激光原理第9讲

合集下载

第9讲 光学谐振腔-稳定性

第9讲 光学谐振腔-稳定性

高斯光束的共焦
参数。
12
习题
一、试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中 可以往返无限多次,而且两次往返即自行闭合。
二、如图所示谐振腔 : 1、画出其等效透镜序列。如果光线从薄透镜右侧开始,
反时针传播,标出光线的一个往返传输周期; 2、求当d / F (F是透镜焦距)满足什么条件时,谐振腔
组成腔的两个反射镜面的反射率; 反射镜的几何形状以及它们之间的组合方式;
对振荡光束参数进行控制
有效地控制腔内实际振荡的模式数目; 可以直接控制激光束的横向分布特性、光斑大小、振荡频率及光束 发散角等; 可改变腔内损耗,在增益一定的情况下能控制激光束输出的能力。
8
9.3 光学谐振腔的作用
对光学谐振腔的评价标准
光学谐振腔应具有较小的损耗,可以形成正反馈,达到预期输出; 应具有良好的激光模式鉴别能力;
光学谐振腔的选择原则
根据实际应用的需要选择不同的光学谐振腔。
“稳定”与“非稳定”指的是什么?
9
9.4 光学谐振腔稳定性判别性
常常用稳区图来表示共轴球面腔的稳定条件,以光腔的两个反射面的g参数 为坐标轴绘制出的图为稳区图:
图中空白部分是 谐振腔的稳定工 作区,其中包括 坐标原点。 图中阴影区为不 稳定区;
在稳定区和非稳 区的边界上是临 界区。对工作在 临界区的腔,只 有某些特定的光 线才能在腔内往 返而不逸出腔外。
10
9.4 光学谐振腔稳定性判别性
稳定性简单判别法
若一个反射面的曲率中心与其顶点的连线与第二个反射面的曲率中心或 反射面本身二者之一相交,则为稳定腔; 若和两者同时相交或者同时不相交,则为非稳腔; 若有两个中心重合,则为临界腔;
为稳定腔; 三、如图所示,腔内有其它元件的两镜腔中,除两面反射镜外的其余部分的

激光原理绪论PPT课件

激光原理绪论PPT课件
26
1963年建立了激光的半经典理论。 对激光的频率特性和功率特性进行了比较完 善的探讨。
1964年研制成了 氩离子(A+r)离子气体激光器 二氧化碳气体激光器 化学激光器(HF氟化氢) 掺钕的钇铝石榴石固体激光器
1965年实现了铌酸锂光学参量振荡器,借助 半经典理论预言了锁模效应的存在。
27
1966年研制成了固体锁模激光器,获得了超短脉冲 1970年研制成了准分子激光器 1977年研制成了红外波段的自由电子激光器 1984年研制出光孤子激光器
如今形形色色的激光器据统计,已有数百种之多
29
该领域的有关诺贝尔奖
1964: Townes, Basov, Prokhorov, 微波激射器和激光器的发明
1981:哈佛大学的布隆姆贝根和斯坦福大学的肖洛 , 激光光谱学 1997: 朱隶文等三人, 激光冷却和陷俘原子
说明: 朱隶文系美籍华人, 1948年生于密苏里州,其父台湾中央研究
很久以前,有人幻想一种“死光武器”的出现。在 古希腊,阿基米德利用巨大的反光聚焦镜摧毁了入 侵者的兵舰,但那时的船还是由木头做的。
现代的激光让人们有可能实现古代的梦想,制造出 可以摧毁一切的激光武器。
美国现在全力研制的“星球大战”防卫体系,所依 赖的重要一环就是用激光束来击毁入侵的导弹。可 以设想,一枚载着核弹头的导弹在强激光的照射下 会迅速化为一阵烟雾消散在空中,这该是多么神奇 的事!
31
在基础研究和关键技术方面、一系列新概念、新方法 和新技术(如腔的Q突变及转镜调Q、行波放大、自 由电子振荡辐射等)纷纷提出并获得实施,其中不少 具有独创性。
1964年,我国第一所,也是当时世界上第一所激光技 术的专业研究所——中国科学院上海光学精密机械 研究所(简称“上海光机所”)成立

激光原理课件

激光原理课件

吸收跃迁: 低 吸收能量 高 辐射跃迁: 高 辐射能量 低
(自发辐射)
h E1 E2
3. 受激辐射:
激光原理 . 第一章
爱因斯坦发现,若只有自发辐射和吸收跃迁, 黑体和辐射场之间不可能达到热平衡,要达 到热平衡,还必须存在受激辐射。
二、自发辐射、受激吸收和受激辐射
1. 自发辐射
E2
h
E1
发光前
发光后
h E2 E1
激光原理 . 第一章
普通光源(白炽灯、日光灯、高压水银灯)的发光过程 为自发辐射。各原子自发辐射发出的光彼此独立,频率、 振动方向、相位不一定相同——为非相干光。
A 自发跃迁几率(自发跃迁爱因斯坦系数): 21
1
A21 S
原子在能级 E2 的平均寿命
只与原子本身性质有关,与辐射场无关
爱因斯坦——1917年,提出受激辐射概念。 1. 黑体辐射的Planck公式:
任何物质在一定温度下都要辐射和吸收电磁辐射。
黑体:能够完全吸收任何波长 的电磁辐射的物体。
空腔辐射体
热平衡状态:
激光原理 . 第一章
黑体吸收的辐射能量 黑体发出的辐射能量
单色能量密度

dE
dVd
Planck辐射能量量子化假说:
激光原理 . 第一章
A21 B21
8 h 3
c3
n h
B12 f1 B21 f2
f1 f2
B12 B21 W12 W21
A21
8 h
c3
3
B21
结论:
激光原理 . 第一章
1. 其他条件相同时,受激辐射和受激吸收具有相同几率。
2. 热平衡状态下,高能级上原子数少于低能级上原子数,故 正常情况下,吸收比发射更频繁,其差额由自发辐射补偿。

激光原理与应用讲教学课件

激光原理与应用讲教学课件
规定使用场所
激光设备应在指定的、安全的场所使用,并确保该场所没有其他人 员或物体受到激光的潜在危害。
规定操作流程
使用激光设备前,必须阅读并理解操作手册,并按照手册中的步骤 进行操作。任何违反操作流程的行为都可能导致严重的后果。
定期检查和维护
激光设备应定期进行检查和维护,以确保其处于良好的工作状态,并 消除任何潜在的安全隐患。
亮度高
激光的能量密度很大,亮 度高,可以在很短的时间 内集中很大的能量
激光的分 类
按工作物质分类 气体激光器、液体激光器、固体激光 器、化学激光器和自由电子激光器等
按输出波长分类
远红外激光器、近红外激光器、可见 激光器、紫外激光器、X射线激光器 和超短激光器等
材料加工
01
02
利用激光的高能量密度,实现金属和非金属材料的切割、 焊接、打孔等。
应用:汽车制造、航空航天、电子制造。
03
04
激光快速成型
利用激光制造三维物体,具有速度快、精度高、成本低 等优点。
05
06
应用:产品原型制造、医疗器械制造。
04 激光技术的前沿 与展望
高功率激光技 术
总结词
高功率激光技术是目前激光领域的前沿技术之一,是推动激光技术进步的重要力 量。
激光原理与应用教学课件
contents
目录
• 激光原理概述 • 激光原理的基本概念 • 激光器件及应用 • 激光技术的前沿与展望 • 激光安全与防护
01 激光原理概述
激光的产生
激光是受激辐射光放大的简称,是原子或分子中的电子在吸收能量后,从低能级跃 迁到高能级,再从高能级回落到低能级时,释放的能量以光子的形式放
详细描述
光纤激光器利用光纤作为增益介质,具有体积小、散热效果好、易于维护等优点。同时,光纤激光器的光束质量 也优于传统固体激光器,能够实现更远距离的传输和更好的聚焦效果。目前,光纤激光器已经被广泛应用于工业、 医疗、军事等领域。

9染料激光器讲解

9染料激光器讲解

浙江工贸职业技术学院单元教学设计20 —20 学年第学期课程名称:激光原理与技术授课班级:光机电1301任课教师:张玄和所在院(系):材料工程系单元教学设计基本框架第一部分:组织教学和复习上次课主要内容(时间:分钟)第二部分:学习新内容【步骤一】染料激光器(时间:分钟)1966年,人们第一次利用巨脉冲红宝石激光器泵浦氯化铝酞化菁(CAP)和花菁类染料,获得了受激辐射。

此后,染料激光器得到了迅速的发展。

染料激光器受到人们重视的原因是:①输出激光波长可调谐,某些染料激光波长可调宽度达上百毫微米;②激光脉冲宽度可以很窄,目前,由染料激光器产生的超短脉冲宽度可压缩至飞秒(10-15秒)量级;③染料激光器的输出功率大,可与固体激光器比拟,并且价格便宜;④染料激光器工作物质具有均匀性好等优良的光学质量。

因此,它在光化学、光生物学、光谱学、化学动力学、同位素分离、全息照相和光通信中,正获得日益广泛的重要应用。

【步骤二】染料激光器的激发机理(时间:分钟)1.染料分子能级染料激光器的工作物质是有机染料溶液。

每个染料分子都由许多原子组成,其能级结构十分复杂。

由于染料分子的运动包括电子运动、组成染料分子的原子间的相对振动和整个染料分子的转动,所以在染料分子的能级中,对应每个电子能级都有一组振动一转动能级,并且由于分子碰撞和静电扰动,振动—转动能级被展宽。

因此,染料分子能级图是如图(5-17)所示的准连续态能级结构。

在电子能级中,有单态和三重态两类,三重态较相应的单态能级略低。

染料分子能级中,每一个单态(S0、S1、S2……)都对应有一个三重态(T1、T2……)。

S0是基态,其它能级均为激发态。

图(5-17)染料分子能级图图(5-18)染料的吸收─荧光光谱图2.染料分子的光辐射过程如图(5—18)所示,在泵浦光的照射下,大部分染料分子从基态S0激发到激发态S1、S2……上,其中S1态有稍长一些的寿命,因此,其它激发态的分子很快跃迁到S1态的最低振动能级上,这些分子跃迁到S0态上较高的振动能级时,即发出荧光,同时很快地弛豫到最低的振动能级上。

激光原理及应用ppt课件

激光原理及应用ppt课件
• 声光调Q是一种广泛使用的 Q开关方式,其有重复频率高、性能可靠的优点。
激光调制前
激光调制后
4.机械运动系统
• 基片送入后,高精度伺服电机在微机的控制下转动振镜的角度;
• 激光束通过扫描镜的反射,由f-θ场镜聚焦到基片的边缘位置上;
• 在微机上通过专用的控制软件输入总的清边面积、激光束的行走速度 和需要重复的次数;
E2
E2
E1
E1
自发辐射跃迁
自发辐射光子
c. 受激辐射(激光): 当频率为=ν(E2-E1)/h的光子入射时,会引发粒子以一定的概率,迅 速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都 相同的光子。
E2
E2
入射光子
E1
E1
受激辐射光子 入射光子
受激辐射跃迁 3-2 粒子数反转
(Top flat)
高斯
多元高斯
• 减少脉冲时间,高的峰值能量,更多的能量密度
Less pulse time, high peak power more energy density
能量密度=功率/频率/光斑面积
pulse
1.1uW/um=220W/20KHz/900um2
Hz
4.重叠率计算——Overlap
全反光镜
反光镜: (越75%

Shutter
激光器外形 接光纤
Q-Switch
晶体腔
功率计
激光器内部分解图(P4)
Q-Switch 半反镜
晶体腔 光纤耦合器
镜头聚焦原理——凸透镜
激光刻划原理——以P1为例
光斑
1.Beam Shaping (激光束形状)
• 一般的激光都为高斯分布的波形,即高斯光束,为实现特殊的制程需求,需要转变 成为扁平式波形的平顶光束,即Top Hat,通过透镜组改变光束质量和形状产生。

《激光原理》PPT课件

《激光原理》PPT课件

2024/1/28
28
前沿动态及发展趋势预测
超快激光技术
实现飞秒、皮秒级超短脉冲输出,用 于精密加工、生物医学等领域。
高功率激光技术
发展高能量、高效率的激光器,应用 于国防、能源等领域。
2024/1/28
激光显示技术
利用激光作为光源的显示技术,具有 色域广、亮度高等优点,是未来显示 技术的重要发展方向。
概述光纤激光器的工作原理、 优势及在通信、传感等领域的 应用前景。
其他典型固体激光器
简要介绍其他类型的固体激光 器,如半导体激光器、拉曼激
光器等。
10
03
气体激光器原理与技术
2024/1/28
11
气体放电过程及发光机制
01
02
03
气体放电基本概念
电子与气体原子或分子碰 撞,引发电离和激发过程 ,产生带电粒子和光子。
液体染料激光器技术特点பைடு நூலகம்
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
16
半导体材料发光机制及器件结构
2024/1/28
利用半导体材料的特性实现受激辐射,具有 体积小、效率高、寿命长等优点,广泛应用 于通信、显示等领域。
2024/1/28
6
02
固体激光器原理与技术
2024/1/28
7
固体激光材料及其发光机制
2024/1/28
固体激光材料种类与特性
01
包括晶体、玻璃、陶瓷等,具有不同的发光特性和应用场景。

2024年激光原理与技术课件课件

2024年激光原理与技术课件课件

激光原理与技术课件课件激光原理与技术课件一、引言激光作为一种独特的人造光,自20世纪60年代问世以来,已经在众多领域取得了举世瞩目的成果。

激光原理与技术已经成为现代科学技术的重要组成部分,并在光学、通信、医疗、工业加工等领域发挥着重要作用。

本课件旨在阐述激光的基本原理、特性以及应用技术,使读者对激光有更深入的了解。

二、激光的基本原理1.光的粒子性与波动性光既具有粒子性,也具有波动性。

在量子力学中,光被视为由一系列光子组成的粒子流,光子的能量与频率成正比。

而在波动光学中,光被视为一种电磁波,具有频率、波长、振幅等波动特性。

2.光的受激辐射受激辐射是指处于激发态的原子或分子在受到外来光子作用后,返回基态并释放出一个与外来光子具有相同频率、相位、传播方向和偏振状态的光子。

这个过程是激光产生的核心原理。

3.光的放大与谐振在激光器中,通过光学增益介质实现光的放大。

当光在增益介质中往返传播时,不断与激发态原子或分子发生受激辐射,使光子数不断增加。

同时,通过谐振腔的选择性反馈,使特定频率的光得到进一步放大,最终形成激光。

三、激光的特性1.单色性激光具有极高的单色性,即频率单一。

这是由于激光器中的谐振腔对光的频率具有高度选择性,只有满足特定频率的光才能在谐振腔内稳定传播。

2.相干性激光具有高度的相干性,即光波的相位关系保持稳定。

相干光在传播过程中能形成稳定的干涉图样,广泛应用于光学检测、全息成像等领域。

3.方向性激光具有极高的方向性,即光束的发散角很小。

这是由于激光器中的谐振腔对光的传播方向具有高度选择性,只有沿特定方向传播的光才能在谐振腔内稳定传播。

4.高亮度激光具有高亮度,即单位面积上的光功率较高。

这是由于激光的单色性、相干性和方向性使其在空间上高度集中,从而具有较高的亮度。

四、激光的应用技术1.光通信激光在光通信领域具有广泛应用,如光纤通信、自由空间光通信等。

激光的高单色性、相干性和方向性使其在传输过程中具有较低的信号衰减和干扰,从而实现高速、长距离的数据传输。

激光原理 全套课件

激光原理   全套课件

1.1 激光简史
– 1963年,Herbert Kroemer和 Rudolf Kazarinov、Zhores Alferov的团队独立的提出了利 用异质结构造半导体激光器的 思路,这一工作使得他们获得 了2000年的诺贝尔物理学奖。
– 1964年,C. K. N. (Kumar) Patel研制了第一台CO2激光器;
1.1 激光简史
– 1965年,Anthony J.DeMaria, D. A. Stetser和H. A. Heynau报道了 第一台利用钕玻璃激光器和饱和吸 收器产生皮秒级脉冲的激光器。
– 1965年,George C. Pimentel和 Jerome V. V. Kasper 研制了第一 台化学激光器;
1.1 激光简史
– 1959年,Gordon Gould 发表论文“The LASER: Light Amplification by Stimulated Emission of Radiation”,这是 LASER这一术语第一次被提出。
– 1960年5月,休斯实验室的Maiman和Lamb 共同研制的红宝石激光器发出了694.3nm的 红色激光,这是公认的世界上第一台激光器。
激光原理与技术·原理部分
第一讲 激光简史、发展与应用
课程简介
– 先修科目
• 几何光学 • 物理光学 • 量子力学 • 数学物理方法
– 参考书目
• 激光原理 国防工业出版社 2000年版 周炳琨等编 • 量子电子学 科学技术出版社 1983年版 Amnon Yariv,刘
颂豪等翻译 • Lasers, Anthony E. Siegman, Maple-Vail Book Manufacturing
1.1 激光简史

激光原理-(9)-高斯光束

激光原理-(9)-高斯光束

用q参数分析高斯光束经单透镜的传输过程
方法二:
Aq1 + B q2 = Cq1 + D
πω λ
1 = q2
D C+ q1 = B A+ q1
2
D iλ D (C + )− πω1 2 R1 B iλ B (A+ )− πω1 2 R1
2 2
B πω1 2 2 2 A B + + λ R 1 = 2
用q参数分析高斯光束经单透镜的传输过程
ω0
A B l′
ω 0′ ω c
C
q0
l
q A qB
lC
qC
若出射面在薄透镜面上,
lC : =0
1 1 1 ωB = ω A , = − RB RA F
NJUPT
用q参数分析高斯光束经单透镜的传输过程 求: l ′、ω 0 ′
R1 = R2 = ∞
2 ′ = ω0 2 πω ( F − l )2 + ( 0 ) λ 变换前后的束腰大小关系
ω ( z ) ω 0,z ⇒ R( z ) θ 0 2. 任一 坐标 z 处的光斑半径 ω ( z )及等相面曲率半径 R( z )
ω 0(或共焦参量 f )与腰位置 z
ω ( z )
ω 0 ⇒ R( z ) z
NJUPT
高斯光束的 q 参数(复曲率半径)
x2 + y2 ω0 x2 + y2 exp − 2 ) − ϕ ( z ) u00 ( x , = y, z ) c exp − i k ( z + 2 R( z ) ω(z) ω (z)

激光原理与技术完整ppt课件

激光原理与技术完整ppt课件

1.1.1所示)。每一模式在三个坐标铀方向与相邻模的间隔为
Δkx=л/Δx,Δky=л/Δy,Δkz=л/Δy 因此,每个模式在波矢空间占有一个体积元
(1.1.6)
ΔkxΔkyΔkz =л3 /(ΔxΔyΔz)=л3 /V
(1.1. 7)
精选课件PPT
10
在k空间内,波矢绝对值处于|k|~|k|+d|k|区间的体积为(1/8)4л|k|2 d|k|,
可见,一个光波模在相空间也占有一个相格.因此,一个光波模等效于一个光子态。
一个光波模或一个光子态在坐标空间都占有由式(1.1.11)表示的空间体积。
精选课件PPT
12
三、光子的相干性
为了把光子态和光子的相干性两个概念联系起来,下面对光源的相干性进行讨论。
在一般情况下,光的相干性理解为:在不同的空间点上、在不同的时刻的光波场的某
4.4 典型激光器的速率方程
3.5 空心介质波导光谐振腔的反馈耦合损耗 4.5 均匀加宽工作物质的增益系数
4.6 非均匀加宽工作物质的增益系数
4.7 综合均匀加宽工作物质的增益系数
精选课件PPT
3
第五章 激光振荡特性
5.1 激光器的振荡阈值 5.2 激光器的振荡模式 5.3 输出功率和能量 5.4 弛豫振荡 5.5 单模激光器的线宽极限 5.6 激光器的频率牵引
ε=hv
(1.1.1)
式中 h=6.626×10-34J.s,称为普朗克常数。
(2)光子具有运动质量m,并可表示为
(1.1.2)
光子的静止质量为零。
精选课件PPT
7
(3)光子的动量P与单色平面光波的波矢k对应
(1
式中
n。为光子运动方向(平面光波传播方向)上的单位矢量。 4.光于具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。 5.光于具有自旋,并且自旋量子数为整数。因此大量光于的集合, 服从玻色—爱因斯坦统计规律。处于同一状态的光子数目是没有限制的, 这是光子与其它服从费米统计分布的 粒子(电子、质子、中子等)的重要区别。 上述基本关系式(1.1.1)相(1.1.3)后来为康普顿(Arthur Compton)散射实验所证实 (1923年),并在现代量子电动力学中得到理论解释。量子电动力学从理论上把光的电磁 (波动)理论和光子(微粒)理论在电磁场的量子化描述的基础上统一起来,从而在理论上 阐明了光的波粒二象性。在这种描述中,

《激光原理》课件

《激光原理》课件

《激光原理》课件一、教学内容本节课的教学内容选自教材《物理》的第四章第三节,主要涉及激光的产生原理、激光的特性及其在现代科技领域的应用。

具体内容包括:激光的产生原理,激光的特性(单色性、相干性、方向性),激光在通信、医疗、科研等领域的应用。

二、教学目标1. 让学生了解激光的产生原理,理解激光的特性及其在现代科技领域的应用。

2. 培养学生运用物理知识解决实际问题的能力。

3. 激发学生对物理学科的兴趣,培养学生的创新意识。

三、教学难点与重点重点:激光的产生原理,激光的特性及其在现代科技领域的应用。

难点:激光的产生原理,激光的相干性及其在通信领域的应用。

四、教具与学具准备教具:多媒体课件、激光笔、实验器材。

学具:教材、笔记本、实验报告单。

五、教学过程1. 情景引入:通过展示激光表演,让学生感受激光的神奇,激发学生的学习兴趣。

2. 知识讲解:讲解激光的产生原理,引导学生理解激光的特性(单色性、相干性、方向性)。

3. 实验演示:进行激光实验,让学生直观地感受激光的特性。

4. 应用拓展:讲解激光在通信、医疗、科研等领域的应用,让学生了解激光的实际意义。

5. 课堂互动:设置随堂练习,让学生运用所学知识解决实际问题。

六、板书设计激光原理:1. 产生原理2. 特性:单色性、相干性、方向性3. 应用:通信、医疗、科研等领域七、作业设计1. 请简述激光的产生原理。

2. 请列举三个激光的应用实例,并说明其原理。

3. 请结合生活实际,谈谈你对激光应用的认识。

八、课后反思及拓展延伸2. 拓展延伸:激光技术在不断发展,教师可以引导学生关注激光技术的最新动态,了解其在不同领域的应用前景,培养学生的创新意识。

同时,可以组织学生进行激光实验,提高学生的实践能力。

重点和难点解析一、教学内容本节课的教学内容选自教材《物理》的第四章第三节,主要涉及激光的产生原理、激光的特性及其在现代科技领域的应用。

具体内容包括:激光的产生原理,激光的特性(单色性、相干性、方向性),激光在通信、医疗、科研等领域的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若 F < f ,无论 l 为何值, 均可使 0 0
若F > f ,
要使
0
0
要求
F2 F l2 f 2
即 l F F 2 f 2 或 l F F 2 f 2 才能聚焦
否则不能聚焦
①当l <F 时,
l 0
当l =0时,
0
最小为:
0min
0
1
f F
2
变 化 曲 线
1
l' F 1
1 f
F
2
F
0
由上式说明:当l=0时,不论透镜焦 距F多大,透镜都有一定聚集作用。
②当l >F 时, l 0
a).当 l F 时,(F l )2 l 20lFl 0
1 ( l )2 f
若同时满足 l f
l' F
F越小l越大聚焦效果越好
:入射到透镜表面的光束半径
1 ( l )2 l ff
0
F l
0
b).当 l 时, 0 0 l ' F
③当l =F
时,
0
达最大值:
0max
F f
0
l F
2. l一定时, 0 随F的变化情况
02
02F 2
F l 2 f2
1 1 F l2 f 2
02 02
F2
当F Rl / 2 时, 0 0 当F Rl / 2 时, 0 0 当F Rl / 2 时, 0 0
与望远镜的结构参数M有关,还与高斯光束的共焦参 数f及腰斑与副镜的距离l1有关。
三.总结
要获得良好的聚焦效果:
• 使用短焦距透镜(F<f)
• 光腰远离透镜焦点(l>>F, l>>f)
• 取 l = 0 并设法满足条件 f >> F
• 双透镜聚焦
要获得良好的准直效果:0
• 利于倒装望远镜
2 F1 F2 ( l1
其中
Rl l f 2
l
表示入射到镜面上时的等相位
面的曲率半径。
二.高斯光束的准直
高斯光束
平面光波
高斯光束发散角
0
2 0
1.单透镜对高斯光束发散角的影响
0
2 0
0 0
02
F
02F 2
l2
f
2
1
02
1
02
1
l F
2
1 F2
0
2
有限 0,无论l,F取何值都不可能使 0 。
说明不可能用单透镜将高斯光束转换为平面波。
高斯光束的 复曲率半径
1
qz
1
Rz
i
2 z
qz = q0 + z q0 = if
高斯光束通过光学系统
q2
=
Aq1 Cq1
+ +
B D
实2.际1应1 用中高,斯为光了束提高的激聚光焦的光与功准率直密度,需要对
一高.高斯光斯束光聚束焦的。聚为焦了(减小0光' 束发0)散角,从而能量不
会随距离很快散开,需要对高斯光束准直。
2.作用和优势:能较好地揭示激光器大部分特性, 如强度特性(反转粒子数烧孔效应与振荡光强的兰 姆凹陷)、增益饱和、多模耦合与竞争、模的相位 锁定、激光振荡的频率牵引与频率推斥效应等。
3.缺陷:数学处理也复杂。理论上还掩盖了光场的 量子特性,无法解释自发辐射的产生、线宽极限、 振荡过程的量子起伏效应(噪声和相干性)等。
)
F2 F1
(l1 )
其中:L1 称为 副镜,L2 称为
主镜。F1 l1
l2=F2 。因此
0 F1 (l1 )
l1 ' F1
3.准直倍率
定义: M 0
0
望远镜的准直倍率
2
M F2
0 2 F1
F2(l1 )
F1
M
F10
F2(l1 )
1 ( l1 )2 f
从上式可知:望远镜对高斯光束的准直倍率M’,不仅
1.处理方法:从光子(即量子化的辐射场)与物质原 子的相互作用出发的。但是,忽略了光子的相位特 性和光子数的起伏特性。
当l=F时有:
0
0
0(max)
F f
0
0(min)
2 0(max)
2 0
F
在l=F的条件下,F越大,0 越小,准直效果越好。
如果预先将高斯光束聚焦,以获得极小的腰斑, 然后再用一个长焦距的透镜来改善其方向性, 可 获得理想的准直效果。
2.利于倒装望远镜准直
0 F2 0
0
2 F1 F2 ( l1
由公式
'02
F
l
02F2
2
02
2
,画出 0 随系统
参数 F, l , 0 的变化曲线图,进而选择系统参数 使 0 ' 0 。但实际上 0不可选,只能选 F和 l 。
1. F一定时,0 ' 随 l 的变化情况

化 0

线
0
'02
F
02F2
l
2
02
2
F F2 f2
F F2 f 2
三.严格理论——量子理论
1.处理方法:将辐射场与原子都作量子化处理,
量子电动力学模型 处理光子
量子力学模型
处理原子
将二者作为一个统一的物理体系加以描述。
2.优势:原则上可处理激光方面的所有问题。
3.缺陷:太复杂。只有在需要严格确定激光的相 干性和噪声以及线宽极限这些特性时才必须用。
四.速率方程理论——量子理论的简化形式
4.1 光和物质相互作用理论简介
一.经典理论
1.处理方法:将原子系统和电磁场都作经典处理,
即用经典电动力学的麦克斯韦方程组描述电磁场,
将原子中的运动电子视为服从经典力学的振子!
电子(谐振子)
相产 互生 作电
原子核
简谐振动电偶极子
发出的电磁辐射
E
E0
e
2
t
ei0t
用极 使化
为阻尼系数 自发辐射
物强 质度
H 2
自发辐射谱线宽度
0 ( ) 色散现象
2.作用和优势:可以解释物质对光的吸收和色散现 象,定性地说明了原子的自发辐射及其谱线宽度等, 可以一定程度上描述光和物质的非共振相互作用。 处理简单。
3.缺陷:理论太粗糙。激光的很多特性无法描述。
二.半经典理论——激光器的兰姆理论
1.处理方法:采用经典麦克斯韦方程组描述光频电 磁场,而物质原子则用量子力学描述。
)
• 使用准直倍率M大的望远镜
• 腰斑与副镜的距离l1 尽量大
第四章 电磁场和物质的共振相互作用
•引言 激光器的物理基础-光频电磁场和组成物质的原子 (或离子、分子)内的(束缚)电子的共振相互作用。
一.光和物质相互作用理论简介 二.谱线加宽和线型函数 三.典型激光器速率方程 四.均匀加宽工作物质的增益系数 五.非均匀加宽工作物质的增益系数 六.综合加宽工作物质的增益系数
z 电磁波 E(z,t) E0eit
电磁波
E( z, t )
E e e i ( i ) z
c
2
it
0
感应电极化系数
i
2(-0 )
物质的折射率
0
2
感应电极化 系数的虚部
I (z,t) E(z,t)E*(z,t) | E(z,t) |2
根据增益的定义: g
c
0 ( 0 )c g H
相关文档
最新文档