第八章电化学

合集下载

第八章 电化学腐蚀与防护

第八章 电化学腐蚀与防护

资源/环 境负荷
腐蚀破坏
材料的源泉和归宿 —资源/环境
腐蚀的钢管
严重的锅炉管腐蚀
F-22A锈蚀问题是发动机 俄罗斯米格-29战机曾发生 舱盖漏雨所致 空中爆炸 解决腐蚀问题的办法 是更换机身上四块最大的 铝合金口盖,将用钛合金 口盖来代替,每一个口盖 更换成本大约为5万美元。
我护航舰队人员 设法防止舰载机 遭盐分腐蚀
常温下酸性溶液中铁的腐蚀其他物质为去极化剂如酸性溶液中fefe酸洗过程锈层溶于酸形成一定量的fe可作为去极化剂使钢铁腐蚀若酸液面上有空气fe成为去极化剂形成循环fe起着氧的输送的作用有fe存在时腐蚀速度增加均匀腐蚀全面腐蚀阴阳极共扼反应在金属相同位臵同时发生或交替发生阴阳极没有时间和空间上的区别整个表面用ecorr表征在此电位下表面均匀溶解腐蚀
• 电偶腐蚀在化工/日常生活中很普遍现象
• 电偶腐蚀 — 金属电极构成宏观腐蚀电池
• 电位较低的金属腐蚀增大,电位较高的金属腐 蚀速度减小
M1 M1n+ + ne
2H+ + 2e H2 M2 M2 n+ + ne 2H+ + 2e H2
异种金属接触构成电偶腐蚀
5.脱成分腐蚀
合金中某特定成分由于腐蚀溶解而减少, 称为脱成分腐蚀
表面膜
磨蚀
水流
磨蚀
高速水流
磨蚀现象和机理
局部腐蚀形式多样性 — 电偶腐蚀、缝隙腐蚀、小 孔腐蚀(点腐蚀)、晶间腐蚀、应力腐蚀开裂等。
局部腐蚀普遍性 —工业中局部腐蚀很常见(全 面腐蚀10%),局部腐蚀(化工)80%,因 此对局部腐蚀的研究和防护尤为重要。
局部腐蚀危害性 — 腐蚀集中在个别位臵急剧发 生、腐蚀破坏快速、隐蔽性强、难以预计、控制 难度大、危害大,易突发灾难事故

第八章 电化学分离法

第八章 电化学分离法

同理,如发生阳极反应,由于金属的溶解 将使阳极表面的金属离子浓度比主体溶液的浓 度大,使阳极电势变得更正一些。由于这种浓 度差别所引起的极化,称为浓差极化。与之相 应的超电势称为浓差超电势。其数值大小由浓 差大小决定,而浓差大小又与搅拌情况、电泳 密度等因素有关。由于浓差极化的存在,使一 些干扰离子也可能在电极上反应,导致电解分 离不完全,影响了电解分析的准确性。要减小 浓差极化,可以采用增大电极面积、减小电流 密度、提高溶液温度以及强化机械搅拌等方法。
Hale Waihona Puke 1 2已知[O2]同大气中氧气的分压相等,水的 活度为1,[H+]=1.0mol/l,于是有
E阳 1.229 0.0296 lg( PO2 [ H ] ) 1.229 0.0296lg(0 .21 2 12 ) 1.219(V)
2 1 2 1
在这些条件下,电解产物组成的原电池的自 发反应是 1 2
RT EE ln M n nF

式中,n为金属离子的价数;αMn+为离子 Mn+的活度;EӨ为该金属电对的标准电极电势; R为摩尔气体常数;T为热力学温度;F为法拉 第常数。
对于高度稀释的溶液,例如无载体的放射性核 素溶液,能斯特方程式是否适用是个问题。通常, 检验能斯特方程式适用性的方法是直接测量不同 浓度的离子溶液中的电极电势。但当被沉积的元 素量非常少时,由于离子的沉积还不足以在电极 上形成单原子层,从而使得实际的电极电势与根 据能斯特公式计算出来的理论电极电势常常发生 偏离,并且显得缺乏规律性,曾有不少学者试图 对能斯特公式进行各种校正和解释,但至今仍无 很满意的结果。当然,也有个别元素,即使其离 子浓度很低,能斯特公式仍是适用的。例如,浓 度在1.44×10-7~5×10-4mol/l之间的放射性Po在 Au电极的沉积。

第八章 电化学

第八章  电化学

说明
n 电解 为通过电解池电荷的物质的量,可 由通过电解池的总电量求得。
n电极反应根据实际电极反应而得,其值等 于n电解;但对于不参加反应的惰性电极, 在阳极区要特别注意。 希托夫法原理简单,但所得结果不够准 确。
(2)界面移动法
原理:测定溶液界 面在迁移管中移动 的距离来测定离子 的迁移数。 条件:使用的两种 电解质溶液具有一 种共同的离子。有 明显分界面。
在无限稀释溶液中,每种离子独立移动,不受 其它离子影响,电解质的无限稀释摩尔电导率可 认为是两种离子无限稀释摩尔电导率之和。
M+A- = +Mz+ + - Az则:

m
m,

m,
弱电解质无限稀释摩尔电导率的求法:根 据离子独立运动定律,利用强电解质无限 稀释摩尔电导率来计算。
t+ + t- = 1
(2)影响离子迁移数的因素 影响离子迁移数的因素:温度、溶 液浓度、离子本性、溶剂性质。 温度越高,阴、阳离子的迁移数趋 于相等。
3.离子的电迁移率(离子淌度)
vB uB dE / dl dl u v dE
几点说明:
dl u v dE
(1)uB 与温度、浓度、离子本性、溶剂性 质有关。
阳极区 t+ = n+,迁出/n电解, t- = n-,迁入/n电解
阳离子:n终态=n起始+n电极反应-n迁出 n迁出=n起始+n电极反应-n终态 阴离子:n终态=n起始-n电极反应+n迁入 n迁入=n终态-n起始+n电极反应
阴极区 t- = n-,迁出/n电解, t+ = n+,迁入/n电解

电化学 第8章 金属电极的阳极过程

电化学 第8章 金属电极的阳极过程

图8.1 金属的阴阳极极化曲线第8章 金属阳极过程8.1 金属阳极溶解8.1.1 概述化学电源、电解冶炼、电镀工业等都广泛地使用可溶性金属阳极,它往往要求金属阳极能够正常的溶解。

金属以离子形式进入溶液的阳极过程是由许多步骤组成的(阴极过程逆过程)。

从位置因素考虑金属的边角处先溶解。

包括金属晶格的破坏、电子转移、金属离子水化(或络合)等,并由对流、电迁移、扩散等方式使它们离开电极表面,用图表示如下:一般金属离子的水解过程速度很快,不会成为控步,金属晶格的破坏、电子转移步骤往往是控步。

以电化学步骤为例:()根据“微观可逆”原理,由于多价金属离子还原过程中往往是第一个电子还原步骤最慢,因此在阳极溶液过程中是失去最后一个电子的步骤最慢,即为控制步骤。

(为表观传递系数)显然, 即阳极的表观传递系数较阴极大。

对应的极化曲线如右图。

8.1.2金属阳极溶解的影响因素1、 金属本性的影响。

金属阳极溶解的条件为: 可能性,速度视大小而定。

(典型:氢氧反应生成水,热力学上没问题,但必须提供一定能量后反应才会发生)即只要电极位高于金属的平衡电位与过电位之和即可发生电极的溶解。

:热力学参数,表示反应的可能性。

越小,反应越容易进行。

一定时,大,则 小,小,则大。

注:这里高、中、低与氢过电位金属无关。

(上述过电位是指在一定电流密度下的相对大小,而氢过电位是指时的过电位)2、 溶液组成的影响即浓度C 、络离子、表面活性剂、阴离子(卤素等)的影响。

这里主要介绍阴离子的影响。

1 阴离子对阳极反应的影响比对阴极反应的影响大溶液中阴离子浓度记为,一般为卤素或等。

此时(单电子为例)=1、2、3之中的某一正数。

不仅影响电位,还可以以一定的反应级数参加反应。

这说明与金属表面上的金属形成了表面络和物。

2 并不是所有的阴离子都能加速阳极过程。

如果生成的表面络合物可溶,则使金属上的键变弱,容易使金属离子进入溶液,从而加速电极过程;而有些阴离子则无此能力,在表面上吸附后阻化了反应的进行。

第八章电化学分析法

第八章电化学分析法

二、电化学分析法的特点
(1)灵敏度、准确度高,选择性好 被测物质的最低量可以达到10-12mol/L数量级。 (2)电化学仪器装置较为简单,操作方便 直接得到电信号,易传递,尤其适合于化工生产中的自动控 制和在线分析。 (3)应用广泛 传统电化学:无机离子分析H+、F-、Cl-、K+; 有机电化学分析:蛋白质、氨基酸 药物分析:磺胺类药物含量分析 活体分析:肌苷含量、酶活性分析
1、直接电位法:电极电位与溶液中电活性物质活度有关,通 过测量溶液的电动势,根据能斯特方程计算被测物质的含量 如饮用水中氟离子含量测定 研制各种高灵敏度、高选择性的电极是电位分析法最活跃的 研究领域之一。目前应用最多、选择性最好的是膜电极
2、理论基础:能斯特方程(电极电位与溶液中待测离子间 的定量关系式)。
对于氧化还原体系: Ox + ne- = Red
O Ox/RedR nFTlnaaROedx
对于金属电极(还原态为金属,活度定为1):
M On/MR nF TlnaMn
二、离子选择性电极种类、结构与原理 1、种类
离子选择性电极(又称膜电极)。
1976年IUPAC基于膜的特征,推荐将其分为以下几类: 重点使用 原电极(primary electrodes)
电池工作时,电流必须在电池内部和外 部流过,才能构成回路。
溶液中的电流:正、负离子的移动。
1、原电池
负极:发生氧 化反应的电极。
正极:发生还 原反应的电极。
电极电位较高 的为正极
电极电位较低 的为负极
电池总反应是 两个电极反应 的加合
2、电解电池
阳极:与直流 电源正极相连 的一段,发生 氧化反应。
电化学分析的学习参考资料

高中化学 第八章电解质溶液及电化学系统

高中化学 第八章电解质溶液及电化学系统

第八章电解质溶液及电化学系统主要内容1.电解质溶液及电化学系统研究的内容和方法2.电解质溶液的热力学性质3.电解质溶液的导电性质4.电化学系统的热力学重点1.重点掌握了解电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.重点掌握离子氛的概念和德拜—休克尔极限定律;3.重点掌握理解原电池电动势与热力学函数的关系;掌握能斯特方程及其计算;难点1.电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.离子氛的概念和德拜—休克尔极限定律;3.原电池电动势与热力学函数的关系;能斯特方程及其计算教学方式1. 采用CAI课件与黑板讲授相结合的教学方式。

2. 合理运用问题教学或项目教学的教学方法。

教学过程第8.1节电解质溶液及电化学系统研究的内容和方法一、电解质溶液及电化学系统研究的内容1、电解质溶液①电解质溶液的热力学性质电解质由于存在电离,正负离子之间的静电作用力使其偏离理想稀薄溶液所遵从的热力学规律,所以引入了离子平均活度和离子平均活度因子等概念。

思考:理想稀薄溶液所遵从的热力学规律是什么?②电解质溶液的导电性质高中阶段就学过电解质溶液的导电性质,为了表征电解质溶液的导电能力,则引入了电导、电导率、摩尔电导率等概念。

2、电化学系统在两相或数相间存在电势差的系统称为电化学系统。

①电化学系统的热力学性质电化学系统的热力学主要研究电化学系统中没有电流通过时系统的性质,即有关电化学平衡的规律。

②电化学系统的动力学电化学系统的动力学主要研究电化学系统中有电流通过时系统的性质,即有关电化学反应速率的规律。

二、电化学研究的对象第8.2节电解质溶液的热力学性质一、电解质的类型1、电解质的分类电解质的定义:解离:电解质在溶剂中解离成正、负离子的现象。

强电解质:弱电解质:强弱电解质的分类除与电解质本身性质有关外,还取决于溶剂的性质。

物理化学 电化学

物理化学 电化学

能导电的物质称为导电体,通常分为两类: 第一类导体又称电子导体,如金属、石墨等 第一类导体的特点是: A. 自由电子作定向移动而导电 B. 导电过程中导体本身不发生变化 C. 温度升高,电阻也升高
D. 导电总量全部由电子承担
第二类导体又称离子导体,如电解质溶液、熔 融电解质等 第二类导体的特点是: A. 正、负离子作反向移动而导电 B. 导电过程中有化学反应发生 C. 温度升高,电阻下降
阳极上发生氧化作用
2 H 2 O l O 2 (g ) 4 H 4 e

-
电源 +
-
Pt
e
e
+
-
阴极上发生还原作用
2H

Pt
aq 2 e H 2 (g )

N a 2S O 4
电解池
电极上的反应次序由 离子的活泼性决定
在电解池中, 都用铜作电极
阳极上发生氧化作用
发生氧化作用的极称为阳极。 在原电池中,阳极是负极;在 电解池中,阳极是正极。 发生还原作用的极称为阴极。
阴极:
在原电池中,阴极是正极;在 (Cathode) 电解池中,阴极是负极。
在原电池中
负载电阻
阳离子迁向阴极
正 极 -
负 极
在阴极上发生还原的是
Cu
2
Zn
e
-
Cu
2+
e
aq 2e
l A

1
面 积 =A
单位长方体
m
1
电导率
电导率也就是电阻率的倒数:
R k 1
(a )
电导率的定义

电导率与电解质性质、浓度、溶液浓度有关。

8章电位法和永停滴定法

8章电位法和永停滴定法
电极电位(25℃): φ = φΘ+ 0.059lgaAg+
Ag+Cl-
= φΘAg+/Ag+ 0.059lgKsp,AgCl/aCl= φΘAg+/Ag+ 0.059lgKsp,AgCl-0.059lgaClφ= φΘAgCl/Ag- 0.059lgaCl或φ= φΘ’
AgCl/Ag
- 0.059lgcCl-
(三)离子浓度的测量方法 1、电池电动势与离子浓度的关系
(-)离子选择电极|试液‖KCl(饱和),Hg2Cl2(s)|Hg(+)
电池电动势为:E = φ甘 – φ离 E =φ甘–[K’±(2.303RT/nF)lgci] E = K
±(2.303RT/nF)lgci
注:总离子强度调节剂(TISAB):将惰性电解质、缓冲 溶液和掩蔽剂的混合物溶液称为总离子强度调节剂(TISAB)。
氨气敏电极、 CO2、 NO2、SO2、O2、H2S、HCN、HF等气 敏电极。
φ= K-(RT/F)lnaH+=K-(RT/F)lnpNH3
3、酶电极 是利用酶在生化反应中高选择性的催化作用使生物大 分子迅速分解或氧化,催化反应的产物可由相应的离子选择 电极检测.因此酶电极由原电极和生物膜制成的复膜电极. 生物膜主要由具有分子识别能力的生物活性物质如酶、 微生物、生物组织、核酸、抗原和抗体组成。
第八章 电位法和永停滴定法 第 一 节 电化学分析法概述 根据所测的电化学参数不同可分四类:
电位分析法:
直接电位法、电位滴定法。
电解分析法:电重量法、库仑法、库仑滴定法
电导分析法:直接电导法 电导滴定法
伏安法:极谱法、溶出伏安法、电流滴定法
第 二 节 电位法的基本原理 一、化学电池 由二个电极、电解质溶液和外电路组成。

第八章 电化学基础第八节 电极电势

第八章 电化学基础第八节 电极电势
解:电极反应 Co3+ + e- Co2+ EΘ(Co3+/ Co2+) = +1.80V [c(Co3 )]
E(Co3+/ Co2+) = EΘ(Co3+/ Co2+) + 0.05917lg [c(Co2 )] (1)E(Co3+/ Co2+) = (1.80+ 0.05917lg 0.10) V = 1.74V
离子2023浓/2/2度0 的影响更显著
12
三、 沉淀的生成对电极电势的影响
●概况 电对的氧化态或还原态物质生成沉淀,会使物质浓度
减小,电极电势变化
例 8.10 在含有Ag+/Ag电对的系统中,若加入NaCl溶液,当c(Cl)=1.0 moldm-3时,求E(Ag+/Ag)的值。
解:电极反应:Ag++eAg(s);EΘ(Ag+/Ag)=+0.7999V,加入NaCl 溶液,产生AgCl沉淀:Ag++Cl-AgCl
●测定原理(自学)
例1,铜电极标准电极电势,组成电池
(-)Pt| H2(100kPa) | H+(aH+ = l) || Cu2+(aCu2+ = l) | Cu (+) 此 电 池 的 电 动 势 就 是 铜 电 极 的 标 准 电 极 电 势 。 298.15K 时 EΘ(Cu2+/Cu) = 0.34 V。铜为正极,实际进行还原反应
电极反应式
KspΘ
c(Ag+)
EΘ/V
Ag+ + e ⇋ Ag(s)
AgCl(s) + e ⇋ Ag(s) + Cl-

第8章-电化学分析法导论

第8章-电化学分析法导论

第8章电化学分析法导论(Chapter Introduction to Electrochemical Analysis) (2学时)教学目的和要求:1.了解电化学分析法的概念及分类。

2.了解电化学分析中常用的电极和分类。

3.熟悉自发电池和电解池。

4.掌握电极电位的计算方法。

5.了解扩散电位(液接电位和盐桥的作用)。

6.了解电解现象。

7.掌握分解电压、析出电位、过电压过电位的概念。

8.学会析出电位和分解电压的计算。

教学要点和所涵盖的知识点:电化学分析法的概念及分类;常用的电极和分类,自发电池和电解池;电极电位的计算方法,扩散电位(液接电位和盐桥的作用);电解现象(分解电压、析出电位、过电压、过电位)。

重点和难点:电解现象(分解电压、析出电位、过电压、过电位)。

一定义和内容(一)定义电化学分析法也称为电分析化学,尽管存在不同意见,一些著名学者还是提出了大多数人可接受的定义。

50年代,I.M. Kolthoff 提出:Electroanalytical Chemistry as the application of electrochemistry to analytical chemistry。

80 年代,由于分析化学的快速发展,电分析化学的内容的扩充和更新,这一定义不能准确适应,J.A.Plambeck 修正了这一定义:Electroanalytical chemistry is that branch of chemical analysis that employs electrochemical methods to obtain information related to the amounts,properties, and environments of chemical species.在我国早期引用Kolthoff 的定义。

80年代后,提出的中文定义为:“依据电化学和分析化学的原理及实验测量技术来获取物质的质和量及状态信息的一门科学。

电化学原理-第八章-金属的阳极过程

电化学原理-第八章-金属的阳极过程

后果
阳极 钝化 OH 放电
Ni2
pH
黄棕色覆盖在阳极上, 使阳极有效工作面减少; 真实电流密度相应增大。
钝 化
镀层质量
解决方法:加 入活化剂 NaCl 或 NiCl2
二、溶液组成的影响
3、氧化剂的影响 溶液中存在氧化剂,促使金属钝化。 例如:硝酸银、重铬酸钾、高锰酸钾、溶解
氧、 O离H子阳极反应析出氧。

电流密度极化铁电极,只需通过 0.05mol / dm3NaOH
就使铁钝化。
电量
1105 mA/ cm2 0.3mC / cm2
五、对吸附理论进行验证的实验现象
(2)界面电容测量
如果界面上存在极薄的膜,则界面电容应比自由表面 的双电层电容小。
C 0 r
l
但实测界面电容变化不大,表明成相膜不存在。
某些金属在碱性溶液中,也会产生有一定溶解度的酸根离
子(如
),因而不易钝化。
ZnO22
三、阳极电流密度的影响
临界钝化
电流密度
当ja
j
时,
pp
ja jpp
ja 加速金属溶解,
变化不大。
ja jpp
ja j pp
t
当ja
j
时,
pp
ja 加速金属钝化,
发生阶跃 ,阳极转为钝态。
ja越大,钝化所需时间t p越短。
(例如:不锈钢

1Cr18Ni9
五、对吸附理论进行验证的实验现象
(3)反应速度的变化 铂电极表面6%被氧覆盖,可使铂的溶解速度
下降4倍。 铂电极表面12%被氧覆盖,可使铂的溶解速度
下降16倍。 表明,金属表面没有形成氧的单分子层时,就

第八章 电化学基础 第三节 电导、电导率和摩尔电导率

第八章 电化学基础 第三节 电导、电导率和摩尔电导率
(2)0.0025 mol·dm-3K2SO4溶液的电导率和摩尔电导率
解:(1)Kcell=l/As=κ(KCl)×R(KCl)=0.2768S·m-1×82.4Ω= 22.81m-1
(2)0.0025mol·dm-3 K2SO4溶液的电导率为 κ(K2SO4)=Kcell/R(K2SO4)=22.81m-1/326.0Ω=0.069 0.0025 mol·dm-3溶液的摩尔电导率为
(2)具有相同阳离子的氯化物和硝酸盐的之差亦为一常数,与阳离 子性质无关
m (KCl) - m (KNO3 )=m (LiCl ) - m (LiNO 3=) 0.00049 S m2 mol1
2023/2/20
10
●定律的内容 无限稀释溶液中,离子彼此独立运动,互不影
响,无限稀释电解质的摩尔电导率等于无限稀释时阴、阳离子的摩
m /c
●单位 S·m2·mol-1
●注意
上式中c的单位为mol·m-3
表示m时,应标明其基本单元:可以是分子、原子、离子或 其它粒子。例, m(MgCl2)=258.8×10-4S·m2·mol-1
m[(1/2)MgCl2]=129.4×10-4S·m2·mol-1
2023/2/20
5
二、电导的测定——R的测定(自学)
2023/2/20
13
(二)计算难溶盐的溶解度
例8.3 电导测定知,25℃时氯化银饱和水溶液电导率为 3.41×10-
4S·m-1。已知同温度下配制此溶液所用水的电导率为1.60×10-4S·m-1。 试计算25℃时氯化银的溶解度。
解: m / c
κ(溶液)=κ(AgCl)+κ(H2O)
故 κ(AgCl) =κ(溶液)-κ(H2O)

电化学分离法

电化学分离法
10
第八章 解过程中有
电流通过电极时,电极
电势偏离可逆电极电势
的现象。
电解池的电流密度与电极电势的关系
电极的极化,常用某一电流密度时电极电位与可 逆电极电位之差值,即超电势(过电势)表示。
超电势随电流密度的增大而增大(如图所示)。 只有在指出电流密度后,超电势的数值才能确定。
13
外加电压
第八章 电化学分离
外加电压V与电极电势及电解池内阻之间的关系:
V=(E+-E−)+ir=[(Eφ++η+)-(Eφ−+η−)]+ir
式中:V为外加电压;i为通过电解池的电流;r 为电解池的内阻;Eφ+ 、Eφ−分别为可逆阳极和可逆 阴极的标准电极电势;η+、η−分别为阳极及阴极 的超电势。������
17
第八章 电化学分离
二、电解分离法的分类和应用
随着电解过程的不同,可分为: ������ 1 控制电位电解分离法 ������ 2 控制电流电解分离法 ������ 3 汞阴极电解分离法 ������ 4 内电解分离法
18
第八章 电化学分离
1 控制电势电解分离法 各种金属离子具有不
同的析出电势,调节外加 电压,使工作电极的电势 控制在某一范围内或某一 电势值,使被测离子在工 作电极上析出,而其它离 子留在溶液中达到分离的 目的。
此法还应用于从溶液中预先除去易还原离子,以利于其他 物质的测定,如测定碱金属之前,预先用电解法除去重金属。 21
第八章 电化学分离
3 汞阴极分离法
������ 以汞电极为阴极的电解 分离法称为汞阴极电解分离法。 前述控制电位和电流的电解法, 其阴极和阳极都是铂电极。 ������

第八章氧化还原电化学

第八章氧化还原电化学

() Pb | H 2 SO4 (1.25 1.30 g cm3 ) | PbO2 ()
放电时的两极反应:
负极:Pb + SO42- PbSO4 + 2e 正极:PbO2 + SO4- + 4H+ + 2e Pb SO4 + 2H2O 总反应:Pb + PbO2 + 2H2SO4 2PbSO4 + 2H2O
电极的类型:
Zn2+ (aq)
+
2e- =
Zn(S)
Zn( s ) | Zn 2
2H+(aq) + 2e- = H2(g)
Pt | H 2 ( g ) | H
电极的类型:
c) 金属-金属难溶盐-阴离子电极 Hg2Cl2(S)+2e- = 2Hg(l)+2Cl -(aq) Pt, Hg(l)│Hg2Cl2(S)│Cl-(2.8mol·L-1) AgCl(S)+e- = Ag(S)+2Cl -(aq) Pt, Ag(S)│AgCl(S)│Cl-(1.0mol·L-1) d) “氧化-还原”电极
其相应的浓度对电极电势的影响298.15K)的通式为:
0.05917V {c (还原态)} lg a n {c(氧化态)}
Ө
b
电极电势的能 斯特方程式
练习电极能斯特方程
对于任意给定的电极,电极反应通式为 a(氧化态)+ne-
b(还原态)
离子浓度对电极电势的影响,可从热力学推导而得如 下结论: RT [ c (还原态) / c ]a ln (4.4a) b
用离子电子法配平下列方程式 (1)I- + H2O2 + H+ → I2 + H2O (2)MnO4-+ H2O2 + H+ → Mn2+ + O2 + H2O (3)Cr2O72- + H2S + H+ → Cr3+ + S + H2O

大学物理化学核心教程课后参考答案第8章

大学物理化学核心教程课后参考答案第8章

第八章电化学一.基本要求1.理解电化学中的一些基本概念,如原电池和电解池的异同点,电极的阴、阳、正、负的定义,离子导体的特点和Faraday 定律等;2.掌握电导率、摩尔电导率的定义、计算、与浓度的关系及其主要应用等;了解强电解质稀溶液中,离子平均活度因子、离子平均活度和平均质量摩尔浓度的定义,掌握离子强度的概念和离子平均活度因子的理论计算;3.了解可逆电极的类型和正确书写电池的书面表达式,会熟练地写出电极反应、电池反应,会计算电极电势和电池的电动势;4.掌握电动势测定的一些重要应用,如:计算热力学函数的变化值,计算电池反应的标准平衡常数,求难溶盐的活度积和水解离平衡常数,求电解质的离子平均活度因子和测定溶液的pH等;5.了解电解过程中的极化作用和电极上发生反应的先后次序,具备一些金属腐蚀和防腐的基本知识,了解化学电源的基本类型和发展趋势;二.把握学习要点的建议在学习电化学时,既要用到热力学原理,又要用到动力学原理,这里偏重热力学原理在电化学中的应用,而动力学原理的应用讲得较少,仅在电极的极化和超电势方面用到一点;电解质溶液与非电解质溶液不同,电解质溶液中有离子存在,而正、负离子总是同时存在,使溶液保持电中性,所以要引入离子的平均活度、平均活度因子和平均质量摩尔浓度等概念;影响离子平均活度因子的因素有浓度和离子电荷等因素,而且离子电荷的影响更大,所以要引进离子强度的概念和Debye-Hückel极限定律;电解质离子在传递性质中最基本的是离子的电迁移率,它决定了离子的迁移数和离子的摩尔电导率等;在理解电解质离子的迁移速率、电迁移率、迁移数、电导率、摩尔电导率等概念的基础上,需要了解电导测定的应用,要充分掌握电化学实用性的一面;电化学在先行课中有的部分已学过,但要在电池的书面表示法、电极反应和电池反应的写法、电极电势的符号和电动势的计算方面进行规范,要全面采用国标所规定的符号,以便统一;会熟练地书写电极反应和电池反应是学好电化学的基础,以后在用Nernst 方程计算电极电势和电池的电动势时才不会出错,才有可能利用正确的电动势的数值来计算其它物理量的变化值,如:计算热力学函数的变化值,电池反应的标准平衡常数,难溶盐的活度积,水的解离平衡常数和电解质的离子平均活度因子等;学习电化学一方面要掌握电化学的基本原理,但更重要的是关注它的应用;对于可逆电池的实验可测量有:可逆电池的电动势E 、标准可逆电动势E 和电动势的温度系数pE T ∂⎛⎫ ⎪∂⎝⎭,利用这些实验的测定值,可以用来: 1 计算热力学函数的变化量,如r m r m r m r m R , , , , G G S H Q ∆∆∆∆等;2 计算电池反应的标准平衡常数,难溶盐的活度积ap K 和水的解离常数W K 等;3 根据电动势数值的正、负,来判断化学反应自发进行的方向;4 计算离子的平均活度因子γ±;5 计算未知溶液的pH 值;6 进行电势滴定7 绘制电势-pH 图,并用于金属的防腐及湿法冶金等;在这些应用中,难免要用到如何将一个化学反应设计成相应电池的问题,所以要了解如何将一些简单的化学反应设计成相应可逆电池的方法;现在使用的标准电极电势表基本上都是氢标还原电极电势,所以关于氧化电极电势可以不作要求,免得在初学时发生混淆;学习电解和极化的知识,主要是了解电化学的基本原理在电镀、电解、防腐和化学电源等工业上的应用,充分利用网络资源,都了解一些最新的绿色环保的新型化学电源,如氢-氧燃料电池和锂离子电池等;了解电解合成、电化学防腐等应用实例,拓宽知识面,提高学习兴趣,充分了解物理化学学科的实用性的一面;三.思考题参考答案1.什么是正极什么是负极两者有什么不同什么是阴极什么是阳极两者有什么不同答:比较电池中两个电极的电极电势,电势高的电极称为正极,电势低的电极称为负极;电流总是从电势高的正极流向电势低的负极,电子的流向与电流的流向刚好相反,是从负极流向正极;根据电极上进行的具体反应,发生还原作用的电极称为阴极,发生氧化作用的电极称为阳极;在原电池中,阳极因电势低,所以是负极;阴极因电势高,所以是正极;在电解池中,阳极就是正极,阴极就是负极;2.电解质溶液的电导率随着电解质浓度的增加有什么变化答:要分强电解质和弱电解质两种情况来讨论;电解质溶液的电导率是指单位长度和单位截面积的离子导体所具有的电导;对于强电解质,如HCl, H SO, NaOH24等,溶液浓度越大,参与导电的离子越多,则其电导率会随着浓度的增加而升高;但是,当浓度增加到一定程度后,由于电解质的解离度下降,再加上正、负离子之间的相互作用力增大,离子的迁移速率降低,所以电导率在达到一个最大值后,会随着浓度的升高反而下降;对于中性盐,如KCl等,由于受饱和溶解度的限制,在到达饱和浓度之前,电导率随着浓度的增加而升高;对于弱电解质溶液,因为在一定温度下,弱电解质的解离平衡常数有定值,所以在电解质的浓度增加的情况下,其离子的浓度还是基本不变,所以弱电解质溶液的电导率随浓度的变化不显着,一直处于比较低的状态;3.电解质溶液的摩尔电导率随着电解质浓度的增加有什么变化答:要分强电解质和弱电解质两种情况来讨论;电解质溶液的摩尔电导率是指,将含有1 mol 电解质的溶液,置于相距为单位距离的两个电极之间所具有的电导;由于溶液中导电物质的量已给定,都为1mol,所以,对于强电解质,当浓度降低时,正负离子之间的相互作用减弱,正、负离子的迁移速率加快,溶液的摩尔电导率会随之而升高;但不同的电解质,摩尔电导率随着浓度的降低而升高的程度也大不相同;当浓度降到足够低时,摩尔电导率与浓度之间呈线性关系,可用公式表示为(m m 1∞=-ΛΛ;所以强电解质的无限稀释的摩尔电导率可以用外推到0→c 得到;对于弱电解质溶液,因为在一定温度下,弱电解质的解离平衡常数有定值,在电解质的浓度下降的情况下,其离子的浓度基本不变,所以弱电解质溶液的摩尔电导率在一般浓度下,随浓度的变化不显着,一直处于比较低的状态;直到溶液的浓度很稀薄时,由于正负离子之间的相互作用减弱,摩尔电导率随着浓度的降低开始升高,但不成线性关系,当溶液很稀很稀时,摩尔电导率随着浓度的降低迅速升高,到0→c 时,弱电解质溶液的离子无限稀释的摩尔电导率与强电解质的一样;所以弱电解质的无限稀释的摩尔电导率可以用离子的无限稀释的摩尔电导率的加和得到,即 m m, m,∞∞∞+-=+ΛΛΛ;4.在温度、浓度和电场梯度都相同的情况下,氯化氢、氯化钾、氯化钠三种溶液中,氯离子的运动速度是否相同氯离子的迁移数是否相同答:因为温度、浓度和电场梯度都相同,所以三种溶液中氯离子的运动速度是基本相同的,但氯离子的迁移数不可能相同;迁移数是指离子迁移电量的分数,因为氢离子、钾离子、钠离子的运动速度不同,迁移电量的能力不同,所以相应的氯离子的迁移数也就不同;5.为什么氢离子和氢氧根离子的电迁移率和摩尔电导率的数值比同类离子要大得多答: 因为氢离子和氢氧根离子传导电流的方式与其它离子不同,它们是依靠氢键来传递的,所以特别快;它们传导电流时,不是靠离子本身的迁移,而是依靠氢键和水分子的翻转来传导电荷的;如果在非水溶液中,氢离子和氢氧根离子就没有这个优势;6.强电解质如4CuSO ,2MgCl 等,在其溶液的浓度不是太大的情况下,电解质的摩尔电导率与它的离子摩尔电导率之间是什么关系答:在溶液不太浓时,可以近似认为强电解质是完全解离的,其摩尔电导率就等于离子摩尔电导率的加和;但对于组成离子的电价数大于1,特别是在正、负离子的电价不对称时,在选取基本单元时要注意使粒子的荷电量相同,若粒子的荷电量不同时,要在前面乘以因子,使等式双方相等;现用以下例子来表明它们之间的关系:对于A B -型的对称电解质,它们之间的关系比较简单,如或 22 m 4 m m 4111CuSO Cu SO 222+-⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ΛΛΛ 对于2A B -型的不对称电解质,由于正负离子的电价数不同,要注意选取荷电量相同的粒子作为基本单元,若荷电量不同,要在前面乘以因子,如或 2 m 2 m m 11MgCl Mg (Cl )22+-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ΛΛΛ7.在电解质溶液中,如果有i 种离子存在,则溶液的总电导应该用如下的哪个计算式计算答:应该用1式计算;因为溶液的总电导等于各个离子电导的加和,即在溶液中,离子是以并联形式存在的,而不是以串联形式存在的,总的电阻不可能等于所有离子电阻的加和;8.标准电极电势是否就等于电极与周围活度为1的电解质溶液之间的电势差 答:不是;由于电极表面性质比较复杂,电极与周围电解质溶液之间的真实电势差是无法测量的;现在把处于标准状态下的电极即待测电极与标准氢电极组成电池,将待测电极作还原极即正极,并规定标准氢电极的电极电势为零,这样测出的电池电动势就作为待测电极的电极电势,称为标准氢标还原电极电势,简称为标准电极电势,用符号Ox|Red E 表示;9.为什么标准电极电势的值有正有负答:因为规定了用还原电极电势,待测电极与氢电极组成电池时,待测电极放在阴极的位置,令它发生还原反应;但是比氢活泼的金属与氢电极组成电池时,实际的电池反应是金属氧化,氢离子还原,也就是说电池的书面表示式是非自发电池,电池反应是非自发反应,电动势小于零,所以电极电势为负值;如果是不如氢活泼的金属,则与氢电极组成的电池是自发电池,电极电势为正值;10.某电池反应可以写成如下两种形式,则所计算出的电动势E ,标准摩尔Gibbs 自由能变化值和标准平衡常数的数值是否相同1 222H 2Cl H ()Cl ()2HCl()p p a += 2 222H 2Cl 11H ()Cl ()HCl()22p p a +=答:电动势E 是电池的性质,不管电池反应中电子的计量系数是多少,电动势E 总是相同的;如果从计算电池电动势的Nernst 方程看,RT zF 项分母中的z 与B B Ba ν∏项中的指数B ν之间,有固定的比例关系,所以电动势E 有定值,即12E E =;但是摩尔Gibbs 自由能的变化值和标准平衡常数值却不同,r m G ∆中的下标“m ”是指反应进度为1 mol 时的Gibbs 自由能变化值,若化学方程式中的计量系数成倍数的关系,则当反应进度都等于1 mol 时,r m G ∆的值也成倍数的关系,即r m,1r m,22G G ∆=∆;如果电池都处于标准状态,则标准摩尔Gibbs 自由能变化值的关系也是r m,1r m,2G G ∆=∆;标准平衡常数与标准Gibbs 自由能的变化值之间的关系为r m ln G RT K ∆=-,r m G ∆的数值成倍数的关系,则K 的数值就成指数的关系,即212 ()K K =;11.如果规定标准氢电极的电极电势为1 V,则各可逆电极的标准氢标还原电极电势的值有什么变化电池的电动势有什么变化答:由于单个电极的电极电势无法测量,人们不得不采用相对的电极电势;目前国际上绝大多数采用的是氢标还原电极电势,即规定标准氢电极的电极电势为0 V,将待测电极作阴极还原极,这样组成的电池的电动势就作为待测电极的标准还原电极电势Ox Red E |,即如果规定标准氢电极的电极电势为 1 V,组成电池的电动势应是个定值,即实验测定的E 不变,那即各电极的标准还原电极电势值也都增加1 V;电池的电动势是两个电极的电极电势之差,所有的电极电势都增加1 V,电动势的值不会改变,这就是为什么要取共同标准的原因;12.如何用电化学的方法,测定2H O(l)的标准摩尔生成Gibbs 自由能f m 2(H O,l)G ∆答:2H O(l)的生成反应为要设计一个电池,使电池反应与之相同;方程式中,显然2H (g)是被氧化的,将氢电极放在电池的左边作阳极,2O (g)是被还原的,将氧电极放在电池右边作阴极,这是一个氢-氧燃料电池;由于氢-氧燃料电池的电动势与电解质溶液的pH 没有关系,所以两个电极中间的介质在pH 等于114之间都可以,只要保持2H (g)和2O (g)的压力都是标准压力即可;所以设计的电池为这个电池的反应就是2H O(l)的生成反应,测定电池的标准可逆电动势E 或从标准电极电势表,查阅电极的标准电极电势,进行计算得到,就可以计算2H O(l)的标准摩尔生成Gibbs 自由能f m 2(H O,l)G ∆13.设计合适的电池,计算24Hg SO (s)的溶度活度积常数ap K ;答:24Hg SO (s)的解离反应为2+22+2Hg Hg ()a 是从第一类电极中来的,是由Hg(l)氧化而来的,所以用2+22+2Hg Hg(l)Hg ()a |电极作阳极,再用一个难溶盐电极242424SO SO ()Hg SO (s)Hg(l)a --||作阴极,因为24Hg SO (s)在还原时会放出24SO -;2+2Hg 和24SO -不能共存在一个容器内,中间要用盐桥隔开,所以设计的电池为该电池的净反应与24Hg SO (s)的解离反应一致读者可以自己检验一下;从标准电极电势表,查得两个电极的电极电势,得到电池的标准电动势E ,或用实验测定该电池处于标准态时的标准电动势E ,就可以计算难溶盐的活度积常数14.为什么实际分解电压总要比理论分解电压高答:实际分解电压要克服三种阻力:1原电池的可逆电动势,这数值通常称为理论分解电压,其绝对值用R E ||表示; 2由于两个电极上发生极化而产生的超电势a η和c η,通常称为不可逆电动势;3克服电池内阻必须消耗的电位降IR ;所以实际分解电压为这样,实际分解电压E 分解一定大于理论分解电压R E ||;15.在电解池和原电池中,极化曲线有何异同点答:它们的相同点是:无论是在原电池还是在电解池中,随着电流密度的增加,阳极的实际析出电势不断变大,阳极的极化曲线总是向电势增大的方向移动;阴极的实际析出电势不断变小,阴极的极化曲线总是向电势减小的方向移动;所不同的是,在电解池中,由于超电势的存在使实际分解电压变大,随着电流密度的增加,实际消耗的电能也不断增多;而在原电池中,由于超电势的存在,使电池的不可逆电动势小于可逆电动势,随着电流密度的增加,电池的不可逆电动势不断下降,对环境作电功的能力也下降;16.将一根均匀的铁棒,部分插入水中,部分露在空气中;经若干时间后,哪一部分腐蚀最严重为什么答:在靠近水面的部分腐蚀最严重;因为在水下部分的铁棒,虽然有2CO (g)和2SO (g)等酸性氧化物溶于水中,使水略带酸性,但H + 离子的浓度还是很低的,发生析氢腐蚀的趋势不大;铁棒露在空气中的部分,虽然与氧气接触,但无电解质溶液,构成微电池的机会较小;而在靠近水面的部分,既有氧气,又有微酸性的电解质溶液,所以很容易构成微电池,发生耗氧腐蚀,这样形成的原电池的电动势比在水中的析氢腐蚀的电动势大,因而这部分腐蚀最严重;17.以金属铂为电极,电解Na2SO4水溶液;在两极附近的溶液中,各滴加数滴石蕊试液,观察在电解过程中,两极区溶液颜色有何变化为什么答:这实际是一个电解水的过程,硫酸钠仅仅起了导电的作用;电解时,在阳极上放出氧气,阳极附近氢离子的浓度变大,使石蕊试液呈红色;在阴极上析出氢气,阴极附近氢氧根离子的浓度变大,使石蕊试液呈蓝色;18.为了防止铁生锈,分别电镀上一层锌和一层锡,两者防腐的效果是否一样答:在镀层没有被破坏之前,两种防腐的效果是一样的,镀层都起了将铁与环境中的酸性气体和水隔离的目的,防止微电池的形成,防止了铁被电化腐蚀;但是镀层一旦有破损,则两者的防腐效果就大不相同;镀锡铁俗称马口铁,锡不如铁活泼;若将锡与铁组成原电池,则锡作阴极,称为阴极保护层,而铁作阳极,这样铁被腐蚀得更快;镀锌铁俗称白铁,锌比铁活泼,组成原电池时,锌作阳极,称为阳极保护层,锌被氧化,而铁作阴极,仍不会被腐蚀;19.在氯碱工业中,电解NaCl的浓溶液,以获得氢气、氯气和氢氧化钠等化工原料;为什么电解时要用石墨作阳极答:若不考虑超电势的影响,在电解NaCl的水溶液时,根据电极电势的大小,在阳极上首先析出的是氧气,而不是氯气;由于氯气的工业价值比氧气高,所以利用氧气在石墨上析出时有很大的超电势,而氯气在石墨上析出的超电势很小,所以用石墨作阳极,在阳极上首先析出的是氯气,而不是氧气,可以利用氯气作为化工原料;20.氢-氧燃料电池在酸、碱性不同的介质中,它们的电池反应是否不同在气体压力相同时,电池的电动势是否相同答:氢、氧燃料电池的电解质溶液可以是酸性,也可以是碱性,pH 在1~14的范围内,它们的电极反应虽不相同,但电池的净反应相同;在气体压力都等于标准压力时,其标准电动势都等于是 V;具体反应式和计算式如下:1 假定是pH 7<的酸性溶液负极,氧化 22H H H ()2H ()2e p a ++-→+ +2H|H 0 V E =正极,还原22O 2H 1O ()2H ()2e H O(l)2p a ++-++→ +22O |H O,H 1.229 V E =电池净反应 1 222H 2O 21H ()O ()H O(l)2p p +→当22H O p p p ==时,2 假定是pH 7>的碱性溶液负极,氧化 22H 2OH H ()2OH ()2H O(l)2e p a ---+→+正极,还原 22O 2OH 1O ()H O(l)2e 2OH ()2p a ---++→电池净反应 2 222H 2O 21H ()O ()H O(l)2p p +→当22H O p p p ==时,四.概念题参考答案1.按物质导电方式的不同而提出的离子型导体,下述对它特点的描述,哪一点是不正确的A 其电阻随温度的升高而增大B 其电阻随温度的升高而减小C 其导电的原因是离子的存在D 当电流通过时在电极上有化学反应发生 答:A;对于离型子导体,在温度升高时,离子的水合程度下降,溶液的黏度下降,电阻是变小的;2.使2000 A 的电流通过一个铜电解器,在1 h 内,能得到铜的质量是 A 10 g B 100 g C 500 gD 2 369 g答:D;用Faraday 定律计算可得3.在298 K 时,当 H 2SO 4溶液的浓度从 mol·kg -1 增加到 mol·kg -1时,其电导率k 和摩尔电导率m 的变化分别为 A k 减小 , m 增加 B k 增加 , m 增加 C k 减小 , m 减小 D k 增加 , m 减小答:D;强电解质溶液的电导率,随溶液浓度的增加而增加,因为电导率只规定了电解质溶液的体积,是单位立方体,浓度大了,导电离子多了,电导率当然要增加;但是摩尔电导率只规定了电解质的量是1 mol,电极间的距离是单位距离,但没有固定溶液的体积,所以随溶液浓度的增加,溶液体积变小,离子间相互作用增加,因而摩尔电导率减小;4.用同一电导池,分别测定浓度为 1 mol·kg -1和 2 mol·kg -1的两个电解质溶液,其电阻分别为 1000 和 500 ,则 1 与 2 的摩尔电导率之比为A 15∶B 5∶1C 105∶D 5∶10 答: B;根据摩尔电导率的定义, m cκ=Λ,cellK l GA Rκ==,cell K 称为电导池常数,同一电导池的电导池常数相同;所以电导率之比就等于电阻的反比,代入摩尔电导率的定义式,得5.有下面四种电解质溶液,浓度均为 mol·dm -3,现已按它们的摩尔电导率m 的值,由大到小排了次序;请判定下面正确的是A NaCl > KCl > KOH > HClB HCl > KOH > KCl > NaClC HCl > NaCl > KCl > KOHD HCl > KOH > NaCl > KCl 答:B ;这4种都是1-1价的强电解质,当溶液的浓度相同时,氢离子摩尔电导率最大,其次是氢氧根离子,因为氢离子和氢氧根离子是通过氢键导电的;钾离子的离子半径虽然要比钠离子的大,但是钾离子的水合程度小,所以钾离子的摩尔电导率还是比钠离子的大;6.2CaCl 的摩尔电导率与其离子的摩尔电导率之间的关系是A 2m 2m m (CaCl )(Ca )(Cl )∞∞+∞-=+ΛΛΛB 2m 2m m1(CaCl )(Ca )(Cl )2∞∞+∞-=+ΛΛΛ C 2m 2m m (CaCl )(Ca )2(Cl )∞∞+∞-=+ΛΛΛ D 2m 2m m (CaCl )2(Ca )(Cl )∞∞+∞-⎡⎤=+⎣⎦ΛΛΛ答: C;电解质的摩尔电导率与离子摩尔电导率之间关系的通式是在表示多价电解质的摩尔电导率时,为了防止混淆,最好在摩尔电导率的后面加个括号,写明所取的基本质点,防止误解;如 m 2 m 21(CaCl ), (CaCl )2∞∞ΛΛ,两者显然是倍数的关系;7.有4个浓度都是 mol·kg -1 的电解质溶液,其中离子平均活度因子最大 的是A KClB CaCl 2C Na 2SO 4D AlCl 3答:A ;按Debye-Hückel 极限定律,I z z A -+±-=γlg ,离子强度越大,平均活度因子越小;这里KCl 的离子强度最小,所以它的平均活度因子最大;8.下列电池中,哪个电池的电动势与Cl -的活度无关A Zn│ZnCl2aq│Cl2g│PtB Zn│ZnCl2aq‖KClaq│AgCls│AgC Ag│AgCls│KClaq│Cl2g│PtD Hg│Hg2Cl2s│KClaq‖AgNO3aq│Ag答:C;原则上应写出各个电池的反应,再决定电池的电动势与Cl-是否有关,这显然要化去不少时间;快速判断的方法是看电极反应,若正、负极的反应中都有Cl-,两个电极反应中的Cl-刚好可以消去,这样Cl-的活度与电池的电动势就无关,所以只有C符合条件;A和D只有一个电极反应有Cl-,不能对消;B中虽然用了ZnCl2aq,但这是一类电极,电极反应中不会出现Cl-,所以也不能对消;9.用对消法补偿法测定可逆电池的电动势,主要是为了A 消除电极上的副反应B 减少标准电池的损耗C 在可逆情况下测定电池电动势D 简便易行答:C;在用对消法测定电池的电动势时,外加了一个与电池的电动势大小相等、方向相反的工作电源,相当于外电路的电阻趋于无穷大,忽略电池内部的电阻,所得两个电极之间的电位降,可以近似作为电池的电动势;在测定时电路中几乎无电流通过,使极化现象可以忽略不计,所得的电动势可以近似作为可逆电池的电动势;10.若算得可逆电池的电动势为负值,表示此电池反应的方向是A 正向进行B 逆向进行C 不可能进行D 反应方向不确定答:B;电池电动势为负值,表明该电池是非自发电池,不能正向进行,而逆向反应是自发的;这种情况只能出现在书面表示中,就是将电池的正、负极排反了;在实验中若将正、负极接反了,就不可能形成对消线路,也就测不到电动势,能测到的电动势都是正值;11.某电池的电池反应为2+22OH 2Hg(l)O (g)2H O(l)2Hg 4OH ()a --++=+,在等温、等压下,当电池反应达平衡时,电池的电动势E 的值必然是 A E >0 B E E= C E <0 D E =0答: D ;在等温、等压下,电池反应达平衡时,Gibbs 自由能的变化值为零,即r m G ∆=0;因为r m G zEF ∆=-,所以电动势E 也必然等于零;12.某电池在298 K 、标准压力下可逆放电的同时,放出 100 J 的热量,则该电池反应的焓变r H ∆为: A r 100 J H ∆= B r 100 J H ∆> C r 100 J H ∆<- D r 100 J H ∆=-答:C ;因为在等温时,r r r G H T S ∆=∆-∆,可逆放电时放出的热量为r T S ∆,即R r 100 J Q T S =∆=-,r r 100 J G H ∆=∆+;电池能放电,说明是自发电池,r G ∆必定小于零,所以r H ∆必须小于100 J -;13.在等温、等压下,电池以可逆方式对外作电功时的热效应Q R 等于 A R r Q H =∆ B R pE Q zFT T ∂⎛⎫= ⎪∂⎝⎭ C R pE Q zEF T ∂⎛⎫=⎪∂⎝⎭ D R Q nEF = 答:B;因为R r Q T S =∆,r pE S zF T ∂⎛⎫∆=⎪∂⎝⎭所以只有B 是正确的;平时必须熟练记住电化学与热力学的各种联系公式,才能用电动势测定方法计算热力学函数的变化值;。

第八章 电化学基础第二节 离子的迁移数

第八章 电化学基础第二节 离子的迁移数

——研究方法 热力学与动力学方法结合
2023/2/20
2
电化学及其应用
电解 冶金:Fe,Cu,Na,Al等的冶炼、精炼
电 电化学 (电能 化工产品:NaOH,H2O2,Cl2,已二酸的
化学能)
生产,发展迅速
工艺学
电镀,电抛光,电解磨削
各种蓄电池、干电池

化学电源 高能电池:Li、Zn-空气、Na-S、Ag-Zn
阳离子迁出阳极区物质 的量 阴离子迁出阴极区物质 的量

2023/2/20
4
●定义 某离子运载的电流与通过溶液的总电流之比称为该离子
的迁移数(transference number),以t表示,量纲为1。只有一种阳离
子和一种阴离子时,以I+、I-及I分别代表阳离子、阴离子运载的电 流及总电流(I= I+十I-),则有
(化学能 燃料电池
电能)金属腐蚀与防护——腐蚀原电池

分析化学:氧化还原平衡、电导、电势滴定,极谱
科研
分析
生物电化学:血液凝固、神经系统的传输
固体电解质和半导体,低温超导,受控热核聚变
2023/2/20
3
第二节 离子的迁移数
一、迁移数t的定义
阳离子迁移的电量Q 阴离子迁移的电量Q
阳离子运动速度v 阴离子运动速度v
解:电极反应: 阳极 Ag=Ag++e 阴极 Ag++e=Ag
求t(Ag+)=n(迁)/ n(电)。对Ag+ :在阳极区
n(后)=n(前)+n(电)-n(迁)
设水不迁移,电解前阳极区23.14g水中含 AgNO3物质的量为 n(前)=(43.50mmol/1000g)× 23.14g=1.007mmol

第八章 电化学章末习题

第八章 电化学章末习题

第八章 电化学 章末习题一、内容提要1. 电化学的基本概念原电池和电解池都是实现化学能和电能转化的电化学装置,都具备两个电极、电解质溶液和组成回路等必需设备。

(1)原电池:将化学能转变为电能的装置称为原电池。

(2)电解池:将电能转变为化学能的装置称为电解池。

(3)正极、负极,阴极、阳极电势高的极称为正极,电势低的极称为负极。

在电极界面上发生还原反应的极称为阴极,发生氧化反应的极称为阳极。

电解池中正极是阳极,负极是阴极;原电池中正极是阴极,负极是阳极。

(4)法拉第(Faraday )定律当电流通过电解质溶液时,在电极界面上发生化学反应的物质的量与通入的电量成正比,即Q zF ξ=。

(5)离子的电迁移率和迁移数离子在电场中迁移的速率正比于电场的电位梯度,其比例系数称为离子的电迁移率。

它相当于单位电场梯度时离子的迁移速率,单位是211m s V --。

溶液中电流的传导由正、负离子作定向迁移来完成。

离子B 迁移电流的分数就称为离子B 的迁移数。

迁移数是一个小于1的分数,溶液中所有离子迁移数的加和等于1。

迁移数可由实验测得。

2. 电导及其应用(1)电导、电导率、摩尔电导率(2)电导率、摩尔电导率与浓度的关系强电解质的电导率在一定浓度下随着浓度的增加而增加,在浓度太大时由于离子相互作用增强,电导率反而有所下降。

弱电解质的电导率随浓度的增加变化不大,一直都很小。

(强电解质的电导率随着浓度的增加先增大后减小)强电解质的摩尔电导率随着浓度的下降而升高,稀释到一定程度,摩尔电导率与浓度之间存在一种线性关系。

弱电解质的摩尔电导率随着浓度的不断下降,开始时变化不大,后来增加越来越迅速,但不存在线性关系。

(3)电导测定的应用① 测定水的纯度; ② 计算弱电解质的节粒度和解离常数;③ 测定难溶盐的溶解度; ④ 进行电导滴定3. 强电解质溶液理论(1)强电解质的例子平均活度和活度因子定义式:1()a a a ννν+-±+-= 1()νννγγλ+-±+-= 1()m m m ννν+-±+-= m a mθγ±±±= (2)离子强度 212B B BI m Z =∑(3)Debye-Hückel 极限定律 lg ||A Z Z γ±+-=-4. 可逆电池和可逆电极 (1)组成可逆电池的必要条件 化学反应可逆和能量变化可逆(2)可逆电极的类型① 第一类电极为金属电极(由金属浸在含有该金属离子的溶液中构成),还包括氢电极、氧电极、卤素电极和汞齐电极。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆能力要求
分析化学(第2版)
熟练掌握pH计的操作技术和用直接电位法测定 溶液的pH;熟练掌握永停滴定仪的操作技术和确 定滴定终点的方法;学会用电位滴定法确定滴定 终点。
4
全国高职高专药品类专业卫生部“十一五”规划教材
第一节概 述
分析化学(第2பைடு நூலகம்)
第一节 概 述
电化学分析法 :根据物质在溶液中的电化学性质及其 变化来进行分析的方法。
22
全国高职高专药品类专业卫生部“十一五”规划教材
分析化学(第2版)
第二节 直接电位法
(3)不对称电位:从理论上讲,玻璃膜内、外两侧
溶液的H+浓度相等时,膜电位应为零,但实际上并
不为零,此电位差称为不对称电位。使用前将玻璃
电极放入水或酸性溶液中充分浸泡(一般浸泡24小
时左右),可以使不对称电位值降至最低,并趋于
28
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
分析化学(第2版)
两次测定法方法为:先测量已知pHS的标准溶液的 电池电动势为ES,然后再测量未知pHX的待测液的 电池电动势为EX 。在25℃时,电池电动势与pH之 间的关系满足下式:
EX = K + 0.059pHX (1)
Fe3+ + e = Fe2+
= + 0.059lg cFe3
cFe 2
15
全国高职高专药品类专业卫生部“十一五”规划教材
第一节概 述
分析化学(第2版)
2.离子选择性电极 离子选择性电极(ISE)也称膜电极,是20世纪
60年代发展起来的一类新型电化学传感器,是一 种利用选择性的电极膜对溶液中的待测离子产生 选择性的响应,而指示待测离子浓度的变化的电 极。其产生电位的机制是基于离子的交换与扩散。
第二节 直接电位法
分析化学(第2版)
存在于外膜相界电位与内膜相界电位之间的电
位差,则称为玻璃电极的膜电位( 膜 )。 膜 = K+ 0.059lg [H ]外 = K- 0.059pH外
玻璃电极的电位是由膜电位与内参比电极的电 位决定,在25℃时玻璃电极的电位可表示为:
GE = K′+ 0.059lg [H ]外 = K′- 0.059pH外
6
全国高职高专药品类专业卫生部“十一五”规划教材
第一节概 述
(一)甘汞电极
分析化学(第2版)
甘汞电极是由金属汞、甘汞(Hg2Cl2)和 KCl溶液组成。如右图
电极反应式:Hg2Cl2 + 2e = 2Hg + 2Cl-
7
全国高职高专药品类专业卫生部“十一五”规划教材
第一节概 述
分析化学(第2版)
24
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
分析化学(第2版)
课堂互动
您能回答玻璃电极在使用前应在 水中浸泡24小时以上的原因吗?
25
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
分析化学(第2版)
(二)测定原理和方法 电位法测定溶液pH,常以玻璃电极为指示电极,
21
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
分析化学(第2版)
3.pH玻璃电极的性能
(1)电极斜率:当溶液中的pH值改变一个单位时, 引起玻璃电极电位的变化值称为电极斜率。
(2)碱差和酸差:普通玻璃电极在pH大于9的溶液 中测定时,对Na+也有响应,因此测得的浓度高于 真实值,这种误差称为碱差。若用pH玻璃电极测定 pH小于1的酸性溶液时,pH读数大于真实值,即称 酸差。
25℃(298.15K)时,其电极电位表示为:
Hg2Cl 2 /Hg
Hg2Cl2/Hg
0.059
lg
c Cl

可以看出,甘汞电极的电位随氯离子浓度的变 化而变化,当氯离子浓度一定时,则甘汞电极的 电位就为一定值。
8
全国高职高专药品类专业卫生部“十一五”规划教材
第一节概 述
分析化学(第2版)
恒定。
(4)温度:一般玻璃电极只能在0~50℃范围内使 用 ,并且在测定标准溶液和待测溶液的pH时,温度 必须相同。
23
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
分析化学(第2版)
知识拓展
复合pH电极
将指示电极和参比电极组装在一起就构成了复合电极。目前 使用的复合pH电极,通常是由玻璃电极与银-氯化银电极或玻璃 电极与甘汞电极组合而成。它是由两个同心玻璃管构成,内管为 常规的玻璃电极,外管为一参比电极:电极外套将玻璃电极和参 比电极包裹在一起,并把敏感的玻璃泡固定在外套的保护栅内, 参比电极的补充液由外套上端的小孔加入。把复合pH电极插入试 样溶液中,就组成了一个完整的电池系统。复合pH电极的优点在 于使用方便,并且测定值较稳定。
pH玻璃电极的构造如图8-3所示。它的 主要部分是电极下端接的玻璃球形薄 膜,球膜是有特殊成分的玻璃制成, 膜的厚度约为0.05~0.1mm,膜内盛有 一定浓度的KCl的pH缓冲溶液,作为 内参比液,溶液中插入一支银-氯化银 电极作为内参比电极。
19
全国高职高专药品类专业卫生部“十一五”规划教材
ES = K + 0.059pHS (2)
两式相减并整理得:
pHX

pHS

ES EX 0.059
29
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
分析化学(第2版)
课堂互动 请您阐述用电位法测定溶液的pH 采用两次测定法的原因?
30
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
分析化学(第2版)
二、电位法测定其他离子浓度 测定其他离子浓度,目前多采用离子选择性电极
(ISE)作指示电极。 (一)离子选择电极 1.电极基本结构与电极电位 离子选择性电极是一种对溶液中待测离子有选择性
响应能力的电极,属于膜电极。
31
全国高职高专药品类专业卫生部“十一五”规划教材
电位法 :根据测定原电池的电动势,以确定待测物含 量的分析方法 。
5
全国高职高专药品类专业卫生部“十一五”规划教材
第一节概 述
分析化学(第2版)
一、参比电极
定义:电位值不随待测离子浓度的变化而变化,具有 恒定电位值的电极,称为参比电极。
参比电极分类:标准氢电极(SHE)为一级参比电极, 但其使用不方便,常用的参比电极是甘汞电极、银–氯 化银电极,为二级参比电极。下面重点介绍这两种参 比电极 。
对阳离子Mn有响应的电极,其电极电位为:


K

0.059 n
lg
cMn
对阴离子R n 有响应的电极,其电极电位为:


K

0.059 n
lg
cRn
33
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
分析化学(第2版)
K 0.059pH
分析化学(第2版)
该式表明,电池的电动势与溶液pH呈线性关系。
27
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
分析化学(第2版)
实际测定时每支玻璃电极的K′均不同,并且每一支 玻璃电极的不对称电位也不相同,因此导致公式中 常数K值很难确定。在具体测定时常采用两次测量 法以消除其影响。
在25℃时,三种不同浓度的KCl溶液的甘汞电极的 电位分别为:
KCl溶液浓度 0.1mol/L 1 mol/L
饱和
电极电位(V) 0.3337
0.2801
0.2412
在电位分析法中最常用的参比电极是饱和甘汞电极 (SCE)。其电位稳定,构造简单,保存和使用都 很方便。
9
全国高职高专药品类专业卫生部“十一五”规划教材
(2)金属-金属难溶盐电极:由表面涂有同一种 难溶盐的金属插入该难溶盐的阴离子溶液中组成。 其电极电位随溶液中阴离子浓度的变化而变化。 例如,将表面涂有AgCl的银丝插入到溶液中, 组成银-氯化银电极,电极反应和电极电位为:
AgCl + e = Ag + + Cl-
= -0.059lg cCl
11
全国高职高专药品类专业卫生部“十一五”规划教材
第一节概 述
分析化学(第2版)
课堂互动 请您回答:甘汞电极作为参比电 极的条件是什么?
12
全国高职高专药品类专业卫生部“十一五”规划教材
第一节概 述
二、指示电极
分析化学(第2版)
定义:电位值随溶液待测离子浓度的变化而变化的电极 称为指示电极。
电位法所用的指示电极有多种,一般分为以下两大类:
饱和甘汞电极为参比电极,浸入待测溶液中组成原 电池。其原电池符号表示为:
(-) GE︱待测溶液‖SCE (+)
26
全国高职高专药品类专业卫生部“十一五”规划教材
第二节 直接电位法
25℃时,该电池的电动势E为:
E SCE GE
0.2412 (K'0.059pH)
0.2412 K'0.059pH
第二节 直接电位法
2.pH玻璃电极的原理 玻璃电极浸泡水中后,在玻
璃膜表面形成一层很薄的水 化凝胶层,浸泡好的玻璃电 极插入到待测溶液中时,水 化凝胶层与溶液接触,H+便 从浓度高的一侧向浓度低的 一侧迁移,当达到平衡时就 产生了一定的内、外膜相界 电位。如右图。
分析化学(第2版)
20
全国高职高专药品类专业卫生部“十一五”规划教材
相关文档
最新文档