LM393 系列规格书推荐

合集下载

LM393

LM393

LM393 是双电压比较器集成电路。

该电路的特点如下:工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;消耗电流小,Icc=0.8mA;输入失调电压小,VIO=±2mV;共模输入电压范围宽,Vic=0~Vcc-1.5V;输出与TTL,DTL,MOS,CMOS 等兼容;输出可以用开路集电极连接“或”门;采用双列直插8 脚塑料封装(DIP8)和微形的双列8 脚塑料封装(SOP8)LM393内部结构图LM393引脚功能排列表:LM393主要参数表:电特性(除非特别说明,VCC=5.0V,Tamb=25℃)应用说明:LM393是高增益,宽频带器件,象大多数比较器一样,如果输出端到输入端有寄生电容而产生耦合,则很容易产生振荡.这种现象仅仅出现在当比较器改变状态时,输出电压过渡的间隙.电源加旁路滤波并不能解决这个问题,标准PC板的设计对减小输入—输出寄生电容耦合是有助的.减小输入电阻至小于10K将减小反馈信号,而且增加甚至很小的正反馈量(滞回1.0~10mV)能导致快速转换,使得不可能产生由于寄生电容引起的振荡.除非利用滞后,否则直接插入IC并在引脚上加上电阻将引起输入—输出在很短的转换周期内振荡,如果输入信号是脉冲波形,并且上升和下降时间相当快,则滞回将不需要.比较器的所有没有用的引脚必须接地.LM393偏置网络确立了其静态电流与电源电压范围2.0~30V无关.通常电源不需要加旁路电容。

差分输入电压可以大于Vcc并不损坏器件.保护部分必须能阻止输入电压向负端超过-0.3V.LM393的输出部分是集电极开路,发射极接地的NPN输出晶体管,可以用多集电极输出提供或OR ing功能.输出负载电阻能衔接在可允许电源电压范围内的任何电源电压上,不受Vcc端电压值的限制.此输出能作为一个简单的对地SPS开路(当不用负载电阻没被运用),输出部分的陷电流被可能得到的驱动和器件的β值所限制.当达到极限电流(16mA)时,输出晶体管将退出而且输出电压将很快上升.输出饱和电压被输出晶体管大约60ohm 的γSAT限制。

LM393电压比较器

LM393电压比较器

LM393电压比较器介绍
概述
LM393 是双电压比较器集成电路。

主要应用在脉冲发生器、模数转换器、限幅器、数字逻辑门电路、电压比较电路等场合。

LM393电压比较器能直接连接TTL 和CMOS 电平电路。

特点
1、工作温度范围:0℃ --- +70℃;
2、工作电源电压范围宽,单电源、双电源均可工作:
单电源: 2~ 36V ,双电源:±1~±18V; 3、消耗电流小, ICC=0.4mA ; 4
、输入失调电压小,VIO=±2mV ;
5、共模输入电压范围宽, VIC=0~VCC-1.5V ; 4、输出与TTL ,DTL ,MOS ,CMOS 等兼容; 5、输出可以用开路集电极连接“或”门。

LM393引脚图及实物图
LM393引脚图
表贴LM393实物图
直插LM393实物图
LM393引脚功能
LM393主要参数表
LM393电特性(除非特别说明,VCC=5.0V,Tamb=25℃)
LM393应用案例
LM393是电压比较器,将光敏电阻R3接收光照时产生的电阻值变化变成电压信号传递给电压比较器的同相输入端INB+,这个变化的电压信号与电压比较器的反相输入端INB-端的基准电压(电位器R9产生)相比较。

当同相端INB+电压大于反相端INB-端电压时,电压比较器的输出端OUTB输出高电平电压,此时D1灯灭;当同相端INB+电压小于反相端INA-端电压时,电压比较器的输出端OUTB输出低电平电压,此时D1灯亮。

UTCLM393中文资料

UTCLM393中文资料

UTC LM393LINEAR INTEGRATED CIRCUITUTC UNISONIC TECHNOLOGIES CO., LTD.1QW-R104-002,BDUAL DIFFERENTIAL COMPARATORDESCRIPTIONThe UTC LM393 consists of two independentvoltage comparators, designed specifically to operate from a single power supply over a wide voltage range.FEATURES*Single or dual supply operation.*Wide operating supply range (Vcc=2V~36V or +- 1 to +- 18V).*Input common-mode voltage includes ground.*Low supply current drain ICC=0.8mA(Typical).*Low input bias current Ibias=25nA(Typical).*Output compatible with TTL, DTL, and CMOS logic system.PIN CONFIGURATIONS1234765IN 2(-)IN 1(+)OUT 1IN 2(+)8IN 1(-)Vcc GND OUT 2UTC LM393LINEAR INTEGRATED CIRCUITUTC UNISONIC TECHNOLOGIES CO., LTD.2QW-R104-002,BBLOCK DIAGRAMGNDOUTVccIN (-)IN (+)ABSOLUTE MAXIMUM RATINGS (Ta=25°C )PARAMETERSYMBOL VALUE UNIT Supply VoltageVcc +- 18 OR 36V Differential Input Voltage VIDiff)36V Input VoltageVI -0.3~36V V Power DissipationPd 570mW Operating Temperature Topr 0 to +70°C Storage TemperatureTstg-65 to 150°CELECTRICAL CHARACTERISTICS (Vcc=5.0V, Ta=25°C ,All voltage referenced to GND unless otherwisespecified)PARAMETERSYMBOL TEST CONDITIONS MIN TYP MAX UNIT Input Offset VoltageV IO VCM=0 to Vcc-1.5Vo(p)=1.4V,Rs=0+-1.0+-5.0mV Input Offset Current I IO +-5+-50nA Input Bias CurrentIb 65250nA Input Common-Mode Voltage RangeV I(R)0Vcc-1.5V Supply CurrentIcc RL=∝0.6 1.0mA RL=∝,Vcc=30V 0.8 2.5mA Large Signal Voltage Gain G V Vcc=15V,RL>15k Ω50200V/mV Large Signal Response Time tres Vi=TTL logic wingVref=1.4V,VRL=5V,RL=5.1k Ω350ns Response Time tres VRL=5V,RL=5.1k Ω1400ns Output Sink CurrentIsink Vi(-)>1V,Vi(+)=0V,Vo(p)<1.5V 618mA Output Saturation Voltage Vsat Vi(-)>1V,Vi(+)=0V,Isink=4mA160400mV Output Leakage CurrentIleakageVI(+)=1V,VI(-)=0Vo(p)= 5V Vo(p)=30V0.11.0nA µAUTC LM393LINEAR INTEGRATED CIRCUITUTC UNISONIC TECHNOLOGIES CO., LTD.3QW-R104-002,BTYPICAL PERFORMANCE CHARACTERISTICSs u p p l y c u r r e n t (m A )Supply voltage (V)102030405060708090I n p u t c u r r e n t (m A )Supply current (V)TIME ä( µs)0o u t p u t v o l t a g e (V )i n p u t v o l t a g e (m V )Fig.4 Reponse time for various inputoverdrive negative transition101010101010101011s a t u r a t i o n v o l t a g e (V )Output sink current (mA)TIME ä (µs)0O u t p u t v o l t a g e (V )I n p u t v o l t a g e (m V )Fig.5 Reponse time for various inputoverdrive positive transitionUTC LM393LINEAR INTEGRATED CIRCUITUTC UNISONIC TECHNOLOGIES CO., LTD.4QW-R104-002,BTime ( µs)Frequency (Hz)10410103510Fig.8 Large signal Frequency ResponseO u t p u t s w i n g (V p -p )10-310-210-111021010110Fig.10 Output Characteristics Current sinkingO u t p u t V o l t a g e (V )Output Sink Current(mA)10-110-210-3102101Fig.9 Output CharacteristicsO u t p u t r e f f e r e n c e V c c (V )Output Source current (mA)Fig.7 voltage Follower pulse response(small signal)O u t p u t v o l t g a e(V )123456789275300350400450I n p u t V o l t a g e (V )O u t p u t V o l t a g e (V )Time ( µs)012301020304050Fig.6-50-25025*******204060Temperature (¢X C)O u t p u t C u r r e n t (m A )Fig.11 CurrentLimiting。

LMV393MMX中文资料

LMV393MMX中文资料

LMV331Single /LMV393Dual /LMV339QuadGeneral Purpose,Low Voltage,TinyPack ComparatorsGeneral DescriptionThe LMV393and LMV339are low voltage (2.7-5V)versions of the dual and quad comparators,LM393/339,which are specified at 5-30V.The LMV331is the single version,which is available in space saving SC70-5and SOT23-5packages.SC70-5is approximately half the size of SOT23-5.The LMV393is available in 8-pin SOIC and 8-pin MSOP .The LMV339is available in 14-pin SOIC and 14-pin TSSOP .The LMV331/393/339is the most cost-effective solution where space,low voltage,low power and price are the pri-mary specification in circuit design for portable consumer products.They offer specifications that meet or exceed the familiar LM393/339at a fraction of the supply current.The chips are built with National’s advanced Submicron Silicon-Gate BiCMOS process.The LMV331/393/339have bipolar input and output stages for improved noise perfor-mance.Features(For 5V Supply,Typical Unless Otherwise Noted)n Space Saving SC70-5Package (2.0x 2.1x 1.0mm)n Space Saving SOT23-5Package (3.00x 3.01x1.43mm)n Guaranteed2.7V and 5V Performance n Industrial Temperature Range −40˚C to +85˚C n Low Supply Current60µA/Channeln Input Common Mode Voltage Range Includes Groundn Low Output Saturation Voltage200mVApplicationsn Mobile Communications n Notebooks and PDA’sn Battery Powered Electronicsn General Purpose Portable DevicenGeneral Purpose Low Voltage ApplicationsConnection Diagrams5-Pin SC70-5/SOT23-5DS100080-1Top View 8-Pin SO/MSOPDS100080-2Top View14-Pin SO/TSSOPDS100080-3Top ViewAugust 1999LMV331Single /LMV393Dual /LMV339Quad General Purpose,Low Voltage,TinyPack Comparators©1999National Semiconductor Corporation Ordering InformationPackage Temperature Range PackagingMarkingTransportMediaNSCDrawing Industrial−40˚C to+85˚C5-pin SC70-5LMV331M7C131k Units Tape and Reel MAA05LMV331M7X C133k Units Tape and Reel 5-pin SOT23-5LMV331M5C121k Units Tape and Reel MA05BLMV331M5X C123k Units Tape and Reel 8-pin Small Outline LMV393M LMV393M RailsM08ALMV393MX LMV393M 2.5k Units Tape and Reel 8-pin MSOP LMV393MM LMV3931k UnitsTape and ReelMUA08ALMV393MMX LMV393 3.5k Units Tape and Reel 14-pin Small Outline LMV339M LMV339M RailsM14ALMV339MX LMV339M 2.5k Units Tape and Reel 14-pin TSSOP LMV339MT LMV339MT RailsMTC14LMV339MTX LMV339MT 2.5k Units Tape and Reel2Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.ESD Tolerance(Note2)Human Body ModelLMV331/393/339800VMachine Model LMV331/339/393120V Differential Input Voltage±Supply Voltage Voltage on any pin(referred to V−pin)5.5V Soldering InformationInfrared or Convection(20sec)235˚C Storage Temp.Range−65˚C to+150˚C Junction Temperature(Note3)150˚C Operating Ratings(Note1)Supply Voltage 2.7V to5.0V Temperature RangeLMV393,LMV339,LMV331−40˚C≤T J≤+85˚CThermal Resistance(θJA)M Package,8-pin SurfaceMount190˚C/WM Package,14-pin SurfaceMount145˚C/WMTC Package,14-pinTSSOP155˚C/WMAA05Package,5-pinSC70-5478˚C/WM05A Package5-pinSOT23-5265˚C/WMM Package,8-pin MiniSurface Mount235˚C/W2.7V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C,V+=2.7V,V−=0V.Boldface limits apply at the temperature extremes.Symbol Parameter Conditions Typ(Note4)LMV331/393/339Limit(Note5)UnitsV OS Input Offset Voltage1.77mV maxTCV OS Input Offset VoltageAverage Drift5µV/˚CI B Input Bias Current10250400nA maxI OS Input Offset Current550150nA maxV CM Input Voltage Range−0.1V2.0VV SAT Saturation Voltage I sink≤1mA200mVI O Output Sink Current V O≤1.5V235mA minI S Supply Current LMV33140100µA maxLMV393Both Comparators70140µA maxLMV339All four Comparators140200µA max Output Leakage Current.0031µA max 2.7V AC Electrical CharacteristicsT J=25˚C,V+=2.7V,R L=5.1kΩ,V−=0V.Symbol Parameter Conditions Typ(Note4)Unitst PHL Propagation Delay(High to Low)Input Overdrive=10mV1000nsInput Overdrive=100mV350nst PLH Propagation Delay(Low to High)Input Overdrive=10mV500nsInput Overdrive=100mV400ns35V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C,V+=5V,V−=0V.Boldface limits apply at the temperature extremes.Symbol Parameter Conditions Typ(Note4)LMV331/393/339Limit(Note5)UnitsV OS Input Offset Voltage 1.779mV maxTCV OS Input Offset VoltageAverage Drift5µV/˚CI B Input Bias Current25250400nA maxI OS Input Offset Current250150nA maxV CM Input Voltage Range−0.1V4.2VA V Voltage Gain5020V/mV minV sat Saturation Voltage I sink≤4mA200400700mV maxI O Output Sink Current V O≤1.5V8410mA I S Supply Current LMV33160120150µA maxLMV393Both Comparators 100200250µA maxLMV339All four Comparators 170300350µA maxOutput Leakage Current.0031µA max 5V AC Electrical CharacteristicsT J=25˚C,V+=5V,R L=5.1kΩ,V−=0V.Symbol Parameter Conditions Typ(Note4)Units t PHL Propagation Delay(High to Low)Input Overdrive=10mV600nsInput Overdrive=100mV200nst PLH Propagation Delay(Low to High)Input Overdrive=10mV450nsInput Overdrive=100mV300ns Note1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is in-tended to be functional,but specific performance is not guaranteed.For guaranteed specifications and the test conditions,see the Electrical characteristics.Note2::Human body model,1.5kΩin series with100pF.Machine model,200Ωin series with100pF.Note3:The maximum power dissipation is a function of T J(max),θJA,and T A.The maximum allowable power dissipation at any ambient temperature is P D=(T J(max) -T A)/θJA.All numbers apply for packages soldered directly into a PC board.Note4:Typical Values represent the most likely parametric norm.Note5:All limits are guaranteed by testing or statistical analysis.4Typical Performance CharacteristicsUnless otherwise specified,V S =+5V,single supply,T A =25˚CSupply Current vsSupply Voltage Output High (LMV331)DS100080-34Supply Current vsSupply Voltage Output Low (LMV331)DS100080-33Output Voltage vsOutput Current at 5V SupplyDS100080-37Output Voltage vs Output Current at 2.7SupplyDS100080-38Input Bias Current vs Supply VoltageDS100080-36Response Time vs Input Overdrives Negative TransitionDS100080-42Response Time for Input Overdrive Positive TransitionDS100080-43Response Time vs Input Overdrives Negative TransitionDS100080-41Response Time for Input Overdrive Positive TransitionDS100080-405Simplified SchematicDS100080-47 6Application CircuitsBasic ComparatorA basic comparator circuit is used for converting analog sig-nals to a digital output.The LMV331/393/339have an open-collector output stage,which requires a pull-up resistor to a positive supply voltage for the output to switch properly.When the internal output transistor is off,the output voltage will be pulled up to the external positive voltage.The output pull-up resistor should be chosen high enough so as to avoid excessive power dissipation yet low enough to supply enough drive to switch whatever load circuitry is used on the comparator output.On the LMV331/393/339the pull-up resistor should range between 1k to 10k Ω.The comparator compares the input voltage (V in )at the non-inverting pin to the reference voltage (V ref )at the invert-ing pin.If V in is less than V ref ,the output voltage (V o )is at the saturation voltage.On the other hand,if V in is greater than V ref ,the output voltage (V o )is at V cc..Comparator with HysteresisThe basic comparator configuration may oscillate or produce a noisy output if the applied differential input voltage is near the comparator’s offset voltage.This usually happens when the input signal is moving very slowly across the compara-tor’s switching threshold.This problem can be prevented by the addition of hysteresis or positive feedback.Inverting Comparator with HysteresisThe inverting comparator with hysteresis requires a three re-sistor network that are referenced to the supply voltage V cc of the comparator.When Vin at the inverting input is less than V a ,the voltage at the non-inverting node of the com-parator (V in <V a ),the output voltage is high (for simplicity assume V o switches as high as V cc ).The three network re-sistors can be represented as R 1//R 3in series with R 2.The lower input trip voltage V a1is defined asWhen V in is greater than Va (V in V a ),the output voltage is low very close to ground.In this case the three network re-sistors can be presented as R 2//R 3in series with R 1.The up-per trip voltage V a2is defined asThe total hysteresis provided by the network is defined as∆V a =V a1-V a2To assure that the comparator will always switch fully to V cc and not be pulled down by the load the resistors values should be chosen as follow:R pull-up <<R loadand R 1>R pull-up .DS100080-26DS100080-4FIGURE 1.Basic Comparator7Application Circuits(Continued)Non-Inverting Comparator with HysteresisNon inverting comparator with hysteresis requires a two re-sistor network,and a voltage reference (V ref )at the inverting input.When V in is low,the output is also low.For the output to switch from low to high,V in must rise up to V in1where V in1is calculated byWhen V in is high,the output is also high,to make the com-parator switch back to it’s low state,V in must equal V ref be-fore V a will again equal V ref .V in can be calculated by:The hysteresis of this circuit is the difference between V in1and V in2.∆V in =V cc R 1/R 2DS100080-25FIGURE 2.Inverting Comparator with HysteresisDS100080-22DS100080-23 8Application Circuits(Continued)Square Wave OscillatorComparators are ideal for oscillator applications.This squarewave generator uses the minimum number of components.The output frequency is set by the RC time constant of thecapacitor C1and the resistor in the negative feedback R4.The maximum frequency is limited only by the large signalpropagation delay of the comparator in addition to any ca-pacitive loading at the output,which would degrade the out-put slew rate.To analyze the circuit,assume that the output is initially high.For this to be true,the voltage at the inverting input V c has tobe less than the voltage at the non-inverting input V a.For V cto be low,the capacitor C1has to be discharged and willcharge up through the negative feedback resistor R4.Whenit has charged up to value equal to the voltage at the positiveinput V a1,the comparator output will switch.V a1will be given by:If:R1=R2=R3Then:V a1=2V cc/3When the output switches to ground,the value of V a is re-duced by the hysteresis network to a value given by:V a2=V cc/3Capacitor C1must now discharge through R4towardsground.The output will return to its high state when the volt-age across the capacitor has discharged to a value equal toV a2.For the circuit shown,the period for one cycle of oscillationwill be twice the time it takes for a single RC circuit to chargeup to one half of its final value.The time to charge the ca-pacitor can be calculated fromWhere V max is the max applied potential across the capaci-tor=(2V cc/3)and V C=Vmax/2=V CC/3One period will be given by:1/freq=2tor calculating the exponential gives:1/freq=2(0.694)R4C1Resistors R3and R4must be at least two times larger thanR5to insure that V o will go all the way up to V cc in the highstate.The frequency stability of this circuit should strictly bea function of the external components.Free Running MultivibratorA simple yet very stable oscillator that generates a clock forslower digital systems can be obtained by using a resonatoras the feedback element.It is similar to the free running mul-tivibrator,except that the positive feedback is obtainedthrough a quartz crystal.The circuit oscillates when thetransmission through the crystal is at a maximum,so thecrystal in its series-resonant mode.The value of R1and R2are equal so that the comparator willswitch symmetrically about+V cc/2.The RC constant of R3and C1is set to be several times greater than the period ofthe oscillating frequency,insuring a50%duty cycle by main-taining a DC voltage at the inverting input equal to the abso-lute average of the output waveform.When specifying the crystal,be sure to order series resonantwith the desired temperature coefficientDS100080-8DS100080-24FIGURE5.Squarewave OscillatorDS100080-7FIGURE6.Crystal controlled Oscillator9Application Circuits(Continued)Pulse generator with variable duty cycle:The pulse generator with variable duty cycle is just a minor modification of the basic square wave generator.Providing a separate charge and discharge path for capacitor C 1gener-ates a variable duty cycle.One path,through R 2and D 2will charge the capacitor and set the pulse width (t 1).The other path,R 1and D 1will discharge the capacitor and set the time between pulses (t 2).By varying resistor R 1,the time between pulses of the gen-erator can be changed without changing the pulse width.Similarly,by varying R 2,the pulse width will be altered with-out affecting the time between pulses.Both controls will change the frequency of the generator.The pulse width and time between pulses can be found from:Solving these equations for t 1and t 2t 1=R 4C 1ln2t 2=R 5C 1ln2These terms will have a slight error due to the fact that V max is not exactly equal to 2/3V CC but is actually reduced by the diode drop to:DS100080-9FIGURE 7.Pulse GeneratorDS100080-17FIGURE 8.Positive Peak DetectorDS100080-18FIGURE 9.Negative Peak Detector10Application Circuits(Continued)Driving CMOS and TTLThe comparator’s output is capable of driving CMOS andTTL Logic circuits.AND GatesThe comparator can be used as three input AND gate.Theoperation of the gate is as follow:The resistor divider at the inverting input establishes a refer-ence voltage at that node.The non-inverting input is the sumof the voltages at the inputs divided by the voltage dividers.The output will go high only when all three inputs are high,casing the voltage at the non-inverting input to go above thatat inverting input.The circuit values shown work for a″0″equal to ground and a″1″equal to5V.The resistor values can be altered if different logic levels aredesired.If more inputs are required,diodes are recom-mended to improve the voltage margin when all but one ofthe inputs are high.OR GatesA three input OR gate is achieved from the basic AND gatesimply by increasing the resistor value connected from theinverting input to V cc,thereby reducing the reference volt-age.A logic″1″at any of the inputs will produce a logic″1″at theoutput.ORing the OutputBy the inherit nature of an open collector comparator,theoutputs of several comparators can be tied together with apull up resistor to V cc.If one or more of the comparators out-puts goes low,the output V o will go low.DS100080-5FIGURE10.Driving CMOSDS100080-6FIGURE11.Driving TTLDS100080-11FIGURE12.AND GateDS100080-10FIGURE13.OR Gate11Application Circuits(Continued)DS100080-12FIGURE14.ORing the OutputsDS100080-13rge Fan-In AND Gate12SC70-5Tape and Reel SpecificationDS100080-44 SOT-23-5Tape and Reel SpecificationTAPE FORMATTape Section#Cavities Cavity Status Cover Tape StatusLeader0(min)Empty Sealed(Start End)75(min)Empty SealedCarrier3000Filled Sealed250Filled SealedTrailer125(min)Empty Sealed(Hub End)0(min)Empty Sealed13SOT-23-5Tape and Reel Specification(Continued)TAPE DIMENSIONSDS100080-45 8mm0.1300.1240.1300.1260.138±0.0020.055±0.0040.1570.315±0.012(3.3)(3.15)(3.3)(3.2)(3.5±0.05)(1.4±0.11)(4)(8±0.3)Tape Size DIM A DIM Ao DIM B DIM Bo DIM F DIM Ko DIM P1DIM W14SOT-23-5Tape and Reel Specification(Continued)REEL DIMENSIONSDS100080-46 8mm7.000.0590.5120.795 2.1650.331+0.059/−0.0000.567W1+0.078/−0.039330.00 1.5013.0020.2055.008.40+1.50/−0.0014.40W1+2.00/−1.00 Tape Size A B C D N W1W2W315Physical Dimensions inches(millimeters)unless otherwise noted5-Pin SC70-5Tape and ReelOrder Number LMV331M7and LMV331M7XNS Package Number MAA05A 16Physical Dimensions inches(millimeters)unless otherwise noted(Continued)5-Pin SOT23-5Tape and ReelOrder Number LMV331M5and LMV331M5XNS Package Number MA05B17Physical Dimensions inches(millimeters)unless otherwise noted(Continued)8-Pin Small OutlineOrder Number LMV393M and LMV393MXNS Package Number M08A18Physical Dimensions inches(millimeters)unless otherwise noted(Continued)8-Pin MSOPOrder Number LMV393MM and LMV393MMXNS Package Number MUA08A19Physical Dimensions inches(millimeters)unless otherwise noted(Continued)14-Pin Small OutlineOrder Number LMV339M and LMV339MXNS Package Number M14A20Physical Dimensions inches (millimeters)unless otherwise noted (Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation Americas Tel:1-800-272-9959Fax:1-800-737-7018Email:support@ National Semiconductor Europe Fax:+49(0)180-5308586Email:europe.support@ Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:sea.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax: 14-Pin TSSOPOrder Number LMV339MT and LMV339MTXNS Package Number MTC14LMV331Single /LMV393Dual /LMV339Quad General Purpose,Low Voltage,TinyPack Comparators National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.元器件交易网。

LM393应用电路及LM393相关的应用资料

LM393应用电路及LM393相关的应用资料

LM393应用电路及LM393相关的应用资料2009-04-22 18:27LM393应用电路有以下几种:1、基本比较器电路2、LM393驱动CMOS的电路3、LM393驱动TTL的电路4、低频运算放大器5、换能放大器电路6、带失调调整的低频运算放大器7、过零检波器8、两阶高频压控振荡器9、极限比较器电路10、晶振控制振荡器11、双电源过零检测电路12、带负参考电压的比较器四电压比较器集成电路LM339资料-LM339/LM393应用电路lm339中文资料什么是lm339?LM339/LM393是四电压比较器集成电路。

该电路的特点如下:工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;消耗电流小,Icc=1.3mA;输入失调电压小,V IO=±2mV;共模输入电压范围宽,Vic=0~Vcc-1.5V;输出与TTL,DTL,MOS,CMOS 等兼容;输出可以用开路集电极连接“或”门;采用双列直插14 脚塑料封装(DIP14)和微形的双列14 脚塑料封装(SOP14)内部结构图1/4 的内部电路图LM339引脚功能排列表:引脚功能符号引引脚功能符号1 输出端2 OUT2 8 反向输入端31N-(32 输出端1OUT1 9正向输入端31N+(33 电源VCC + 10反向输入端41N-(44 反向输入端11N-(1) 11正向输入端41N+(45 正向输入端1 1N+(1) 12电源Vcc-6 反向输入端2 1N-(2) 13输出端4 OUT47 正向输入端2OUT2(2) 14输出端3 OUT3 LM339主要参数表:使用说明:LM393/339是高增益,宽频带器件,象大多数比较器一样,如果输出端到输入端有寄生电容而产生耦合,则很容易产生振荡.这种现象仅仅出现在当比较器改变状态时,输出电压过渡的间隙.电源加旁路滤波并不能解决这个问题,标准PC板的设计对减小输入—输出寄生电容耦合是有助的.减小输入电阻至小于10K将减小反馈信号,而且增加甚至很小的正反馈量(滞回1.0~10mV)能导致快速转换,使得不可能产生由于寄生电容引起的振荡.除非利用滞后,否则直接插入IC并在引脚上加上电阻将引起输入—输出在很短的转换周期内振荡,如果输入信号是脉冲波形,并且上升和下降时间相当快,则滞回将不需要.比较器的所有没有用的引脚必须接地.LM393/339偏置网络确立了其静态电流与电源电压范围2.0~30V无关. 通常电源不需要加旁路电容。

LM393与LM339权威指南

LM393与LM339权威指南

LM393与LM339权威指南清华大学张小斌(教授)第一部分:LM393LM393为双电压比较器LM393主要特点如下:●工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;●消耗电流小,Icc=0.8mA;●输入失调电压小,V IO=±2mV;●共模输入电压范围宽,Vic=0~Vcc-1.5V;●输出与TTL,DTL,MOS,CMOS 等兼容;●输出可以用开路集电极连接“或”门;LM393引脚图及内部框图采用双列直插8 脚塑料封装(DIP8)和微形的双列8 脚塑料封装(SOP8)LM393内部结构图LM393引脚功能排列表:LM393主要参数表:电特性(除非特别说明,VCC=5.0V, Tamb=25℃)应用说明:LM393是高增益,宽频带器件,象大多数比较器一样,如果输出端到输入端有寄生电容而产生耦合,则很容易产生振荡.这种现象仅仅出现在当比较器改变状态时,输出电压过渡的间隙.电源加旁路滤波并不能解决这个问题,标准PC板的设计对减小输入—输出寄生电容耦合是有助的.减小输入电阻至小于10K将减小反馈信号,而且增加甚至很小的正反馈量(滞回1.0~10mV)能导致快速转换,使得不可能产生由于寄生电容引起的振荡.除非利用滞后,否则直接插入IC并在引脚上加上电阻将引起输入—输出在很短的转换周期内振荡,如果输入信号是脉冲波形,并且上升和下降时间相当快,则滞回将不需要.比较器的所有没有用的引脚必须接地.LM393偏置网络确立了其静态电流与电源电压范围 2.0~30V无关.通常电源不需要加旁路电容。

差分输入电压可以大于Vcc并不损坏器件.保护部分必须能阻止输入电压向负端超过-0.3V.LM393的输出部分是集电极开路,发射极接地的 NPN输出晶体管,可以用多集电极输出提供或OR ing功能.输出负载电阻能衔接在可允许电源电压范围内的任何电源电压上,不受 Vcc端电压值的限制.此输出能作为一个简单的对地SPS开路(当不用负载电阻没被运用),输出部分的陷电流被可能得到的驱动和器件的β值所限制.当达到极限电流(16mA)时,输出晶体管将退出而且输出电压将很快上升.输出饱和电压被输出晶体管大约60ohm 的γSAT限制。

LM393声音传感器使用说明书

LM393声音传感器使用说明书
2、单路信号输出。
3、输出有效信号为低电平。
4、当有声音时输出低电平,信号灯亮。
5、可以用于声控灯,配合光敏传感器做声光报警,以及声音控制,声音检测的场合。
产品附带资料:
产品有售淘宝店:
开发板直销http://shop3658065Βιβλιοθήκη
联创工程电子
汇诚科技
无忧电子购物
5可以用于声控灯配合光敏传感器做声光报警以及声音控制声音检测的场合
声音传感器使用说明书
注意:本说明书中添加超链接的按CTRL并点击连接,即可看到内容。
简要说明:
一、尺寸:32mm X17mm X 15mm长X宽X高
二、主要芯片:LM393、驻极体话筒
三、工作电压:直流4~6伏
四、特点:1、具有信号输出指示。

LM393功能简介

LM393功能简介

LM339功能简介LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。

LM339集成块采用C-14型封装,图1为外型及管脚排列图。

由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。

LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。

当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。

两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。

LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。

选不同阻值的上拉电阻会影响输出端高电位的值。

因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。

另外,各比较器的输出端允许连接在一起使用。

单限比较器电路图3为某仪器中过热检测保护电路。

它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。

UR=R2/(R1+R2)*UCC。

同相端的电压就等于热敏元件Rt的电压降。

LM293 LM393产品资料

LM293 LM393产品资料

Rev. 5.0Features•Single Supply Operation: 2V to 36V •Dual Supply Operation: ± 1V to ±18V•Allow Comparison of V oltages Near Ground Potential •Low Current Drain 800µA Typ.•Compatible with all Forms of Logic •Low Input Bias Current 25nA Typ.•Low Input Offset Current ±5nA Typ.•Low Offset V oltage ±1mV Typ.DescritpionThe LM2903,LM393/LM393A consist of two independent voltage comparators designed to operate from a single power supply over a wide voltage range.8-DIP8-SOP11Internal Block DiagramLM2903,LM393/LM393ADual Differential ComparatorLM2903,LM393/LM393ASchematic DiagramAbsolute Maximum RatingsParameterSymbol Value Unit Power Supply Voltage V CC ±18 or 36V Differential Input Voltage V I(DIFF)36V Input VoltageV I - 0.3 to +36V Output Short Circuit to GND -Continuous-Power Dissipation P D 570mW Operating Temperature LM393/LM393A LM2903T OPR 0 ~ + 70- 40 ~ + 85°C Storage TemperatureT STG- 65 ~ + 150°CLM2903,LM393/LM393AElectrical Characteristics(V CC =5V , T A =25°C, unless otherwise specified)NOTE 1LM393/LM393A: 0≤T A ≤ +70°C LM2903: -40≤T A ≤ +85°CParameter SymbolConditions LM393ALM393UnitMin.Typ.Max.Min.Typ.Max.Input Offset Voltage V IOV O(P) =1.4V, R S =0Ω-±1±2-±1±5mV V CM = 0 to 1.5VNOTE 1--±4.0--±9.0Input Offset Current I IO -±5±50-±5±50nA NOTE 1--±150--±150Input Bias Current I BIAS-65250-65250nANOTE 1--400--400Input Common ModeVoltage Range V I(R)0-V CC -1.50-V CC -1.5V NOTE 10-V CC -20-V CC -2Supply Current I CC R L = ∞-0.61-0.61mA R L = ∞, V CC = 30V -0.8 2.5-0.8 2.5Voltage Gain G V V CC =15V, R L ≥15K Ω (for large V O(P-P)swing )50200-50200-V/mV Large Signal Response Time t RES V I =TTL Logic Swing V REF =1.4V, V RL =5V,R L =5.1K Ω-350--350-nS Response Time t RES V RL =5V, R L =5.1K Ω- 1.4-- 1.4-µS Output Sink Current I SINK V I(-)≥1V, V I(+) =0V, V O(P)≤1.5V 618-618-mAOutput Saturation Voltage V SATV I(-)≥1V, VI(+) =0V -160400-160400mV I SINK = 4mANOTE 1--700--700Output Leakage CurrentI O(LKG)V I(-) = 0V,V I(+) = 1VV O(P) = 5V -0.1--0.1-nA V O(P) = 30V -- 1.0-- 1.0µALM2903,LM393/LM393AElectrical Characteristics (Continued)(V CC =5V , T A =25°C, unless otherwise specified)NOTE 1LM393/LM393A: 0≤T A ≤ +70°C LM2903: -40≤T A ≤ +85°CParameterSymbol ConditionsLM2903Unit Min.Typ.Max.Input Offset Voltage V IO V O(P) =1.4V, R S =0Ω-±1±7mV V CM = 0 to 1.5VNOTE 1-±9±15Input Offset Current I IO -±5±50nA NOTE 1-±50±200Input Bias Current I BIAS -65250nA NOTE 1--500Input Common Mode Voltage Range V I(R)0-V CC -1.5V NOTE 10-V CC -2Supply Current I CC R L = ∞-0.61mA R L = ∞, V CC = 30V-1 2.5Voltage GainG V V CC =15V, R L ≥15K Ω(for large V O(P-P)swing )25100- V/mV Large Signal Response Time t RES V I =TTL Logic SwingV REF =1.4V, V RL =5V, R L =5.1K Ω-350-nS Response Time t RES V RL =5V, R L =5.1K Ω- 1.5-µS Output Sink Current I SINK V I(-)≥1V, V I(+) =0V, V O(P) ≤1.5V 616-mA Output Saturation Voltage V SAT V I(-)≥1V, VI(+) =0V -160400mV I SINK = 4mA NOTE 1--700Output Leakage CurrentI O(LKG)V I(-) = 0V,V O(P) = 5V -0.1-nA V I(+) = 1VV O(P) = 30V-- 1.0µALM2903,LM393/LM393A Typical Performance CharacteristicsFigure 1.Supply Current vs Sopply Voltage Figure 2.Input Current vs Sopply VoltageFigure 3.Output Saturation Voltage vs Sink Current Figure 4.Respose Time for Various InputOverdrive-Negative TransitionFigure 5.Respose Time for Various InputOverdive-Positive TransitionLM2903,LM393/LM393AMechanical DimensionsPackage8-DIPLM2903,LM393/LM393A Mechanical Dimensions (Continued)Package8-SOPOrdering InformationProduct Number Package Operating Temperature LM393N8-DIPLM393AN0 ~ + 75°CLM393M 8-SOPLM2903N 8-DIP-40 ~ + 85°C LM2903M 8-SOPLIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure toperform when properly used in accordance withinstructions for use provided in the labeling, can bereasonably expected to result in a significant injury of the user.2. A critical component in any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.。

LM393功能简介

LM393功能简介

LM339功能简介LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。

LM339集成块采用C-14型封装,图1为外型及管脚排列图。

由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。

LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。

当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。

两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。

LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。

选不同阻值的上拉电阻会影响输出端高电位的值。

因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。

另外,各比较器的输出端允许连接在一起使用。

单限比较器电路图3为某仪器中过热检测保护电路。

它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。

UR=R2/(R1+R2)*UCC。

同相端的电压就等于热敏元件Rt的电压降。

LM393

LM393

LM393中文资料LM393 是双电压比较器集成电路。

该电路的特点如下:工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;消耗电流小,Icc=0.8mA;输入失调电压小,V IO=±2mV;共模输入电压范围宽,Vic=0~Vcc-1.5V;输出与TTL,DTL,MOS,CMOS 等兼容;输出可以用开路集电极连接“或”门;采用双列直插8 脚塑料封装(DIP8)和微形的双列8 脚塑料封装(SOP8)LM393内部结构图LM393引脚功能排列表:引出端序号功能符号引出端序号功能符号1 输出端1 OUT1 5 正向输入端2 1N+(2)2 反向输入端1 1N-(1) 6 反向输入端2 1N-(2)3 正向输入端1 1N+(1) 7 输出端2 OUT24 地GND 8 电源VCCLM393主要参数表:电特性(除非特别说明,VCC=5.0V,Tamb=25℃)应用说明:LM393是高增益,宽频带器件,象大多数比较器一样,如果输出端到输入端有寄生电容而产生耦合,则很容易产生振荡.这种现象仅仅出现在当比较器改变状态时,输出电压过渡的间隙.电源加旁路滤波并不能解决这个问题,标准PC板的设计对减小输入—输出寄生电容耦合是有助的.减小输入电阻至小于10K将减小反馈信号,而且增加甚至很小的正反馈量(滞回1.0~10mV)能导致快速转换,使得不可能产生由于寄生电容引起的振荡.除非利用滞后,否则直接插入IC并在引脚上加上电阻将引起输入—输出在很短的转换周期内振荡,如果输入信号是脉冲波形,并且上升和下降时间相当快,则滞回将不需要.比较器的所有没有用的引脚必须接地.LM393偏置网络确立了其静态电流与电源电压范围2.0~30V无关.通常电源不需要加旁路电容。

差分输入电压可以大于Vcc并不损坏器件.保护部分必须能阻止输入电压向负端超过-0.3V.LM393的输出部分是集电极开路,发射极接地的NPN输出晶体管,可以用多集电极输出提供或OR ing 功能.输出负载电阻能衔接在可允许电源电压范围内的任何电源电压上,不受Vcc端电压值的限制.此输出能作为一个简单的对地SPS开路(当不用负载电阻没被运用),输出部分的陷电流被可能得到的驱动和器件的β值所限制.当达到极限电流(16mA)时,输出晶体管将退出而且输出电压将很快上升.输出饱和电压被输出晶体管大约60ohm 的γSAT限制。

BCD Semiconductor AS393 393A双比较器数据手册说明书

BCD Semiconductor AS393 393A双比较器数据手册说明书

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited1Jan. 2013 Rev. 2. 3General DescriptionThe AS393/393A consist of two independent precision voltage comparators with a typical offset voltage of 1.0mV and high gain. They are specifically designed to operate from a single power supply over wide range of voltages. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.The AS393/393A series are compatible with industry standard 393. AS393A has more stringent input offset voltage than AS393.The AS393 is available in standard DIP-8, TDIP-8,SOIC-8, TSSOP-8 and MSOP-8 packages, AS393A is available in standard DIP-8 and SOIC-8 packages.Features·Wide Supply V oltage Range - Single Supply: 2.0V to 36V - Dual Supplies: ±1.0V to ±18V ·Low Supply Current Drain: 0.6mA·Low Input Bias Current: 25nA (Typical) ·Low Input Offset Current: ±5.0nA (Typical)·Low Input Offset V oltage: 1.0mV (Typical)·Input Common Mode V oltage Range IncludesGround·Differential Input V oltage Range Equals to thePower Supply V oltage·Low Output Saturation V oltage: 200mV at 4mA ·Open Collector Output Applications·Battery Charger ·Cordless Telephone·Switching Power Supply ·DC-DC Module ·PC Motherboard·Communication EquipmentFigure 1. Package Types of AS393/393ASOIC-8TSSOP-8DIP-8MSOP-8TDIP-8LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited2Jan. 2013 Rev. 2. 3INPUT 2-Figure 2. Pin Configuration of AS393/393A (Top View)Figure 3. Functional Block Diagram of AS393/393A (Each comparator)Functional Block DiagramOUTPUT 2(SOIC-8/TSSOP-8/MSOP-8)V CCPin Configuration+INPUT-INPUTQ5Q6Q1Q2Q3Q4Q7Q8OUTPUT M/G/MM PackageINPUT 2-INPUT1-INPUT1+GNDOUTPUT 2 (DIP-8/TDIP-8)V CC P/PT PackageLOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited3Jan. 2013 Rev. 2. 3Ordering InformationPackageTemperature RangePart NumberMarking IDPacking TypeLead Free Green Lead FreeGreen SOIC-8-40 to 85o CAS393M-E1AS393M-G1AS393M-E1AS393M-G1Tube AS393MTR-E1AS393MTR-G1AS393M-E1AS393M-G1Tape & ReelAS393AM-E1AS393AM-G1AS393AM-E1AS393AM-G1Tube AS393AMTR-E1AS393AMTR-G1AS393AM-E1AS393AM-G1Tape & ReelDIP-8-40 to 85o C AS393P-E1AS393P-G1AS393P-E1AS393P-G1Tube AS393AP-E1AS393AP-G1AS393AP-E1AS393AP-G1Tube TDIP-8-40 to 85o C AS393PT-G1AS393PT-G1Tube TSSOP-8-40 to 85o C AS393GTR-E1AS393GTR-G1EG3C GG3C Tape & Reel MSOP-8-40 to 85o CAS393MMTR-G1AS393MM-G1Tape & ReelBCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.Circuit Type Package E1: Lead Free G1: GreenAS393TR: Tape and Reel Blank: Tube M: SOIC-8P: DIP-8-Blank: AS393A: AS393AG: TSSOP-8MM: MSOP-8PT: TDIP-8LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited4Jan. 2013 Rev. 2. 3Absolute Maximum Ratings (Note 1)Parameter Symbol Value Unit Supply V oltageV CC 40V Differential Input V oltage V ID 40V Input V oltageV IN -0.3 to 40V Input Current (V IN < -0.3V) (Note 2)I IN50mAOutput Short-Circuit Current to GroundContinuousPower Dissipation (T A =25o C)P DDIP-8780mWSOIC-8660TSSOP-8570MSOP-8450Operating Junction Temperature T J 150o C Storage TemperatureT STG -65 to 150o C Lead Temperature (Soldering, 10 sec)T LEAD260o CParameter Symbol Min Max Unit Supply V oltageV CC 236VOperating Temperature RangeT A-4085oCRecommended Operating ConditionsNote 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Max-imum Ratings" for extended periods may affect device reliability.Note 2: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V DC (at 25o C).LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited5Jan. 2013 Rev. 2. 3Electrical CharacteristicsParameterConditionsMinTyp Max UnitInput Offset V oltageV O =1.4V , R S =0Ω, V CC =5V to 30VAS3931.0 5.0mV7AS393A1.0 3.05Input Bias Current I IN + or I IN - with output in Linear Range, V CM =0V25250nA 400Input Offset Current I IN +-I IN -, V CM =0V 5.050nA 200Input Common Mode V oltage Range (Note 4)V CC =30VV CC -1.5VSupply CurrentR L=∞V CC =5V0.6 1.0mA2V CC =30V0.7 1.73V oltage Gain V CC =15V , R L ≥15k Ω, V O =1V to 11V 50200V/mV Large Signal Response TimeV IN =TTL Logic Swing, V REF =1.4V , V RL =5V , R L =5.1k 200ns Response Time V RL =5V , R L =5.1K 1.3μs Output Sink Current V IN -=1V , V IN +=0, V O =1.5V 6.016mA Output LeackageCurrent V IN -=0V , V IN +=1V , V O =5V 0.1nA V IN -=0V , V IN +=1V , V O =30V 1μA Saturation V oltage V IN -=1V , V IN +=0, I SINK ≤4mA 200400mV500Thermal Resistance (Junction to Case)DIP-893o C/WSOIC-8138Limits in standard typeface are for T A =25o C, bold typeface applies over T A =-40o C to 85o C (Note 3), V CC =5V , GND=0V ,unless otherwise specified. Note 3: These specifications are limited to -40o C ≤ T A ≤85o C. Limits over temperature are guaranteed by design,but not tested in production.Note 4: The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25o C). The upper end of the common-mode voltage range is V CC -1.5V (at 25o C), but either or both inputs can go to +36V without damages, independent of the magnitude of the V CC .LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited6Jan. 2013 Rev. 2. 3Figure 4. Supply Voltage vs. Supply Current Figure 5. Supply Voltage vs. Input Bias CurrentTypical Performance CharacteristicsNegative TransitionFigure 7. Response Time for 5mV Input Overdrive -Figure 6. Output Sink Current vs. Saturation VoltageI n p u t V o l t a g e (m V )O u -1000-501.82.01.4 1.61.0 1.20.60.80.20.40Time (μs)10m100m 1101001E-30.010.1I O -Output Sink Current (mA)LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited7Jan. 2013 Rev. 2. 3Typical Performance Characteristics (Continued)Figure 8. Response Time for 5mV Input Overdrive -Positive TransitionTime (μs)I n p u t V o l t a g e (m V )O u t p u t V o l t a g e (V )051001.82.01.4 1.61.0 1.20.60.80.20.40 Figure 9. Basic Comparator Typical ApplicationsFigure 10. Driving CMOS+V IN+V REF1/2 AS393/AV CC3KV O+-100K5V+-481/2 AS393/A+V IN+V REFLOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited8Jan. 2013 Rev. 2. 3Figure 11. One Shot MultivibratorFigure 12. Squarewave OscillatorTypical Applications (Continued)LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited9Jan. 2013 Rev. 2. 3Mechanical DimensionsDIP-8Unit: mm(inch)R0.750(0.030)9.000(0.354)9.600(0.378)6.200(0.244)6.600(0.260)Φ3.000(0.118)Depth 0.100(0.004)0.200(0.008)LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited10Jan. 2013 Rev. 2. 3Mechanical Dimensions (Continued)TDIP-8Unit: mm(inch)6.250(0.246)6.450(0.254)LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited11Jan. 2013 Rev. 2. 3Mechanical Dimensions (Continued)SOIC-8Unit: mm(inch)1°5°R0.150(0.006)0.330(0.013)0.510(0.020)0.900(0.035)4.000(0.157)0.190(0.007)0.250(0.010)0.450(0.017)0.800(0.031)LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited12Jan. 2013 Rev. 2. 3Mechanical Dimensions (Continued)TSSOP-8Unit: mm(inch)0.400(0.016)0.190(0.007)0.300(0.012)DETAIL A1.950(0.077)8°0.450(0.018)0.750(0.030)1.000(0.039)SEATING PLANE0.250(0.010)0.650(0.026)T Y PTYPTYPREFNote: Eject hole, oriented hole and mold mark is optional.LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS AS393/393A BCD Semiconductor Manufacturing Limited13Jan. 2013 Rev. 2. 3Mechanical Dimensions (Continued)MSOP-8Unit: mm(inch)Note: Eject hole, oriented hole and mold mark is optional.BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifi-- Wafer FabShanghai SIM-BCD Semiconductor Manufacturing Limited800, Yi Shan Road, Shanghai 200233, ChinaTel: +86-21-6485 1491, Fax: +86-21-5450 0008BCD Semiconductor Manufacturing LimitedREGIONAL SALES OFFICEShenzhen OfficeShanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen OfficeAdvanced Analog Circuits (Shanghai) Corporation Shenzhen OfficeRoom E, 5F, Noble Center, No.1006, 3rd Fuzhong Road, Futian District, Shenzhen 518026, China Tel: +86-755-8826 7951Fax: +86-755-8826 7865Taiwan OfficeBCD Semiconductor (Taiwan) Company Limited4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,TaiwanTel: +886-2-2656 2808Fax: +886-2-2656 2806USA OfficeBCD Semiconductor Corporation30920 Huntwood Ave. Hayward,CA 94544, U.S.ATel : +1-510-324-2988Fax: +1-510-324-2788- IC Design GroupAdvanced Analog Circuits (Shanghai) Corporation8F, Zone B, 900, Yi Shan Road, Shanghai 200233, ChinaTel: +86-21-6495 9539, Fax: +86-21-6485 9673BCD Semiconductor Manufacturing LimitedBCD Semiconductor Manufacturing LimitedIMPORTANT NOTICEcations herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.- Wafer FabShanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.800 Yi Shan Road, Shanghai 200233, ChinaTel: +86-21-6485 1491, Fax: +86-21-5450 0008MAIN SITEREGIONAL SALES OFFICEShenzhen OfficeShanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, ChinaTel: +86-755-8826 7951Fax: +86-755-8826 7865Taiwan OfficeBCD Semiconductor (Taiwan) Company Limited4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,TaiwanTel: +886-2-2656 2808Fax: +886-2-2656 2806USA OfficeBCD Semiconductor Corp.30920 Huntwood Ave. Hayward,CA 94544, USATel : +1-510-324-2988Fax: +1-510-324-2788- HeadquartersBCD Semiconductor Manufacturing LimitedNo. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277。

ST LM293,A LM193,A LM393,A 说明书

ST LM293,A LM193,A LM393,A 说明书

May 2005Revision 31/13■Wide single supply voltage range or dual supplies : +2V to +36V or ±1V to ±18V ■Very low supply current (0.4mA)independent of supply voltage (1mW/comparator at +5V)■Low input bias current: 25nA typ.■Low input offset current: ±5nA typ.■Low input offset voltage: ±1mV typ.■Input common-mode voltage range includes ground■Low output saturation voltage: 250mV typ. (Io = 4mA)■Differential input voltage range equal to the supply voltage■TTL, DTL, ECL, MOS, CMOS compatible outputsDescriptionThese devices consist of two independent low voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.These comparators also have a unique characteristic in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.Pin Connections (top view)Order CodesPart NumberTemperature Range PackagePackaging LM193AD/LM193ADT -55°C, +125°CSO Tube or Tape & ReelLM193ANDIP TubeLM193D/LM193DT SO Tube or Tape & ReelLM193NDIP TubeLM293AD/LM293ADT -40°C, +105°CSO Tube or Tape & ReelLM293ANDIP TubeLM293D/LM293DT SO Tube or Tape & ReelLM293N DIP TubeLM293PTTSSOP(Thin Shrink Outline Package)T ape & Reel LM293STMini SO T ape & Reel LM393AD/LM393ADT 0°C, +70°CSO Tube or Tape & Reel LM393D/LM393DT SO Tube or Tape & ReelLM393N DIP TubeLM393PT TSSOP(Thin Shrink Outline Package)T ape & Reel LM393STMini SOT ape & Reel LM393IYDT/IYD -40°C, +125°C SO (automotive grade level)Tube or Tape & ReelLM193, ALM293, A - LM393, ALow Power Dual Voltage ComparatorsLM193, A - LM293, A - LM393, A Schematic Diagram (1/2 LM193) 1 Schematic Diagram (1/2 LM193)Absolute Maximum Ratings LM193, A - LM293, A - LM393, A2 Absolute Maximum RatingsTable 1.Key parameters and their absolute maximum ratingsSymbol ParameterValue Unit Vcc Supply voltage±18 or 36V V id Differential Input Voltage ±36V ViInput Voltage-0.3 to +36VOutput Short-circuit to Ground - note 11)Short-circuits from the output to V CC + can cause excessive heating and eventual destruction. The maximum output current is approxi-mately 20mA independent of the magnitude of V CC +.Infinite P d Power Dissipation 2DIP-8 SO-8 TSSOP8 Mini SO-82)Pd is calculated with T amb = +25°C, T j = +150°C and R thja = 100°C/W for DIP8 package= 175°C/W for SO8 package = 200°C/W for TSSOP8 package = 215°C/W for Mini SO8 package1250710625580mW T stgStorage Temperature Range-65 to +150°C Table 2.Operating ConditionsSymbol ParameterValue Unit V icm Common Mode Input Voltage Range0 to V CC + -1.5V T operOperating Free-Air Temperature range LM193, ALM293, A LM393, A-55 to +125-40 to +1250 to +70°CLM193, A - LM293, A - LM393, A Electrical Characteristics3 Electrical CharacteristicsTable 3.V CC + = +5V, V CC -= 0V, T amb = +25°C (unless otherwise specified)SymbolParameterLM193A - LM293ALM393A LM193- LM293LM393UnitMin.Typ.Max.MinTyp.Max.V ioInput Offset Voltage - note 1T amb = +25°CT min ≤ T amb ≤ T max 1)At output switch point, V o ≈ 1.4V, R s = 0 with V CC + from 5V to 30V, and over the full common-mode range (0V to V CC + -1.5V).124159mV I ioInput Offset Current T amb = +25°CT min ≤ T amb ≤ T max325100550150nAI ib Input Bias Current (I + or I -) - note 2T amb = +25°CT min ≤ T amb ≤ T max 2)The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading charge exists on the reference of input lines.2510030025250400nAA vd Large Signal Voltage GainV CC = 15V, R L = 15k Ω, V o = 1V to 11V 5020050200V/mV I CCSupply Current (all comparators) V CC = +5V, no load V CC = +30V, no load0.4112.50.4112.5mAV icmInput Common Mode Voltage Range - note 3V CC = 30V T amb = +25°CT min ≤ T amb ≤ T max 3)The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V CC + -1.5V, but either or both inputs can go to +30V without damage.00V CC + -1.5V CC + -200V CC + -1.5V CC + -2VV id Differential Input Voltage -note 44)The response time specified is for a 100mV input step with 5mV overdrive. For larger overdrive signals 300ns can be obtained.V CC +V CC +V OLLow Level Output Voltage V id = -1V , I sink = 4mA T amb = +25°CT min ≤ T amb ≤ T max250400700250400700VI OHHigh Level Output Current (V id = 1V)V CC = V o = 30V T amb = +25°CT min ≤ T amb ≤ T max 0.110.11nA µA I SINK Output Sink Currrent V id = 1V, V o = 1.5V616616mA treResponse Time - note 5R L = 5.1k Ω connected to V CC +5)Posistive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3V (or 0.3V bellow the neg-ative power supply, if used).1.31.3µstrelLarge Signal Response TimeR L = 5.1k Ω connected to V CC +, e l = TTL,V (ref) = +1.4v300300nsElectrical CharacteristicsLM193, A - LM293, A - LM393, AFigure 1. Supply current vs. supply voltageFigure 2. Output saturation voltage vs.output current Figure 3. Response time for various inputoverdrives - positive transitionFigure 4. Input current vs. supply voltageFigure 5. Response time for various inputoverdrives - negative transitionLM193, A - LM293, A - LM393, A Typical Applications4 Typical ApplicationsTypical ApplicationsLM193, A - LM293, A - LM393, AFigure 12. Low frequency op-amp with offsetFigure 13. Zero crossing detector (single powerFigure 14. Two-decade high-frequency VCO1N4148LM193, A - LM293, A - LM393, ATypical ApplicationsFigure 17. Split-supply applications - zeroFigure 18. Comparator with a negativePackage Mechanical Data LM193, A - LM293, A - LM393, A 5 Package Mechanical DataLM193, A - LM293, A - LM393, A Package Mechanical DataPackage Mechanical Data LM193, A - LM293, A - LM393, ALM193, A - LM293, A - LM393, A Package Mechanical Data 5.4 Mini SO8 packageRevision History LM193, A - LM293, A - LM393, A 6 Revision HistoryDate Revision Description of Changes01 July 20021First Release01 Jan. 20052Class A of the product included in the datasheet.19 May 20053PIPAP references inserted in the datasheet see table order code p1 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is grantedby implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are notauthorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronicsAll other names are the property of their respective owners© 2005 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America。

LM393

LM393

LM393 低功率低失调电压双比较器概述LM393是由两个独立的、高精度电压比较器组成的集成电路,失调电压低,最大为2.0mV。

它专为获得宽电压范围、单电源供电而设计,也可以以双电源供电;而且无论电源电压大小,电源消耗的电流都很低。

它还有一个特性:即使是单电源供电,比较器的共模输入电压范围接近地电平。

主要应用于限幅器、简单的模/数转换器、脉冲发生器、延时发生器、宽频压控振荡器、MOS时钟计时器、多频振荡器和高电平数字逻辑门电路。

393被设计成能直接连接TTL和CMOS;当用双电源供电时,它能兼容MOS逻辑电路——这是低功耗的393相较于标准比较器的独特优势。

优势1.高精度比较器;2.减少由于温漂引起的失调电压;3.可以单电源供电;4.输入共模电压范围接近地电平;5.兼容逻辑电路。

特点◆电源电压范围宽:—单电源:20.V to 36V—双电源:±10.V to ±18V◆电源电流消耗很低(0.4mA);◆输入偏置电流低:25nA◆输入失调电流低:±5nA◆最大输入失调电压:±3mA◆输入共模电压范围接近地电平;◆差模输入电压范围等于电源电压;◆输出饱和电压低:250mA at 4mA◆输出电平兼容TTL,DEL,ECL,MOS和CMOS逻辑系统。

功能框图管脚排列图解(顶视)引出端序号符号功能1 OUT A 输出 A2 IN A- 反相输入 A3 IN A+ 同相输入 A4 GND 接地端5 IN B+ 同相输入 B6 IN B- 反相输入 B7 OUT B 输出 B8 Vcc 电源电压极限值(绝对最大额定值,若无特别规定,以下参数均在T A=25℃下测定)数值单位符号参数最小值最大值单电源36 V V CC电源电压双电源±18 V V IDR差模输入电压36 VV IN共模输入电压-0.3 36 VI IN输入电流50 mADIP封装780P D功耗SOP封装660mWTSSOP封装510 T amb工作温度0 70 ℃T stg贮存温度-65 150 ℃电特性(若无特别规定,以下参数均在V CC=5.0V,T A=25℃下测定)符号参数测试条件最小值典型值最大值单位0.8 5.0V IO输入失调电压0≤Ta≤70℃℃9.0mV2.3 50I IO输入失调电流0≤Ta≤70℃℃150mA4.2 250I IB输入偏置电流0≤Ta≤70℃℃400nA0 V cc-1.5V ICR输入共模电压范围0≤Ta≤70℃℃0 V cc-2.0VR L=∞,V CC=5V 0.59 1.0I CC电源电流R L=∞,V CC=36V 0.67 2.5mA G V电压增益R L≥15kΩ,V CC=15V 5 200 V/mVT RES大信号响应时间V IN=TTL logic swing,V REF=1.4V,V RL=5V,R L=5.1kΩ300 nsT RES响应时间V RL=5V,R L=5.1kΩ 1.3 μs I SINK输出陷电流V IN(-)=1V,V IN(+)=0,V O≤1.5V 6 43.7 mAV IN(-)=1V,V IN(+)=0,I SINK≤4.0mA 47.3 400V SAT输出饱和电压VIN(-)=1V,V IN(+)=0,I SINK≤4.0mA,0≤Ta≤70℃℃700mVV IN(+)=1V,V IN(-)=0,V O≤1.5V 0.1I OL输出漏电流VIN(+)=1V,V IN(-)=0,V O=30V,0≤Ta≤70℃℃1000nAV ID输入差模电压36 V应用电路图基本比较器驱动CMOS驱动TTL低频运算放大器低频运算放大器换能放大器带失调调整的低频运算放大顺过零检波器(单电源时)两阶高频压控振荡器极限比较器晶振控制振荡器双电源应用过零检波器带负参考电压的比较器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LM393, LM393E, LM293,LM2903, LM2903E, LM2903V, NCV2903Low Offset VoltageDual ComparatorsThe LM393 series are dual independent precision voltage comparators capable of single or split supply operation. These devices are designed to permit a common mode range−to−ground level withsingle supply operation. Input offset voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer, automotive, and industrial electronics.Features•Wide Single−Supply Range: 2.0 Vdc to 36 Vdc•Split−Supply Range: ±1.0 Vdc to ±18 Vdc•Very Low Current Drain Independent of Supply V oltage: 0.4 mA •Low Input Bias Current: 25 nA•Low Input Offset Current: 5.0 nA•Low Input Offset V oltage: 5.0 mV (max) LM293/393•Input Common Mode Range to Ground Level •Differential Input V oltage Range Equal to Power Supply V oltage •Output V oltage Compatible with DTL, ECL, TTL, MOS, and CMOS Logic Levels•ESD Clamps on the Inputs Increase the Ruggedness of the Device without Affecting Performance•NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable•These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS CompliantFigure 1. Representative Schematic Diagram (Diagram shown is for 1 comparator)See detailed marking information and ordering and shipping information on pages 6 and 7 of this data sheet.DEVICE MARKING AND ORDERINGINFORMATIONPDIP−8N SUFFIXCASE 6268SOIC−8D SUFFIXCASE 7511PIN CONNECTIONS(Top View)Inputs AInputs BOutput BCCMicro8EDM SUFFIXCASE 846A1MAXIMUM RATINGSRating Symbol Value Unit Power Supply Voltage V CC+36 or ±18V Input Differential Voltage V IDR36V Input Common Mode Voltage Range V ICR−0.3 to +36V Output Voltage V O36VOutput Short Circuit−to−Ground Output Sink Current (Note 1)I SCI SinkContinuous20mAPower Dissipation @ T A = 25°C Derate above 25°CP D1/R q JA5705.7mWmW/°COperating Ambient Temperature Range LM293LM393, LM393ELM2903, LM2903ELM2903V, NCV2903 (Note 2)T A−25 to +850 to +70−40 to +105−40 to +125°CMaximum Operating Junction Temperature LM393, LM393E, LM2903, LM2903E, LM2903V LM293, NCV2903T J(max)150150°CStorage Temperature Range T stg−65 to +150°C Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.1.The maximum output current may be as high as 20 mA, independent of the magnitude of V CC, output short circuits to V CC can causeexcessive heating and eventual destruction.2.NCV2903 is qualified for automotive use.ESD RATINGSRating HBM MM Unit ESD Protection at any Pin (Human Body Model − HBM, Machine Model − MM)NCV2903 (Note 2)LM393E, LM2903ELM393DG/DR2G, LM2903DG/DR2G All Other Devices 200015002501500200150100150VVVVELECTRICAL CHARACTERISTICS (V CC = 5.0 Vdc, T low≤T A≤ T high, unless otherwise noted.)Characteristic Symbol LM293, LM393, LM393ELM2903/E/V,NCV2903Unit Min Typ Max Min Typ MaxInput Offset Voltage (Note 4)V IO mV T A = 25°C−±1.0±5.0−±2.0±7.0T low≤T A≤ T high−−±9.0−±9.0±15Input Offset Current I IO nA T A = 25°C−±5.0±50−±5.0±50T low≤T A≤ T high−−±150−±50±200Input Bias Current (Note 5)I IB nA T A = 25°C−20250−20250T low≤T A≤ T high−−400−20500Input Common Mode Voltage Range (Note 6)V ICR V T A = 25°C0−V CC −1.50−V CC −1.5T low≤T A≤ T high0−V CC −2.00−V CC −2.0Voltage Gain A VOL50200−25200−V/mV R L≥ 15 k W, V CC = 15 Vdc, T A = 25°CLarge Signal Response Time−−300−−300−ns V in = TTL Logic Swing, V ref = 1.4 VdcV RL = 5.0 Vdc, R L = 5.1 k W, T A = 25°CResponse Time (Note 7)t TLH− 1.3−− 1.5−m s V RL = 5.0 Vdc, R L = 5.1 k W, T A = 25°CInput Differential Voltage (Note 8)V ID−−V CC−−V CC V All V in≥ GND or V− Supply (if used)Output Sink Current I Sink 6.016− 6.016−mA V in≥ 1.0 Vdc, V in+ = 0 Vdc, V O≤ 1.5 Vdc T A = 25°COutput Saturation Voltage V OL mV V in≥ 1.0 Vdc, V in+ = 0, I Sink≤ 4.0 mA, T A = 25°C−150400−−400T low≤T A≤ T high−−700−200700Output Leakage Current I OL nA V in− = 0 V, V in+≥ 1.0 Vdc, V O = 5.0 Vdc, T A = 25°C−0.1−−0.1−V in− = 0 V, V in+≥ 1.0 Vdc, V O = 30 Vdc,T low≤T A≤ T high−−1000−−1000Supply Current I CC mA R L = ∞ Both Comparators, T A = 25°C−0.4 1.0−0.4 1.0R L = ∞ Both Comparators, V CC = 30 V−− 2.5−− 2.5Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.LM293 T low = −25°C, T high = +85°CLM393, LM393E T low = 0°C, T high = +70°CLM2903, LM2903E T low = −40°C, T high = +105°CLM2903V & NCV2903 T low = −40°C, T high = +125°CNCV2903 is qualified for automotive use.3.The maximum output current may be as high as 20 mA, independent of the magnitude of V CC, output short circuits to V CC can causeexcessive heating and eventual destruction.4.At output switch point, V O]1.4 Vdc, R S = 0 W with V CC from5.0 Vdc to 30 Vdc, and over the full input common mode range(0 V to V CC = −1.5 V).5.Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state,therefore, no loading changes will exist on the input lines.6.Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit ofcommon mode range is V CC −1.5 V.7.Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times areobtainable.8.The comparator will exhibit proper output state if one of the inputs becomes greater than V CC, the other input must remain within the commonmode range. The low input state must not be less than −0.3 V of ground or minus supply.LM293/393LM2903Figure 2. Input Bias Current versusPower Supply Voltage Figure 3. Input Bias Current versusPower Supply VoltageFigure 4. Output Saturation Voltageversus Output Sink Current Figure 5. Output Saturation Voltageversus Output Sink CurrentFigure 6. Power Supply Current versusPower Supply Voltage Figure 7. Power Supply Current versusPower Supply VoltageV CC , SUPPLY VOLTAGE (Vdc)V CC , SUPPLY VOLTAGE (Vdc)V CC , SUPPLY VOLTAGE (Vdc)V CC , SUPPLY VOLTAGE (Vdc)I Sink , OUTPUT SINK CURRENT (mA)I Sink , OUTPUT SINK CURRENT (mA)I , I N P U T B I A S C U R R E N T (n A )I BV , S A T U R A T I O N V O L T A G E (V d c )O L I , S U P P L Y C U R R E N T (m A )CC 7130510152025303540101.00.10.010.0011.00.80.60.40.201.20.4101.00.10.010.0011.00.80.6I , S U P P L Y C U R R E N T (m A )CC V , S A T U R A T I O N V O L T A G E (V d c )O L I , I N P U T B I A S C U R R E N T (n A )I B891011121314151719212325APPLICATIONS INFORMATIONThese dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V OL to V OH ). To alleviate this situation, input resistors <10 k W should be used.The addition of positive feedback (<10mV) is also recommended. It is good design practice to ground all unused pins.Differential input voltages may be larger than supply voltage without damaging the comparator’s inputs. V oltages more negative than −0.3 V should not be used.Figure 8. Zero Crossing Detector(Single Supply)Figure 9. Zero Crossing Detector(Split Supply)Figure 10. Free−Running Square−Wave OscillatorFigure 11. Time Delay GeneratorFigure 12. Comparator with Hysteresis10D1 prevents input from going negative by more than 0.6 V.R1 + R2 = R3R3 ≤R5for small error in zero crossing.V in(min) [ 0.4 V peak for 1% phase distortion (DQ ).QV inEEV inV V O - V QV OV in V O V t ``ON'' for t ­ t O +D t where:D t = RC ȏ n (V refV CC)LV CCR LV refR S = R1 | | R2V th1 = V ref +(V CC -V ref ) R1R1 + R2 + R L V th2 = V ref -(V ref -V O Low) R1R1 + R2MARKING DIAGRAMS18x = 2 or 3A = Assembly Location WL, L = Wafer Lot YY , Y = YearWW, W = Work WeekG , G = Pb−Free PackagePDIP−8CASE 626SOIC−8CASE 751**This marking diagram also applies to NCV2903DR2GMicro8CASE 846A 181818LM393NG AWLYYWW 18LM2903NAWL YYWWG(Note: Microdot may be in either location)1818ORDERING INFORMATIONDevice Operating TemperatureRange Package Shipping†LM293DG−25°C to +85°CSOIC−8(Pb−Free)98 Units / RailLM293DR2G2500 / Tape & Reel LM293DMR2G Micro8(Pb−Free)4000 / Tape and ReelLM393DG0°C to +70°CSOIC−8(Pb−Free)98 Units / RailLM393DR2G2500 / Tape & Reel LM393EDR2G SOIC−8(Pb−Free)2500 / Tape & Reel LM393NG PDIP−8(Pb−Free)50 Units / Rail LM393DMR2G Micro8(Pb−Free)4000 / Tape and ReelLM2903DG−40°C to +105°CSOIC−8(Pb−Free)98 Units / RailLM2903DR2G2500 / Tape & Reel LM2903EDR2G SOIC−8(Pb−Free)2500 / Tape & Reel LM2903DMR2G Micro8(Pb−Free)4000 / Tape and Reel LM2903NG PDIP−8(Pb−Free)50 Units / RailLM2903VDG−40°C to +125°CSOIC−8(Pb−Free)98 Units / RailLM2903VDR2G2500 / Tape & ReelLM2903VNG PDIP−8(Pb−Free)50 Units / RailNCV2903DR2G*SOIC−8(Pb−Free)2500 / Tape & ReelNCV2903DMR2G*Micro8(Pb−Free)4000 / Tape & Reel†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable.PDIP−8N, AN, VN SUFFIX CASE 626−05ISSUE PNOTE 8TOP VIEWEND VIEWWITH LEADS CONSTRAINEDDIM MIN MAX INCHES A −−−−0.210A10.015−−−−b 0.0140.022C 0.0080.014D 0.3550.400D10.005−−−−e 0.100 BSC E 0.3000.325M−−−−10−−− 5.330.38−−−0.350.560.200.369.0210.160.13−−−2.54 BSC 7.628.26−−−10MIN MAX MILLIMETERSNOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: INCHES.3.DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.4.DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.5.DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.6.DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.7.DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY .8.PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).E10.2400.280 6.107.11b2eB −−−−0.430−−−10.920.060 TYP 1.52 TYP cA20.1150.195 2.92 4.95L 0.1150.150 2.92 3.81°°NOTE 5SOIC−8 NB CASE 751−07ISSUE AKNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.4.MAXIMUM MOLD PROTRUSION 0.15 (0.006)PER SIDE.5.DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.6.751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.DIM AMIN MAX MINMAX INCHES4.805.000.1890.197MILLIMETERS B 3.80 4.000.1500.157C 1.35 1.750.0530.069D 0.330.510.0130.020G 1.27 BSC 0.050 BSC H 0.100.250.0040.010J 0.190.250.0070.010K 0.40 1.270.0160.050M 0 8 0 8 N 0.250.500.0100.020S5.806.200.2280.244MYM0.25 (0.010)YM0.25 (0.010)Z SXS____0.60.024ǒmm inchesǓSCALE 6:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*Micro8t CASE 846A−02ISSUE JNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.4.DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.5.846A-01 OBSOLETE, NEW STANDARD 846A-02.DIM A MIN NOM MAX MIN MILLIMETERS−−−− 1.10−−INCHES A10.050.080.150.002b 0.250.330.400.010c 0.130.180.230.005D 2.90 3.00 3.100.114E 2.903.00 3.100.114e 0.65 BSCL 0.400.550.700.016−−0.0430.0030.0060.0130.0160.0070.0090.1180.1220.1180.1220.026 BSC0.0210.028NOM MAX 4.75 4.90 5.050.1870.1930.199H E*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*DIMENSION: MILLIMETERSRECOMMENDEDPUBLICATION ORDERING INFORMATIONON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent。

相关文档
最新文档