第三章 无机非金属材料的性能

合集下载

《无机非金属》课件

《无机非金属》课件
气相法可以制备出具有超常物理性能的无机非金属材料,但制备过程能耗极高,且 不易控制材料的尺寸和形状。
生物法
生物法是一种利用生物资源来制备无 机非金属材料的方法。
生物法可以制备出具有环保、可持续 性的无机非金属材料,但制备过程较 为复杂,且材料的性能和纯度不易控 制。
生物法通常需要使用微生物或植物提 取物等生物资源作为原料。
详细描述
热容表示材料在温度升高或降低时吸收或释放热量的能力,热导率表示热量在材料中的传导能力。热 膨胀系数表示材料在温度变化时尺寸变化的程度,抗热震性则表示材料在承受温度急剧变化时的稳定 性。
电学性能
总结词
无机非金属材料的电学性能主要包括电导率、介电常数和绝缘性等。
详细描述
电导率表示材料传导电流的能力,介电常数与材料的介电性能有关,绝缘性则表示材料 阻止电流通过的能力。
05
无机非金属材料的挑战 与未来发展
当前无机非金属材料面临的挑战
资源短缺
随着社会的发展,对无机非金属材料的需求量越来越大,而一些关键 资源的短缺问题逐渐凸显出来,如稀土元素、高岭土等。
环境负荷
无机非金属材料的生产过程中往往伴随着较高的能耗和排放,对环境 造成一定的压力,如水泥、玻璃等行业。
技术瓶颈
04
无机非金属材料的应用 实例
建筑领域的应用
总结词
广泛、重要
详细描述
无机非金属材料在建筑领域的应用非常广泛 ,如混凝土、石材、玻璃等,它们是建筑物 的主要构成材料,具有耐久、防火、隔音等 特点,为建筑物的安全和舒适提供了保障。
电子信息领域的应用
要点一
总结词
高科技、前沿
要点二
详细描述
在电子信息领域,无机非金属材料扮演着重要的角色,如 硅半导体材料、陶瓷电子元件等,它们是现代电子工业的 基础,为电子产品的微型化、高性能化提供了技术支持。

无机非金属类功能材料简介

无机非金属类功能材料简介

*
当光入射到由大量粒子所组成的系统时,光的吸 收、自发辐射和受激辐射三个基本过程是同时存在的。 在热平衡状态,高能级上的粒子数总是小于低能级上 的粒子数,产生激光作用的必要条件是使原子或分子 系统的两个能级之间实现粒子数反转。
★ 固体激光器材料
1.激活离子
固体激光工作物质要在基质晶体中掺入适量的 激活离子。激活离子的作用是在固体中提供亚稳态 能级,由光泵作用激发振荡出一定波长的激光。目 前激活离子来自三价和二价的铁系、镧系和锕系元 素。激光的波长是由激活离子的种类决定的。
照相底片中的agbr经曝光后分解出ag和br经显影定影后ag被固定下来而br却溶于定影液中不能再结合?而光色玻璃种的卤素不能逸出ag也不能自由运动无光照时二者可再结合光色材料一个重要用途是作为光存储材料由于光色材料的颜色在光照下发生可逆变化所以产生两种型式的光学存储即写入型与消除型写入型是用适当的紫光或紫外线辐射来转换最初处于热稳定或非转换态的材料
3.1.4 红外材料
在红外线应用技术中,要使用能够透过红外线 的材料,这些材料应具有对不同波长红外线的透过 率、折射率及色散,一定的机械强度及物理、化学 稳定性。
在红外技术中作为光学材料使用的晶体主要有 碱卤化合物晶体、碱土—卤族化合物晶体、氧化物 晶体、无机盐晶体及半导体晶体。
应用于滤光片、基板等方面。在火箭、导弹、 人造卫星、通讯、遥测等使用的红外装置中被广泛 地用作窗口和整流罩等。
★ 光学介质材料可以以折射、反射和透射的方式 改变光线的方向、强度和位相,使光线按预定的要 求传输;也可以吸收或透过一定波长范围的光线而 改变光线的光谱成分。其主要性能参数有两个:光 谱通过率和光学色散,即不同波长下的透过率和折 射率。光学介质材料从形态及组成上可分为5类: 光学玻璃、光学晶体、光学塑料、光学薄膜和光学 纤维。

第三章 无机非金属材料的性能.ppt

第三章 无机非金属材料的性能.ppt
图1 位错形成微裂纹示意图 (a)组合 (b)塞积 (c)交截
• (b)材料表面的机械损伤与化学腐蚀形成表 面裂纹。
• (c)由热应力形成裂纹。
图2 由于热应力形成的裂纹
(2) 裂纹的扩散
• 前提:材料中存在裂纹,由于位错的迁移和 受阻而产生新裂纹并扩散裂纹。
可延展性材料:位错迁移不受阻碍,许多能量消耗于塑性 流动,不能形成裂纹。
310 烧结稳定化ZrO2 150 P=5 %
83
石英玻璃
72
290 莫来石瓷
69
9
滑石瓷
69
210 镁质耐火砖
170
407
2. 影响弹性模量的因素
• (1)晶体结构
• (2)孔结构 E随着孔体积的提高而降低 长形孔比球形孔对E的值影响大
• (3)温度 大部分固体,受热后渐渐开始变软,弹性常 数随温度升高而降低。
• ——出现完全分离断裂。
三、塑性
• 1.定义
塑性变形 ——指在材料受力时,当应力超过屈 服点后,能产生显著的残余变形而不即行断裂 的性质,残余变形即称为塑性变形。 延展性——材料经塑性变形后而不被破坏的能力。
• 2.影响因素
(1)温度 (2)载荷和位错速度
图3 MgO和KBr弯曲试验的应力-应变曲线
在适当条件下,无机材料中也可能会存在塑性变形。
四、韧性
• 1. 定义
• ——指材料抵抗裂纹产生和扩展的能力。 • ——是材料断裂过程中单位体积材料吸收能量
的量度。 • ——可由拉伸应力-应变曲线下的面积大小衡
量。
• 2. 衡量指标
• 冲击韧性 • 断裂韧性
Titanic沉没原因
Titanic ——含硫高的钢板, 韧性很差,特别是在低温 呈脆性。所以,冲击试样 是典型的脆性断口。近代 船用钢板的冲击试样则具 有相当好的韧性。

无机非金属材料的性能分析

无机非金属材料的性能分析

无机非金属材料的性能分析
一、无机非金属材料概述
无机非金属材料是指不含金属成分的材料,包括玻璃、氧化物、晶体、陶瓷、复合材料等。

它们的特点是质地坚硬,耐腐蚀,受温度影响小,热
导率低,可承受较高的机械强度,耐磨性能好,具有导电性等特点,可以
用来制造精密仪器和机械。

二、无机非金属材料性能分析
1、物理性能
一般而言,无机非金属材料的密度一般较低,只有在非金属材料中的
稀土元素的凝聚力比较大的情况下才会有较高的密度。

另外,无机非金属
材料的热导率一般较低,更多的是由其分子构造结构内介质而决定的。

2、机械性能
3、化学性能
4、电学性能。

无机非金属材料物理性能

无机非金属材料物理性能

脆性断裂的特点: 1)断裂前无明显的预兆; 2)断裂处往往存在一定的缺陷(裂纹,伤痕); 3)由于缺陷的存在,实际断裂强度远远小于理 论强度. 脆性断裂的微观过程: 突发性裂纹扩展; 裂纹的缓慢生长。
断裂现象:
01
金属类:先是弹 性形变,然后是 塑性变形,直到 断裂。
02
高分子类:先是 弹性形变(很大), 然后是塑性变形, 直到断裂。
c
K IC Ya
>应用 已知应力,材料,确定结构安全的最大裂纹长度 已知裂纹长度,材料,确定结构安全的最大应力
Y
断裂韧度是用高强度钢制
aKIC 造的飞机、导弹和火箭的 零件,及用中低强度钢制 造气轮机转子、大型发电 机转子等大型零件的重要 性能指标。
已知应力,裂纹长度,确定结构安全的材料
>影响断裂韧性的因素 成分组织结构 a.化学成分 b.晶粒尺寸 c.夹杂及第二相
物体内储存的弹性应
许多细小的裂纹或缺
变能的降低,大于等
陷,在外力作用下,
于产生由于开裂形成
这些裂纹或缺陷附近
两个新表面所需的表
会产生应力集中的现
面能,就会造成裂纹
象。当应力大到一定
的扩展,反之,则裂
程度时,裂纹开始扩
纹不会扩散。
展而导致材料断裂。
临界应力的推导:
We1=(1/2) F△l P33
在微小位移d(△l)上外力做的功dW=(Fi+1/2dF)d△l
4裂纹扩展的动力与阻力
阻力:KIC 或 2γ
内裂的薄板为例 KI=π1/2σc1/2. 当为临界值时, 有KIC=π1/2σcc1/2, 故KIC2= πσc2c 代入P55:3-16
2.5.1裂纹的起源

无机非金属材料PPT课件

无机非金属材料PPT课件

2021/4/8
43
2021/4/8
氧化铝陶瓷
结 构 陶 瓷
二氧化锆
44
几种典型的新型无机非金属材料
高温结构陶瓷 特点:耐高温、耐腐蚀、硬度大、 耐磨损、不怕氧化、密度小等
(1)氧化铝陶瓷
性能 熔点高
2021/4/8
硬度大 透明、耐高温
用途 坩埚、高温炉管
刚玉球磨机
高压钠灯灯管 45
高纯氧化铝透明陶瓷管
▪ 瓷器:需要纯净的粘土做原料,
温度也更高,瓷器比陶器磁体
白净质地致密。
2021/4/8
29
主要种类:
土器:砖瓦
红瓦 (自然冷却,Fe2O3含量较多) 青瓦 (淋水冷却,Fe3O4、FeO较多)
陶器: 彩陶 江苏宜兴的紫砂壶、秦汉兵马俑
瓷器: 碗盘茶具
收藏珍品
景德镇陶瓷
炻器: 水缸、砂锅
2021/4/8
模具和夹具。
2021/4/8
48
(3)碳化硅陶瓷
碳化硅(SiC--金刚砂)和氮化硅一样,是
稳定的原子晶体。具有高的热传导能力、硬度
大、熔点高、比重小,有较高的强度和较好的
热稳定性,与各种酸都不起作用,其抗氧化性
能在高达1550OC时仍很优良。
用途:制造磨料、模
具、特种耐火材料制品;
用于制造电阻发热元件。
27
3、陶瓷
主原料要 生产过程 反应条件 种类
黏土
①混合 ②成型 ③干燥 ④烧结 ⑤冷却
高温
2021/4/8
土器 陶器 炻器 瓷器
性能
抗氧化、 抗酸碱腐 蚀、耐高 温、绝缘 、易成型
28
▪ 陶瓷是由黏土在高温下烧制而成,根据

5-3 无机非金属材料

5-3 无机非金属材料
碳纳米材料是近年来人们十分关注的一类新型无机非金属材料, 主要包括富勒烯、碳纳米管、石墨烯等,在能源、信息、医药等领 域有着广阔的应用前景。
富勒烯
富勒烯是由碳原子构成的 一系列笼形分子的总称,其中 的C60是富勒烯的代表物。C60的 发现为纳米科学提供了重要的 研究对象,开启了碳纳米材料 研究和应用的新时代。
(4) 硅的应用 半导体材料 集成电路、晶体管、硅整流器、太阳能电池等
3、二氧化硅
二氧化硅可用来生产光 导纤维。光导纤维的通信容 量大,抗干扰性能好,传输 的信号不易衰减,能有效提 高通信效率。
(1)、存在:
水晶
结晶形(石英晶体) 水晶 无色透明 玛瑙 彩色环带或层状
硅石
无定形——硅藻土
玛瑙
SiO2是自然界中沙子、石英的主要成分。结 晶的二氧化硅叫石英;天然二氧化硅叫硅石。
一、 硅酸盐材料
2、传统无机非金属材料 原料 工业设备
水泥 条件
石膏的作用 混凝土
黏土和石灰石 水泥回转窑 高温煅烧 调节水泥硬化速率 水泥、沙子和碎石等与水混合
二、 新型无机非金属材料
(一)硅和二氧化硅 1、 硅元素的存在与结构
含量
存在 存在形态
地壳中 居第_二__位
__氧__化__物___ _和__硅__酸__盐___
原子结构 示意图
周期表中位置
第__三__周__期_、 第__Ⅳ__A__族_
2、单质硅化学性质:常温下硅单质的化学性质不活泼 (1)常温下 只和F2 、HF、强碱反应
Si + 2F2 === SiF4
Si + 4 HF === SiF4 + 2H2
Si + 2NaOH + H2O ===Na2SiO3 + 2H2

材料化学课后题答案第三章

材料化学课后题答案第三章

第三章 材料的性能 1.用固体能带理论说明什么是导体,半导体,绝缘体? 答:固体的导电性能由其能带结构决定。

对一价金属(如Na ),价带是未满带,故能导电。

对二价金属(如Mg ),价带是满带,但禁带宽度为零,价带与较高的空带相交叠,满带中的电子能占据空带,因而也能导电。

绝缘体和半导体的能带结构相似,价带为满带,价带与空带间存在禁带。

禁带宽度较小时(0.1—3eV )呈现半导体性质,禁带宽度较大(>5eV )则为绝缘体。

答案或者是: 满带:充满电子的能带 空带:部分充满或全空的能带 价带:价电子填充的能带 禁带:导带及满带之间的空隙 (其中,空带和价带是 导带) 导体:价带未满,或价带全满但禁带宽度为零,此时,电子能够很容易的实现价带与导带之间的跃迁。

半导体:价带全满,禁带宽度在0.1-3eV 之间,此时,电子可以通过吸收能量而实现跃迁。

绝缘体:价带全满,禁带宽度大于5eV ,此时,电子很难通过吸收能量而实现跃迁 2、 有一根长为5 m ,直径为3mm 的铝线,已知铝的弹性模量为70Gpa ,求在200N 的拉力作用下,此线的总长度。

= 5.002 m 3.试解释为何铝材不易生锈,而铁则较易生锈? 答:锈蚀机理不同,前者为化学腐蚀,后者为电化学腐蚀铝是一种较活泼的金属,但因为在空气中能很快生成致密的氧化铝薄膜,所以在空气中是非常稳定的。

铁与空气中的水蒸气,酸性气体接触,与自身的氧化物之间形成了腐蚀电池,遭到了电化学腐蚀,所以容易生锈。

4.为什么碱式滴定管不采用玻璃活塞?答:因为普通的无机玻璃主要含二氧化硅,二氧化硅是一种酸性的氧化物,在碱液中将会被溶解或侵蚀,其反应为:SiO2+2NaOH →Na2SiO3+H2O5.何种结构的材料具有高硬度?如何提高金属材料的硬度?答:由共价键结合的材料具有很高的硬度,这是因为共价键的强度较高。

无机非金属材料由离子键和共价键构成,这两种键的强度均较高,所以一般都有较高硬度,特别是当含有价态较高而半径较小的离子时,所形成的离子键强度较0/F A σ= (H E σε=00()/l l lε=-()/l l l ε=-高(因静电引力较大),故材料的硬度较高。

济南大学813无机非金属材料工艺学2021年考研专业课初试大纲

济南大学813无机非金属材料工艺学2021年考研专业课初试大纲

813 无机非金属材料工艺学一、考试要求①闭卷笔试,可以携带无存储功能的计算器等相关考试工具;②满分为150分,考试时间为3小时。

二、考试内容第一章:绪论[学习要求] 了解无机非金属材料的作用与发展趋势,掌握无机非金属材料的定义、基本特性与研究内容,熟练掌握水泥、陶瓷与玻璃的定义、分类与特性。

[考试内容]第一节材料及无机非金属材料的定义与分类第二节典型无机非金属材料简介第三节无机非金属材料现状及发展趋势第四节无机非金属材料在人类生活中的地位与作用第五节无机非金属材料工艺学的研究内容第六节典型无机非金属材料工艺简介第二章:无机非金属材料工艺原理[学习要求] 熟练掌握钙质原料、石英类原料、粘土类原料、长石类原料的组成、分类及在典型无机非金属材料生产过程中的作用,掌握其他原料的种类及作用;掌握原料及其预处理方法;熟练掌握典型无机非金属材料的组成,并能运用数学计算进行原燃料的配料计算;掌握陶瓷坯料的制备与加工;掌握干燥方法与原理;熟练掌握煅烧、烧成与熔化的定义及过程;掌握水玻陶的冷却方式及原理。

[考试内容]第一节原料、燃料及预处理第二节无机非金属材料的组成及配料计算第三节配合料的制备与加工第四节煅烧、烧成与熔化第五节冷却第六节制品加工第三章:无机非金属材料的物化性能[学习要求] 熟练掌握硅酸盐水泥的水化过程及物化性能;掌握陶瓷的物理性能,了解陶瓷增韧原理;掌握玻璃的基本物化性质。

[考试内容]第一节硅酸盐水泥的物化性能第二节陶瓷的物理性能第三节玻璃的物理化学性质第四章:其他胶凝材料和新材料[学习要求] 了解石灰、石膏等其他胶凝材料,了解复合材料工艺及新材料。

[考试内容]第一节其它胶凝材料第二节复合材料工艺第三节发展中的新材料三、参考书目《无机非金属材料工艺学》,王琦主编,中国建材工业出版社,2005.。

无机非金属材料的性能与表征

无机非金属材料的性能与表征

对结构松散或存在大量结构缺陷的材料,结构中的空隙可 能成为离子迁移的通道,使得材料的导电率增大。如银、 铜的卤化物和硫族化合物中,正离子无序地分布在负离子 的间隙中,间隙位置的数目比正离子数量多,相邻间隙势 垒又很小,因而这些物质具有较好的导电性,如掺杂氧化 锆。 扩散与温度有关,因此离子电导率也随温度的升高而增大。 (b)电子导电 价带:根据固体的能带理论,原子中处于最外层的价电子所 占据的能级分裂而形成能带,此能带被称为价带;价带的能 级全部或部分地被价电子所占据。 导带:最靠近价带且其能量比较高的那个能带。导带一般是 由原子中价电子的第一激发态能级分裂而成的能带。导带的 能级多数是空着的。 禁带:导带和价带之间的电子能级不存在的区段。
2010-10-7 Deliang Chen (Zhengzhou University) 18
K IC = Yσ f C
料阻止裂纹扩展能力的大小。
12
KIC指出在一定载荷下使材料断裂的裂纹长度,可用来衡量材
断裂韧性 KIC 测量常采用单边缺口梁三点弯曲法,试验时要 事先在长条试样的一边预制一条1~1.5mm深的微裂纹。
2010-10-7
Deliang Chen (Zhengzhou University)
7
材料中含有气孔愈多,材料的热传导性愈差。 原子排列的有序性对热传导性也有影响:玻璃的原子无序 排列,其热导性一般较差,且随温度变化的趋势也较小。 热传导性好的材料其耐温度的急变性强,适用于制造热交 换器、蓄热器等,而对需要保温的部位,则要用热传导性 低的材料。
其中,使用最广泛的是维氏硬度Hv(也叫显微硬度),是用 光学放大的办法,测出在一定载荷下由金刚石压锥体压入 被测物后留下的压痕对角线长度来计算被测物硬度。

无机非金属材料ppt课件

无机非金属材料ppt课件
熔融法制备无机非金属材料的缺点是制备出的无机非金属材料结构不够致密,性能不够优异。
热解法制备的无机非金属材料有炭黑、石墨、碳纤维等。
热解法制备无机非金属材料的缺点是制备出的无机非金属材料结构不够致密,性能不够优异。
烧结法是一种将粉末状的物质加热到高温状态,使其发生物理和化学变化,最终形成致密化块状无机非金属材料的方法。
热膨胀系数
无机非金属材料的热膨胀系数差异较大,有些材料在加热时膨胀较小,适用于高温或温度变化较大的环境。
电导率与绝缘性:大多数无机非金属材料具有较高的绝缘性能,是良好的电绝缘材料。例如,陶瓷、玻璃和某些特种水泥可用于高压电器和电子设备的绝缘结构。
折射率与光学常数
无机非金属材料的折射率较高,决定了它们在光学仪器、光纤通讯和照明系统等领域的应用价值。不同材料的光学常数(如折射率、消光系数和色散等)决定了它们在特定波长范围内的光学行为。
烧结法制备无机非金属材料的优点是制备出的无机非金属材料结构致密,性能优异。
烧结法制备无机非金属材料的缺点是制备过程需要高温条件,能耗较高,同时制备出的无机非金属材料尺寸较小。
烧结法制备的无机非金属材料有陶瓷、玻璃、耐火材料等。
无机非金属材料的性能特点
硬度
韧性
强度与断裂韧性
疲劳性能
无机非金属材料的硬度通常较高,具有较好的耐磨性和耐压性能。例如,陶瓷材料具有极高的硬度,广泛用于切割工具、磨料和轴承等领域。
A
B
D
C
化学气相沉积法
利用化学反应产生气体,在气体的扩散和迁移过程中,通过化学反应生成无机非金属材料。
溶胶-凝胶法
将无机盐或金属醇盐溶解在合适的溶剂中,经过水解、缩聚等化学反应,形成稳定的溶胶,再经干燥、烧结固化制备无机非金属材料。

无机非金属材料课件

无机非金属材料课件

THANKS
感谢观看
电子电器行业
航空航天领域
无机非金属材料具有良好的电绝缘性和稳 定性,可用于制造电子元件和电器设备等 。
无机非金属材料具有耐高温和抗腐蚀等特 性,在航空航天领域中有广泛的应用,如 火箭发动机壳体、飞机结构件等。
02
无机非金属材料的生产工艺
原料选择与处理
原料种类
根据产品需求选择合适的矿物原料,如黏土、石 英、长石等。
材料在高温下保持其结构 和性质的能力,反映材料 的耐热性。
04
无机非金属材料的发展趋势与挑 战
新材料的研究与开发
高性能陶瓷材料
研究具有高强度、高韧性、耐磨 、耐高温等优异性能的新型陶瓷 材料,如氮化硅陶瓷、碳化硅陶
瓷等。
新型玻璃材料
探索具有特殊光学、电学、磁学等 性能的新型玻璃材料,如光子晶体 玻璃、导电玻璃等。
成型与烧成
成型工艺
选择合适的成型工艺,如干压成型、等静压成型等, 根据产品形状和尺寸确定。
成型参数
控制成型参数,如压力、温度、时间等,以保证成型 质量。
烧成工艺
制定合理的烧成制度,控制烧成温度、时间、气氛等 参数,以获得理想的烧成效果。
加工与处理
加工设备
根据产品需求选择合适的加工设备,如切割机、磨削机、抛光机 等。
新型复合材料
研究由两种或多种材料组成的新型 复合材料,如碳纤维复合材料、玻 璃纤维复合材料等。
生产工艺的改进与创新
1 2
先进陶瓷制备技术
发展先进的陶瓷制备技术,如凝胶注模成型、等 静压成型等,以提高陶瓷材料的致密度和均匀性 。
玻璃熔炼与成型技术
研究新型的玻璃熔炼与成型技术,如溢流下拉法 、连熔连铸法等,以提高玻璃的质量和产量。

无机非金属材料的制备及性能表征分析

无机非金属材料的制备及性能表征分析

无机非金属材料的制备及性能表征分析摘要:人类社会赖以生存和进步的物质基础之一是物质。

随着生产力的提高,材料的开发从未停止过。

材料作为现代文明的三大支柱之一,是现代文明发展过程中推动能源和信息发展的重要材料。

材料的品种、产量和质量代表着一个国家的现代化水平,因此应加强材料的应用和开发。

对无机非金属材料的制备和表征进行了研究,以供参考。

关键词:无机非金属;准备;性能表征引言新型无机材料利用氧化物、氮化物、硅酸盐和各种无机非金属化合物通过特殊的先进技术,已开发出一系列高温高强度、电子、光学和激光、铁电、压电等新型无机材料,正朝着高性能、高功能、仿生化、智能化、轻量化、复合、低维等方向发展。

广泛应用于航空航天、武器、电子、激光、红外等技术领域。

一般来说,无机非金属材料具有耐腐蚀、耐高温、韧性好等特点,其主要缺点是抗弯强度不足、韧性低。

1无机非金属材料的概念无机非金属材料是由某些元素的碳化物、硼化物、氧化物和氮化物组成的物质资源,化学成分包括金属和非金属元素。

简单说,无机非金属材料是硅酸盐材料经过技术手段优化后的一类材料,由于大部分无机非金属材料相对硅酸盐而言具有某些性能方面的优势,因此无机非金属材料的应用范围非常广泛,在军事、信息技术、科研及建筑等领域都得到了广泛应用。

因此,对无机非金属材料展开研究,增强无机非金属材料的性能,发掘无机非金属材料更多使用途径将对促进我国经济的发展产生积极作用。

研究无机非金属材料的原因有多方面,包括我国资源较少、开采力度不足、资源利用率不高等,导致很多资源被浪费,一些资源不能被完全使用,需要很长时间再生。

在此基础上,人们开始研究无机非金属材料,该材料对稀有资源的依赖性不强,大多由常见材料合成,还能防火防水,具有非常广阔的市场发展空间。

2无机非金属材料性能表征(1)无机非金属材料的理化性能相对稳定,酸碱反应敏感性不高,在使用过程中能保证长期效果。

无机非金属材料具有硬度高、导电性强、玻璃的光学性能、水泥的凝固性能、耐高温、耐腐蚀等特点。

无机非金属材料教案

无机非金属材料教案

无机非金属材料教案第一章:无机非金属材料概述1.1 教学目标让学生了解无机非金属材料的定义、分类和特点。

让学生了解无机非金属材料在生活和工业中的应用。

1.2 教学内容无机非金属材料的定义和分类。

无机非金属材料的特点。

无机非金属材料在生活和工业中的应用。

1.3 教学方法采用讲解、演示和互动讨论的方式进行教学。

1.4 教学步骤引入无机非金属材料的概念,引导学生思考其在日常生活中的应用。

讲解无机非金属材料的分类和特点,结合实例进行说明。

引导学生了解无机非金属材料在生活和工业中的应用,并进行案例分析。

第二章:玻璃材料2.1 教学目标让学生了解玻璃材料的组成、制备方法和性质。

让学生了解玻璃材料在建筑、光学和电子等领域的应用。

2.2 教学内容玻璃材料的组成和制备方法。

玻璃材料的性质。

玻璃材料在建筑、光学和电子等领域的应用。

2.3 教学方法采用讲解、演示和互动讨论的方式进行教学。

2.4 教学步骤引入玻璃材料的概念,引导学生了解其在日常生活中的应用。

讲解玻璃材料的组成和制备方法,结合实验进行演示。

引导学生了解玻璃材料的性质,并进行实验验证。

讲解玻璃材料在建筑、光学和电子等领域的应用,并进行案例分析。

第三章:水泥材料3.1 教学目标让学生了解水泥材料的种类、制备方法和性质。

让学生了解水泥材料在建筑和基础设施建设中的应用。

3.2 教学内容水泥材料的种类和制备方法。

水泥材料的性质。

水泥材料在建筑和基础设施建设中的应用。

3.3 教学方法采用讲解、演示和互动讨论的方式进行教学。

3.4 教学步骤引入水泥材料的概念,引导学生了解其在日常生活中的应用。

讲解水泥材料的种类和制备方法,结合实验进行演示。

引导学生了解水泥材料的性质,并进行实验验证。

讲解水泥材料在建筑和基础设施建设中的应用,并进行案例分析。

第四章:陶瓷材料4.1 教学目标让学生了解陶瓷材料的种类、制备方法和性质。

让学生了解陶瓷材料在生活和工业中的应用。

4.2 教学内容陶瓷材料的种类和制备方法。

第三章-无机非金属生物材料讲解

第三章-无机非金属生物材料讲解

4.2.1 氧化铝陶瓷
▪ 1932年开始临床应用 ▪ 1963年氧化铝陶瓷人工骨 ▪ 1964年牙科移植物 ▪ 1970年氧化铝瓷球、窝和不锈钢杆制成的
全髋关节人工假体 ▪ 1981年氧化铝陶瓷全膝关节假体开始应用 ▪ 1980’s初,单晶氧化铝陶瓷骨螺钉在外科
矫形手术中应用
一、氧化铝陶瓷的组成、制备工艺 氧化铝陶瓷:Al2O3含量在45%以上,主晶相为-
第三章 无机非金属生物材料
3.1 概述
水泥、玻璃、陶瓷
无机非金属材料
材料 金属材料 高分子材料:塑料、合成橡胶、合成纤维
无机非金属材料主要有陶瓷、玻璃、水泥 三大类。
➢ 陶瓷主要是以黏土为原料烧制而成的一种多晶多相 (气体、液体、晶体和非晶体)的聚集体; ➢ 水泥为一种细磨材料,加入适量水后成为塑性浆体, 能在空气中硬化,或在水中硬化,并能把其他增强材 料牢固地胶结在一起的水硬性材料; ➢ 玻璃为熔融物冷却硬化而得到的非晶态固体。
成本低
二、氧化铝陶瓷的结构与性能
▪ 氧化铝陶瓷具有优异的生物相容性,在生理环境下相当 稳定,抗腐蚀,无溶出物,具低膨胀性能。
▪ 氧化铝生物陶瓷密度大于3.9g/cm3,室温抗压强度约为 4000MPa、抗弯强度大于400MPa、杨氏模量为380GPa、抗 冲击强度4000J/m2,耐磨性和耐腐蚀性符合ISO规范实验 要求。
▪ 尤其是它的较高的抗血栓性、耐磨性、低比重和 长期使用不劣化等性能,使碳素材料几乎是目前
唯一可选用的人工心脏瓣膜材料。
3.4 羟基磷灰石陶瓷
▪ 羟基磷灰石( HA)是人体骨组织的主要无 机成分,占90%,碳酸钙等其它成分占10 %。
▪ 羟基磷灰石具有很好的生物相容性
3.4.1 羟基磷灰石的原粉的合成和制品成型

无机非金属材料资料 (2)

无机非金属材料资料 (2)

烧成
表面处理
对无机非金属材料的表面进行涂层、 镀膜或涂覆等处理,以提高其耐腐蚀 性、耐磨性和装饰性。
在高温下对坯体或部件进行烧结或熔 融,以实现材料的致密化和稳定性。
性能优化
成分优化
通过调整原料成分和制备工艺参数,优化无机非金属材料的物理、化学和机械性 能。
复合增强
将两种或多种无机非金属材料进行复合,实现优势互补和性能增强,如陶瓷基复 合材料、玻璃纤维增强复合材料等。
废弃物资源化利用
对无机非金属材料的废弃物进行资源化利用,减少对环境的负担,实现可持续发展。
市场与应用领域的拓展
新能源领域
随着新能源产业的快速发展,无机非金属材料在太阳能电池、风力发电机叶片等领域的 应用逐渐增多。
生物医学领域
无机非金属材料在生物医学领域的应用逐渐拓展,如生物陶瓷、生物玻璃等在牙齿种植、 骨修复等领域的应用。
制备方法
固相法
通过高温或化学反应将原料转化为无机非金属材料,如烧结、熔 融、水热合成等。
气相法
利用化学反应或物理过程将气体物质转化为无机非金属材料,如化 学气相沉积、物理气相沉积等。
液相法
利用溶胶-凝胶法、沉淀法等方法将液体物质转化为无机非金属材 料。
加工工艺
成型
将制备好的无机非金属材料加工成所 需形状和尺寸的坯体或部件,如压制 成型、注射成型、挤压成型等。
抗蠕变性
某些无机非金属材料在高温下仍能保持较 好的稳定性,不易变形,这使得它们在高 温环境下具有较好的应用前景。
热学性能
良好的隔热性能 耐高温性能 热膨胀性 抗热震性
无机非金属材料的热导率较低,具有良好的隔热性能,可用于 制作保温材料。
许多无机非金属材料能够承受高温,如耐火材料、陶瓷等,可 以在高温环境下保持其结构和性能的稳定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
第一阶段蠕变 弹性变形阶段00Fra bibliotek100
200
300
400
500
600
时间(小时)
(2) 影响蠕变的因素 1) 温度、应力(外界因素) 2) 晶体的组成
结合力越大,越不易发生蠕变,所以共价键结构的材料 具有好的抗蠕变性。 例如碳化物、硼化物。
3) 显微结构
材料中的气孔、晶粒、玻璃相等对蠕变都有影响。
2. 影响弹性模量的因素
• (1)晶体结构 • (2)孔结构 E随着孔体积的提高而降低 长形孔比球形孔对E的值影响大 • (3)温度 大部分固体,受热后渐渐开始变软,弹性常 数随温度升高而降低。 • (4)材料的密实性,显微结构的组成及前期 工艺
二、脆性
• 1. 脆性的共同特征 (1)脆性材料受力破坏时,无显著的 变形,而是突然断裂; (2)一般断裂面较粗糙,延展率和断 面收缩率都很小。
二、 热膨胀
1. 定义
热膨胀:温度改变 toC时,固体在一定方向上发生相对长度的 变化(L/Lo)或相对体积的变化( V/Vo)。 (L/ t) 线膨胀系数: =(1/Lo)· 体积膨胀系数: =(1/Vo)/(V/ t)
t t1 t t2
2. 影响热膨胀的因素
• • • • (1) 化学键型 随着物质中离子键性的增加,膨胀系数也增加。另一 方面,化学键的键强越大,膨胀系数越小。 (2)热膨胀与结合能、熔点的关系 结合力强,势能曲线深而狭窄,升高同样的温度,质 点振幅增加的较少,热膨胀系数小。 ro (10-10m) 结合能 ×103J/mol 熔点(oC) l(×10-6)
(a)气孔:气孔率增加,蠕变率增加。 原因:气孔减少抵抗蠕变的有效截面积。 (b)晶粒:晶粒越小,蠕变率越大。 原因:晶界的比例随晶粒的减小而大大增加,晶界扩 散及晶界流动加强。 (c) 玻璃相:玻璃相粘度越小,蠕变率增加。 原因:温度升高,玻璃的粘度降低,变形速率增大, 蠕变率增大。
2. 高温强度
与(T / D)3成正比。
2) 键强、弹性模量、熔点的影响 德拜温度约为熔点的0.2—0.5倍。 3) 无机材料的热容对材料的结构不敏感 混合物与同组成单一化合物的热容基本相同。 4) 相变时,由于热量不连续变化,热容出现突变。
5) 多相复合材料的热容:c=gici
gi :材料中第i种组成的重量%; Ci:材料中第i组成的比热容。
5. 提高无机非金属材料强度的途径
改变结构单元组成、去除表面微裂纹、消除热表面应力、 掺入增强相等
六、高温力学行为
• 1. 蠕变
• 蠕变——材料在常应力作用下,变形随时间 的延续而缓慢增长的现象 。 • 从热力学观点出发,蠕变是一种热激活过程。 • 在高温条件下,借助于外应力和热激活的作 用,形变的一些障碍物得以克服,材料内部 质点发生了不可逆的微观过程。
• 2. 衡量指标
• 冲击韧性 • 断裂韧性
Titanic沉没原因
——含硫高的钢板, 韧性很差,特别是在低温 呈脆性。所以,冲击试样 是典型的脆性断口。近代 船用钢板的冲击试样则具 有相当好的韧性。
Titanic
Titanic 号钢板(左图)和近代船用钢板(右图)的冲击试验结果
五、力学强度
• 1. 定义
图2 由于热应力形成的裂纹
(2) 裂纹的扩散
• 前提:材料中存在裂纹,由于位错的迁移和 受阻而产生新裂纹并扩散裂纹。
可延展性材料:位错迁移不受阻碍,许多能量消耗于塑性 流动,不能形成裂纹。
脆性材料:位错迁移受到严重限制,材料中有足够的能量 来堆积位错和形成裂纹,且裂纹扩散的速度快 于位错的运动。
介于二者之间:位错运动受限制,仅需一部分能量消耗于 塑性流动,另一部分消耗于裂纹形成,裂 纹的扩散很容易被终止。
(2)断裂应力(临界应力)
c
(3)断裂判据
2 Er l
r——裂纹尖端的曲率半径 l——契口长度
K Ic Y c l
Y——形状因子
4. 强度的影响因子
• (1)内在因素:材料的物性。如:弹性模量、 热膨胀系数、导热性、断裂能; • (2)显微结构:相组成、晶粒、气孔、晶界 (晶相、玻璃相、微晶相)、微裂纹(长度、 尖端的曲率大小); • (3)外界因素:使用温度、应力、气氛环境、 试样的形状大小、表面;(例如:无机材料 的形变随温度升高而变化的情况:弹性—— 弹塑性——塑性——粘性流动) • (4)工艺因素:原料的纯度粒度形状、成型 方法、升温制度、降温速率、保温时间,气 氛及压力等;
1 >2
1<2
釉受较大拉力的作用 发生龟裂或坯向内侧弯曲
坯受较强的拉力作用釉被拉 离坯面
第二节 热学性能
• 一、 热容 • 二、 热膨胀 • 三、 热传导
一、 热容
• 1. 定义
– – 相当于温度升高1℃时物质能量的增加。
固体的热容是原子振动 在宏观性质上的一个最 直接的表现。
比热——每一克物质的热容(J/(g•℃))。
单质材料
金刚石 硅 锡
1.54 2.35 5.3
712.3 364.5 301.7
3500 1415 232
2.5 3.5 5.3
(3) 热膨胀与结构的关系


结构紧密的固体,膨胀系数大,反之,膨胀系数小 对于氧离子紧密堆积结构的氧化物,相互热振动导致 膨胀系数较大,约在6~8×10-6/ 0C,升高到德拜特征 温度时,增加到 10~15×10-6/ 0C。 如:MgO、 BeO、 Al2O3、 MgAl2O4、BeAl2O4都具有 相当大的膨胀系数。
E=E1V1+E2V2
式中,E1和E2分别为第一相及第二相成分的弹性模量。 V1和V2分别为第一相及第二相成分的体积分数。
对连续基体内的密闭气孔,可用下面经验公式:
E=Eo(1-1.9P+0.9P2)适用于P50
材料 氧化铝晶体 烧结氧化铝(P=5 % ) 高铝瓷(P=90-95 % ) 烧结氧化铍( P=5 % ) 热压BN( P=5 % ) 热压B4C( P=5 % ) 石墨( P=20 % ) 烧结MgO( P=5 % ) 烧结MoSi2( P=5 % ) E (Gpa) 380 366 366 310 83 290 9 210 407 材料 烧结TiC(P=5 % ) 烧结MgAl2O4(P=5 %) 密实SiC(P=5 % ) 烧结稳定化ZrO2 P=5 % 石英玻璃 莫来石瓷 滑石瓷 镁质耐火砖 E (Gpa) 310 238 470 150 72 69 69 170
• ——力学强度是指材料抵抗各种外来力学载荷的整 体综合能力。
• 2. Orowan理论

E a
γ——表面能 a——离子距离
只有在一些极细的纤维晶体和晶须中,σ≈σth 在较大尺寸材料中,σ<σth
• 3. Griffith微裂纹理论
(1)理论要点
Griffith认为实际材料中总是存在许多细小的裂纹或 缺陷,在外力作用下,这些裂纹和缺陷附近产生应 力集中现象。当应力达到一定程度时,裂纹开始扩 展而导致断裂。所以断裂并不是两部分晶体同时沿 整个界面拉断,而是裂纹扩展的结果。
3. 脆性断裂的判据:
• ——材料的应力-应变行为在断裂前完全是弹 性的; • ——断裂开始且扩展方向垂直于最大的主拉 力方向; • ——出现完全分离断裂。
三、塑性
• 1.定义
塑性变形 ——指在材料受力时,当应力超过屈 服点后,能产生显著的残余变形而不即行断裂
的性质,残余变形即称为塑性变形。
延展性——材料经塑性变形后而不被破坏的能力。

一、弹性 二、脆性 三、塑性 四、韧性 五、力学强度 六、无机材料的高温行为
弹性变形
塑性变形
断裂
材料变形的大 小和作用力大 小成正比,且 去掉外力,能 恢复原状。
变形和外力不 呈线性关系, 而且外力撤销 后,变形不会 完全消失。
外力继续增大 至大于材料的 断裂强度时将 会发生断裂。
第三章 无机非金属材料的性能
各种材料的特性
金属 材料
无机 材料
聚合 物
强度高,延展性好 良导体 不透明 表面光滑有光泽
硬而脆 不良导体 耐高温 耐严酷环境
电绝缘,热绝缘 磁惰性,化学惰性 重量轻 透明 韧性好
第一节 力学性能
• 材料的力学性能——材料在各种不同工作情 况下(载荷、速度、温度等),从受力(静 力或动力)至破坏的全过程中所呈现出的力 学特征。
(1) 典型的蠕变曲线
起始段,在外力作用下,发生瞬时 弹性形变,即应力和应变同步。
8 延 伸 率 × 102
其特点是应变速率随时间递减, 持续时间较短。 此阶段的形变速率最小,且恒 定,也为稳定态蠕变。形变与 时间的关系为线性关系。
第三阶段蠕变
6
4
第二阶段蠕变
此阶段是断裂即将来临之前的 最后一个阶段。特点:曲线较 陡,说明蠕变速率随时间增加 而快速增加。
外部首先变硬,而内部仍处于熔融状态,由于收缩程 度不同,在玻璃表面产生拉应力,淬火以后几秒之内, 表面与内部的温差达最大值,继续冷却,内部的收缩 将比刚硬的外部收缩更快,此时,表面张应力随着减 小,直至室温,表面由拉应力变为压应力。
例3:由坯釉热膨胀系数不同引起。 上釉陶瓷: 釉的热膨胀系数:1 ; 坯体的热膨胀系数:2
2. 脆性断裂
• 材料的脆性变形要求出现裂纹并发生扩展。 • (1)裂纹的来源:
(a)由于晶体微观结构中存在缺陷。当受到外力 作用时,在这些缺陷处就会引起应力集中,导致裂 纹成核。
图1 位错形成微裂纹示意图 (a)组合 (b)塞积 (c)交截
• (b)材料表面的机械损伤与化学腐蚀形成表 面裂纹。 • (c)由热应力形成裂纹。
大多数无机非金属材料塑性变形范围很小或几乎没有,通常表现为脆性。
相关文档
最新文档