由美国军用标准转化的宇航材料规范 (2)

合集下载

军用电子元器件的质量等级

军用电子元器件的质量等级
根据发展的趋势, “七专”条件将逐步向元器件的国家军用标准(GJB)过渡。因此,以下将主要介绍元器件国家军用标准的有关情况。
从八十年代开始,我国军用标准化组织参照美国军用标准(MIL)体系建立了GJB体系,其中元器件的标准有规范、标准、指导性技术文件三种形式:
a.规范—主要包括:元器件的总规范和详细规范,这两种规范统称产品规范。
这种表征方式主要用于电容器、电阻器以及继电器等电子元件的可靠性要求及其评价方面。需要说明的是:由于这些元件以往的规范,均以“有可靠性指标的×××总规范(详细规范)”定名,而容易产生没有冠以“有可靠性指标的×××”就没有可靠性要求甚至无可靠性的误解。“有可靠性指标”英文缩写为“ER”是“Established Reliability”,其基本含义是“确立(或建立)可靠性”包括两方面的含义:一是确立可靠性保证要求,二是确立可靠性的量化值。就“确立可靠性保证要求”的含义而言,是军用电子元器件标准或规范共同的内容,而“确立可靠性的量化值”则是失效率等级表征可靠性保证要求的元件规范特有的内容。为了减少因标准名称而产生的误解,应当考虑用更为合适的修饰语,如可否用“规定失效率等级的×××等”替代“有可靠性指标的×××”来定名规范的名称。
我国于1979年发布了国家标准GB/T 1772-79《电子元器件失效率试验方法》,对有可靠性指标(ER)的军用元件,规定了失效率等级,该国标是参照采用了美军标MIL-STD-690B(1968)而制定的,一直沿用到九十年代初期。1996年发布了国家军用标准GJB2649-96,该国家军标等效采用了美军标MIL-STD-690C(1993),今后国军标有可靠性指标的贯标元件将主要采用GJB 2649-96。但目前大多数列入合格产品目录(QPL)中有可靠性指标的元件,仍沿用GB/T 1772-79规定的失效率等级,两者的失效率等级代号很易混淆,现将这两个标准失效率等级的分类及代号同时列于表2-1,供比较。

航天复合材料设计标准是什么

航天复合材料设计标准是什么

航天复合材料设计标准是什么
航天复合材料设计标准主要指的是适用于航天工程中使用的复合材料的设计和制造的规范和要求。

这些标准旨在确保航天器的结构强度、耐热性、抗氧化性以及其他关键物理和力学性能能够满足航天环境的要求。

以下是一些常见的航天复合材料设计标准。

1.ASTM D5961:这个标准规定了复合材料制品的拉伸、剪切、弯曲和压缩等力学性能测试的方法和程序。

-HDBK-17:这个标准是美国国防部发布的,包含了关
于复合材料设计和制造的详细指南。

它包括了复合材料的材料特性、成型工艺、性能测试等方面的规范和要求。

3.NASA-HDBK-6003:这个标准是美国国家航空航天局(NASA)发布的,用于指导航天器和航天设备中复合材料的
设计、制造和性能评估。

它提供了航天复合材料的选材、成型、性能测试和质量控制等方面的准则。

4.国际航天标准:对于国际合作的航天项目,还需遵循一些国
际航天标准,如国际航空航天标准化组织(ISO)发布的ISO 13485(航天器和地面设施要求)和ISO 9001(质量管理体系
要求)等。

航天复合材料设计标准的制定和遵循对于航天器的安全和可靠性至关重要。

这些标准确保了航天器材料的性能和可靠性,从而提高了航天任务的成功率和工程师的设计效率。

同时,这些
标准也能够推动航天工业技术的发展和推广,促进航天器制造工艺的优化和创新。

在今后,航天复合材料设计标准还将继续完善和更新,以适应不断发展的航天工业的需求。

军用电子元器件的质量等级

军用电子元器件的质量等级
凡已通过质量认证,其认证条件能满足军工产品质量要求的元器件,可不再进行质量认定。凡未经过质量认证或其认证条件不能满足军工产品质量要求的元器件及其生产单位,军工行业的有关部门认为必要时可组织人员进行质量认定。
4
根据用途,元器件的质量等级可分为:用于元器件生产控制、选择和采购的质量等级和用于电子设备可靠性预计的质量等级两类,两者有所区别,又相互联系。
现在我国国防工业主管部门已发布了大量的元器件总规范,但是详细规范还没完全配套,所以往往由器件生产单位制定了详细规范(属于企业军标准级别)经标准化机构确认后贯彻执行。
已发布的军用元器件总规范中,影响较大的总规范及其参照采用的MIL标准如表1-1所示。
表1-1 国军标总规范及其等效采用的美国军用标准
序号
电子元器件的质量等级
汇总整理张增照
1
为了保证军用元器件的质量,我国制订了一系列的元器件标准。在七十年代末期制订的“七专”7905技术协议和八十年代初期制订的“七专”8406技术条件(以下统称“七专”条件),“七专”技术条件是建立我国军用元器件标准的基础,目前按“七专”条件或其加严条件控制生产的元器件仍是航天等部门使用的主要品种。(注:“七专”指专人、专机、专料、专批、专检、专技、专卡)
试验方法标准是指导对某一类元器件进行试验、测量或分析的技术性很强的标准,这类标准的数量较少,但对保证元器件的质量起很大作用。表1-2列出已发布的元器件主要方法标准及其等效采用的MIL标准。
表1-2 国军标方法标准及其等效采用的美国军用标准
序号
国军标编号
国军标名称
等效采用的美军标编号
1
GJB 128A-97
半导体分立器件试验方法MIL-STD-75 NhomakorabeaH2

AMS2759宇航材料规范

AMS2759宇航材料规范

AMS2759宇航材料规范宇航材料规范(AMS2759)是由美国国防部和国际宇航材料技术委员会(IAQG)共同制定的国际标准,用于指导和规范宇航材料的质量控制和热处理过程。

该规范的目的是确保宇航材料的性能和可靠性,以满足航天器和航空器在极端环境下的安全运行要求。

AMS2759规范适用于铝合金、钛合金、镍基合金和钢等常用于航空航天行业的材料。

它涵盖了热处理、淬火、回火、冷处理、时效等热处理工艺,以及表面处理,如酸洗、阳极处理和电镀等。

该规范还包括了检验、测试和认证方面的要求,确保材料的质量和性能符合标准。

AMS2759规范对热处理工艺进行了详细的规定,包括工艺参数、温度控制、保温时间和冷却速度等。

根据材料的不同性质和用途,可以选择不同的热处理过程,以达到理想的材料性能。

规范还明确了热处理过程中的监控和记录要求,以便对热处理过程进行追溯和分析。

除热处理外,AMS2759规范还对材料的表面处理进行了要求。

表面处理可以改善材料的耐腐蚀性能、附着力和美观度。

规范规定了不同表面处理方法的工艺参数和要求,以确保表面处理的质量和一致性。

在质量控制方面,AMS2759规范要求对材料进行严格的检验和测试。

规范列出了一系列的检验项目,包括化学成分分析、金相组织观察、硬度测试和力学性能测试等。

这些测试项目可以帮助确认材料的质量和性能是否符合标准要求。

最后,AMS2759规范还对质量认证和供应链管理提出了要求。

它要求供应商必须具备一定的质量管理体系,并通过第三方认证机构的审核和认证。

这样可以确保宇航材料的质量和可靠性,降低供应链风险。

总之,AMS2759宇航材料规范是一个广泛使用的国际标准,用于指导和规范宇航材料的质量控制和热处理过程。

通过遵循该规范的要求,可以确保宇航材料在极端条件下的安全运行,提高航天器和航空器的性能和可靠性。

同时,规范还对宇航材料的表面处理、检验和质量认证等方面提出了具体要求,进一步提高了宇航材料的质量和一致性。

美国的航天器环境试验标准评述

美国的航天器环境试验标准评述

美国的航天器环境试验标准评述金恂叔文摘:概述了环境试验和检验在航天器研制中的作用,简介和分析了美国的MIL -STD-1540C环境试验标准与GEVS-SE通用环境检验规范的发展过程以及异同点,研究和评述了在采办改革的形势下,美国环境试验标准的发展趋势,并结合我国航天型号研制情况,提出了采用和借鉴的建议。

关键词:航天器;环境试验标准;环境检验规范;分析比较;发展趋势;美国1 前言环境试验是航天器研制工作中不可缺少的重要组成部分,它对暴露产品中隐藏的缺陷,保证和提高产品的质量与可靠性起了很重要的作用。

而环境试验标准是指导航天器研制中环境试验大纲和计划的制定,阐明要进行哪些试验、试验的基本要求等,因此,各国在航天器的研制中,都编制了环境试验的标准或规范。

美国在环境试验标准的制定方面也下了很大力气,目前用于航天器通用性的环境试验标准共有两项,即:美国军用标准MIL-STD-1540《航天器试验要求》,1994年10月出了C版并更名为MIL-STD-1540C《运载器、顶级飞行器和航天器试验要求》;美国NASA哥达德航天中心(GSFC)制定的通用环境检验规范,最新一版名称为GEVS-SE《航天飞机(STS)和一次使用运载器(ELV)有效载荷、分系统及组件通用环境检验规范》,是在1990年颁布的。

前者主要用于军用航天器,后者主要用于NASA各中心的航天器。

这两项标准在西方各国的航天部门都有很高的影响,对我国的航天器研制及试验也有很大的参考价值。

本文拟对这两项标准的发展过程和趋势、各自特点及异同作一简要介绍、比较和评述。

2 MIL-STD-1540C和GEVS-SE的发展过程2.1 MIL-STD-1540CMIL-STD-1540的正式第一版即MIL-STD-1540A《航天器试验要求》是在1974年由美空军颁布的(MIL-STD-1540仅存在两个月便颁布了MIL-STD-15 40A),这是美国军方第一个统一的航天器环境试验标准。

由美国军用标准转化的宇航材料规范

由美国军用标准转化的宇航材料规范
由美国军用标准转化的宇航材料规范(AMS)清单
自美国1994年6月发布关于美军标改革的政策备忘录以来,在军用材料及热工艺方面,截止1999年1月,由美国军用标准转化而来的宇航材料规范(AMS)有151项,转化方式是将原标准代号用AMS代替,即将MS、AND、FED、MIL等改为AMS,原标准代号不变。转化而来的AMS标准清单见表1,供参考。
27
AMS-G-952A
喷枪、喷射液、油和溶剂
1998.03
MIL-G-952
28
AMS-H-6088A
铝合金热处理
1998.12
MIL-H-6088
29
AMS-H-6875A
钢原材料热处理
1998.12
MIL-H-6875H
30
AMS-H-7199
变形铜-铍合金(第C17000、C17200、C17300、C17500和C17510号铜合金)热处理工艺
1997.07
QQ-A-225/4
68
AMS-QQ-A-225/5
2017铝合金轧制、拉制或冷精整的圆棒、方棒、线材
1997.07
QQ-A-225/5
69
AMS-QQ-A-225/6A
2024铝合金轧制、拉制或冷精整的圆棒、方棒、线材
1998.09
QQ-A-225/6
70
AMS-QQ-A-225/7
1998.12
AND10135
5
AMS10136A
挤压T型材
1998.12
AND10136
6
AMS10137A
挤压槽钢
1998.12
AND10137
7
AMS10138A
挤压等臂Z形钢

宇航材料规范AMS4979D

宇航材料规范AMS4979D

宇航材料规范AMS4979D
宇航材料规范AMS4979D是美国宇航局(NASA)为宇航工程中使用的
钛合金制定的规范。

该规范对钛合金的物理、化学和力学性能进行了详细
规定,以确保宇航器材料的质量和可靠性。

以下是AMS4979D规范的主要
内容:
1.材料标识和命名:规范将钛合金的命名、标识和编号进行了规定,
以确保材料的唯一性和可追溯性。

2.物理和化学性能要求:规范详细规定了钛合金的成分、热处理方法
和硬度要求。

其中,钛合金的成分要求非常严格,包括钛、铝、钒、铁、
氧等元素的含量范围。

3.金相和机械性能要求:规范对钛合金的金相结构和机械性能进行了
详细要求。

其中,金相结构要求细粒度,并且需要通过硬度测试和显微组
织分析进行验证。

机械性能包括抗拉强度、屈服强度、延伸率等指标,规
范对这些指标的要求非常严格。

4.热处理要求:规范对钛合金的热处理方法和参数进行了规定。

其中
包括时效处理、淬火和回火等工艺,以及温度、时间等参数的范围。

5.检验和测试方法:规范详细规定了对钛合金的检验和测试方法,例
如化学成分分析、显微组织分析、硬度测试、拉伸测试等。

这些方法保证
了钛合金材料质量的准确性和可靠性。

需要注意的是,AMS4979D规范只是宇航材料规范之一,它只涵盖了
钛合金材料的规范要求。

对于其他类型的宇航材料,还有其他规范和标准。

总之,AMS4979D规范是针对宇航工程中使用的钛合金制定的详细规范,它规定了钛合金的物理、化学和力学性能要求,以确保宇航器材料的质量和可靠性。

由美国军用标准转化的宇航材料规范

由美国军用标准转化的宇航材料规范

由美国军用标准转化的宇航材料规范
公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]
由美国军用标准转化的宇航材料规范(AMS)清单
自美国1994年6月发布关于美军标改革的政策备忘录以来,在军用材料及热工艺方面,截止1999年1月,由美国军用标准转化而来的宇航材料规范(AMS)有151项,转化方式是将原标准代号用AMS代替,即将MS、AND、FED、MIL等改为AMS,原标准代号不变。

转化而来的AMS标准清单见表1,供参考。

表1由美国军用标准转化的AMS清单
注:AND——美国空、海军航空设计标准(Air Force-Navy Aeronautical Design Standards, DOD);AS——美国宇航标准(Aerospace Standards, SAE);FED——美国联邦标准(FEDeral Standards);MIL——美国军用标准(MILitary Standards, DOD);MS——美国军用标准图纸(Military Standard Drawings);QQ——美国联邦规范(Federal Specifications)。

钛及钛合金薄板、带材和板材AMST9046MIL-T-9046J

钛及钛合金薄板、带材和板材AMST9046MIL-T-9046J

宇航材料规范AMS-T-90461999年7月发布钛及钛合金薄板、带材和板材通告本文件直接取自美国军用标准MIL-T-9046J(第二版),而且为使其与美国汽车工程师协会(SAE)技术标准的出版要求一致,仅进行了局部编辑和格式上的修改。

本文件的原始版本被指定用于代替MIL-T -9046J (第二版)。

原始规范所建立的各部分的编号不变。

原始的军用规范作为一个美国汽车工程师协会(SAE)的标准在美国汽车工程师协会(SAE)技术标准委员会(TSB)章程以及与促进政府规范和标准的接受有关的细则(TSB 001)下被接受TSB章程规定,(a)未经SAE委员会表决同意不能修改的政府规范或标准的部分出版物及(b)当前政府规范或标准的使用格式。

据美国国防部的政策和程序(措施),对于国防部(DOD)的和同,任何限制条件和相关的产品目录均属强制性的。

涉及合格产品目录(QPLs)的任何要求都未被SAE接受,且不够成本SAE技术文件的一部分。

1范围1.1范围本规范适用于航空质量级钛及钛合金薄板、带材和板材。

1.2 分类产品规定了下述化学成分和状态(见6.2.1,6.5和表1和9)工业级纯钛(CP)1/ 1.0KSI=1000Psi2/2适用文件在邀请报价或提出要求生效之日已出版的下列出版物,构成本技术条件的一部分。

2.1 美国政府出版物可从DODSSP获得,地址:Subscription Services Desk. Building 4D 700Robbins Avenue Philadelphia PA 19111-5094MIL-H-81200-钛及钛合金热处理FED-STD-151-金属试验方法。

MIL-STD-105-取样工艺和性能检验表。

MIL-STD- 129-装运和储存标记MIL-STD- 163-准备装运和储存的钢材轧制品MIL-STD- 410-无损检验人员的资格和证书。

涡流,液体渗透,磁粉颗粒、射线照相、超声2..2 美国汽车工程师协会(SAE)出版物可向美国机动车工程师学会索取。

【国家军用类标准】光学标准-美国军标正文(性能标准)

【国家军用类标准】光学标准-美国军标正文(性能标准)

美國軍用標准(MIL-PRF-13830B)性能標准軍火控制設備用光學元件;監控生產、裝配、檢測的通用標准所有國防部門和代理部門可允許使用此標准。

1.范圍1.1范圍。

此標准包括精加工光學光學元件的生產、裝配、檢測,諸如用於軍火控制設備上的球面鏡、稜鏡、平面鏡、分劃板、觀景窗以及光楔等。

2.應用文件2.1概要本章列出的文件需要參閱本標准3、4、5章的要求。

本章不包括本標准其他章節的文件或其他信息推存的文件。

為了保証本目錄的完整性,文件使用者必須注意文件須滿足本標准3、4、5章列出的文件要求,無論這些內容是否在本章中列出。

發行申明:此為公用版本,發行不受限制。

2.2其他政府文件,圖紙及出版物下列政府其他文件、圖紙和出版物組成本文件內容的一部分,擴大本文的范圍。

除非另有規定,這些文件、圖紙和出版物是征求引用的。

圖面資料美國軍事裝備研究發展工程技術中心C7641866---光學元件表面質量標准(立約人要求的其他政府文件、圖紙、出版復印件及具體的功能應該從簽約事宜或簽約指示得到)2.3優先順序本標准內容與其引出的參考有沖突時,以本標准內容為准。

本標准未述內容,可行法律法規代行除非有具體的免除通知。

(看附加優先標准合同條令)3.要求:3.1所有的光學元件,配件以及系統產品都必須符合這一標准的要求,除非具體的儀器標准或合同之可行圖紙另有要求與定義。

3.2所用的材料必須與所適用的仕樣書或圖紙相一致3.2.1光學玻璃光學玻璃的種類和等級必須在圖紙中規定,允許使用規定的其它玻璃材料時,應提供給合同管理人員相關的玻璃光學特性及設計數據完整的信息。

3.2.1.1 放射性材料本文中要求的光學材料應不含釷或其他加入的超過0.05%重量的放射性材料。

3.2.2粘接劑除非合同和定單中有規定,光學粘合劑必須同附錄A的要求相一致。

3.2.3粘接材料對於玻璃同金屬相粘接,必須與附錄D的要求相一致3.2.4密封材料用於密封的材料必須與附錄E的要求相一致3.2.5減反膜材料用於光學表面鍍膜的減反膜必須與附錄C的要求相一致3.2.5.1反射表面鋁化反射面必須與附錄B的要求相一致3.3機械尺寸大小光學元件必須與合同以及圖紙要求的尺寸和光學數據相一致3.3.1邊所有光學元件都應當倒邊在(0.020-0.01英寸,在45度±15度),沿面寬進行測量,除非圖紙有另外指定。

美国SAE标准航空航天材料标准SAE AMS 1424H-2007 (R) Deicing∕Anti-Icing Fluid, Aircraft SAE Type I

美国SAE标准航空航天材料标准SAE AMS 1424H-2007 (R) Deicing∕Anti-Icing Fluid, Aircraft SAE Type I

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2007 SAE InternationalAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.TO PLACE A DOCUMENT ORDER:Tel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA)Fax: 724-776-0790Email: CustomerService@ SAE WEB ADDRESS: h ttp:// AMS 1424H AEROSPACE MATERIALSPECIFICATIONIssued JAN 1992 Revised JUL 2007 Superseding AMS 1424G(R) Deicing/Anti-Icing Fluid, AircraftSAE Type IRATIONALE This revision of the document reflects a number of changes agreed to at the last two G12 Fluids meetings in Lisbon and Montreal. Among the revisions are the addition of a warning statement about fluid compatibility with carbon brake material (1.3.8), changes to the fluid shearing procedure (3.3.4.1), insertion of a cold plate foam test (3.3.5), a change to the requirements for periodic testing (4.2.2), and new requirements for fluids containing recycled glycol (4.4.2.1). A number of other editorial revisions have also been incorporated into the document to improve clarity.TABLE OF CONTENTS1. SCOPE (3)1.1 Form (3)1.2 Application (3)1.3 Precautions (3)1.4 Safety - Hazardous Materials (4)2. APPLICABLE DOCUMENTS (4)2.1 SAE Publications (4)2.2 ASTM Publications (4)2.3 U.S. Government Publications (5)2.4 APHA Publications (5)2.5 Organization for Economic Cooperation and Development (OECD) Publications (5)3. TECHNICAL REQUIREMENTS (5)3.1 Material (5)3.2 Physical Properties (7)3.2.1 Flash Point (7)3.2.2 Specific Gravity (7)3.2.4 Refractive Index (7)3.2.5 Freezing Point (7)3.2.7 Viscosity (7)3.3 Fluid Stability (7)3.3.1 Storage Stability (7)3.3.2 Thermal Stability - Accelerated Aging for Concentrates and Ready-to-Use Fluids (7)3.3.3 Hard Water Stability (8)3.3.4 Shear Stability (8)3.4 Effect on Aircraft Materials (9)3.4.1 Sandwich Corrosion (9)3.4.2 Total Immersion Corrosion (9)3.4.3 Low Embrittling Cadmium Plate (10)3.4.4 Stress-Corrosion Resistance (10)3.4.4.1 Stress-Corrosion Resistance (10)3.4.5 Hydrogen Embrittlement (10)3.4.6Effect on Transparent Plastic (10)3.4.7Effect on Painted Surfaces (10)3.4.8Effect on Unpainted Surfaces (10)3.4.9Runway Concrete Scaling Resistance (10)3.5Performance Properties (11)3.5.1Freezing Point (11)3.5.2Anti-Icing Performance (11)3.5.3Aerodynamic Acceptance Test (11)4.QUALITY ASSURANCE PROVISIONS (12)4.1Responsibility for Inspection (12)4.2Classification of Tests (12)4.2.1Lot Acceptance Tests (12)4.2.2Periodic Tests (12)4.2.3Preproduction Tests (12)4.3Sampling and Testing (12)4.3.1Bulk Shipments (12)4.3.4Preproduction and Periodic Tests (12)4.4Approval (13)4.5Reports (13)4.6Resampling and Retesting (13)5.PREPARATION FOR DELIVERY (14)5.1Packaging and Identification (14)6.ACKNOWLEDGMENT (14)7.REJECTIONS (14)8.SIMILAR SPECIFICATIONS (14)9.NOTES (14)标准分享网 免费下载1. SCOPE1.1 FormThis specification covers a deicing/anti-icing material in the form of a fluid.A pplication1.2The fluid is generally used heated either diluted with water, or as supplied, for the removal of deposits of frost, ice, and snow on exterior aircraft surfaces prior to take off.1.2.1 Consult aircraft manufacturer's maintenance manual and service letters to determine any restrictions relating tothe use of deicing/anti-icing fluids for type and model of aircraft being treated. Refer also to ARP4737.T he manufacturer shall determine and report the Lowest Operational Use Temperature (LOUT) for the 1.2.2recommended dilutions of their fluid(s).1.2.2.1 The LOUT for an SAE Type I fluid is the lowest temperature at which the fluid has been tested and certified inaccordance with the appropriate aerodynamic acceptance tests (3.5.3) while maintaining the 10 °C (18 °F) freezing point buffer (see ARP4737).P recautions1.31.3.1 The deicing/anti-icing formulation may be mildly toxic and contact with human skin and eyes should be avoided.Prolonged exposure to concentrations of vapor and wind-borne mists should be avoided. Consult the manufacturer's Material Safety Data Sheet for further information.1.3.2 A fluid meeting all other requirements of this specification may not meet the aerodynamic acceptance test in theconcentrated form. This fluid shall only be used diluted to the ratios which meet the aerodynamic acceptance test criteria.1.3.3T he fluid shall have a minimum flash point of 100 °C (212 °F) and should be used with extreme care when applied in the immediate vicinity of heaters or engine exhausts.C aution should be exercised in the use of glycol-water deicing/anti-icing solutions in and around aircraft1.3.4electrical/electronic circuitry with noble metal (including silver) coated wiring or terminals which could come into contact with the fluid. Exothermic reactions, which may result in fire, have been reported. This may occur where defectively insulated wires, switches, or circuit breakers carrying direct current are encountered. Deicing/anti-icing fluids which are based on glycols shall contain an inhibitor to minimize this potential fire hazard (3.1).S lippery conditions may exist on the ground or on equipment following deicing/anti-icing procedures.1.3.51.3.6 A fluid meeting this specification is unique to the manufacturer and may be adversely affected by mixing withother aircraft deicing/anti-icing fluids.1.3.7 At the option of the user, the manufacturer shall demonstrate the fluid as supplied or at intended use dilution andheated to intended use temperature, applied through a commercial deicing/anti-icing vehicle system to an inclined flat or curved surface, preferably an aircraft wing or horizontal stabilizer, at pressures and flow rates normal for intended use, does not cause foam which does not rapidly collapse, and fluid surface shall not have the appearance of snow or slush. Observe fluid for wetting, film breaks, crawling or fisheyes. Observe how long the sprayed film is continuous and how long it remains on the aircraft wing leading edge without breaks.1.3.8 Deicing/anti-icing fluids should be compatible with carbon brake material. Refer to ARP 4737 and the airplanemanufacturer’s maintenance and service documents for further information on fluid use. An industry standard test method for compatibility is under development.S afety - Hazardous Materials1.4While the materials, methods, applications, and processes described or referenced in this specification may involve the use of hazardous materials, this specification does not address any hazards which may be involved in such use. It is the sole responsibility of the user to ensure familiarity with the safe and proper use of any hazardous materials and processes and to take necessary precautionary measures to ensure the health and safety of all personnel involved.2. APPLICABLE DOCUMENTSThe issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.S AE Publications2.1Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), .AMS 2470 Anodic Treatment of Aluminum Alloys, Chromic Acid ProcessAMS 2475 Protective Treatments, Magnesium AlloysAMS 2825 Material Safety Data SheetsAMS 4037 Aluminum Alloy Sheet and Plate, 4.4Cu - 1.5Mg - 0.60Mn(2024;-T3 Flat Sheet, -T351 Plate), Solution Heat TreatedAMS 4041 Aluminum Alloy Sheet and Plate, Alclad, 4.4Cu - 1.5Mg - 0.60Mn,(Alclad 2024 and 1-1/2% Alclad 2024-T3 Flat Sheet; 1-1/2% Alclad 2024-T351 Plate)AMS 4049 Aluminum Alloy Sheet and Plate, Alclad, 5.6Zn - 2.5Mg - 1.6Cu - 0.23Cr, (Alclad 7075 -T6 Sheet,-T651 Plate), Solution and Precipitation Heat TreatedAMS 4376 Magnesium Alloy Plate, 3.0Al - 1.0Zn, (AZ31B-H26), Cold Rolled and Partially AnnealedAMS 4911 Titanium Alloy Sheet, Strip, and Plate, 6A1 - 4V, AnnealedAMS 4916 Titanium Alloy Sheet, Strip, and Plate, 8Al - 1Mo - 1VAMS 5045 Steel Sheet and Strip, 0.25 Carbon, maximum, Hard TemperAMS 5886 Alloy, Corrosion and Heat-Resistant, Bars, Forgings and Rings, 50Ni - 20Cr - 20Co - 5.8Mo -2.2Ti - 0.45Al, Consumable Electrode or Vacuum Induction Melted 2100 °F (1149 °C) SolutionHeat TreatedAMS-P-83310 Plastic Sheet, Polycarbonate, TransparentAS 5900 Standard Test Method for Aerodynamic Acceptance of SAE AMS 1424 and SAE AMS 1428 Aircraft Ground Deicing/Anti-Icing FluidsAS 5901 Water Spray and High Humidity Endurance Time Test Methods for SAE AMS 1424 and SAE AMS 1428 Aircraft Ground Deicing/Anti-Icing FluidsARP 1917 Clarification of Terms Used in Aerospace Metals SpecificationsARP4737 Aircraft Deicing/Anti-icing Methods with FluidsA STM Publications2.2Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, .ASTM C 672 Scaling Resistance of Concrete Surfaces Exposed to Deicing ChemicalsASTM D 93 Flash Point by Pensky-Martens Closed TesterASTM D 445 Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity)ASTM D 891 Specific Gravity of Liquid Industrial ChemicalsASTM D 1177 Freezing Point of Aqueous Engine CoolantsASTM D 1193 Reagent WaterASTM D 1331 Surface and Interfacial Tension of Solutions of Surface-Active AgentsASTM D 1568 Sampling and Chemical Analysis of Alkylbenzene SulfonatesASTM D 1747 Refractive Index of Viscous Materials标准分享网 免费下载ASTM D 3278 Flash Point of Liquids by Setaflash-Closed-Cup ApparatusASTM D 4052 Test Method for Density and Relative Density of Liquids by Digital Density MeterASTM D 4177 Automatic Sampling of Petroleum and Petroleum ProductsASTM E 70 pH of Aqueous Solutions with the Glass ElectrodeASTM F 483 Total Immersion Corrosion Test for Aircraft Maintenance ChemicalsASTM F 484 Stress Crazing of Acrylic Plastics in Contact with Liquid or Semi-Liquid CompoundsASTM F 485 Effects of Cleaners on Unpainted Aircraft SurfacesASTM F 502 Effects of Cleaning and Chemical Maintenance Materials on Painted Aircraft SurfacesASTM F 519 Mechanical Hydrogen Embrittlement Testing of Plating Processes and Aircraft Maintenance ChemicalsASTM F 945 Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning MaterialsASTM F 1105 Preparing Aircraft Cleaning Compounds, Liquid Type, Solvent Based for Storage Stability Testing ASTM F 1110 Sandwich Corrosion TestASTM F 1111 Corrosion of Low-Embrittling Cadmium Plate by Aircraft Maintenance Chemicals2.3 U.S. Government PublicationsAvailable from the Document Automation and Production Service (DAPS), Building 4/D, 700 Robbins Avenue, Philadelphia, PA 19111-5094, Tel: 215-697-6257, /quicksearch/.MIL-STD-870 Cadmium Plating, Low Embrittlement, ElectrodepositedMIL-PRF-25690 Plastic, Sheets, and Formed Parts, Modified Acrylic Base, Monolithic, Crack Propigation ResistantPublications2.4 APHAAvailable from American Public Health Association, 800 I Street, NW, Washington, DC 20001, 202-777-2742 or .Standard Methods for the Examination of Water and Waste Water2.5 Organization for Economic Cooperation and Development (OECD) PublicationsAvailable from OECD: 2, rue André Pascal, Cedex 16, 75016 Paris, France, Tel: +33 1.45.24.82.00 or .OECD Environmental Data; Données OCDE sur l’environnement, Compendium (Contains OECD Methods 202 and 203).3. TECHNICAL REQUIREMENTSM aterial3.1The composition of the fluid shall be optional with the manufacturer; however the product shall be based on freezing point depressants, with additives, such that the finished product shall meet all requirements of this specification. If glycol-based, the fluid shall contain inhibitors to minimize the potential fire hazard resulting from interaction of aqueous glycol solutions and noble metal (including silver) electrodes impressed with direct current.3.1.1 Non-Glycol Based FluidsA fluid based on non-glycol freezing point depressants shall be tested as follows: Two pieces of AMS 5886 bar, 35 mm diameter and 15 mm long shall have one end of each machined flat. An 8.5 mm drill shall then be used to drill a centered hole 6.5 mm deep in one end to allow the milling of a cup-shaped depression. A 12.5 mm bull nosed end mill shall be used to open up the drilled hole to produce a 7 mm deep depression. The cup shall then be finished by improving the surface with 600, 180 and 6 micron diamond paste. The cups shall be cleaned and degreased using a suitable solvent and allowed to dry. One cup shall be filled with the candidate test fluid, the other with water conforming to ASTM D 1193 Type IV. Both test pieces shall then be placed in an oven at 105 °C ± 2°C (221 °F ± 5°F). The fluid shall then be allowed to evaporate by progressive increase in oven temperature at the rate of 10 °C (18 °F) degrees per minute to a final temperature of 250 °C ± 5°C (482 °F ± 10°F) where they shall be held at this temperature for 15 minutes ± 1 min. Test pieces shall then be transferred to an air furnace set at 1040 °C ± 10°C (1904 °F ± 25°F) and held at this temperature for 2 hours ± 5 minutes.Test pieces shall be removed and allowed to cool to ambient temperature. Microscopic examination of the polished cups at 500 magnification shall be undertaken-no corrosion worse than control shall be evident in the candidate test fluid cup.The report shall include photographs of both cups after testing and the candidate test fluid cup shall be identified.A ppearance3.1.2The fluid, as received by purchaser, shall be homogeneous, uniform in color, and free from skins, lumps and from foreign materials detrimental to usage of the product. If the fluid is colored, it shall be orange.T oxicity3.1.3The user shall ensure that the fluid meets all local, state, and federal toxicity regulations. The information to satisfy the federal, state and provincial requirements shall be provided by the manufacturer; and for local requirements upon request from the user.E nvironmental Information3.1.4Formulated fluid shall be tested in accordance with APHA "Standard Methods for Examination of Water and Waste Water" unless otherwise specified in Appendix A.The manufacturer shall supply not less than the following:3.1.4.1 Biochemical Oxygen Demand (BOD) of the fluid shall be determined at both 5 °C (41 °F) and 20 °C (68 °F).The test solutions shall be incubated at the designated temperatures for 5 and 28 days. The results shall be reported in terms of kilograms of oxygen per kilogram of concentrate and kilograms of oxygen per kilogram of mixture of fluid and water to formulate a freezing point of -26 °C (-15 °F).3.1.4.2 The Chemical Oxygen Demand (COD) of the fluid, expressed in kilograms of oxygen per kilogram of fluid andkilograms of oxygen per kilogram of mixture of fluid and water to formulate a freezing point of -26 °C (-15 °F).3.1.4.3 BiodegradabilityThis characteristic can be approximated by determining the ratio of the Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). The percent of fluid biodegraded can be calculated by dividing BOD by COD and shall be reported for all incubation time periods.Toxicity3.1.4.4 AquaticFormulated fluid shall be tested in accordance with EPA (40CFR 797.1300 and 797.1400, revised July 1, 1989 and 40 CFR 136.3) or OECD (Organization for Economic Cooperation and Development Guidelines for Testing of Chemicals, Methods 202 and 203) procedures using test species required by regulatory agencies for permitted discharges. Examples include: fathead minnows (96-hour LC50), Ceriodaphnia dubia (48-hour EC50), Daphnia magna (48-hour EC50) and rainbow trout (96-hour LC50). The LC50 (for fish) or EC50 (for invertebrates) concentration (the highest concentration at which 50% of the organisms do not survive the test period) shall be given in milligrams per liter. See Appendix A.Contaminants3.1.5 TraceReport the presence, in percentage by weight or ppm by weight, of sulfur, halogens, total phosphorus, nitrate, total kjeldahl nitrogen and metals (lead, chromium, cadmium, and mercury). Report the test method used and detection limits.标准分享网 免费下载3.2P hysical PropertiesThe fluid supplied by the vendor, unless specified otherwise, shall conform to the following requirements:Point3.2.1 FlashShall be not lower than 100 °C (212 °F), determined in accordance with ASTM D 93 or ASTM D 3278. In case of dispute, the flash point in accordance with ASTM D 93 shall apply.Gravity3.2.2 SpecificShall be within ±0.015 units of the preproduction value, determined in accordance with ASTM D 891 or ASTM D 4052.3.2.3 pHShall be within ±0.5 units of the preproduction value, determined in accordance with ASTM E 70.Index3.2.4 RefractiveShall be within ±0.0015 units of the preproduction value, determined in accordance with ASTM D 1747.Point3.2.5 FreezingShall be within ±3 °C (±5 °F) of the preproduction value, determined in accordance with ASTM D 1177.Note: I f the fluid supplied by the vendor is a concentrate intended to be diluted prior to use, the freezing point shall be determined after dilution 1:1 by volume with ASTM D1193, Type IV water. The refractive index of the diluted fluid that is tested shall also be reported.Tension3.2.6 SurfaceShall be within ±10% of the preproduction value.V iscosity3.2.7Shall be within ±5% of the preproduction value at +20, 0, -10, and -20 °C (68, 32, 14, and -4 °F)when determined in accordance with ASTM D445.F luid Stability3.3The fluid, as supplied by the vendor, shall conform to the following requirements:Stability3.3.1 StoragePrior to the start of this test, determine the viscosity at 20 °C (68 °F) in accordance with ASTM D 445. The fluid shall then be subjected to one complete cycle as outlined in ASTM F 1105. On completion of the cycle, the fluid shall be retested for viscosity as before and the result compared to the original values. These results shall not vary by more than +10% or -20%. The pH of the aged fluid, determined as in 3.2.3, shall be within ±0.5 units of the unaged sample. A portion of the fluid shall then be diluted 1:1 with ASTM D 1193, Type IV, water. There shall be no evidence of separation, precipitation or evidence of insoluble deposits in the fluid or in the 1:1 dilution.3.3.2 Thermal Stability - Accelerated Aging for Concentrates and Ready-to-Use Fluids (to simulate long term heatedstorage without water loss)Age sample as in 3.3.2.1 and examine as in 3.3.2.2.3.3.2.1 Transfer 800 mL ± 10 mL of fluid to a 1 liter borosilicate bottle (e.g., Pyrex® brand or equivalent) fitted with atight, heat-resistant plastic seal and tightly close. For the reference sample, also keep 800 mL ±10 mL of the fluid in an identical bottle and store at room temperature until the completion of 3.3.2.2. Transfer the other closed bottle containing the test fluid to a circulating-air oven or heated oil or water bath. Elevate the temperature to 80 °C ±2 °C (176 °F ±4 °F) and maintain the sample in this environment for 30 days.3.3.2.2 After 30 days, remove the test sample from the heated environment, and examine the contents for evidence ofseparation, precipitation, or insoluble deposits. Report any evidence of these factors. Allow the test sample to cool to 20 °C ± 2 °C (68 °F ± 4 °F). Turn the test sample bottle upside down and then right side up. Repeat this rotation procedure three additional times and then examine the contents for evidence of separation, precipitation, or insoluble deposits versus the unheated reference sample. Report findings. Determine the refractive index of the test and reference samples as in 3.2.4. If the test and reference samples have a refractive index difference of greater than 0.0020, the test is invalid. If the test is valid and t he fluid tested is a concentrate intended to be diluted, dilute both the test and reference fluids 50/50 by volume with ASTM D1193, Type IV water and measure the pH as in 3.2.3. If the test fluid is a ready-to-use fluid, no further dilution is necessary and the pH should be measured as in 3.2.3. The pH difference between the heat-aged test sample and the unheated reference sample shall not be greater than 1.0 unit. The heat-aged test sample shall be tested according to AS 5901 (WSET only) using one set of three plates. Report the results of the test.H ard Water Stability3.3.3Fluid supplied as concentrate and intended to be diluted with water before use shall be diluted 1:1 by volume with standard hard water made up as in 3.3.3.1. Determine the refractive index of the diluted fluid as in 3.2.4 and the pH as in 3.2.3. Age the diluted fluid as in 3.3.2.1 but at a storage temperature of 95 °C ±2 °C (203 °F ±4 °F). After 30 days, remove the bottle from the heated environment and examine the contents for evidence of separation or insoluble deposits. Report any evidence of these factors. Allow the sample to cool to 20 °C ± 2 °C (68 °F ± 4 °F). Turn the test sample bottle upside down and then right side up. Repeat this rotation procedure three additional times. Re-examine and report any evidence of separation or insoluble deposits. Retest for refractive index as before and record the result. If the refractive index of the aged fluid has increased by more than 0.0020 the test is invalid. If the refractive index is within limits, the pH of the aged fluid shall be determined as before and shall not vary by more than 0.5 units from the unaged value. The aged sample shall be tested according to AS5901 (WSET only) using one set of three plates. Report the results of the test.3.3.3.1 Composition of Hard WaterDissolve 400 mg ± 5 mg calcium acetate dihydrate (Ca(C2 H3O2 )2 • 2H2O) or 363 mg ± 5 mg calcium acetate monohydrate (Ca(C2H3O2)2 • H2O), and 280 mg ± 5 mg magnesium sulfate heptahydrate (MgSO4 • 7H2O), both of analytical reagent quality, in 1 liter of ASTM D 1193, Type IV, water.Stability3.3.4 ShearThe anti-icing performance tests as in 3.5.2 shall start within 2 hours after the product has been sheared, but not within the first 20 minutes after shearing, using the laboratory method as in 3.3.4.1.3.3.4.1 Run a laboratory blender (Waring model number 7012G, or equivalent) with the 1 liter glass mixing containerremoved for a 5 minute warming period at 3,000 rpm ± 100 rpm. Pour 500 mL ± 5 mL of fluid at 20 °C ± 2°C(68 °F ± 4°F) into the 1 liter mixing container. Mix for 10 minutes ±10 seconds at 3400 rpm ±100 rpm. Theblender shall be calibrated using a non-contact optical tachometer to provide a mix speed of 3400 rpm ±100 rpm using 500mL of water. This non-contact calibration can be performed by placing the blender on a stand and elongating the rotating shaft at the base to measure the rotation speed with the mixing container in place.Stability3.3.5 Foam3.3.5.1 The foaming tendency of the fluid is determined using a cold plate foam test which is conducted using a pre-cooled chiller unit (frosticator) inside a cold chamber. The cold chamber and the frosticator are described in detail in AS5901. Prior to application, the fluid is heated and foam is generated by subjecting the fluid to vigorous agitation using a high shear mixing device.标准分享网 免费下载3.3.5.2 Fluid supplied as a concentrate and intended to be diluted with water prior to use shall be diluted 1:1 by volumewith standard hard water made up as in 3.3.3.1 before testing. Ready-to-use fluid shall be tested as received if intended for use undiluted.3.3.5.3D uplicate tests shall be conducted at each of two temperatures, -10 °C ±0.5 °C (14 °F ±0.9 °F) and 0 °C ±0.5°C (32°F ±0.9°F). The cold chamber and the frosticator shall be maintained at the desired test temperature throughout the evaluation. Allow sufficient time for the frosticator to equilibrate to the desired test temperature before beginning the test. The slope of the frosticator test surfaces (slots) shall be 10° ±0.2° above the horizontal. Test surfaces shall be free of all visible contamination, smears, or stains. Between test runs using the same fluid, the frosticator test slots shall be thoroughly rinsed with water and dried. Between test runs using different fluids, test slots shall be thoroughly rinsed with water followed by an ethanol rinse and drying.3.3.5.4 Heat 800 mL ±5 mL of the test fluid to 60°C ±1°C (140°F ±2°F) in a 1,000 mL glass beaker with sufficientagitation to prevent fluid bumping. Alternate heating containers may also be employed. When the fluid has reached 60°C ±1°C (140°F ±2°F), transfer to a 1 liter Waring blender glass mixing container and shear as in3.3.4.1 for 15 seconds ± 1 sec. Immediately after shearing, pour the hot fluid evenly across the six frosticatorslots. This should be done in a uniform back-and-forth motion to distribute the foam and liquid as evenly as possible on the test surfaces. Keep temperature recovery time of the test surface after fluid application to a minimum by adjusting the temperature of the frosticator coolant as necessary. Allow the fluid to remain on the frosticator for 15 minutes while maintaining the cold chamber and frosticator surface at the desired test temperature. After 15 minutes, estimate and report the percent of the total test area covered by foam.Photographs should be taken at several points during the test and at the end of the 15 minute test period and should be included with the test report. Comments on foam behavior and coverage estimates at intervals during the test may also prove to be useful. A foam evaluation percentage chart may also provide an acceptable means of estimating the per cent foam coverage.3.4E ffect on Aircraft MaterialsWARNING: This document includes cadmium as a plating material. The use of cadmium has been restricted and/or banned for use in many countries due to environmental and health concerns. The user should consult with local officials on applicable health and environmental regulations regarding its use.The fluid shall conform to the following requirements in the form supplied by vendor and, if a concentrate intended to be diluted prior to use, diluted 1:1 by volume with ASTM D 1193, Type IV, water, except as noted.3.4.1 SandwichCorrosionSpecimens, after testing in accordance with ASTM F 1110, shall not show corrosion worse than control panels run using ASTM D 1193, Type IV, water.3.4.2 Total Immersion CorrosionThe fluid, tested in accordance with ASTM F 483, shall neither show evidence of corrosion of panels nor cause a weight change of any test panel greater than as shown in Table 1.TABLE 1 - TOTAL IMMERSION CORROSIONTest PanelWeight Change mg/ cm2 per 24 hoursAMS 4037 Aluminum Alloy, anodized as in AMS 2470 0.3 AMS 4041 Aluminum Alloy 0.3 AMS 4049 Aluminum Alloy 0.3 AMS 4376 Magnesium Alloy, dichromate treated as in AMS 2475 0.2 AMS 4911 Titanium Alloy 0.1 AMS 5045 Carbon Steel 0.8。

由美国军用标准转化的宇航材料规范

由美国军用标准转化的宇航材料规范

由美国军用标准转化的宇航材料规范(AMS)清单
自美国1994年6月发布关于美军标改革的政策备忘录以来,在军用材料及热工艺方面,截止1999年1月,由美国军用标准转化而来的宇航材料规范(AMS)有151项,转化方式是将原标准代号用AMS代替,即将MS、AND、FED、MIL等改为AMS,原标准代号不变。

转化而来的AMS标准清单见表1,供参考。

表1 由美国军用标准转化的AMS清单
注:AND——美国空、海军航空设计标准(Air Force-Navy Aeronautical Design Standards, DOD);AS——美国宇航标准(Aerospace Standards, SAE);FED——美国联邦标准(FEDeral Standards);MIL——美国军用标准(MILitary Standards, DOD);MS——美国军用标准图纸(Military Standard Drawings);QQ——美国联邦规范(Federal Specifications)。

由美国军用标准转化的宇航材料规范 (2)

由美国军用标准转化的宇航材料规范 (2)
由美国军用标准转化的宇航材料规范(AMS)清单
自美国1994年6月发布关于美军标改革的政策备忘录以来,在军用材料及热工艺方面,截止1999年1月,由美国军用标准转化而来的宇航材料规范(AMS)有151项,转化方式是将原标准代号用AMS代替,即将MS、AND、FED、MIL等改为AMS,原标准代号不变。转化而来的AMS标准清单见表1,供参考。
AMS-C-81769
金属化学铣削规范
1998.06
MIL-C-81769
21
AMS-C-81986
尼龙纸基塑料蜂窝芯材,用于飞机结构件
1998.07
MIL-C-81986
22
AMS-DTL-22499
层压塞尺
1998.09
MIL-DTL-22499D
23
AMS-DTL-22499/1
铝合金层压塞尺
5052铝合金轧制、拉制或冷精整的圆棒、方棒、线材
1997.07
QQ-A-225/7
71
AMS-QQ-A-225/8A
6061铝合金轧制、拉制或冷精整的圆棒、方棒、线材和专用型材
1998.09
QQ-A-225/8
72
AMS-QQ-A-225/9
7075铝合金轧制、拉制或冷精整的圆棒、方棒、线材和专用型材
1997.07
QQ-A-200/1
48
AMS-QQ-A-200/2
2014铝合金挤压方棒、圆棒、型材、管材和线材199Leabharlann .07QQ-A-200/2
49
AMS-QQ-A-200/3
2024铝合金挤压方棒、圆棒、型材、管材和线材
1997.07
QQ-A-200/3
50
AMS-QQ-A-200/4A

军用电子元器件的质量等级

军用电子元器件的质量等级
凡已通过质量认证,其认证条件能满足军工产品质量要求的元器件,可不再进行质量认定。凡未经过质量认证或其认证条件不能满足军工产品质量要求的元器件及其生产单位,军工行业的有关部门认为必要时可组织人员进行质量认定。
4
根据用途,元器件的质量等级可分为:用于元器件生产控制、选择和采购的质量等级和用于电子设备可靠性预计的质量等级两类,两者有所区别,又相互联系。
现在我国国防工业主管部门已发布了大量的元器件总规范,但是详细规范还没完全配套,所以往往由器件生产单位制定了详细规范(属于企业军标准级别)经标准化机构确认后贯彻执行。
已发布的军用元器件总规范中,影响较大的总规范及其参照采用的MIL标准如表1-1所示。
表1-1 国军标总规范及其等效采用的美国军用标准
序号
事实上,具有确定产品保证等级的器件(或元件),当然存在有与该等级相应的固有可靠性水平。只是由于这类器件(或元件)的失效时间函数不服从指数分布或(和)受设计、结构、材料、工艺等影响甚大,而不采用并通过试验给出相应的失效率。当然,如果不考虑经济与时间因素而进行常时间恒定应力试验,还是可以得出大体相当的失效率数据。但是,毕竟经济与时间的投入难以承受。资料上见到的这类元件、器件的失效率,据分析有两个来源,一个是生产方的最终检验与试验数据的累积处理结果,另一个是使用方的现场失效统计分析。
质量认证包括两方面的内容:对于元器件生产单位质量保证能力的评定:对其所生产的元器件进行鉴定或考核,合格者列入合格产品目录(QPL)或合格生产厂目录(QML)。
除了原国防科工委授权的军用元器件质量认证机构外,军工行业也可授权具有认证能力的单位按标准或法规性文件,对元器件生产单位的质量保证能力进行考察,以及对其生产的产品进行鉴定或考核,合格者列入该军工行业合格产品目录。为了区别于由国家授权的质量认证,将军工行业授权的质量认证,称为质量认定,由于军工行业是元器件的用户,所以质量认定也可称为用户认证或第二方认证。

航天器材料性能检测标准

航天器材料性能检测标准

航天器材料性能检测标准航天器材料是保障航天器飞行安全的重要组成部分。

为了确保航天器在极端环境下的可靠性和稳定性,需要进行严格的性能检测。

本文将从材料性能检测的概念、方法和标准三个方面进行论述。

一、材料性能检测的概念与重要性材料性能检测是指对航天器所使用的材料进行性能指标的检测和评估,以验证其适用性和可靠性。

航天器的工作环境极端复杂,包括真空、高温、高压、辐射等,因此材料的耐热性、耐腐蚀性、机械性能等都需要进行全面、精确的检测。

材料性能检测对于航天器的安全性和可靠性至关重要。

通过检测可以确保材料在极端环境下的稳定性和寿命,减少事故的发生概率,提高航天器的工作效率和可用性。

二、材料性能检测的方法1. 物理性能检测:物理性能检测是对航天器材料进行力学性能、热学性能、电学性能、磁学性能、光学性能等方面的测试。

例如,通过拉伸试验、冲击试验、热膨胀试验等来评估材料的强度、韧性、热稳定性等指标。

2. 化学性能检测:化学性能检测是对航天器材料进行腐蚀性能、氧化性能、抗溶性等方面的测试。

例如,通过腐蚀试验、溶解试验等来评估材料的耐腐蚀性能和化学稳定性。

3. 微观性能检测:微观性能检测是对航天器材料的微观结构、晶体结构进行测试和分析。

例如,通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)等来观察材料的晶体形态、组织结构,分析其相变行为和缺陷情况。

4. 环境适应性检测:环境适应性检测是对航天器材料在真空、高温、高湿度等特殊环境中的适应性进行测试。

例如,通过真空热膨胀试验、湿热老化试验等来评估材料在复杂环境中的稳定性和可靠性。

三、材料性能检测的标准航天器材料性能检测必须依据相关的国际标准、行业标准和企业标准进行。

以下是航天器材料性能检测的几个重要标准示例:1. 美国材料和试验协会(ASTM):ASTM发布的航空和航天材料性能检测标准包括力学性能、热学性能、化学性能、电学性能、光学性能等各个方面。

2. 国际航空航天学会(IAF):IAF发布的标准主要用于国际航天器材料的测试和评估,包括航天器材料的可靠性、安全性、环境适应性等方面。

航天器材料规范

航天器材料规范

航天器材料规范引言:航天科技是一个高度复杂和风险极大的领域,因此在航天器材料的选择和使用方面需要严格的规范。

航天器材料规范的制定旨在确保航天器在极端环境下的性能和可靠性,以保障航天任务的成功完成。

本文将从航天器材料规范的制定原则、航天器材料的分类和选择、航天器材料的测试和验收等方面,详细介绍航天器材料规范的相关内容。

一、航天器材料规范的制定原则航天器材料规范的制定应遵循以下原则:1. 安全性原则:航天器飞行过程中受到的外界条件、物理力学性能要求等特殊要求必须得到满足,确保航天器及其载人或载货等各类设备、仪器的安全运行。

2. 可靠性原则:航天器是高风险工程,要求所选材料的可靠性和稳定性较高,能够在严酷的航天环境下保持稳定的性能。

3. 持久性原则:航天器的任务往往是长期执行,所以所选材料的服役寿命必须足够长,能够承受航天器设计寿命内的负荷。

4. 唯一性原则:航天器材料由于具有特殊要求和需要,往往需选择专用材料,并且不可替代。

二、航天器材料的分类和选择航天器材料可以按照应用领域、材料性能、材料形式等进行分类。

选择航天器材料应考虑以下几个方面:1. 温度性能:航天器运行环境温度波动范围大,比如太空中遇到的极度低温和高温,所以航天器材料必须具有良好的耐温性和热胀冷缩性能。

2. 抗辐射性能:航天器在外层空间接触到的辐射如电离辐射、热辐射等都对材料有一定的伤害,因此材料需具备一定的辐射抗性能。

3. 机械性能:航天器在飞行过程中会受到复杂的机械载荷,所以航天器材料需要具有优异的强度、韧性和抗疲劳性能。

4. 密封性能:航天器要求有良好的密封性能,以预防外界空气、水分等对器材的腐蚀和侵蚀,避免漏气和渗漏等问题。

5. 轻量化要求:航天器要求具有更轻的重量,以减少航天器的整体质量,提高发射载重量和航天器的运载能力。

根据以上要求,航天器材料的选择也相应考虑不同类型的材料,如:高强度金属合金、抗辐射材料、轻质复合材料、高温陶瓷材料等。

美国宇航标准AMS及牌号对照

美国宇航标准AMS及牌号对照

美国宇航标准AMS及牌号对照中国牌号美国宇航标准牌号&规格尺寸AMS 4544Monel 400 片材, 带材, 箔材AMS 4574Monel 400 管材-无缝型AMS 4575Monel 400 管材-焊接型AMS 4674Monel R-405 棒料, 锻件AMS 4675Monel K-500 棒料, 锻件AMS 4730Monel 400 线材AMS 4731Monel 400 线带材AMS 5221Incoloy 902 (tm)带材AMS 5223Incoloy 902 (tm)带材AMS 5225Incoloy 902 (tm)带材AMS 5501304 不锈钢,片材, 带材, 箔材AMS 5503430 不锈钢,片材, 带材, 板料AMS 5504410 不锈钢,片材, 带材, 板料AMS 5505410 不锈钢,片材, 带材, 板料AMS 5506420 不锈钢,片材, 带材, 板料AMS 5507316L 不锈钢,片材, 带材, 板料AMS 5508Greek Ascoloy (tm) 不锈钢,片材, 带材,板料1Cr18Ni9Ti AMS 5510321 不锈钢,片材, 带材, 板料AMS 5511304L 不锈钢,片材, 带材, 板料AMS 5512347 不锈钢,片材, 带材, 板料AMS 5513304 不锈钢,片材, 带材, 板料AMS 5514305 不锈钢,片材, 带材, 板料AMS 5515302 不锈钢,片材, 带材, 板料AMS 5516302 不锈钢,片材, 带材, 板料AMS 5517301 1/4 硬态,不锈钢,片材, 带材AMS 5518301 1/2 硬态,不锈钢,片材, 带材AMS 5519301 硬态,不锈钢,片材, 带材AMS 552015-7 不锈钢,片材, 带材箔材 & 板料AMS 5521310S 不锈钢,片材, 带材, 板料AMS 5523309S 不锈钢,片材, 带材, 板料AMS 5524316 不锈钢,片材, 带材, 板料GH 2132AMS 5525A-286片材, 带材, 板料AMS 552619-9DL 不锈钢,片材, 带材AMS 552817-7 (PH) 不锈钢,片材, 带材, 板料AMS 552917-7 (PH) 不锈钢,片材, 带材AMS 5530Hastelloy C (tm)片材, 带材, 板料AMS 5532Alloy 155 - (Multimet tm)片材, 带材, 板料GH 536AMS 5536Hastelloy X (tm)片材, 带材, 板料AMS 5537Alloy 25 (L-605)片材, 带材, 箔材AMS 5540Inconel 600 (tm)片材, 带材, 板料AMS 5541Inconel 722 (tm)片材, 带材GH 145AMS 5542Inconel X750 (tm)片材, 带材, 板料中国牌号美国宇航标准牌号&规格尺寸GH 738AMS 5544Waspalloy (tm)片材, 带材, 板料GH 141AMS 5545Rene 41 (tm)片材, 带材, 板料AMS 5546AM 350 (tm) 不锈钢,片材, 带材AMS 5547AM 355 (tm) 不锈钢,片材, 带材AMS 5548AM 350 (tm) 不锈钢,片材, 带材AMS 5549AM 355 (tm) 不锈钢,板料AMS 5550Inconel 702 (tm)片材, 带材AMS 5553Nickel 201片材, 带材AMS 5554AM 350 (tm) 不锈钢,圆管材- 无缝型AMS 5555Nickel 205线材, 丝/带AMS 5556347 不锈钢,管材- 无缝型, 焊接型1Cr18Ni9Ti AMS 5557321 不锈钢,管材- 无缝型, 焊接型AMS 5558347 不锈钢,圆管材- 焊接型1Cr18Ni9Ti AMS 5559321 不锈钢,圆管材- 焊接型AMS 5560304 不锈钢,圆管材- 无缝型AMS 556121-6-9 不锈钢,管材- 焊接型, 冷拔AMS 5561Nitronic 40 (tm)管材- 焊接型, 冷拔AMS 556221-6-9 不锈钢,圆管材- 无缝型AMS 5563304 不锈钢,管材- 无缝型, 焊接型AMS 5564304 不锈钢,管材AMS 5565304 不锈钢,圆管材- 焊接型AMS 5566304 不锈钢,管材- 无缝型, 焊接型AMS 5567304 不锈钢,管材- 无缝型, 焊接型AMS 556817-7 (PH) 不锈钢,圆管材- 焊接型AMS 5569304L 不锈钢,管材- 无缝型, 焊接型1Cr18Ni9Ti AMS 5570321 不锈钢,圆管材- 无缝型AMS 5571347 不锈钢,圆管材- 无缝型AMS 5572310S 不锈钢,圆管材- 无缝型AMS 5573316 不锈钢,圆管材- 无缝型AMS 5574309S 不锈钢,圆管材- 无缝型AMS 5575347 不锈钢,圆管材- 焊接型1Cr18Ni9Ti AMS 5576321 不锈钢,圆管材- 焊接型AMS 5577310 不锈钢,圆管材- 焊接型AMS 5577310S 不锈钢,圆管材- 焊接型AMS 5578Custom 455 (tm) 不锈钢,圆管材- 焊接型AMS 557919-9DL 不锈钢,圆管材- 焊接型AMS 5580Inconel 600 (tm)圆管材- 无缝型AMS 5581Inconel 625 (tm)管材- 无缝型, 焊接型GH 145AMS 5582Inconel X750 (tm)圆管材- 无缝型GH 145AMS 5583Inconel X750 (tm)圆管材- 无缝型AMS 5584316L 不锈钢,管材- 无缝型, 焊接型AMS 5585Alloy 155 - (Multimet tm)圆管材- 焊接型GH 738AMS 5586Waspalloy (tm)圆管材- 焊接型GH 536AMS 5587Hastelloy X (tm)圆管材- 无缝型中国牌号美国宇航标准牌号&规格尺寸GH 536AMS 5588Hastelloy X (tm)管材- 焊接型, 冷拔GH 4169AMS 5589Inconel 718 (tm)圆管材- 无缝型GH 4169AMS 5590Inconel 718 (tm)圆管材- 无缝型AMS 5591410 不锈钢,圆管材- 无缝型AMS 5592330 不锈钢,片材, 带材, 板料AMS 5593333 不锈钢,片材, 带材, 板料GH 4169AMS 5596Inconel 718 (tm)片材, 带材, 板料GH 4169AMS 5597Inconel 718 (tm)片材, 带材, 板料GH 145AMS 5598Inconel X750 (tm)片材, 带材, 板料AMS 5599Inconel 625 (tm)片材, 带材, 板料AMS 560417-4 (PH) 不锈钢,片材, 带材, 板料AMS 5605Inconel 706 (tm)片材, 带材, 板料AMS 5606Inconel 706 (tm)片材, 带材, 板料AMS 5607Hastelloy N (tm)片材, 带材, 板料AMS 5608Haynes 188 (tm)片材, 带材, 板料AMS 5610416 不锈钢,棒料, 锻件AMS 5613410 不锈钢,棒料, 线材, 锻件, 管材 & 环件AMS 5616Greek Ascoloy (tm) 不锈钢,棒料, 线材,锻件, 管材 & 环件AMS 5617Custom 455 (tm) 不锈钢,棒料, 线材, 锻件AMS 5618440 C 不锈钢,棒料, 锻件AMS 5620420F 不锈钢,棒料, 锻件AMS 5621420 不锈钢,棒料, 锻件AMS 562217-4 (PH) 不锈钢,棒料, 线材, 锻件, 管材& 环件AMS 5626T1 T ool Steels 棒料, 锻件AMS 5627430 不锈钢,棒料, 锻件, 管材, 环件AMS 5628431 不锈钢,棒料, 锻件, 管材, 环件AMS 562913-8Mo 不锈钢,棒料, 锻件, 环件AMS 5630440 C 不锈钢,棒料, 锻件AMS 5631440 A 不锈钢,棒料, 锻件AMS 5632440 F SE 不锈钢,棒料, 锻件AMS 5632440 F 不锈钢,棒料, 锻件AMS 5632440 A 不锈钢,棒料, 锻件AMS 5639304 不锈钢,棒料, 线材, 锻件, 管材 & 环件AMS 5640(TYPE 1) 303 不锈钢,棒料, 线材, 锻件AMS 5640(TYPE 2) 303 Se 不锈钢,棒料, 线材, 锻件AMS 564317-4 (PH) 不锈钢,棒料, 线材, 锻件, 管材& 环件AMS 564417-7 (PH) 不锈钢,棒料, 锻件1Cr18Ni9Ti AMS 5645321 不锈钢,棒料, 锻件, 管材, 环件AMS 5646347 不锈钢,棒料, 锻件, 管材, 环件中国牌号美国宇航标准牌号&规格尺寸AMS 5648316 不锈钢,棒料, 锻件, 管材, 环件AMS 5650309S 不锈钢,棒料, 锻件, 管材, 环件AMS 5651310 不锈钢,棒料, 锻件, 管材, 环件AMS 5651310S 不锈钢,棒料, 锻件, 管材, 环件AMS 5653316L 不锈钢,棒料, 锻件, 管材, 环件AMS 5654347 不锈钢,棒料, 线材, 锻件, 管材 & 环件AMS 5655422 不锈钢,棒料, 锻件AMS 565621-6-9 不锈钢,棒料, 锻件, 环件AMS 565715-7 不锈钢,棒料, 锻件AMS 565915-5 不锈钢,棒料, 锻件, 环件AMS 5660Nimonic 901,棒料, 锻件AMS 5661Nimonic 901,棒料, 锻件, 环件GH 4169AMS 5662Inconel 718 (tm)棒料, 锻件, 环件GH 4169AMS 5663Inconel 718 (tm)棒料, 锻件, 环件GH 4169AMS 5664Inconel 718 (tm)棒料, 锻件, 环件AMS 5665Inconel 600 (tm)棒料, 锻件, 环件AMS 5666Inconel 625 (tm)棒料, 锻件, 环件GH 145AMS 5667Inconel X750 (tm)棒料, 锻件, 环件GH 145AMS 5668Inconel X750 (tm)棒料, 锻件, 环件GH 145AMS 5670Inconel X750 (tm)棒料,锻件, 环件GH 145AMS 5671Inconel X750 (tm)棒料, 锻件, 环件AMS 5672Custom 455 (tm) 不锈钢,线材AMS 5674347 不锈钢,线材AMS 5676Nichrome (tm)线材AMS 567817-7 (PH) 不锈钢,线材AMS 5687Inconel 600 (tm)线材1Cr18Ni9Ti AMS 5689321 不锈钢,线材AMS 5690316 不锈钢,线材AMS 5696316 不锈钢,线材AMS 5697304 不锈钢,线材GH 145AMS 5698Inconel X750 (tm)线材GH 145AMS 5699Inconel X750 (tm)线材AMS 5701Inconel 706 (tm)棒料, 锻件, 环件AMS 5702Inconel 706 (tm)棒料, 锻件, 环件AMS 5703Inconel 706 (tm)棒料, 锻件, 环件GH 738AMS 5704Waspalloy (tm)自由锻件GH 738AMS 5706Waspalloy (tm)棒料, 锻件, 环件GH 738AMS 5708Waspalloy (tm)棒料, 锻件, 环件GH 738AMS 5709Waspalloy (tm)棒料, 锻件AMS 5711Hastelloy S (tm)棒料, 锻件, 环件GH 141AMS 5712Rene 41 (tm)棒料, 锻件, 环件GH 141AMS 5713Rene 41 (tm)棒料, 锻件, 环件AMS 5714Inconel 722 (tm)棒料, 锻件, 环件中国牌号美国宇航标准牌号&规格尺寸AMS 5715Inconel 601 (tm)棒料, 锻件, 环件AMS 5716330 不锈钢,棒料, 锻件, 环件AMS 5717333 不锈钢,棒料, 锻件, 环件GH 2132AMS 5726A-286棒料 & 线材GH 2132AMS 5731A-286棒料, 锻件, 管材, 环件GH 2132AMS 5732A-286棒料, 锻件, 管材, 环件AMS 5733Discalloy (tm)棒料, 线材, 锻件, 管材 &环件GH 2132AMS 5734A-286棒料, 锻件, 管材, 环件GH 2132AMS 5737A-286棒料, 线材, 锻件, 管材& 环件AMS 5743AM 355 (tm) 不锈钢,棒料, 锻件AMS 5744AM 355 (tm) 不锈钢,棒料, 锻件AMS 5746D-979(tm)GH 145AMS 5747Inconel X750 (tm)棒料, 锻件, 环件AMS 5750Hastelloy C (tm)棒料, 锻件, 环件AMS 5751Udimet 500 (tm)棒料, 锻件, 环件AMS 5753Udimet 500 (tm)棒料, 锻件GH 536AMS 5754Hastelloy X (tm)棒料, 锻件, 环件AMS 5755Hastelloy W (tm)棒料, 锻件AMS 5755Hastelloy W (tm)棒料, 锻件, 环件AMS 5759Alloy 25 (L-605)棒料, 锻件, 环件AMS 5762203 EZ 不锈钢,棒料, 线材, 锻件AMS 5763Custom 450 (tm) 不锈钢,棒料, 锻件, 管材, 环件AMS 5766Incoloy 800 (tm)棒料, 锻件AMS 5768Alloy 155 - (Multimet tm)棒料, 锻件, 环件AMS 5769Alloy 155 - (Multimet tm)棒料, 锻件, 环件AMS 5771Hastelloy N (tm)棒料, 锻件, 环件AMS 5772Haynes 188 (tm)棒料, 锻件, 环件AMS 5773Custom 450 (tm) 不锈钢,棒料, 线材, 锻件, 管材 & 环件AMS 5776410 不锈钢,线材AMS 5786Hastelloy W (tm)线材AMS 5788302 不锈钢,圆线材AMS 5794Alloy 155 - (Multimet tm)线材AMS 5796Alloy 25 (L-605)线材GH 536AMS 5798Hastelloy X (tm)线材GH 141AMS 5800Rene 41 (tm)线材AMS 5803Incoloy 903 (tm)线材GH 2132AMS 5804A-286线材GH 2132AMS 5805A-286线材AMS 582615-5 不锈钢,线材中国牌号美国宇航标准牌号&规格尺寸GH 738AMS 5828Waspalloy (tm)线材AMS 5829Nimonic 90 (tm)线材AMS 5831Haynes 556 (tm)线材GH 4169AMS 5832Inconel 718 (tm)线材AMS 5833Elgiloy (tm)线材AMS 5834Elgiloy (tm)线材AMS 5837Inconel 625 (tm)线材AMS 5838Hastelloy S (tm)线材AMS 5842MP159AMS 5846Alloy 700 棒料 & 锻件AMS 5848Nitronic 60 (tm)棒料, 锻件, 环件GH 2132AMS 5853A-286棒料 & 线材GH 2132AMS 5858A-286片材, 带材, 板料AMS 5859Custom 450 (tm) 不锈钢,片材, 带材, 板料AMS 5860Custom 455 (tm) 不锈钢,片材, 带材, 板料AMS 586215-5 不锈钢,片材, 带材, 板料AMS 5863Custom 450 (tm) 不锈钢,片材, 带材, 板料AMS 586413-8 不锈钢,板料AMS 5870Inconel 601 (tm)片材, 带材, 板料AMS 5871Incoloy 800 (tm)片材, 带材, 板料AMS 5872Hastelloy C263 (tm)片材, 带材, 板料AMS 5872Nimonic 263 (tm)片材, 带材, 板料AMS 5873Hastelloy S (tm)片材, 带材, 板料AMS 5874Haynes 556 (tm)片材, 带材, 板料AMS 5875Elgiloy (tm)带材AMS 5876Elgiloy (tm)带材AMS 5878Haynes Alloy 230 (tm)片材, 带材, 板料AMS 5879Inconel 625LCF (tm)片材AMS 5880440 C 不锈钢,棒料, 锻件AMS 5884Incoloy 909棒料, 锻件, 环件AMS 5886Nimonic 263 (tm)棒料, 锻件, 环件AMS 5887Inconel 617(tm) 棒料, 锻件, 环件AMS 5888Inconel 617(tm) 板AMS 5889Inconel 617(tm) 片材,带材AMS 5891Haynes Alloy 230 (tm)棒料, 锻件, 环件GH 2132AMS 5895A-286棒料, 线材, 锻件, 管材 & 环件AMS 5892Inconel 909 (tm) 片材,带材AMS 5893Inconel 909 (tm) 棒料, 锻件, 环件GH 4169AMS 5914Inconel 718 SPF,片材, 带材, 板料AMS 5940Inconel 783 棒料, 锻件, 环件GH 4169AMS 5950Inconel 718 SPF,带材, 板料。

美军标MIL-0-13830A-63

美军标MIL-0-13830A-63

美国军用规范火控仪器光学零件制造、装配和检验通用技术条件MIL-0-13830A-63代替MIL-0-13830(Ord)-54本规范经国防部批准,陆、海、空军各部必须遵照执行。

1、范围1.1、本规范适用于火控仪器成品光学零件如透镜、棱镜、反射镜、分划板、窗口玻璃和楔形镜的制造、装配和检验。

2、引用文件2.1、在邀请投标或征求意见期间有效的下列文件,凡被本规范引用的内容,均作为本规范的一个组成部分。

军用规范:MIL-G-174 光学玻璃MIL-C-675 光学玻璃零件镀膜MIL-A-3920 热固性光学胶合剂MIL-S-11030 非固化聚硫密封剂MIL-M-13508 光学玻璃零件镀铝外反射膜MIL-A-14443 透镜粘结用玻璃金属粘结剂MIL-O-16898 光学零件的包装图纸:美国陆军弹药司令部F7560085 振动试验仪C7641866 光学零件表面质量标准样品(与具体采购业务有关的供货厂商,应从采购机构或者从签订合国军官指定的机构取得必要的规范和图纸。

)3 技术要求3.1 总则:所有光学零件、组件和系统,除具体仪器技术条件或合同所附关图纸另有规定外,均须符合规范各项要求。

3.2 材料:材料须符合相应规范、零件图或仪器图的规定。

3.2.1 光学玻璃:除非签订合同军官另行批准,光学玻璃的品种和等级必须符合图纸以及通用规范MIL-G-174 的规定。

允许使用规定以外的光学玻璃时,必须向签订合同军官提供有关光学玻璃的光学性能和设计数据的全套资料。

3.2.2胶合剂:除合同或订货单另有规定外,光学胶合剂必须符合军用规范MIL-A-3920。

3.2.3粘结剂:用于粘合玻璃和金属的粘结剂必须符合军用规范MIL-A-14443。

3.2.4密封剂:密封剂必须符合军用规范MIL-S-11030。

3.2.5减反射膜:光学表面的减反射膜应符合军用规范MIL-C-675。

3.2.5.1反射面:镀铝反射面应符合军用规范MIL-M-13508。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由美国军用标准转化的宇航材料规范(AMS)清单
自美国1994年6月发布关于美军标改革的政策备忘录以来,在军用材料及热工艺方面,截止1999年1月,由美国军用标准转化而来的宇航材料规范(AMS)有151项,转化方式是将原标准代号用AMS代替,即将MS、AND、FED、MIL等改为AMS,原标准代号不变。

转化而来的AMS标准清单见表1,供参考。

表1 由美国军用标准转化的AMS清单
注:AND——美国空、海军航空设计标准(Air Force-Navy Aeronautical Design Standards, DOD);AS——美国宇航标准(Aerospace Standards, SAE);FED——美国联邦标准(FEDeral Standards);MIL——美国军用标准(MILitary Standards, DOD);MS——美国军用标准图纸(Military Standard Drawings);QQ——美国联邦规范(Federal Specifications)。

相关文档
最新文档