最新弹性力学 第2章边界条件(6,7)
弹性力学课后答案
弹性力学课后答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设 )。
2-14 见教科书。
2-15 2-16 见教科书。
见教科书。
2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,及转动量,再令 ,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
第二章 弹性力学基础知识
z C
z
A
O
应变的正负: 正应变: 伸长时为正,缩短时为负;
剪应变: 以直角变小时为正,变大时为负; x
x P
y
B 代表一点 P 的邻域内线段与线段间夹角的改变
x yx zx
xy xz y yz zy z
z
Z
Q
符号:X、Y、Z为体力矢量在坐标轴上的投影
k i
X
O j
V Y
y
正负号:X、Y、Z 的正负号由坐标方向确定。 x 如:重力,磁场力、惯性力等
15
(2) 面力 —— 作用于物体表面单位面积上的外力。
Q —— 面力分布集度(矢量) F lim S 0 S
F Xi Yj Z k
剪应力互等定理
O x
xz xy y y yx yz x zy zx z
y
yx
zx
zy yz
应力符号的意义(P8)
第2个下标 y 表示τ的方向. 应力正负号的规定(P8) 正应力—— 拉为正,压为负。 剪应力—— 坐标正面上,与坐标正向一致时为正; 坐标负面上,与坐标正向相反时为正。 20
6
2.1弹性力学的基本假定 为什么要提出基本假定? 任何学科的研究,都要略去影响很
小的次要因素,抓住主要因素,从而建立
计算模型,并归纳为学科的基本假定。
7
弹性力学中的五个基本假定。
关于材料性质的假定及其在建立弹 性力学理论中的作用: (1)连续性--假定物体是连续的。 因此,各物理量可用连续函数表示。
·
C y
28
前面的主要内容:
基本假定: (1) 连续性假定; (2) 完全弹性假定; (3) 均匀性假定; (了解这些假定的作用) (4) 各向同性假定;
第二章 弹性力学基础知识
3. 均匀性假定 假定整个物体是由同一材料组成的。 假定整个物体是由同一材料组成的。这样,整个物体的 所有各部分才具有相同的弹性,因而物体的弹性常数才不会 随位置坐标而变,可以取出该物体的任意一小部分来加以分 析,然后把分析所得的结果应用于整个物体。如果物体是由 多种材料组成的,但是只要每一种材料的颗粒远远小于物体 而且在物体内是均匀分布的,那么整个物体也就可以假定为 均匀的。 4. 各向同性假定 假定物体的弹性在各方向都是相同的。 假定物体的弹性在各方向都是相同的。即物体的弹性常 数不随方向而变化。对于非晶体材料,是完全符合这一假定 的。而由木材、竹材等作成的构件,就不能当作各向同性体 来研究。至于钢材构件,虽然其内部含有各向异性的晶体, 但由于晶体非常微小,并且是随机排列的,所以从统计平均 意义上讲,钢材构件的弹性基本上是各向同性的。
τ
P ΔA
ΔQ
n
σ
(法线 法线) 法线
应力分量 单位: 单位:
应力的法向分量 应力的切向分量
σ
—— 正应力 —— 剪应力
τ
与面力相同
MPa (兆帕)
应力关于坐标连续分布的
σ = σ (x, y, z) τ =τ (x, y, z)
(2) 一点的应力状态
通过一点P 通过一点 的各个面上应力状况的集合 —— 称为一点的应力状态 x面的应力: 面的应力: 面的应力 σ x ,τ xy ,τ xz y面的应力: 面的应力: 面的应力 z面的应力: 面的应力: 面的应力
一 平衡微分方程 • 从弹性体内任一点取出微元体,建立弹性 从弹性体内任一点取出微元体, 体内一点的应力分量与体力分量之间的关 系。
对于平面问题, 对于平面问题,分析平衡方程
取微元体PABC(P点附近), ( 取微元体
弹性力学第3版王光钦第二章习题解答
- 7 -第二章 弹性力学的基本方程和一般定理习题2-1 已知矩形截面杆件自由端受力P 的作用而发生横向弯曲,如图所示,梁的高度为h ,力P 的分布规律为)4(222y h J P p --=,不计体力,按材料力学方法求得应力分量为式中J 为截面惯性矩,试检查该应力分量是否满足平衡方程和边界条件。
解:1)将应力分量代入平衡微分方程 (1) (2)(3)考虑体力分量均为零,则由(1)式得左边===+-0JPy J Py 右边 题2-1图- 8 - 将应力分量代入平衡微分微分方程的(2)、(3),显然平衡微分方程满足。
2)应力边界条件 n m l T zx yx x x ττσ++= (4) n m l T zy y xy y τστ++= (5)n m l T z yz xz z σττ++=(6)这里必须注意:应力边界条件必须满足所有的边界,而不是仅仅求出待定常数。
下面考虑上边界 i )上边界0,1,0===n m l ,0,0,0===z y x T T T将上式代入(4)、(5)、(6)式,得0)(2==hy yx τ 0)(2==h y y σ 0)(2==h y yz τ上式就是简化后的边界条件。
必须强调的是:在考察边界条件时,需将已知的边界坐标值代入表达式。
将应力分量代入上面三式,显然三式成立。
ii )下边界0,1,0=-==n m l ,0,0,0===z y x T T T将上式代入(4)、(5)、(6)式,得0)(2=-=hy yx τ 0)(2=-=h y y σ 0)(2=-=h y yz τ将应力分量代入上面三式,显然三式成立。
- 9 -iii )右边界0,0,1===n m l ,,0=x T )4(222y h J P T y --=0,=z T 应注意:所有的面力都是与坐标正向一致为正。
将上式代入(4)、(5)、(6)式,得0)(==l x x σ)4(2)(22y h J P lx xy --==τ0)(==l x xz τ同样,在检验边界条件时,应该将l x =的值代入,显然三式成立。
弹性力学 第2章边界条件(6,7)
x, y , x, y ,
y xy
独立的(3个)
x x, y ,
z
x, y , x, y
y xy
独立的(3个) 3、位移分量
(3个)
ux, y , vx, y , w 独立的(2个) ux, y , vx, y (2个)
一.圣维南原理的叙述
描述-1、如果把物体的一小部分边界上 的面力以等效力系(主矢及主矩均为相同) 代换,则在加载附近的的应力发生显著变 化,而在稍远处的影响可忽略不计,亦即 与载荷在边界上的作用形式无关。 描述-2、如果物体在一小部分边界上的 面力是一个平衡力系(主矢及主矩均为 零),则面力就只会使近处产生显著的应 力,远处的应力可忽略不计。
单元体斜面恰为边界面则 面力分量与坐标面应力的 关系有应力边界条件
x yx
f yn Y
xy l f x y m f y s
注意:以上在推导时,斜 面上的应力px,py采用矢量 符号规定-与面力相同。
叠加原理
• 叠加原理:两组外力同时作用在物体上 所产生的结果等于他们分别作用产生的 结果之和。 • 证明概要:只需注意方程都是线性的, 同时边界条件也是线性的即可。 • 推广:以上两组外力可以推广到n组外力。 • 分解原理:根据叠加原理,可以把原问 题分解成几个简单的问题单独求解。
§2-7.圣维南原理(局部性原理)
xy l f x y s m f y
x 上面:l=0,m=-1 左面: 右面: l=-1 l=1 m=0 m=0 下面:l=0,m=1 y
(2).上下两面 l 0 ) f ( ( m 1 ) f
弹性力学基础(二)
给定作用在物体全部边界或内部的外界作用(包括温度影响、外力等), 求解物体内由此产生的应力场和位移场。
对物体内任意一点,当它处在弹性阶段时,其应力分量、应变分量、 位移分量等15个未知函数要满足平衡方程、几何方程、本构方程,这15个 泛定方程,同时在边界上要满足给定的全部边界条件。
定解条件:
满足基本方程和边界条件的解是存在的,而且在小变形条件下,对于受 一组平衡力系作用的物体,应力和应变的解是唯一的。
7.6 弹性力学问题的基本解法
7.6.1 位移法 以位移作为基本未知量,将泛定方程用位移u,v,w来表示。
sx
2G
x
u 1 2u
sy
2G
y
u 1 2u
sz
2G
z
u 1 2u
t xy 2G xy t yz 2G yz t zx 2G zx
t zx z
Fbx
0
t xy x
s y y
t zy z
Fby
0
t xz x
t yz y
s z z
Fbz
0
将本构关系代入到平衡方程中
x
2u
Fbx
0
y
2v Fby
0
z
2w
Fbz
0
u j, ji ui, jj 0
式中▽2为拉普拉斯(Laplace)算子
2u 2u 2v 2w x2 y 2 z 2
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
w y
zx
w x
u
z
将几何关系代入到本构关系中
弹性力学简明教程 第2章 平面问题的基本理论
一 、求AB面上的正应力σn和切应力τn
设px、py为斜面AB的应力p在x、y 轴上的投影。斜面 AB的长度为 ds, 则AB=ds, PB=lds, PA=mds 。 由平衡条件∑Fx=0 得:
l ds m d s p x ds x l ds xy m ds f x 0 2
除以ds ,然后令ds→0, 得:
B'
一、位移与形变
刚体位移
如果各点(或部分点)间的相对距离发生变化, 则物体发生了变形。这种变形一方面表现在微 线段长度的变化,称为线应变;一方面表现在 微线段间夹角的变化,称为切应变。
O
A
O
A'
B
B'
二、几何方程
几何方程——描述任一点的微线段上形变分量 与位移分量之间的关系。 P点的形变分量与位移分量的关系?
0 l 1
当 l2 = 1 时,
0 l 2 1
n nmax 1 ( 1 2 ) 2 1
当 l2 = 0 时,
n n min 2
可见:两个主应力就是最大与最小的正应力。
五、求最大与最小的切应力
任意斜面上的切应力 n lm( y x ) (l 2 m 2 ) xy
y
二、几何方程
PA的线应变在小变形
时是由x 方向的位移 引起的,因此PA的线 应变为
P' A' PA x PA
o u
P
x
u
dx
v
P'
A
u dx x
A'
v
v dx x
y
u (u dx) u AA' PP' u x dx PA x v (v dx) v v x PA的转角为 dx x
第2章 弹性力学的基本知识
(2)均匀性假设:假定物体内各点处材料均相同。
(3)各向同性假设:假定物体内各点处各个方向上的物理性质相同。
(4)完全弹性假设:胡可定律
(5)几何假设——小变形假设: 变形产生的位移与物体的尺 寸相比 ,是微小的。
关于外力、应力、应变和位移的定义
1.外力
体力 (定义)分布在物体体积内的力,如重力、惯性力等。 分为体积力(体力)和表面力(面力)两类。 有限元分析也使用集中力这一概念。
以通过一点的沿坐标正向微分线段的 正应变ε和 切(剪)应变 γ 来表示。 正应变εx ,εy , εz 以伸长为正。
切应变γxy , γyz ,γzx 以直角减小为正, 用弧度表示。 正应变和切应变都是无因次的量 应变列阵 x y z xy yz zx
Tຫໍສະໝຸດ 4. 位移材力研究方法
也考虑这几方面的条件,但不是十分严格的:常常引用近 似的计算假设(如平面 截面假设)来简化问题,并在许多 方面进行了近似的处理。 因此材料力学建立的是近似理论,得出的是近似的解答。 从其精度来看,材力解法只能 适用于杆件形状的结构。
★ 弹塑性力学研究问题的基本方法
在受力物体 内任取一点 (单元体)为 研究对象。
写成矩阵形式:
ε=
σ
ε=φσ 显然: φ=D-1
三、平衡方程
弹性体中任一点满足平衡方程, 在给定边界上满 足应力边界条件。
弹力的研究方法
在体积V内 由微分体的平衡条件,建立平衡微分方程; 由微分线段上应变与位移的几何关系,建立几何方程; 由应力与形变之间的物理关系,建立物理方程; 在边界 S 面上
x
二、物理方程
若弹性体只有单向拉伸或压缩时,根据材料 力学胡克定律:
弹性力学-边界条件
yx
x
P y
fx
n
l cosn, x cos m cosn, y sin
xy
由 x s m xy s f x xy s m y s f y
fy
x s cos yx s sin 0
h 2 h 2
h 2 h 2
f x ydy M
则边界条件可以写成(P.23 (b)):
x x l
dy Fx ,
xy x l
dy Fy ,
x x l
ydy M
悬臂梁的例子:
y
h 2 h 2
y y x
h 2 h 2
x
P
L
L
对边界条件的积分为: (P.23 (b)):
x yx
xy l fx y s m fy
x 上面:l=0,m=-1 左面: 右面: l=-1 l=1 m=0 m=0 下面:l=0,m=1 y
(2).上下两面 ( ) f l 0 m 1 ( ) f
二、应力边界条件 在边界上的楔形体(单位厚度)如图所示: 弹性体内单元体斜面上的 y 应力分量与坐标面应力的 yx 关系有(静力平衡) f xn X x p x x xy l p y m y yx
• 所得到的应力分量必须在所有边界上各点处严 格满足应力边界条件,才是所论问题的解答。 • 在小边界上,如果不能严格满足边界条件,可 以用圣维南原理在静力等效意义上满足(积分 意义上的)边界条件。 • 根据这个原理:两组面力其分布尽管不同,但 如果两者的合力与合力矩相同(静力等效),此 时它们所产生的作用结果仅仅在局部有比较大 的差异,远离这个局部,结果基本相同。
弹性力学-边界条件
1 (
y x) s
f
x
o
x
上面:l=0,m=-1
左面:
右面:
l=-1
l=1
m=0
m=0
下面:l=0,m=1 y
边界面于坐标轴平行时的简单写法: 每个边界条件只含有一个应力分量(l=0 or m=0) 边界上的面力按应力分量的符号规定,不考虑l,m
图中的面力采用矢量 符号规则
举例:
yxx
xy y
s
l m
f f
x y
fYyn
注意:以上在推导时,斜 面上的应力px,py采用矢量 符号规定-与面力相同。
应力边界条件的写法是:左端为边界上微元体的 应力分量;右端为面力分量。可以各自采用各 自的符号规定。但需要用边界的方向余弦
O yyຫໍສະໝຸດ l cos m sin
x yx
xy y
s
l m
f f
x y
x s cos
xy
sin
s
0
xy
cos
s
y
sin
s
0
y
唯一性定理
• 表述-1:在没有初始应力的情况下,如果边界 条件足以确定全部刚体位移,则弹性力学边值问 题的解答是唯一的。
cos
yx
s in
s
0
xy
cos
s
y
s in
s
0
x
s
ytg 2
p
第2章 弹性力学基本理论
x
u
z
z
z 0
0
0
z
u v
0
w
y
x
3、物理方程(应力与应变之间的关系)
x
1 E
x y z
y
1 E
y z x
•微观上这个假设不成立——宏观假设。
2. 均匀性假设
•——假设弹性物体是由同一类型的均匀材料组成的。 因此物体各个部分的物理性质都是相同的,不随坐标 位置的变化而改变。
•——物体的弹性性质处处都是相同的。
•工程材料,例如混凝土颗粒远远小于物体的几何形 状,并且在物体内部均匀分布,从宏观意义上讲,也 可以视为均匀材料。
——在弹性体的平衡等问题讨论时,可以不考虑因 变形所引起的尺寸变化。
——忽略位移、应变和应力等分量的高阶微量,使 基本方程成为线性的偏微分方程组。
6. 无初始应力假设
——假设物体处于自然状态,即在外界因素作用之前, 物体内部没有应力。
弹性力学求解的应力、位移仅仅是外力、边界约 束或温度改变而产生的。
向或负面上的应力沿坐
x
图1-7
标负向为正。
口诀:正面正向或负面负向的应力为正。
例:应力和面力的符号规定有什么区别?试分别画 出正面和负面上的正应力和正的面力的方向。
Oz
x
y
注意:
弹性力学
材料力学 图1-8
(3)注意弹性力学切应 力符号和材料力学是有 区别的。在图1-8中, 弹性力学里,切应力都 为正,而材料力学中相 邻两面的符号是不同的, 顺时针转动为正。
弹性力学-第二章
(a)
(b)
y
o
z
a
b
x
(c) 刚性槽
2.平面问题的应力边界条件 设在S 部分边界上给定了面力分量 f x ( s) 和 f y ( s) , 则可由边界上任一点微分体的平衡条件,导出应力 与面力之间的关系式。
0 o y P y
tyx txy
x
B
y
fx
A
x
P
x
fy
fx
n
fy
f
斜面上的应力
由式 (2-3)
x=-b为负x 面
l cos n, x cos180 1
m cos n, y cos 90 0
(σ x ) xb f x , (t xy ) x b f y
n
b a x
fx fy
σx
σx
fx fy
t xy
y
t xy
应力边界条件的两种表达式: (1)公式写法 公式写法通常只用于 边界为非坐标面时
x=a为正x 面
l cos n, x cos 0 1
m cos n, y cos 90 0
(σ x ) xa f x , (t xy ) xa f y
b a x
n
fx fy
σx
σx
fx fy
t xy
y
t xy
当边界面为坐标面时
(l x mt xy ) s f x ( s) (m y lt xy ) s f y ( s)
( 2) 斜边 y x tan
l cos n, x cos 90 sin
m cos n, y cos
《弹性力学》第二章_平面问题的基本理论
o
xy
x
y
P
yx
y
A
XN
x
设AB面在xy平面内的长度为dS, 厚度为一个单位长度,N为该面的外 法线方向,其方向余弦为:
B
N
N
N
cos(N , x) l , cos(N , y) m
9
YN S
图2 - 4
斜面AB上全应力沿x轴及y轴的投影分别为XN和YN。由PAB 的平衡条件 Fx 0 可得: X N dS xldS yxmdS
2.主应力的方向
1 与 2 互相垂直。
11
§2-4
几何方程、刚体位移
在平面问题中,弹性体中各点都可能产生任意方向的位移。 通过弹性体内的任一点P,取一单元体PAB,如图2-5所示。弹性 体受力以后P、A、B三点分别移动到P′、A′、B′。 一、P点的正应变
u (u dx) u u x x dx x
二、P点的剪应变
线段PA的转角:
同理可得线段PB的转角:
u y
所以
xy
v u x y
13
因此得到平面问题的几何方程:
u x x v y y v u xy x y
由几何方程可见,当物体的位移分量完全确定时,形变 分量即可完全确定。反之,当形变分量完全确定时,位移分 量却不能完全确定。
z
E
( x y )
16
二、平面应变问题的物理方程 1 2 x ( x y ) E 1 1 2 y ( y x ) E 1 2(1 ) xy xy E 三、平面应力的应力应变关系式与平面应变的关系式之间的 变换关系 1 ( ) y 将平面应力中的关系式: x E x
弹性力学-02
l ( x ) s m( xy ) s X m( y ) s l ( xy ) s Y cos 1 x sin 1 xy 0
cos 1 x sin 1 xy 0
sin 1 边界条件及其分类
边界条件:建立边界上的物理量与内部物理量间的关系。 是力学计算模型建立的重要环节。 O (1)位移边界 S u 边界分类 (2)应力边界 S (3)混合边界 —— 三类边界 x q
S
P
(1)位移边界条件
位移分量已知的边界 —— 位移边界 用 us 、 vs表示边界上的位移分量,u , v 表 示边界上位移分量的已知函数,则位移边界条件 可表达为: 说明:
y
Su
S S Su
u s u vs v
(2-17)
当u v 0时,
称为固定位移边界。
—— 平面问题的位移边界条件
(2)应力边界条件
给定面力分量 X , Y 边界 —— 应力边界 由前面斜面的应力分析,得
O
x q
X N l x m yx YN m y l xy
例5 图示楔形体,试写出其边界条件。
例6 图示构件,试写出其边界条件。
例5 图示楔形体,试写出其边界条件。
l cos(90 ) sin 上侧: m cos(180 ) cos
X Y 0 l ( x ) s m( xy ) s X
注意事项:
(1) 必须满足静力等效条件;
(2) 只能在次要边界上用圣维南原理,在主要边界上不能使用。
如: A 主要边界 B
P
P A
次要边界
例7 图示矩形截面水坝,其右侧受静水 压力,顶部受集中力作用。试写出 水坝的应力边界条件。
弹性力学第二章平面问题的基本理论
常体力情况下的简化(2)
— 求解平衡方程
平衡方程 所求的应力函数必须满足以下方程: 应力调和方程
其中
式的解为
式的通解加上
式的特解:
常体力情况下的简化(3)
— 平衡方程的特解
特解一: 特解二: 特解三:
常体力情况下的简化(4)
— 平衡方程的通解
剪应力相等:
艾里George Airy (1801-1892)应力 函数
平面应力问题
平面应力问题:设有很薄的等厚度板,只在板边上受有 平行于板面且不沿厚度变化的面力或约束,同时体力也 平行于板面且不沿厚度变化。
z
x
h
y
平面应变问题
平面应变问题:设有很长的柱形体,它的横截面不沿长 度变化,在柱面上受有平行于横截面而且不沿长度变化 的面力或约束,同时体力也平行于横截面且不沿长度变 化。
则有:
最后得到:
因此,由
中第一式:
由
中第二式:
常体力情况下的简化(5)
— 平衡方程的解
通解
特解
常体力情况下的简化(6)
— 艾里应力函数表示的相容方程
代入 应力调和方程
得到:
简写为:
y x
z
物理方程
这里,E为弹性模量,G为剪切模量,µ 泊松系数,且有 如下关系:
平面应力问题的物理方程
注:平面应力状态中,垂直于平面方向上的正应变 不为零。
平面应变问题的物理方程
注:平面应变状态中,垂直于平面方向上的正应力 不为零。
平 衡 微 分 方 程 (1)
o x
c
y
平 衡 微 分 方 程 (2)
F F F/A F F/A
F
F/2 F/2
弹性力学简明教程 课后习题答案
《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量〔即更高阶微量〕上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界〔即次要边界〕上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15〔a〕、〔b〕问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足〔1〕平衡微分方程,〔2〕相容方程,〔3〕应力边界条件〔假设>。
2-14 见教科书。
2-15 见教科书。
2-16 见教科书。
2-17 取它们均满足平衡微分方程,相容方程与x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,与转动量,再令,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:〔1〕校核相容条件是否满足,〔2〕求应力,〔3〕推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中l>>h,x=0,l属于次要边界〔小边界〕,可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
第二章 弹性力学基础1026
2.3弹性力学基本变量
正面(外法线是沿着坐标轴的正方向) 负面(外法线是沿着坐标轴的负方向) 正面上的应力以沿坐标轴正方向为正,沿坐标轴负 方向为负 负面上的应力以沿坐标轴负方向为正,沿坐标轴正 方向为负
正应力以拉应力为正,压应力为负
2.3弹性力学基本变量
剪应力互等定律:作用在两个互相垂直的面上并且垂直于该两面交
x
x
y
y
xy
x y
变形协调条件
它的物理意义是:材料 在变形过程中应该是整 体连续的,不应该出现 “撕裂”和“重叠”现 象发生。
2 2 x y 3u 3v 2 2 2 y x xy yx 2
一般而论, 弹性体内任意一点的体力分量、面力分 量、应力分量、应变分量和位移分量,都是随着该点的 位置而变的, 因而都是位置坐标的函数。
u u ( x, y , z ) v v ( x, y , z ) w w( x, y, z )
2.3弹性力学基本变量
位移与应变的关系
ui ui ij dx j wij dx j
2.3弹性力学基本变量
内力:应力 --外力(或温度)的作用 内力
设作用于 A 上的内力为 Q , 则内力的平均集度,即平均应 力 ,为 Q / A Q lim S A 0 A
这个极限矢量S,就是物体在截面 mn上、P点的应力。
应力就是弹性体内某一点作用于某截面单位面积上的内力
均匀性:也就是说整个物体是由同一种材料组成的。这样,
整个物体的所有各部分才具有相同的物理性质,因而物体的弹性 常 数(弹性模量和泊松系数)才不随位置座标而变。
2.2 弹性力学中关于材料性质的假定
《弹性力学》第二章平面问题的基本理论
平面问题研究方法
01
02
03
解析法
通过弹性力学的基本方程 和边界条件,求解出满足 条件的应力、应变和位移 分量。
数值法
利用计算机进行数值计算, 如有限元法、差分法等, 求解出弹性体的应力、应 变和位移分布。
实验法
通过实验手段,如光弹性 实验、应变电测实验等, 直接测定弹性体的应力、 应变和位移。
02 基本方程与定解条件
物理方程反映了材料的力学性质,是弹性力学中的重要基础。
03
定解条件(边界条件与初始条件)
01
02
03
定解条件是弹性力学问 题中必须满足的附加条 件,包括边界条件和初
始条件。
边界条件描述了物体边 界上的应力、位移等物 理量的已知情况,是求 解弹性力学问题的重要
依据。
初始条件描述了物体在 初始时刻的应力、位移 等物理量的已知情况, 对于动态问题和瞬态问
04 平面问题解法及实例分析
按位移求解平面问题
位移边界条件
在位移边界上,物体受到的约束可以 转化为在给定位移边界上各点的位移。
平衡微分方程
根据弹性力学的基本方程,可以建立 以位移表示的平衡微分方程。
应力边界条件
在应力边界上,物体受到的面力可以 转化为应力边界上各点的应力分量。
求解方法
通过联立平衡微分方程和应力边界条 件,可以求解出位移分量,进而求得 应力分量。
复杂应力函数求解技巧
复杂应力函数的特点
复杂应力函数可能具有复杂的数学形式和边界条件,求解难度较大。
求解技巧
针对复杂应力函数的求解,可以采用变量分离法、积分变换法、复 变函数法等数学工具进行简化处理,降低求解难度。
实例分析
以一个复杂的弹性力学问题为例,介绍如何运用上述技巧求解复杂 应力函数,并给出相应的应力分量分布图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二. 圣维南原理的应用条件
1、必须用等效力系代替。
2、载荷区域必须比物体的最小尺寸为小(小边界上)
举例 P
P 图(a)
q P A
q
图(b)
P 图(c)
( 1 ) 以 (b )代 (a)应 力 边 界 条 件 可 以 近 似 满 足 。 ( 2 ) 以 (b )代 (c)应 力 边 界 条 件 可 以 近 似 满 足 ,但
o
y
解:
y
P A( y)
y
yx
lcons,xcos
mcons,ysin
x
xy
fx
由 xs mxy s fx
P
n
xy s my s fy
y
fy
xscosyxssin0 xyscosyssin0
xs ytg2Apytg2
xysytgApytg
[例] 写出应力边界条件。设液体比重为
弹性力学 第2章边界条件(6,7)
二、应力边界条件
在边界上的楔形体(单位厚度)如图所示:
弹性体内单元体斜面上的 应力分量与坐标面应力的
y
关系有(静力平衡)
yx
ppxyyxx
xyl ym
x
xy
Xf xn
单元体斜面恰为边界面则 面力分量与坐标面应力的 关系有应力边界条件
yxx xyysm l ffxy
X q Y 0
y
X 0,Y q
x
X q Y 0
(1).左右 (2).上下
l 1 ( x)s fx
m
0 ( xy)s
fy
l 0 ( y)s Y m1 ( yx)s X
右 : ( x) s q , ( xy ) s 0 左 : ( x) s q , ( xy ) s 0 上 : ( y) s q , ( yx ) s 0 下 : ( y ) s q , ( yx ) s 0
• 证明概要:只需注意方程都是线性的, 同时边界条件也是线性的即可。
• 推广:以上两组外力可以推广到n组外力。 • 分解原理:根据叠加原理,可以把原问
题分解成几个简单的问题单独求解。
§2-7.圣维南原理(局部性原理)
一.圣维南原理的叙述
描述-1、如果把物体的一小部分边界上 的面力以等效力系(主矢及主矩均为相同) 代换,则在加载附近的的应力发生显著变 化,而在稍远处的影响可忽略不计,亦即 与载荷在边界上的作用形式无关。 描述-2、如果物体在一小部分边界上的 面力是一个平衡力系(主矢及主矩均为 零),则面力就只会使近处产生显著的应 力,远处的应力可忽略不计。
o
x
上 面 : l=0, m=-1
左面:
右面:
l=-1
l=1
m=0
m=0
下 面 : l=0, m=1 y
边界面于坐标轴平行时的简单写法: 每个边界条件只含有一个应力分量(l=0 or m=0) 边界上的面力按应力分量的符号规定,不考虑l,m
图中的面力采用矢量 符号规则
举例:
X 0,Y q
l0;m1
静力等效边界条件:对于严格要求的条件在局部放松
y
线性分布的边界力所形
h 2 h 2
L
y
M 成的力偶等于M x 由材力弯曲公式: M yy
Iz
严格面力
fx
M yy Iz
h
f y 0
2
y
h 2
x 严格边界条件
L
x
xL
M yy Iz
只有在右端弯矩是由线性分布的外力引起时, xy
0
xL
材料力学的公式才在右端附近严格成立。
解:1)右边界(x=0) x x 0 y
x
O
xy x 0 0
n
y
2)左边界(x=y×tg)
cosn, x cos
y
m cosn, y cos( )
2
sin
y
fx 0, fy 0
由:
x n
xs mxy s fx xy s my s fy
O
y
l co sm sin
位 移 边 界 条 件 不 能 完 全 满 足 。
圣维南原理的应用
• 所得到的应力分量必须在所有边界上各点处严 格满足应力边界条件,才是所论问题的解答。
• 在小边界上,如果不能严格满足边界条件,可 以用圣维南原理在静力等效意义上满足(积分 意义上的)边界条件。
• 根据这个原理:两组面力其分布尽管不同,但 如果两者的合力与合力矩相同(静力等效),此 时它们所产生的作用结果仅仅在局部有比较大 的差异,远离这个局部,结果基本相同。
fYy n
注意:以上在推导时,斜 面上的应力px,py采用矢量 符号规定-与面力相同。
应力边界条件的写法是:左端为边界上微元体的 应力分量;右端为面力分量。可以各自采用各 自的符号规定。但需要用边界的方向余弦
特例--边界面与坐标轴平行时 (1).左右两面
x yx
xyysm l ffxy
l 1 ( x)s fx m0 ( xy)s fy (2).上下两面 l 0 ( y)s fy m1 ( yx)s fx
悬臂梁的例子: 边界的积分式
h
2 h
x
x l dy
0
2
h
2 h
x
x l ydy
M
2
h
2 h xy
dy
xl
0
2
设中性轴为z
y xdA z 1
自由端边界条件:
y
h
2 h
x
x l dy
三、混合边界条件 1、在一部分边界上的位移分量为已知,另一
部分边界上应力分量已知。பைடு நூலகம்2、在同一边界上,已知一个位移分量和一个
应力分量。 图(b)
图(a)
o
x
x
y
us u 0
xy
fy
0
y
(
x)s fx 0
vs v 0
例1:小锥度杆承受轴向拉力。利用边界条件证明,横截面上,
除与正应y力的 关y 系外。,(还假有设剪任应何力界面 x上y 。y方并向确的定正边应界力上均匀 分x 、布) xy
• 证明概要:只要证明在体力和面力都为零的情况 下,边值问题只可能有零解(应力、应变和位移 全为零)。后者则需要用到应变能的概念。
• 据此,任何一组应力应变和位移,如果它们确能 满满足方程和边界条件,就肯定是该问题的解。
叠加原理
• 叠加原理:两组外力同时作用在物体上 所产生的结果等于他们分别作用产生的 结果之和。
x yx
xyysm l ffxy
y
xscosxyssi n0
xyscosyssi n0
y
唯一性定理
• 表述-1:在没有初始应力的情况下,如果边界 条件足以确定全部刚体位移,则弹性力学边值问 题的解答是唯一的。
• 表述-2:在没有初始应力的情况下,弹性力学 边值问题的解在相差一组刚体位移的意义下是唯 一的。