由地买卖,即允许卖空,且所有证券都是完全可分的。
5. 在期权有效期内,无风险利率r 保持不变,投资者可以此利率无限制地进行借贷。
6.在衍生品有效期间,股票不支付股利。
7.所有无风险套利机会均被消除。
二、Black-Scholes 期权定价模型(一)B-S 期权定价公式在上述假设条件的基础上,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的Black-Schole 微分方程:rf S f S S f rS t f =∂∂+∂∂+∂∂222221σ 其中f 为期权价格,其他参数符号的意义同前。
通过这个微分方程,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的定价公式:)()(2)(1d N Xe d SN c t T r ---=其中,t T d tT t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln())(2/()/ln(c 为无收益资产欧式看涨期权价格;N (x )为标准正态分布变量的累计概率分布函数(即这个变量小于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。
(完整)BLACK-SCHOLES期权定价模型
BLACK—SCHOLES期权定价模型Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。
他们创立和发展的布莱克-斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础,特别是为评估组合保险成本、可转换债券定价及认股权证估值等提供了依据。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式(看涨和看跌)。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表。
所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型(含红利的)。
默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。
(一)B—S模型有5个重要的假设1、金融资产收益率服从对数正态分布;(股票价格走势遵循几何布朗运动)2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本;4、该期权是欧式期权,即在期权到期前不可实施;5、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷。
(二)荣获诺贝尔经济学奖的B-S定价公式)()(21d N Le d SN c rT --=其中:C-期权初始合理价格 L —期权交割价格 S —所交易金融资产现价 T —期权有效期r -连续复利计无风险利率2σ—年度化方差(波动率)N ()—正态分布变量的累积概率分布函数,(标准正态分布 μ=0)在此应当说明两点:第一,该模型中无风险利率必须是连续复利形式。
基于Black-Scholes期权定价公式的增发新股定价模型
基于Black-Scholes期权定价公式的增发新股定价模型摘要:借助于实物期权的思想和方法,建立基于BS期权定价公式的增发新股定价模型,对增发的新股进行定价,并用实例进行分析,利用此定价方法计算得出的价格与实际增发价格进行比较,探讨了增发新股价格的合理性。
关键词:增发新股 BS定价模型期权增发新股(SEO)定价比同于首次发行(IPO)定价之处在于,它不仅要满足发行公司的集资要求,而且要保证增发公司的股本结构、财务结构稳健,并尽可能减少对二级市场股价的影响。
下面用Black-Scholes方程构造的增发新股定价模型就是基于二级市场股价走势的一个定价模型。
1. 增发新股的BS定价模型假设A公司在时刻增发新股,增发价为。
若投资者预期上市后时刻股价会上涨,则购买增发的新股,这样投资者就拥有了未来股价上涨获利的机会。
一旦股价上涨,投资者卖出股票获利。
一旦股价下跌,投资者持股不动。
因此,投资者购买新股可看作是购入了一个看涨期权。
增发新股的价值也就包括两部分:一部分是股票的内在价值,另一部分是拥有的股票上涨获利的机会的价值。
对获利机会的定价也就是对一个看涨期权的定 = +(1)增发新股获利机会的定价。
投资者在增发日(时刻)购买新股,该项投资到时刻的期望价值为,其中:为无风险利率。
若时刻股票市价,则投资者获利为。
若,则投资者持股不动,这一获利机会的价值为0。
这就是对股票上涨获利机会的定价。
其中时间取决于投资者的预期,可能是1个月、2个月、3个月、半年或一年。
本文涉及时间是以年为单位,且所有时间均是按交易天数计,即一年为252个交易日,半年为126个交易日。
(2)增发新股内在价值的定价。
对股票内在价值的定价,理论值为其中:为年红利;为每年红利增长率;为无风险利率。
由于我国多数投资者购买股票不是为了股息而是为了获取更多价差,且许多上市公司是采用送红股的方式代替现金红利,给股东回报,且每年支付红利无规律可循,所以不易计算该理论值。
期权定价的Black-Scholes-Merton模型
dƒ
ƒ S
mS
ƒ t
½
2ƒ S 2
s2S
2
dt
ƒ S
sS
dz
W e set up a portfolio consisting of
1: derivative
+ ƒ : shares S
22
Black-Scholes 微分方程的推导
The value of the portfolio is given by ƒ ƒ S S
函数的过d程x 。a数x,学td表t 达b式x为,t:dz
其中,参数a和b是标的变量 x 和 t 的函数。
股票价格的 Itoˆ 过程
dS mSdt sSdz
其中,m是期望收益率,s是波动率。 等价地,离散时间过程表示为
DS mSDt sS Dt蒙特卡罗模拟 蒙特卡罗模拟是一种工具,可用来评估在 未来某个时期可能实现的各种不同损益的 可能性。它是通过模拟市场价格和波动率 的变动,得到在某个指定时期该证券组合 盈亏的整个概率分布。对于包含许多不同 标的资产的证券组合,在已知这些标的资 产之间相关性的条件下,蒙特卡罗模拟可 用于评估该组合的风险。
N(d 1)e– qT 支付股息率为q 的欧式看跌期权的delta值为
e– qT [N (d 1) – 1]
39
Delta对冲
对冲策略要不断的调整,这种调整过程被 称为再平衡
Delta对冲一个书面的期权涉及到“买高, 卖低” 交易规则
40
运用期货的Delta对冲
期货合约的delta值是现货交易合约的e(r-q)T倍 因此用于delta对冲期货合约的头寸是对应现
Black-Scholes期权定价模型解析
虑任何交易成本和其他费用
二、无收益资产的期权定价公式
• (一)无收益欧式看涨期权的价格
c SN (d1) Xer(T t) N (d2 )
(1)
式中:N(d)为标准正态分布函数值。
• 使用Black-Scholes期权模型可能出现一下问题:
• 1. 计算错误; • 2. 期权市场价格偏离均衡; • 3. 使用的参数错误;
• 4. Black-Scholes期权定价模型建立在众多假定
的基础上,假设与市场实际情况有较大偏差。
d1
ln( S
/
X)
(r 2 T t
/ 2)(T
t)
d2
ln(S
/
X
)
(r T
2
t
/
2)(T
t)
d1
T t
(T-t)为期权的剩余期限,r为无风险利率,X为期权的行权价 格, σ为标的资产价格波动率,S为标的资产价格。
(二)无收益欧式看跌期权的价格
• 在标的资产无收益情况下,由于C=c,因此式(1) 也给出了无收益资产美式看涨期权的价值。
• 近似为7.2824元。
2.美式看跌期权
• 由于收益虽然使美式看跌期权提前执行的可能性减 小,但仍不排除提前执行的可能性,因此有收益美 式看跌期权的价值仍不同于欧式看跌期权,它也只 能通过较复杂的数值方法来求出。
• Black-Scholes不合用于美式期权的定价。
四、Black-Scholes微分分程
欧式期货期权的定价公式
• 对于欧式期货期权,其定价公式为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征的理解
特征1: z N 0, t ;方差为t。
特征2: 马尔可夫过程:只有变量的当前值才与未来的预测有关, 变量过去的历史和变量从过去到现在的演变方式与未来的预测 无关。标准布朗运动符合马尔可夫过程,因此是马尔可夫过程 的一种特殊形式。
adt为确定项,它意味着x的期望漂移率是每单位时间为a。 第二项bdz是随机项,它表明对x的动态过程添加的噪音。这 种噪音是由维纳过程的b倍给出的。
可以发现,任意时间长度后,x值的变化都具有正态 分布特征,其均值为aT,标准差为 ,方差为b2T.
bT
2020/10/7
7
Ito过程和Ito引理
伊藤过程(Ito Process):
2020/10/7
5
标准布朗运动(续)
考察变量z在一段较长时间T中的变化情形:
z(T)-z(0)表示变量z在T中的变化量
又可被看作是在N个长度为Δt的小时间间隔中z的变化总量,其中
N=T/ Δt 。
N
很显然,这是n个相互独立的正态分布的和:z(T ) z(0) i t
i 1
因此,z(T)-z(0)也具有正态分布特征,其均值为0,方差为N Δt
研究变量运动的随机过程,可以帮助我们了解 在特定时刻,变量取值的概率分布情况。
2020/10/7
3
随机过程
随机过程是指某变量的值以某种不确定的方式 随时间变化的过程。
随机过程的分类
离散时间、离散变量 离散时间、连续变量 连续时间、离散变量 连续时间、连续变量
2020/10/7
4
几种随机过程
基本假设:证券价格所遵循的随机过程:
dS Sdt Sdz或 dS dt dz
S
其中,S表示证券价格,μ表示证券在单位时间内以连续复利 表示的期望收益率(又称预期收益率),σ2 表示证券收益 率单位时间的方差,σ表示证券收益率单位时间的标准差, 简称证券价格的波动率(Volatility),z遵循标准布朗运动。 一般μ和σ的单位都是年。
当Δt 0时,我们就可以得到极限的标准布朗运动 dz dt
2020/10/7
6
普通布朗运动
变量x遵循普通布朗运动: dx adt bdz
其中,a和b均为常数,z遵循标准布朗运动。 这里的a为漂移率(Drift Rate),是指单位时间内变量x均值
的变化值。
这里的b2为方差率(Variance Rate),是指单位时间的方差。 这个过程指出变量x关于时间和dz的动态过程。其中第一项
在股票价格遵循的随机过程和衍生证券价格遵循的随机过程中, Black-Scholes发现,由于它们都只受到同一种不确定性的影响,如 果通过买入和卖空一定数量的衍生证券和标的证券,建立一定的 组合,可以消除这个不确定性,从而使整个组合只获得无风险利 率。从而得到一个重要的方程: Black-Scholes微分方程。
Black-Scholes期权定价模型
2020/10/7
1
Black-Scholes期权定价模型的基本思路
期权是标的资产的衍生工具,其价格波动的来源就是标的资产价 格的变化,期权价格受到标的资产价格的影响。
标的资产价格的变化过程是一个随机过程。因此,期权价格变化 也是一个相应的随机过程。
金融学家发现,股票价格的变化可以用Ito过程来描述。而数学家 Ito发现的Ito引理可以从股票价格的Ito过程推导出衍生证券价格所 遵循的随机过程。
标准布朗运动(维纳过程 )
起源于物理学中对完全浸没于液体或气体中,处于大量微小 分子撞击下的的小粒子运动的描述。
设Δt代表一个小的时间间隔长度,Δz代表变量z在Δt时间 内的变化,遵循标准布朗运动的Δz具有两种特征:
特征1: z t
其中,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分 布)中取的一个随机值。
很显然,这是一个漂移率为μS、方差率为σ2S2的伊藤过程。 也被称为几何布朗运动
2020/10/7
9
为什么证券价格可以用几何布朗运动 表示?
一般认同的“弱式效任何对预测证券价格未来变动有用的信 息。
马尔可夫过程:只有变量的当前值才与未来的预测有关,变量过去 的历史和变量从过去到现在的演变方式与未来的预测无关。
求解这一方程,就得到了期权价格的解析解。
2020/10/7
2
为什么要研究证券价格所遵循的随机 过程?
期权是衍生工具,使用的是相对定价法,即相 对于证券价格的价格,因此要为期权定价首先 必须研究证券价格。
期权的价值正是来源于签订合约时,未来标的 资产价格与合约执行价格之间的预期差异变化, 在现实中,资产价格总是随机变化的。需要了 解其所遵循的随机过程。
几何布朗运动的随机项来源于维纳过程dz,具有马尔可夫性质, 符合弱式假说。
投资者感兴趣的不是股票价格S,而是独立于价格的收益率。投资 者不是期望股票价格以一定的绝对价格增长,而是期望股票价格 以一定的增长率在增长。因此需要用百分比收益率代替绝对的股 票价格。
其中,dGz遵(循Gx a一 个Gt 标 12准2xG布2 b朗2)dt运 动Gx 。bdz由于a 和b都是x和t的函 数,因此函数G也遵循伊藤过程,它的漂移率为
方差率为
( G )2 b2 x
G x
a
G t
1 2
2G x2
b2
2020/10/7
8
证券价格的变化过程
目的:找到一个合适的随机过程表达式,来尽量准确 地描述证券价格的变动过程,同时尽量实现数学处理 上的简单性。
=T,标准差为 T 。
为何定义为:
z t而非z t
当我们需要考察任意时间长度间隔中的变量变化的情况时,独立的
正态分布,期望值和方差具有可加性,而标准差不具有可加性。这 样定义可以使方差与时间长度成比例,不受时间划分方法的影响。
相应的一个结果就是:标准差的单位变为 年
连续时间的标准布朗运动:
普通布朗运动假定漂移率和方差率为常数,若把变量x的漂 移率和方差率当作变量x和时间t的函数,我们就得到
dx a(x,t)dt b(x,t)dz
其中,z遵循一个标准布朗运动,a、b是变量x和t的函数, 变量x的漂移率为a,方差率为b2都随时间变化。这就是伊藤 过程。
Ito引理
若变量x遵循伊藤过程,则变量x和t的函数G将遵循如下过程: