Fluent_操作手册

合集下载

fluent教程

fluent教程

fluent教程Fluent是一款由Ansys开发的计算流体动力学(CFD)软件,广泛应用于工程领域,特别是在流体力学仿真方面。

本教程将介绍一些Fluent的基本操作,帮助初学者快速上手。

1. 启动Fluent首先,双击打开Fluent的图形用户界面(GUI)。

在启动页面上,选择“模拟”(Simulate)选项。

2. 创建几何模型在Fluent中,可以通过导入 CAD 几何模型或使用自带的几何建模工具来创建模型。

选择合适的方法,创建一个几何模型。

3. 定义网格在进入Fluent之前,必须生成一个网格。

选择合适的网格工具,如Ansys Meshing,并生成网格。

确保网格足够精细,以便准确地模拟流体力学现象。

4. 导入网格在Fluent的启动页面上,选择“导入”(Import)选项,并将所生成的网格文件导入到Fluent中。

5. 定义物理模型在Fluent中,需要定义所模拟流体的物理属性以及边界条件。

选择“物理模型”(Physics Models)选项,并根据实际情况设置不同的物理参数。

6. 设置边界条件在模型中,根据实际情况设置边界条件,如入口速度、出口压力等。

选择“边界条件”(Boundary Conditions)选项,并给出相应的数值或设置。

7. 定义求解器选项在Fluent中,可以选择不同的求解器来解决流体力学问题。

根据实际情况,在“求解器控制”(Solver Control)选项中选择一个合适的求解器,并设置相应的参数。

8. 运行仿真设置完所有的模型参数后,点击“计算”(Compute)选项,开始运行仿真。

等待仿真过程完成。

9. 后处理结果完成仿真后,可以进行结果的后处理,如流线图、压力分布图等。

选择“后处理”(Post-processing)选项,并根据需要选择相应的结果显示方式。

10. 分析结果在后处理过程中,可以进行结果的分析。

比较不同参数的变化,探索流体流动的特点等。

以上是使用Fluent进行流体力学仿真的基本流程。

Fluent按钮中文说明(最新整理-精华版)

Fluent按钮中文说明(最新整理-精华版)

Fluent按钮中文说明(最新整理-精华版)Fluent 使用步骤指南(新手参考)步骤一:网格1.读入网格(*.Msh)File → Read → Case读入网格后,在窗口显示进程2.检查网格Grid → Check'Fluent对网格进行多种检查,并显示结果。

注意最小容积,确保最小容积值为正。

3.显示网格Display → Grid①以默认格式显示网格可以用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作对于同样类型的多个区域情况非常有用,以便快速区别它们。

4.网格显示操作Display →Views(a)在Mirror Planes面板下,axis(b)点击Apply,将显示整个网格(c)点击Auto scale, 自动调整比例,并放在视窗中间(d)点击Camera,调整目标物体位置(e)用鼠标左键拖动指标钟,使目标位置为正(f)点击Apply,并关闭Camera Parameters 和Views窗口步骤二:模型1. 定义瞬时、轴对称模型Define → models→ Solver(a)保留默认的,Segregated解法设置,该项设置,在多相计算时使用。

(b)在Space面板下,选择Axisymmetric;(c)在Time面板下,选择Unsteady2. 采用欧拉多相模型Define→ Models→ Multiphase(a)选择Eulerian作为模型(b)如果两相速度差较大,则需解滑移速度方程(c)如果Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛(d)保留设置不变3. 采用K-ε湍流模型(采用标准壁面函数)Define → Models → Viscous(a) 选择K-ε ( 2 eqn 模型)(b) 保留Near wall Treatment面板下的Standard Wall Function 设置(c)在K-ε Multiphase Model面板下,采用Dispersed模型,dispersed 湍流模型在一相为连续相,而材料密度较大情况下采用,而且Stocks 数远小于1,颗粒动能意义不大。

FLUENT中文全教程1-250

FLUENT中文全教程1-250

FLUENT教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引(Bibliography)第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUENT的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。

本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。

第二和第三部分包含物理模型,解以及网格适应的信息。

第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT所使用的流场函数与变量的定义。

下面是各章的简略概括第一部分:z开始使用:本章描述了FLUENT的计算能力以及它与其它程序的接口。

介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。

在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。

z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。

同时也提供了远程处理与批处理的一些方法。

(请参考关于特定的文本界面命令的在线帮助)z读写文件:本章描述了FLUENT可以读写的文件以及硬拷贝文件。

z单位系统:本章描述了如何使用FLUENT所提供的标准与自定义单位系统。

z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。

(完整版)《FLUENT中文手册(简化版)》

(完整版)《FLUENT中文手册(简化版)》

FLUENT中文手册(简化版)本手册介绍FLUENT的使用方法,并附带了相关的算例。

下面是本教程各部分各章节的简略概括。

第一部分:☐开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。

介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。

在本章中给出了一个简单的算例。

☐使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。

☐读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。

☐单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。

☐使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。

还描述了非一致(nonconformal)网格的使用.☐边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等☐物理特性:描述了如何定义流体的物理特性与方程。

FLUENT采用这些信息来处理你的输入信息。

第二部分:☐基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。

☐湍流模型:描述了FLUENT的湍流模型以及使用条件。

☐辐射模型:描述了FLUENT的热辐射模型以及使用条件。

☐化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。

☐污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。

第三部分:☐相变模拟:描述了FLUENT的相变模型及其使用方法。

☐离散相变模型:描述了FLUENT的离散相变模型及其使用方法。

☐多相流模型:描述了FLUENT的多相流模型及其使用方法。

☐移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。

fluent按钮中文说明(整理-精华版)

fluent按钮中文说明(整理-精华版)

Fluent 使用步骤指南(新手参考)步骤一:网格1.读入网格(*.Msh)File → Read → Case读入网格后,在窗口显示进程2.检查网格Grid → Check'Fluent对网格进行多种检查,并显示结果。

注意最小容积,确保最小容积值为正。

3.显示网格Display → Grid①以默认格式显示网格可以用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作对于同样类型的多个区域情况非常有用,以便快速区别它们。

4.网格显示操作Display →Views(a)在Mirror Planes面板下,axis(b)点击Apply,将显示整个网格(c)点击Auto scale, 自动调整比例,并放在视窗中间(d)点击Camera,调整目标物体位置(e)用鼠标左键拖动指标钟,使目标位置为正(f)点击Apply,并关闭Camera Parameters 和Views窗口步骤二:模型1. 定义瞬时、轴对称模型Define → models→ Solver(a)保留默认的,Segregated解法设置,该项设置,在多相计算时使用。

(b)在Space面板下,选择Axisymmetric;(c)在Time面板下,选择Unsteady2. 采用欧拉多相模型Define→ Models→ Multiphase(a)选择Eulerian作为模型(b)如果两相速度差较大,则需解滑移速度方程(c)如果Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛(d)保留设置不变3. 采用K-ε湍流模型(采用标准壁面函数)Define → Models → Viscous(a) 选择K-ε ( 2 eqn 模型)(b) 保留Near wall Treatment面板下的Standard Wall Function 设置(c)在K-ε Multiphase Model面板下,采用Dispersed模型,dispersed湍流模型在一相为连续相,而材料密度较大情况下采用,而且Stocks数远小于1,颗粒动能意义不大。

FLUENT软件使用说明(适合初学者)

FLUENT软件使用说明(适合初学者)
生成一个与某现有实际体积 相关的虚拟顶点
沿一条边或一个面在其上生成的一个虚拟顶点的位置
平滑顶点 输入顶点位置参数u和v的值。 输入新的点的位置的坐标。
Connect Vertices 连接顶点 Disconnect Vertices 分离顶点
连接实际和/或虚拟顶点,分离 两个或多个实体的公共顶点
连接/分离边
Connect/Disconnect Edges 命令按钮允许用户进行以下操作。
图标
Create Real Conic Arc 命令允许用户生成二次曲线形边。要生成一条二次曲线形边,用户必须设定如 下参数: Start 点——指定起始端点 Shoulder 点——指定弧顶点 End 点——指定末端点 Shape Parameter点——指定弧的一般形状(椭圆形,抛物形或者双曲形)
edit 编辑进程名称 编辑文本文件 建立和编辑参数 编辑程序默认属性
操作工具板
操作工具板在GUI的右上角。它由一系列命令按钮组成,每个 按钮在创建和网格模型过程中起到特定的功能。
总体控制工具板
总体控制工具板在GUI的右下角。它的目的是让你对显示在特殊 象限中的模型控制其版面设计和图形窗口的操作和模型的外观。
分辨率trltrl鼠标右键捕捉点鼠标右键捕捉点由点连成线由点连成线verticesvertices表明组成直线两端点节点的编号表明组成直线两端点节点的编号创建圆弧边鼠标右键创建圆弧边鼠标右键下拉菜单下拉菜单选择点选择点shiftshift鼠标左键鼠标左键创建管嘴创建管嘴由点连成线由点连成线由线组成面由线组成面第三步第三步确定边界线的内部节点分布并创建网格确定边界线的内部节点分布并创建网格successiveradiosuccessiveradio等比序列等比序列doublesideddoublesided内部节点取单双向分布内部节点取单双向分布radioradio内部节点间距间距离的公比内部节点间距间距离的公比spacingspacing分布设置分布设置intervalsizeintervalsize节点间距离节点间距离intervalcountintervalcount节点数量节点数量schemescheme操作方式操作方式applyapply表示不按默认的方式按所设置的方式进行表示不按默认的方式按所设置的方式进行关闭网格显示关闭网格显示第五步第五步输出网格输出网格二平滑和交换网格二平滑和交换网格确保网格质量确保网格质量三确定长度的单位三确定长度的单位四显示网格四显示网格五建立求解模型五建立求解模型segregatedsegregated离散求解离散求解coupledcoupled耦合求解耦合求解implicitimplicit隐式求解器隐式求解器explicitexplicit显示求解器显示求解器求解器求解器离散求解器离散求解器主要用于不可压或主要用于不可压或低马赫数压缩性流体的流动

fluent手册

fluent手册

FLUENT教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引(Bibliography)第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUENT的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。

本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。

第二和第三部分包含物理模型,解以及网格适应的信息。

第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT所使用的流场函数与变量的定义。

下面是各章的简略概括第一部分:开始使用:本章描述了FLUENT的计算能力以及它与其它程序的接口。

介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。

在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。

●使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。

同时也提供了远程处理与批处理的一些方法。

(请参考关于特定的文本界面命令的在线帮助)●读写文件:本章描述了FLUENT可以读写的文件以及硬拷贝文件。

●单位系统:本章描述了如何使用FLUENT所提供的标准与自定义单位系统。

●读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。

FLUENT中文全教程

FLUENT中文全教程

FLUENT中文全教程1.FLUENT简介2.安装和启动FLUENT3.建立几何模型在FLUENT中,可以使用多种方法来建立几何模型,包括导入现有的CAD文件、绘制单个几何体或使用几何建模工具。

建立几何模型时,应注意几何的准确性和合理性。

4.网格生成几何模型建立好后,需要生成网格。

FLUENT提供了多种网格生成工具,可以根据需要选择合适的方法。

生成的网格应该具有一定的精度和合适的网格尺寸,以确保计算结果的准确性。

5.设置物理模型在开始计算之前,需要设置相应的物理模型。

FLUENT支持多种物理模型,包括流体流动、传热、化学反应等。

根据实际问题选择合适的物理模型,并进行相应的设定。

6.边界条件在FLUENT中,需要为模型的各个边界设置适当的边界条件。

边界条件描述了流体在该边界上的运动规律和特性。

根据实际问题选择合适的边界条件,并进行相应的设定。

7.数值求解器数值求解器是FLUENT中的核心组件,用于求解流体流动、传热和化学反应等方程。

FLUENT提供了多种数值求解器,可以根据问题类型和计算精度选择合适的求解器。

8.设置求解控制参数在开始求解之前,需要设置一些求解控制参数,包括迭代次数、收敛准则和时间步长等。

这些参数的设定直接影响到求解的精度和计算效率。

9.运行计算所有设置和参数设定完成后,可以开始运行计算。

FLUENT会自动根据设置进行迭代计算,直到满足设定的收敛准则为止。

计算时间的长短取决于模型的复杂程度和计算机性能。

10.结果分析计算完成后,可以对计算结果进行分析和后处理。

FLUENT提供了丰富的后处理工具,可以可视化流场、温度场和压力场等信息,并进行数据提取和报告生成。

11.优化和改进根据分析结果,可以对模型进行优化和改进。

可以调整边界条件、网格密度和物理模型等,进一步提高计算精度和计算效率。

12.汇报和展示最后,根据实际需要,可以将计算结果进行汇报和展示。

可以生成图片、动画和报告,以便更好地与他人交流和分享。

FLUENT中文全教程_部分2

FLUENT中文全教程_部分2

Radio Buttons这类按钮中,只有一个选项可以打开。

Text EntryInteger Number Entry一般说来用鼠标点击上下箭头,会增加或者减少1。

如果结合键盘点击一次鼠标就可以增加更多的数量。

用法如下表:Key Factor of IncreaseShift 10Ctrl 100Real Number Entry可以输入实数如10, -10.538, 50000.45和5.e-4),一般都会带有相应的单位。

单选列表许多面板响应鼠标的双击功能,在实践中多试几次就熟练了多选列表鼠标点击一次选上;再点击一次取消选择下拉菜单使用方法和Windows的一样。

标尺可以用鼠标操作,也可以用鼠标选择之后再用键盘左右选择图形显示窗口Figure 1: 图形显示窗口的例子显示选项面板可以控制图形显示的属性也可以打开另一个显示窗口。

鼠标按钮面板可以用于设定鼠标在图形显示窗口点击时所执行的操作。

当为图形显示处理数据时要取消显示操作可以按Ctrl+C,已经开始画图的话就无法取消操作了。

输出图形显示窗口是Windows NT系统的特有功能,UNIX系统没有此项功能。

页面设置面板也是Windows NT系统独有的功能Windows NT系统的特有的输出图形显示窗口功能如果你选择的是Windows NT版本的FLUENT,点击图形窗口的左上角便可以显示图形窗口系统菜单,该菜单包括常用系统命令如:move,size和close。

连同系统命令一起,FLUENT 为支持打印机和剪贴板增加了三条命令:1.复制到剪贴板:将当前图形复制到Windows的剪贴板。

可以用页面设置面板改变复制的属性。

图形窗口的大小影响了图形中所使用的字的大小。

2.打印:将当前图形复制到打印机。

可以用页面设置面板改变打印的属性。

3.页面设置:显示页面设置面板。

Windows NT系统独有的页面设置面板功能:在图形显示窗口的system菜单中点击Page Setup..菜单,弹出页面设置面板如下:第一个Color:允许你选择是否使用彩色图第二个Color:选择彩色图形Gray Scale:选择灰度比例图Monochrome:选择黑白图Color Quality:允许你指定图形的色彩模式True Color:创建一个由RGB值定义的图,这假定了你的打印机或者显示器有至少65536个色彩或无限色彩。

史上Fluent最详细操作步骤 一看就懂

史上Fluent最详细操作步骤 一看就懂

Fluent简单分析教程第1步双击运行Fluent,首先出现如下界面,对于二维模型我们可以选择2d(单精度)或2ddp(双精度)进行模拟,通常选择2d即可。

Mode选择缺省的Full Simulation即可。

点击“Run”。

然后进入如下图示意界面:第2步:与网格相关的操作1.读入网格文件car1.mesh操作如下图所示:打开的“Select File”对话框如图所示:(1)找到网格文件E:\gfiles\car1.mesh;(2)点击OK,完成输入网格文件的操作。

注意:FLUENT读入网格文件的同时,会在信息反馈窗口显示如下信息:其中包括节点数7590等,最后的Done表示读入网格文件成功。

2.网格检查:操作如下图所示:FLUENT在信息反馈窗口显示如下信息:注意:(1)网格检查列出了X,Y的最小和最大值;(2)网格检查还将报告出网格的其他特性,比如单元的最大体积和最小体积、最大面积和最小面积等;(3)网格检查还会报告出有关网格的任何错误,特别是要求确保最小体积不能是负值,否则FLUENT无法进行计算。

3.平滑(和交换)网格这一步是为确保网格质量的操作。

操作:→Smooth/Swap...打开“Smooth/Swap Grid”对话框如图所示:(1)点击Smooth按钮,再点击Swap,重复上述操作,直到FLUENT 报告没有需要交换的面为止。

如图所示:(2)点击Close按钮关闭对话框。

注意:这一功能对于三角形单元来说尤为重要。

4.确定长度单位操作如下图所示:打开“Scale Grid”对话框如图所示:(1)在单位转换(Units Conversion)栏中的(Grid Was Created In)网格长度单位右侧下拉列表中选择m;(2)看区域的范围是否正确,如果不正确,可以在Scale Factors 的X和Y中分别输入值10,然后点击“Scale”或“Unscale”即可;(3)点击Scale;(4)点击Close关闭对话框。

Fluent 使用指导

Fluent 使用指导

离散格式
离散格式是针对对流项通量而言的
可供选择的离散格式:
• First-Order Upwind – 易收敛,一阶精度。
• Power Law –对低雷诺数流动 ( Recell < 5 )比一阶格式更精确 • Second-Order Upwind – 尤其适用流动和网格方向不一致的四面体/三 角形网格,二阶精度,收敛慢 • Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) – 对非结构网格,局部三阶精度,对二次流、旋转涡、力等 预测的更精确
• 用于几何建模和计算域划分
求解器和后处理器(Fluent)
• 设置求解模型和计算条件
• 进行计算求解
• 进行结果后处理
系统模拟器(Exceed)
• 模拟Linux运行环境,保证Gambit运行
可选用其它前处理器和后处理器,如ICEM-CFD 和TecPlot等
计算域的确定
需要哪类几何体?
几何体的选取范围?
?使用高阶离散格式二阶上风muscl?尽量让网格和流动方向一致减少伪扩散?加密网格?足够的网格密度对求解有突变的流动非常有用随着网格尺寸减少插值误差也减少?对非均匀网格尺寸变化不要太大均匀网格的截断误差小fluent提供基于网格尺寸梯度的自适应?减小网格扭曲度和长细比一般地避免使用长细比大于5的网格边界层允许使用更大长细比的网格优化四边形六面体网格使其更接近正交优化三边形四面体网格使其更接近等边湍流模型湍流模型ransbasedmodels一方程模型spalartallmaras二方程模型standardkrngkrelizablekstandardksstk多方程模型reynoldsstressmodelkkltransitionmodelssttransitionmodeldetachededdysimulationlargeeddysimulationincreaseincomputationalcostperiterationsa模型sa模型求解修正涡粘系数的一个输运方程计算量小?修正后涡粘系数在近壁面处容易求解主要应用于气动旋转机械等流动分离很小的领域如绕过机翼的超音速跨音速流动边界层流动等是一个相对新的一方程模型不需求解和局部剪切层厚度相关的长度尺度为气动领域设计的包括封闭腔内流动?可以很好计算有反向压力梯度的边界层流动?在旋转机械方面应用很广局限性?不可用于所有类型的复杂工程流动?不能预测各向同性湍流的耗散准标准k模型skeske是工业应用中最广泛使用的模型?模型参数通过试验数据校验过如管流平板流等?对大多数应用有很好的稳定性和合理的精度?包括适用于压缩性浮力燃烧等子模型ske局限性

FLUENT教程

FLUENT教程

Fluent 使用指南步骤一:网格1.读入网格(*.msh)File → Read → Case读入网格后,在窗口显示进程2.检查网格Grid → CheckFluent对网格进行多种检查,并显示结果。

注意最小容积,确保最小容积值为正。

3.显示网格Display → Grid① 以默认格式显示网格可以用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作对于同样类型的多个区域情况非常有用,以便快速区别它们。

4.网格显示操作Display →Views(a) 在Mirror Planes面板下,axis(b) 点击Apply,将显示整个网格(c) 点击Auto scale, 自动调整比例,并放在视窗中间(d) 点击Camera,调整目标物体位置(e) 用鼠标左键拖动指标钟,使目标位置为正(f) 点击Apply,并关闭Camera Parameters 和Views窗口步骤二:模型1. 定义瞬时、轴对称模型Define → models→ Solver(a) 保留默认的,Segregated解法设置,该项设置,在多相计算时使用。

(b) 在Space面板下,选择Axisymmetric(c) 在Time面板下,选择Unsteady2. 采用欧拉多相模型Define→ Models→ Multiphase(a) 选择Eulerian作为模型(b)如果两相速度差较大,则需解滑移速度方程(c)如果Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛(d)保留设置不变3. 采用K-ε湍流模型(采用标准壁面函数)Define → Models → Viscous(a) 选择K-ε ( 2 eqn 模型)(b) 保留Near wall Treatment面板下的Standard Wall Function设置(c)在K-ε Multiphase Model面板下,采用Dispersed模型,dispersed湍流模型在一相为连续相,而材料密度较大情况下采用,而且Stocks数远小于1,颗粒动能意义不大。

Fluent使用指南

Fluent使用指南

第一步:网格1、读入网格(File→Read→Case)2、检查网格(Grid→Check)3、平滑网格(Grid→Smooth/Swap)4、更改网格的长度单位(Grid→Scale)5、显示网格(Display→Grid)第二步:建立求解模型1、保持求解器的默认设置不变(定常)2、开启标准K-ε湍流模型和标准壁面函数Define→Models→Viscous第三步:设置流体的物理属性ari→Density→viscosity→第四步:设置边界条件对outflow、velocity-inlet、wall 采用默认值第五步:求解1、Solv→Controls→Solution中,Discretitation→Pressure→standardPressure→ Momentum→2、Solution Initialization→ all zone3、Residual Monitors→Plot第六步:迭代第七步:进行后处理第八步:1、Define→Model→Evlerian2、在Vissous Model→K-epsilon Multiphase Model→Mixture 第九步:在Define Phase Model→Discrete phase ModelInteraction↓选中→Interaction With Continuous PhaseNomber of Continuous PhaseInteractions per DPM Interaction第十步:设置物理属性第十一步:Define→Operating →重力加速度Define→Boondary Conditionsflvid→Mixture→选中Sovrce Terms 其他默认Phase-1→选中Sovrce Terms 其他默认Phase-2→选中Sovrce Terms 其他默认inflow→Mixture→全部默认Phase-1→全部默认Phase-2→Multiphase→Volume Fraction→其他默认outflow→Mixture→默认Phase-1→默认Phase-2→默认wall→Mixture→全部默认Phase-1→默认Phase-2默认第十二步:Slove→Controls→Slution Controls→Pressure→ Momentum→其余默认第十三步:千万不能再使用初始化第十四步:进行迭代计算截Z轴上的图:在Surface→iso↓Surface of constant↓Grid↓然后选x、y、z轴(根据具体情况而定)↓在Iso-Values→选取位置C的设置在New Surface Name中输入新各字→点创建然后在Display→Grid→Edge type→Feature→选中刚创建的那个面,然后Display查看刚才那面是否创建对最后在Display→Contours→Options→Filled→Surface→选中面,然后Display。

FLUENT软件使用说明(适合初学者)

FLUENT软件使用说明(适合初学者)

指定要连接的顶点 设定连接顶点所产生的顶点为实际顶点。 ·该顶点是一个虚拟顶点,无论指定的顶点之间的距离,该顶点 都会生成 ·该顶点为一个虚拟顶点, 只有当指定顶点之间的距离小于 设定的误差时这些指定的顶点才进行连接 在可行的地方进行Real连接操作 对剩余指定的未连接的顶点进行Virtual (Tolerance)连接操作 指定要连接顶点之间的最大允许距离
Create Real Conic Arc 命令允许用户生成二次曲线形边。要生成一条二次曲线形边,用户必须设定如 下参数: Start 点——指定起始端点 Shoulder 点——指定弧顶点 End 点——指定末端点 Shape Parameter点——指定弧的一般形状(椭圆形,抛物形或者双曲形)
生成并细化一个几何体 生成并细化网格
指定边界层和连续介质区域类型 指定坐标系、网格和执行特定的GAMBIT操作
几何建模
符号 命令设置 Vertex点 Edge边 Face面 Volume体 Group组
设定坐标参数
要设定一个点,用户必须输入三个参数来确定它的空间位置。GAMBIT 允许用户设定按照直角坐标系、圆柱坐标系和球坐标系来设定三个参数——不 考虑参考坐标系的类型。例如,用户可以按照球坐标系设定参数而参考直角坐 标系c_sys.1,或者按照直角坐标系设定而参考局部圆柱坐标系。GAMBIT根据 设定的位置坐标类型而调整Global和Local文本框的标题。
这三类坐标系的么一个所要求的输入参数如下。
角度参数
符号 命令 Create Real Vertex Create Vertex on Edge Create Vertex on Face Create Virtual Vertex on Volume

FLUENT中文全教程_部分31

FLUENT中文全教程_部分31
如果你关闭 Auto Scale 选项,速度向量将会被按照实际的尺寸和比例系数(默认为 1)进行 绘制。一个向量的“实际”尺寸时该点的速度梯度。一个速度梯度为 100m/s 的点其向量将 被绘制成 100 米长,不过求解对象是 0.1m 还是 1000m。你可以在速度向量对话框中通过修 改向量比例系数的值使该向量尺寸(实际尺寸和比例系数的乘积)达到你的要求。
针对 2D 问题,FLUENT 计算所有变量每个单位厚度的积分值。对于轴对称问 题,FLUENT 计算一个弧度为 2π 的角度内的所有积分值。
26.2 通过边界的流量
针对选择的边界区域,用户可以计算下列值:
边界的质量流率可以通过加和边界区各个面的质量流率得到,各个面的质量流 滤等于密度乘以速度矢量和相应面的投影面积的标量积。
26.2.1 生成流量报告
使用 Flux Reports 面板获得在选择的边界区域上的质量流率、热传输率或者辐 射热传输率,如图 26.2.1 所示。
Report → FluxesK
报告的生成步骤如下: 1.从 Options 选项中选择哪一项流量要被计算:Mass Flow Rate、Total Heat Transfer Rate 或者 Radiation Heat Transfer。 2.从 Boundaries 列表中选择用户想获得流量数据的边界区域。 如果用户想选择几个相同类型的边界区域,可以通过在 Boundary Types 选项中 选择类型来代替在 Boundaries 列表中的选择。所有与被选定的类型相同的边界区域
边界处总的传热速率可以通过加和各个面的总传热速率得到。各个面的传热速
率为:q = qc + qr,其中 qc 为对流传热速率,qr 为辐射传热速率。穿过一个面的热传 导的计算与指定的边界条件有关。例如,在一个温度不变的墙面上,传导的热量等 于热传导率和投影面积及温度梯度的乘积。对于流动边界条件,总的传热速率是藏 量的流动速率。 根据选择使用的模型,总的传热速率可能包括对流传热或总热焓、 能量的扩散通量等。

FLUENT使用

FLUENT使用

Fluent 使用步骤指南(新手参考)步骤一:网格1.读入网格(*.Msh)File →Read →Case读入网格后,在窗口显示进程2.检查网格Grid →Check'Fluent对网格进行多种检查,并显示结果。

注意最小容积,确保最小容积值为正。

3.显示网格Display →Grid①以默认格式显示网格可以用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作对于同样类型的多个区域情况非常有用,以便快速区别它们。

4.网格显示操作Display →Views(a)在Mirror Planes面板下,axis(b)点击Apply,将显示整个网格(c)点击Auto scale, 自动调整比例,并放在视窗中间(d)点击Camera,调整目标物体位置(e)用鼠标左键拖动指标钟,使目标位置为正(f)点击Apply,并关闭Camera Parameters 和Views窗口步骤二:模型1. 定义瞬时、轴对称模型Define →models→Solver(a)保留默认的,Segregated解法设置,该项设置,在多相计算时使用。

(b)在Space面板下,选择Axisymmetric;(c)在Time面板下,选择Unsteady2. 采用欧拉多相模型Define→Models→Multiphase(a)选择Eulerian作为模型(b)如果两相速度差较大,则需解滑移速度方程(c)如果Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛(d)保留设置不变3. 采用K-ε湍流模型(采用标准壁面函数)Define →Models →Viscous(a) 选择K-ε ( 2 eqn 模型)(b) 保留Near wall Treatment面板下的Standard Wall Function设置(c)在K-ε Multiphase Model面板下,采用Dispersed模型,dispersed湍流模型在一相为连续相,而材料密度较大情况下采用,而且Stocks数远小于1,颗粒动能意义不大。

Fluent基本操作

Fluent基本操作

(1)读入网格文件:File/Read/Mesh
(2)检查网格:Mesh/Chech
此过程中,Fluent将对网格进行检查,以确保网格最小体积为正值。

(3)检查网格尺寸:Mesh/Scale
检查计算域尺寸,确定模型尺寸是否与实际尺寸相符。

(4)显示网格:Mesh/Displace
(1)保持求解设置的默认参数
该计算表示将以基于压力的求解器定常求解。

(2)激活标准κ-ε湍流模型
Models/Viscous-Laminar/Edit
(3)激活能量方程
3.材料物性
保持默认Air物性
4.计算域和边界条件
(1)设置进口的边界条件
(2)设置出口的边界条件
(3)设置壁面的边界条件
(1)设置求解参数
(2)初始化流场
(3)保存工况文件
File/Write/Case
保持默认的Write Binary Files选项被选中。

(4)进行迭代求解
6.后处理
(1)显示速度云图
(2)显示温度云图
注:本操作仅就此次模型而言,其他模型参考此步骤做设置。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第01章fluent简单算例21FLUENT是用于模拟具有复杂外形的流体流动以及热传导的计算机程序。

对于大梯度区域,如自由剪切层和边界层,为了非常准确的预测流动,自适应网格是非常有用的。

FLUENT解算器有如下模拟能力:●用非结构自适应网格模拟2D或者3D流场,它所使用的非结构网格主要有三角形/五边形、四边形/五边形,或者混合网格,其中混合网格有棱柱形和金字塔形。

(一致网格和悬挂节点网格都可以)●不可压或可压流动●定常状态或者过渡分析●无粘,层流和湍流●牛顿流或者非牛顿流●对流热传导,包括自然对流和强迫对流●耦合热传导和对流●辐射热传导模型●惯性(静止)坐标系非惯性(旋转)坐标系模型●多重运动参考框架,包括滑动网格界面和rotor/stator interaction modeling的混合界面●化学组分混合和反应,包括燃烧子模型和表面沉积反应模型●热,质量,动量,湍流和化学组分的控制体源●粒子,液滴和气泡的离散相的拉格朗日轨迹的计算,包括了和连续相的耦合●多孔流动●一维风扇/热交换模型●两相流,包括气穴现象●复杂外形的自由表面流动上述各功能使得FLUENT具有广泛的应用,主要有以下几个方面●Process and process equipment applications●油/气能量的产生和环境应用●航天和涡轮机械的应用●汽车工业的应用●热交换应用●电子/HV AC/应用●材料处理应用●建筑设计和火灾研究总而言之,对于模拟复杂流场结构的不可压缩/可压缩流动来说,FLUENT是很理想的软件。

当你决定使FLUENT解决某一问题时,首先要考虑如下几点问题:定义模型目标:从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使用什么样的边界条件?二维问题还是三维问题?什么样的网格拓扑结构适合解决问题?物理模型的选取:无粘,层流还湍流?定常还是非定常?可压流还是不可压流?是否需要应用其它的物理模型?确定解的程序:问题可否简化?是否使用缺省的解的格式与参数值?采用哪种解格式可以加速收敛?使用多重网格计算机的内存是否够用?得到收敛解需要多久的时间?在使用CFD分析之前详细考虑这些问题,对你的模拟来说是很有意义的。

当你计划一个CFD工程时,请利用提供给FLUENT使用者的技术支持。

.解决问题的步骤确定所解决问题的特征之后,你需要以下几个基本的步骤来解决问题:1.创建网格.2.运行合适的解算器:2D、3D、2DDP、3DDP。

3.输入网格4.检查网格5.选择解的格式6.选择需要解的基本方程:层流还是湍流(无粘)、化学组分还是化学反应、热传导模型等7.确定所需要的附加模型:风扇,热交换,多孔介质等。

8..指定材料物理性质8.指定边界条件9.调节解的控制参数10.初始化流场11.计算解12.检查结果13.保存结果14.必要的话,细化网格,改变数值和物理模型。

解算器中用户可以选择的输入选择解的格式FLUENT提供三种不同的解格式:分离解;隐式耦合解;显式耦合解。

三种解法都可以在很大流动范围内提供准确的结果,但是它们也各有优缺点。

分离解和耦合解方法的区别在于,连续性方程、动量方程、能量方程以及组分方程的解的步骤不同,分离解是按顺序解,耦合解是同时解。

两种解法都是最后解附加的标量方程(比如:湍流或辐射)。

隐式解法和显式解法的区别在于线化耦合方程的方式不同。

详情请参阅相关章节。

分离解以前用于FLUENT 4和FLUENT/UNS,耦合显式解以前用于RAMPANT。

分离解以前是用于不可压流和一般可压流的。

而耦合方法最初是用来解高速可压流的。

现在,两种方法都适用于很大范围的流动(从不可压到高速可压),但是计算高速可压流时耦合格式比分离格式更合适。

FLUENT默认使用分离解算器,但是对于高速可压流(如上所述),强体积力导致的强烈耦合流动(比如浮力或者旋转力),或者在非常精细的网格上的流动,你需要考虑隐式解法。

这一解法耦合了流动和能量方程,常常很快便可以收敛。

耦合隐式解所需要内存大约是分离解的1.5到2倍,选择时可以通过这一性能来权衡利弊。

在需要隐式耦合解的时候,如果计算机的内存不够就可以采用分离解或者耦合显式解。

耦合显式解虽然也耦合了流动和能量方程,但是它还是比耦合隐式解需要的内存少,但是它的收敛性相应的也就差一些。

注意:分离解中提供的几个物理模型,在耦合解中是没有的:多项流模型;混合组分/PDF 燃烧模型/预混合燃烧模型/Pollutant formation models/相变模型/Rosseland辐射模型/指定质量流周期流动模型/周期性热传导模型。

网格检查是最容易出的问题是网格体积为负数。

如果最小体积是负数你就需要修复网格以减少解域的非物理离散。

你可以在Adapt下拉菜单中选中Iso-Value...来确定问题之所在,其它关于网格检查的信息请参阅“网格检查”一章。

分离解算器是FLUENT默认的解算器,FLUENT中默认物理模型是层流流动,第02章fluent用户界面22Windows NT系统独有的页面设置面板功能:在图形显示窗口的system菜单中点击Page Setup..菜单,弹出页面设置面板如下:第一个Color:允许你选择是否使用彩色图第二个Color:选择彩色图形Gray Scale:选择灰度比例图Monochrome:选择黑白图Color Quality:允许你指定图形的色彩模式True Color:创建一个由RGB值定义的图,这假定了你的打印机或者显示器有至少65536个色彩或无限色彩。

Mapped Color:用色彩图创建图形,这对于只有256色的设备是一个不错的选择Dithered Color:用20个或更少的色彩创建一个颤动图Clipboard Formats:允许你选择所需格式复制到剪贴板。

图形窗口的大小会影响剪贴板图形的尺寸。

要得到最好的结果最好是调节图形窗口的尺寸并用Windows剪贴板查看器检查剪贴板图形。

Bitmap:图形窗口以位图形式复制DIB Bitmap:是一个与设备有关的图形窗口位图复制Metafile:是一个Windows 图元文件Enhanced Metafile:是一个Windows增强图元文件Picture Format:允许你指定光栅和矢量图Vector:创建矢量图,这一格式在打印时有很高的清晰度,但是一些大的3D图可能会花很长时间来打印Raster:创建光栅图,这一格式在打印时有相对较低的清晰度,但是一些大的3D图可能会花较少时间来打印Printer Scale %:控制打印图形覆盖页面的范围,减少尺度会有效的增加图形页面的空白。

Options:包括控制图形其它属性的选项Landscape Orientation (Printer):指定图形的方向。

如果选上改选项,图形将会在前景(landscape)模式中形成,否则是在肖像(portrait)模式下形成。

改选项只在输出时应用。

Reverse Foreground/Background:如果选定就会使图形的前景和背景颜色互换。

这一功能可以使你复制白前景黑背景的图为黑前景白背景。

第03章fluent文件的读写读入新的网格文件用特定网格设定完case文件之后,你可以将新网格与已知边界条件,材料属性,解参数等结合。

这一功能一般用于产生比正在使用更好的网格,此时你不用重新输入所有的边界条件,材料属性和参数。

只要新网格和原来的网格有相同的区域结构即可新旧网格应该具有同一区域,并具有相同的顺序,否则会有警告出现,因为相容性可能会造成边界条件的问题。

在文本界面使用file/reread-grid命令读入新网格在进行网格适应的时候必须保存新的case文件和data文件,否则新的data据文件将和case文件不符。

如果你不保存一个更新的case或data文件,FLUENT会给出警告。

自动保存Case文件和Data文件在计算过程中一般是需要自动保存文件的,否则因为断电等故障可能造成计算前功尽弃。

FLUENT允许我们在计算时设定间隔保存文件。

这一功能在时间相关计算时是非常有用的,因为它使得我们不必中断计算来保存结果。

对于定常问题也可以使用自动保存功能,从而可以检验迭代过程中不同状态的解点击菜单File/wite/utosave...,弹出下图:Figure 1:自动保存Case/Data面板在这个面板中必须设定保存频率和文件名,保存频率的默认值是零,也就是说默认没有自动保存。

定常流是在迭代中指定保存频率,非定常流是在时间步中指定保存频率(若使用显式时间步进法也是在迭代中设定保存频率)。

如果保存频率是10,那么在定常计算中每迭代10步保存一次。

FLUENT自动保存不同的文件类型,用后缀来区分.cas、dat、gz或者.Z。

所有自动保存的设置都存在case文件中。

读入FLUENT/UNS和RAMPANT的Case文件和Data文件FLUENT/UNS 3或4以及RAMPANT 2, 3,或4中创建的case文件可以和目前的case文件按相同的方式读入。

如果读入的是FLUENT/UNS 创建的case文件,FLUENT将会在解控制面板种选择分离解。

如果读入的是RAMPANT创建的case文件,FLUENT将会在解控制面板种选择耦合显式解。

FLUENT/UNS 4以及RAMPANT4中创建的Data文件可以按相同的方式读入到FLUENT中。

导入FLUENT 4的Case文件,点击菜单File/Import/FLUENT 4 Case...出现对话框,选择所需文件。

FLUENT将只读入FLUENT 4 case文件的网格信息和区域类型,读入文件之后你必须指定边界条件,模型参数,材料属性等信息。

导入FIDAP 7 Neutral文件,点击菜单File/Import/FIDAP7...,弹出对话框,选择所需文件。

FLUENT将只读入FIDAP7...文件的网格信息和区域类型,读入文件之后你必须指定边界条件,模型参数,材料属性等信息。

用户输入要开始日志文件进程,请选择菜单:File/Write/Start Journal...在文件选择对话框中输入文件名之后,日志记录就开始了,Start Journal...选项也变成了Stop Journalmenu选项。

退出程序或者选择Stop Journal都可以结束日志文件的记录。

(File/Write/Stop Journal)你可以在点击菜单File/Read/Journal..之后在选择文件对话框中读入日志文件。

日志文件通常是在主文本菜单(最上层菜单)中加载,而不管你在哪一个文本菜单层。

相关文档
最新文档