高效液相制备色谱的设备进展及应用课件模板ppt

合集下载

高效液相色谱仪ppt课件

高效液相色谱仪ppt课件
8
高压泵应具有以下性能

流量稳定,精度在1%左右 输出压力高,通常20~30MPa,最高50 MPa 流量范围宽,一般在0.01~10mL/min范围内 能抗溶剂腐蚀 压力波动小、更换溶剂方便、容易清洗、具梯度洗脱 操作方便、容易维修
9
根据泵的操作原理不同,分为恒压泵和恒流泵
进样装置 (正面)
进样装置 (背面)
11
图中a为进样阀处于“装样load”位置的情况,此时流动相直接进入色谱柱,
样品注入口与样品环连接,用微量进样针将一定体积的样品溶液从样品 注入口注入,装于样品管内。当将扳手扳至“进样inject”位时,进样阀的 流路发生了改变,流动相通过样品管,将注入的样品带入色谱柱进行分析。
的出峰顺序相反。
30
2. 流动相类别
按流动相组成成分:单组分和多组分;
按极性分:极性、弱极性、非极性; 按使用方式分:固定组成淋洗和梯度淋洗。 常用溶剂: 正己烷、四氢呋喃、乙酸乙酯、乙醇、 甲 醇、异丙醇、乙腈、水。 采用二元或多元组合溶剂作为流动相可以灵活调节流动 相的极性或增加选择性,以改进分离或调整出峰时间。
氰基(CN)的键合相填料。由于硅胶表面的硅羟基(SiOH)或其他极性基 团极性较强,因此,分离的次序是依据样品中各组分的极性大小,即 极性较弱的组份最先被冲洗出色谱柱;正相色谱使用的流动相极性相 对比固定相低,如正已烷、氯仿 、二氯甲烷等。
反相柱:固定相通常是以硅胶为基质,表面键合有极性相对较弱官能团的
键合相。反向色谱所使用的流动相极性较强,通常为水、缓冲液与甲 醇,乙腈等的混合物。样品流出色谱柱的顺序是极性较强的组分最先被 冲洗出,而极性弱的组分会在色谱柱上有更强的保留。常用的反向填 料有:C18(ODS)、C8(MOS)、C4(Butyl)、C6H5(Phenyl)等。

《高效液相》课件

《高效液相》课件

蛋白质分离与纯化
蛋白质分离
高效液相色谱技术可以用于蛋白质的分离和纯化,通过不 同的分离模式和固定相选择,实现对蛋白质的快速分离和 纯化。
蛋白质性质分析
通过高效液相色谱技术可以对蛋白质的性质进行分析,如 蛋白质的分子量、等电点等,为蛋白质的结构和功能研究 提供有力支持。
蛋白质相互作用研究
高效液相色谱技术可以用于研究蛋白质之间的相互作用, 如蛋白质与配体、抑制剂等之间的相互作用,有助于深入 了解蛋白质的功能和作用机制。
原理
利用不同物质在固定相和流动相之间 的分配系数差异进行分离,通过检测 器进行检测,收集各个组分,达到分 析样品组分的目的。
发展历程
01
02
03
04
起源
20世纪初,俄国植物学家茨 维特发明了色谱法。
1940年代
气相色谱法(GC)出现,并 逐渐发展成熟。
1960年代
高效液相色谱法(HPLC)开 始发展,并逐渐取代气相色谱
02
高效液相色谱仪
仪器组成
进样器
将样品注入色谱柱,是 色谱仪的重要部件之一

色谱柱
用于分离样品中的各组 分,由固定相和流动相
组成。
检测器
检测色谱柱流出的组分 ,并将其转换为电信号

数据处理系统
用于采集、处理和显示 检测器输出的信号。
重要部件介绍
01
02
03
色谱柱填料
常用的填料有硅胶、氧化 铝、活性炭等,根据不同 分离需求选择合适的填料 。
《高效液相》ppt课件
目录
• 高效液相色谱法简介 • 高效液相色谱仪 • 高效液相色谱分离技术 • 高效液相色谱在生物医药领域的应用 • 高效液相色谱实验技术 • 高效液相色谱技术前沿与展望

高效液相色谱PPT教学课件

高效液相色谱PPT教学课件
最后变成绿色
机制 作用与阿片受体,产生镇痛,镇咳,镇静作用。
本品具有成瘾性,属麻醉性镇痛药。
半合成镇痛药 (结构修饰产物)
HN HO
CH2 HCl 2H2O
HO
O
O
盐酸纳络酮
(熟悉)
是吗啡受体的jiekangji ,临床上主要用作吗啡过量 解毒剂
合成镇痛药
分类(掌握)
吗啡喃类
{ 苯吗喃类 哌啶类 氨基酮类 其他类
pulse; 方法保存:Save, Save as 5、方法连接:方法名-Set-Ideal 6、 进样 7、检测器关闭-管路的清洗、色谱柱的更换与保管、流
动相及废液的处理-色谱泵关闭 8、数据计算与处理 9、结果打印-工作站、计算机、关闭
第六节 液相色谱分析举例
有机酸分析 色谱柱:Shim-Pack SCR-102H, 80mm30cm 流动相:pH 2.1 高氯酸溶液
〉2000 空间排阻色谱
根据组分的溶解性选择分离方法
类型 水溶 离解 异辛 苯溶 二氯 异丙

甲烷 醇溶

离子 交换


吸附
★★
正相
★★★
反相

第四节、流动相的选择
选择流动相须考虑的因素: 1、纯度:分析纯、色谱纯 2、避免使用柱效损失或者保留特性变 化的溶剂; 3、溶解度:对试样有一定的溶解度; 4、溶剂的粘度:要小。
利用样品中多组分具有不同疏水作用的性质进行分离的 方法。
应用:分离蛋白质 固定相:表面为疏水作用基团的物质,其疏水性仅为反
相色谱的1/10-1/100。 流动相:高离子强度的盐 影响因素: (1)固定相的疏水性:过大会引起不可逆性吸附。 (2)离子强度:大的洗脱能力强、峰形尖锐 (3)酸度: (4)温度:升温会增加保留时间,但会降低蛋白质的溶

高效液相色谱法(HPLC) ppt课件

高效液相色谱法(HPLC)  ppt课件
此法在杂环类药物的鉴别实验中有广泛应用。
ppt课件
32
流动相选择该注意的几点问题
1、尽量使用高纯度试剂做流动相,防止微 量杂质长期积聚而损坏色谱柱;
2、避免流动相与固定相发生相互作用而使 柱效下降或损坏柱子;
3、试样在流动相中应有适宜的溶解度,防 止产生沉淀并在柱中沉积;
4、流动相同时还应满足检测器的需求。
高效液相色谱法 (HPLC)
ppt课件
1
色谱法定义
• 色谱法也叫层析法,它是一种高效能的物理分 离技术,将它用于分析化学并配合适当的检测 手段,就成为色谱分析法。
• 色谱法中,流动相可以是气体,也可以是液体, 由此可分为气相色谱法(GC)和液相色谱法 (LC)。固定相既可以是固体,也可以是涂在 固体上的液体,由此又可将气相色谱法和液相 色谱法分为气-液色谱、气-固色谱、液-固色谱、 液-液色谱。
阳离子交换:R—SO3H +M+ = R—SO3 M + H + 阴离子交换:R—NR4OH +X- = R—NR4 X + OH固定相:阴离子离子交换树脂或阳离子离子交换树脂;
流动相:阴离子离子交换树脂作固定相,采用碱性水溶液 ;
阳离子离子交换树脂作固定相,采用酸性水溶液;
应用:离子及可离解的化合物、氨基酸、核酸等。
而HPLC改变的是流动相极性,使样品各组分
在最佳条件下得以分离。
ppt课件
10
四、液相色谱分析法的原理
• (二)高效液相色谱的分离过程 •
• 同其他色谱过程一样,HPLC也是溶质在固 定相和流动相之间进行的一种连续多次交换过程。 它借溶质在两相间分配系数、亲和力、吸附力或 分子大小不同而引起的排阻作用的差别使不同溶 质得以分离。

高效液相色谱法—高效液相色谱仪(仪器分析课件)

高效液相色谱法—高效液相色谱仪(仪器分析课件)
• 间断改变流动相的组成,以调节它的极性,使每个流出的组分都有合适的容量 因子,并使样品中的所有组分可在最短的分析时间内,以适用的分离度获得圆 满的选择性分离。
• 内梯度:利用两台高压输液泵,将两种不同极性的溶剂按一定比例送入梯度混 合室,混合后进入色谱柱。
• 外梯度:一台高压泵,通过比例调节阀,将两种或多种不同极性的溶剂按一定 的比例抽入高压泵中混合。
柱子内径一般为1~6 mm。常用的标准柱型是内径为4.6或 3.9 mm ,长度为15~30 cm 的直形不锈钢柱。填料颗粒度5 ~10 μm ,柱效以理论塔板数计大约 7000~10000。
发展趋势是减小填料粒度和柱径以提高柱效。
(三)检测器 1. 紫外吸收检测器 紫外吸收检测器是目前HPLC中应用最广泛的检测器。 2. 光电二极管阵列检测器(PDAD) 3. 示差折光检测器(DRD) 4. 电导检测器 5. 荧光检测器 6. 蒸发激光散射检测器
HPLC
HPLC
高效液相色谱仪 一、高效液相色谱仪工作流程及组成
• 1.高效液相色谱仪的工作流程图
一、高效液相色谱仪工作流程及组成 流 动 相
高压泵
2.高效液相色谱仪组成
脱气装置
进 样 阀
色 谱 柱
检测器
检测器
二、仪器操作 (一)开机前 的准备
• 在开机前应详细阅读 仪器使用说明书,了 解仪器的参数、熟悉 仪器操作规程。
高压输液泵
3.. 梯度洗脱装置
高压梯度: 用于二元梯 度,用两个泵分别按设定 的比例输送A和B两溶液 至混合器
(二)进样装置 常见的 进样装置有: 1.隔膜进样 2.停留进样 3.六通进样 4.自动进样
(三)色谱分离系统
色谱柱是色谱仪最重要的部件(心脏)。通常用后壁玻璃 管或内壁抛光的不锈钢管制作的,对于一些有腐蚀性的样 品且要求耐高压时,可用铜管、铝管或聚四氟乙烯管。

高效液相色谱法原理与应用(详细版)课件PPT

高效液相色谱法原理与应用(详细版)课件PPT

保留时间(tR):
调整保留时间(t’R): tR' tR tM
死体积(VM): VMtMF0
保留体积(VR): VR tRF0
调整保留体积(V’R): V R ' tR ' F 0(tRtM )F 0
2021/3/10
16
2. 色谱分离基本方程
R tR(2) tR(1)
1 2
(W1
W2
)
R: 分离度 tR: 保留时间 t0:死时间 W:峰底宽度
2021/3/10
17
不同R值的峰重叠情况示意图
R>1.5可以得到基线分离
分离度R反映的是相邻两个峰的分开程度
R太小,两个峰无法彻底分离
R太大,分离时间过长,工作效率低下
一般要求R>1.5,也可遵循行业特殊规定
2021/3/10
18
色谱分离基本方程
高效液相色谱法原理与应用
参考书 《高效液相色谱及其应用》 《液相色谱检测方法》 《实用高效液相色谱法的建立》
2021/3/10
1
第1章 色谱基本原理
一、色谱法概述 1. 色谱法的定义与特点 2. 色谱法的分离原理 3. 色谱法的特点 4. 色谱法的分类
2021/3/10
2
1.色谱法的定义
2021/3/10
2021/3/10
46
校正归一化法
➢推导:
Ci%m mi 100m1
mi m2 mn
100
Ai fi
100
A1f1 A2f2 An fn
Ci%fifA iA i i 10% 0
2021/3/10
47
➢应用范围:当试样中各组分都能流出色谱柱,

高效液相色谱法—高效液相色谱法的应用(仪器分析课件)

高效液相色谱法—高效液相色谱法的应用(仪器分析课件)

二、流动相的制备
• 新型的高效液相色谱仪多用专用的在线真空 脱气技术。真空脱气装置串联到储液系统中, 并结合膜过滤器,实现流动相在进入输液泵 前的连续真空脱气。
仪器分析
模块三 高效液相色谱法
项目三高效液相色谱法应用
目标
01 掌握高效液相色谱仪使用操作技 能
02 掌握高效液相色谱仪各部分操作技能 相关标题文字
高效液相色谱法实验技术
学生分组练习
根据实验室的实际情况,安排学生分组练习, 一部分学生练习配制流动相,一部分学生练习 操作仪器(以苯试样为例)。
仪器分析
模块三 高效液相色谱法
项目三高效液相色谱法应用
目标
01 掌握高效液相色谱法的应用技

02 掌握流动相配制及制备技术
项目三 高效液相色谱法应用
03
——流动相的配制
·流动相的配制 ·流动相的脱气方法
复习: 高效液相色谱仪是以液体为流动相,高压泵将贮 液瓶中流动相经过进样器送入到色谱柱,然后从 废液口中流出;样品经进样器注入后,流动相将 样品带入到色谱柱进行分离,分离后的组分依次 先后顺序进入检测器。记录仪将检测器的信号记 录下来,得到液相色谱图。
➢2.取混合均匀的溶液, 经0.45µm的有机膜过滤, 再脱气15分钟即可
二、流动相的制备
➢3.将过滤好的流动相装入到流动相的储液瓶中, 然后进行脱气
二、流动相的制备
• 4.脱气方法:
• 常用的方法有吹氦脱 气法、加热回流法、 抽真空脱气法、超声 脱气法。以上几种方 法是离线脱气法,在 流动相存放过程中又 会有空气重新溶解在 储液系统中,
高效液相色谱法实验技术 操作过程演示3
观察废液出口,若没有气泡,按“Purge”鍵,停止排 放,关闭排放阀。

高效液相色谱方法及应用课件

高效液相色谱方法及应用课件

未来发展趋势与展望
超高效液相色谱(UPLC)的普及与发展
随着色谱填料制造技术的进步,UPLC将逐渐成为主流技术,进一步提高分离效率和检 测灵敏度。
联用技术的发展
HPLC将与其他分析技术(如质谱、红外光谱等)更紧密地结合,实现多维、多组分的 同时分析,提高分析速度和准确性。
微纳流控芯片的集成与应用
随着微纳加工技术的发展,HPLC将与微纳流控芯片集成,实现样品制备、分离和检测 的一体化,为便携式、即时分析提供可能。
PART 06
高效液相色谱法的挑战与 展望
技术挑战与解决方案
01 02
分离效率的提高
随着样品组分的日益复杂,分离效率的提高成为HPLC技术面临的重要 挑战。解决方案包括开发新型填料、优化色谱柱参数以及采用先进的色 谱分离技术。
检测灵敏度的提高
对于痕量组分的分析,提高检测灵敏度是关键。解决方案包括采用高灵 敏度检测器、优化检测条件以及发展超高效液相色谱技术。
实验操作流程
流动相制备
根据实验要求,制备适量的流动 相,确保其比例、纯度和稳定性 符合要求。
样品处理
对样品进行预处理,如溶解、过 滤、稀释等,以便进行后续的液 相色谱分析。
柱子安装与条件优化
根据实验需求,选择合适的色谱 柱,并进行安装和条件优化,以 提高分离效果和实验效率。
进样与检测
将处理好的样品注入进样器,按 照设定的条件进行分离和检测, 记录数据。
发展历程与趋势
发展历程
HPLC技术自20世纪60年代问世以来, 经历了不断改进和完善的过程,已成 为一种成熟且广泛应用的分析方法。
发展趋势
随着科技的进步,HPLC技术正朝着 高分离度、高灵敏度、自动化和智能 化的方向发展,同时与其他分析技术 的联用也成为了研究热点。

高效液相色谱法培训PPT课件

高效液相色谱法培训PPT课件

注意事项与常见问题解答
样品处理注意事项
01
避免样品污染、损失或变质,确保处理过程的准确性和可重复
性。
常见问题及解决方法
02
针对样品处理过程中可能出现的问题,如回收率低、干扰物质
多等,提供相应的解决方法。
安全与防护
03
注意有毒有害试剂的使用安全,做好个人防护和环境保护工作。
04 方法开发与优化策略
梯度洗脱程序设计思路
初始比例确定
根据待测组分的极性差异,选 择合适的初始流动相比例。
梯度斜率设置
根据组分的分离情况,调整梯 度斜率,使各组分在合适的保 留时间内洗脱出来。
梯度时间设置
确保梯度洗脱过程中,各组分 能够充分分离,同时避免过长 的分析时间。
梯度曲线类型
根据实际需求选择合适的梯度 曲线类型,如线性梯度、凹形
梯度或凸形梯度等。
方法验证内容及标准
精密度
准确度
通过添加回收率试验,验证方法 的准确度,确保测定结果可靠。
考察方法的重复性和中间精密度, 确保测定结果的稳定性。
线性范围
确定方法的线性范围,确保待测 组分浓度在该范围内时,测定结 果准确可靠。
专属性
考察方法对待测组分的选择性, 确保其他共存物质不干扰测定。
长期稳定性
考察样品在规定的储存条件下放置一定时间后的稳定性,以确定 样品的保质期和储存条件。
方法学考察
对分析方法本身进行稳定性考察,包括方法的耐用性、重复性和 中间精密度等指标的评估。
质量控制图绘制和应用
质量控制图绘制
根据长期稳定性考察数据,绘制质量控 制图,包括平均值、标准差和控制限等 指标。
VS
发展历程及应用领域
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/12/30
色谱柱是核心部件,色谱填 料的填装是其操作的关键技 术。制备型HPLC由于采用细 的填料、高压操作,所以色 谱柱多用不锈钢制作。
制备HPLC的色谱柱系统
在此处主要提出色谱柱系统,因为相对于分析型色谱,制备色谱的核心就是色谱柱。为提供既稳定又 高效的色谱柱,并用小尺寸颗粒进行填充,最常用也是最易实现的效果较为理想的是动态轴向压缩柱 (DACTM)技术。DAC技术为使用者提供了用任一种填料自己装填色谱柱、方便快速地调整柱长度的可 能性。在制备型HPLC中,色谱柱的内径可在100~500mm之间。一般增大色谱柱的直径意味着可以承 载更多的样品,从而增加产量。增加色谱柱的长度则意味着可加入的样品量和分辨率的增大,但同时也 增加了柱压。研究表明对于难分离物系,可以采用直径较小的色谱填料,以提高分离效率,但在分离度 可以满足分离要求的前提下,使用较大直径的色谱填料将更为有利。色谱填料的填装是其操作的关键 技术。制备型HPLC由于采用细的填料、高压操作,所以色谱柱多用不锈钢制作。
制备高效色谱柱按柱型可分为锥型柱与圆柱型柱两大类。锥型柱优于圆 柱型柱,锥型柱的样品容量约为圆柱型柱的2倍,柱效比圆柱型柱高36% ,色谱流出曲线峰值高于圆林型林12%。
2020/12/30
制备色谱中对填料的要求
一般来说,分析型色谱柱填料也可以用于制备型色谱柱中,但是制备色谱中使用 的量大,而且需要反复装柱,因此对于制备色谱填料有一些特殊的要求:
• 径向压缩柱的主要缺点是柱芯长度固定,不如轴向压缩柱可以任意调节。此外 直径较大的色谱柱中径向经常出现粒度梯度,造成流动相径向流速分布不均匀 。由于径向扩散太慢,不能抵消柱截面积流速差异所产生的浓度梯度,所以径 向流速是峰展宽的一个重要来源。径向压缩柱主要是由Waters公司生产,并已 有预制柱出售。
套高压输液泵和检测器,通过计算机自动控制,成功开发了高效液相层析中药提取装备 。图2012为0/1高2/效30液相轴向加压(自振)制备色谱柱(HPLC-C200型)系统的示意图。
2020/12/30
• 径向压缩柱使用双管的色谱柱,填料装在管壁可压缩 的高聚物柱管内制成柱芯,再将装有填料的柱芯放入 不锈钢外套中,利用气体或液体施压于柱芯外壁和不 锈钢外套之间,压紧柱芯内的填料,使色谱柱得到径 向压缩。该技术目的是消除颗粒间及颗粒与管壁间的 空隙。径向色谱柱的结构如图4所示,图中表明进入到 径向色谱柱的样品和流动相并非如传统的轴向色谱柱 从柱的一端流向另一端,而是沿径向流动,即样品和 流动相是从色谱柱的周围流向柱圆心。
2020/12/30
柱尺寸
现代高效制备液相色谱柱具有柱短、内径大、呈圆饼状(pancake)的特征 。目前高效制备柱的柱长与常规分析柱相仿,一般为20~50cm远短于传 统柱1m甚至1m以上的制备柱,在制备型HPLC分离过程中,在满足分离 度要求的前提下,可以采用增加制备柱内径的方注提高制备量。
柱型
色谱柱系统 检测器 馏分收集器
柱尺寸 柱型 对填装的要求
数据采集与处理系统
1.与分析型HPLC的区别
• 目的不同 • 流速不同 • 进样模式不同 • 上样量不同 • 色谱柱不同 • 理论基础不同 • 检测池不同
2020/12/30
2.PHPLC装置
• 输液泵 • 进样系统 • 色谱柱系统 • 检测器 • 馏分收集器 • 数据采集与处理系统
2020/12/30
制备HPLC的色谱柱系统
柱结构: 空管柱、轴向压缩柱和径向压缩柱
柱尺寸: 柱短、内径大、呈圆饼状
在制备型HPLC分离过程中,在满足分离度要求的前提下,可以采用增加制备 柱内径的方法提高制备量。
柱型: 锥型柱与圆柱型柱
锥型柱优于圆柱型柱,锥型柱的样品容量约为圆柱型柱的2倍,柱效比圆柱型柱 高36%,色谱流出曲线峰值高于圆柱型柱12%。
高压液相色谱
利用更细的高效填料 进行分离的,具有高柱 效、高流速、分离时间 短的特点。与经典液相 色谱相比高效液相色谱 有很大不同。
2020/12/30
2 制备型液相色谱
1.制备型HPLC与分析型HPLCHPLC的装置
2020/12/30
输液泵
进样系统
柱结构
高效液相制备色谱的设备进展及应用
2020/12/30
2020/12/30
液体制备色谱
应用
2020/12/30
高效液相制备色 谱柱设备
目录
展望
1 液体制备色谱
液相色谱是将分离填料填装在色谱柱 内,以液体流动相进行洗脱,利用药 物不同活性成分与填料相互作用力 的差异进行分离。
输液系统 进样系统 分离系统 检测系统 数据处理系统
对填装的要求: 填料的种类 、装填技术
2020/12/30
柱结构
1.空管柱与分析柱相同,常用柱内径为10~100 mm,采用匀浆填充技术填装色谱填料。
2.轴向压缩柱是采用活塞压缩床层,以使色谱柱内填料均匀、密实,得到更高的柱效。其 原理是通过活塞的上下移动来装柱、维持柱压和卸柱,活塞周边配置了特殊设计的密封圈, 能容许活塞上下自由移动,同时又能保持高的密封性。在柱内的两端均配有多孔不锈钢滤板 和能使样品及洗脱液在柱截面上均匀分布的分散器。液流分散器保证了大量样品尽可能地瞬 时分散在柱截面上,进而快速均匀进入柱床,克服了柱中心样品局部过浓的现象,保证了色 谱柱的高效。
根据在分离制备过程中提供给活塞的压力是否持续,可将轴向压缩柱分为静态和动态两种 ,静态轴向压缩柱的效果比动态的差,但是设备比动态便宜。采用动态轴向压缩柱工艺装填 的色谱柱现已基本上主宰了整个制备型色谱柱市场,国内已有动态轴向压缩柱制备色谱系统 产品。
2020/12/30
聊城万合工业制造有限公司自主研发了高效液相轴向加压(自振)制备层析柱系统,配
高压输液泵 在线脱气装置
2020/12/30
分类
低压制备色谱
两种模式,一种是在 柱上方加压,另一种是 在柱下方减压。在低压 制备色谱中使用的是颗 粒较大的填料,因此其 分辨率是有限的。
2020/12/30
中压制备色谱
利用恒流泵抽送流动 相,带着样品流经色谱 柱,实现对样品的分离 。其色谱柱一般是由耐 压的强化玻璃制成,填 料颗粒大小比低压制备 色谱所用填料小,分离 效率更高。
相关文档
最新文档