认识平面直角坐标系教学过程
平面直角坐标教案5篇
平面直角坐标教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、作文大全、心得体会、申请书、演讲稿、教案大全、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, essays, experiences, application forms, speeches, lesson plans, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!平面直角坐标教案5篇一个教案使教师更好地在教学中应对学生的学习差异和特殊需求,老师在编写教案时需要充分考虑学生的学习需求和兴趣点,以下是本店铺精心为您推荐的平面直角坐标教案5篇,供大家参考。
教学设计平面直角坐标系
教学设计平面直角坐标系一、教学目标:1.了解平面直角坐标系的基本概念与要素。
2.掌握如何在平面直角坐标系中表示点的位置。
3.理解和应用平面直角坐标系进行坐标计算和几何图形的描述。
二、教学准备:1.教学工具:黑板、彩色粉笔、投影仪。
2.教学材料:教材、课件、练习册。
三、教学内容和步骤:步骤1:引入通过提问激发学生对平面直角坐标系的认识和理解,例如:“你们曾在什么情况下接触过坐标系?在哪些场景下会用到坐标系?”引导学生思考坐标系的实际应用。
步骤2:概念解释通过投影仪或黑板,展示平面直角坐标系的图像并解释各要素的含义和作用,“横坐标和纵坐标的数值分别代表了点在水平和竖直方向上的位置,坐标原点(0,0)是坐标系的起点,所有点的位置都可以通过横纵坐标配对表示。
”引导学生掌握坐标系的基本概念。
步骤3:坐标表示通过一些简单的例子,让学生掌握如何在平面直角坐标系中表示点的位置,例如让学生找出指定点的坐标。
步骤4:坐标计算让学生学习如何通过坐标计算两点之间的距离,引导学生思考如何在坐标系上表达和计算线段的长度。
步骤5:几何图形描述通过教材或自行设计相关例题,让学生学习如何在平面直角坐标系中描述和绘制简单的几何图形,如直线、曲线、矩形、正方形等。
步骤6:实际应用展示一些实际应用问题,引导学生运用平面直角坐标系解决问题,如航空控制、地理定位等。
四、教学方法:1.课堂讲授与板书相结合,通过教师引导学生掌握知识点。
2.让学生通过练习和实际问题解决来巩固所学知识,培养学生应用知识解决问题的能力。
五、教学评价:1.在课堂中设置自主训练环节,让学生运用所学知识解决简单问题。
2.在课后布置作业,测试学生对平面直角坐标系的理解和运用能力。
3.对学生的作业进行批改与评价,及时给予学生反馈。
六、拓展延伸:教学以示例为主的方法能帮助学生更好地掌握平面直角坐标系的基本概念和应用。
教师可以鼓励学生自行设计例题,并与同学分享探讨,拓展学生的思维能力和应用能力。
3.2《平面直角坐标系》(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平面直角坐标系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对坐标系的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.2《平面直角坐标系》(教案)
一、教学内容
3.2《平面直角坐标系》:本节课我们将围绕以下内容展开:
1.平面直角坐标系的定义与性质;
2.坐标平面上的点与坐标表示方法;
3.坐标轴上点的坐标特点;
4.两个坐标轴将平面分为的四个象限及其特点;
5.各象限内点的坐标规律;
6.相邻象限内点的坐标关系;
7.平行于坐标轴的直线上的点的坐标规律;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平面直角坐标系的基本概念。平面直角坐标系是由两条互相垂直的数轴组成的,它可以准确地表示平面上的点。它是解析几何的基础,对于解决实际问题非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过地图上的坐标系,我们可以找到某个地点的精确位置,并计算两点之间的距离。
其次,在新课讲授环节,我发现学生在理解坐标系概念和坐标表示方法方面存在一定难度。在讲解过程中,我尽量使用简洁明了的语言和丰富的实例,帮助他们更好地理解。但我也意识到,对于这部分内容,可能需要更多的时间让学生去消化和吸收。在接下来的教学中,我会适当调整教学节奏,给学生更多思考和提问的机会。
再谈谈实践活动,学生们在分组讨论和实验操作环节表现出了很高的热情。他们通过实际操作,对坐标系有了更直观的认识。但同时,我也注意到部分学生在讨论过程中过于依赖同伴,缺乏独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们的自主学习能力。
人教版七年级数学下册7.1.2《平面直角坐标系》教学设计
人教版七年级数学下册7.1.2《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是人教版七年级数学下册第七章第一节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征及坐标轴上的点的坐标特征。
这部分内容是学生学习函数、几何等知识的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已具备一定的数学基础,但对于平面直角坐标系的理解和应用还需要通过实例来加强。
学生在学习过程中应能够借助图形直观地理解坐标系,掌握各象限内点的坐标特征,并能够运用坐标系解决实际问题。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.过程与方法:通过实例分析,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.难点:坐标系在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例引入坐标系的概念,让学生在实际情境中理解坐标系的含义。
2.合作学习法:引导学生分组讨论,共同探究坐标系的性质,培养学生的合作意识。
3.问题驱动法:提出问题,引导学生思考,激发学生的探究精神。
六. 教学准备1.教学素材:准备相关实例,如图形、图片等,用于导入和巩固环节。
2.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的实例,如商场地图、停车场示意图等,引导学生思考如何用数学工具表示这些实例中的点。
通过讨论,引入平面直角坐标系的概念。
2.呈现(10分钟)用投影仪展示平面直角坐标系的图形,引导学生观察并总结各象限内点的坐标特征及坐标轴上的点的坐标特征。
教师在黑板上板书各象限内点的坐标特征及坐标轴上的点的坐标特征。
3.操练(10分钟)学生分组讨论,每组选取一个实例,运用坐标系表示实例中的点,并总结坐标系的性质。
浙教版数学八年级上册《4.2 平面直角坐标系》教案1
浙教版数学八年级上册《4.2 平面直角坐标系》教案1一. 教材分析《4.2 平面直角坐标系》是浙教版数学八年级上册的教学内容,本节课的主要内容是让学生掌握平面直角坐标系的定义、各象限内点的坐标的符号特征,以及坐标轴上点的坐标特点。
通过本节课的学习,为学生后续学习函数、几何等知识打下基础。
二. 学情分析学生在七年级已经学习了平面图形的坐标表示,对坐标的概念有一定的了解。
但他们对平面直角坐标系的理解还不够深入,对于坐标系中各象限内点的坐标符号特征以及坐标轴上点的坐标特点还需要进一步巩固。
三. 教学目标1.知识与技能:使学生掌握平面直角坐标系的定义,理解各象限内点的坐标符号特征,以及坐标轴上点的坐标特点。
2.过程与方法:通过观察、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标符号特征。
2.难点:坐标轴上点的坐标特点,以及坐标系在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极参与,提高他们的学习兴趣和动手能力。
六. 教学准备1.教具:黑板、粉笔、多媒体课件。
2.学具:练习本、尺子、圆规。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中常见的坐标系图片,如地图、股市走势图等,引导学生关注坐标系在实际生活中的应用。
提问:这些图片中的点是如何用坐标表示的?引发学生对坐标系的思考。
2.呈现(10分钟)讲解平面直角坐标系的定义,以及各象限内点的坐标符号特征。
通过示例,让学生直观地理解坐标轴上点的坐标特点。
3.操练(10分钟)让学生分组讨论,用坐标表示给定的点,并判断这些点位于哪个象限。
每组选出一个代表进行汇报,师生共同评价、纠正。
4.巩固(10分钟)出示一些坐标系题目,让学生独立完成,检查他们对平面直角坐标系的理解。
《平面直角坐标系》优秀教案(精选12篇)
《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案,仅供参考,欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书,七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁,有了它我们便可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容,对学生以后的学习起到铺垫作用,6.1.2节平面坐标系主要是介绍如何建立平面坐标系,如何确定点的坐标和由点的坐标寻找点的位置,以及平面坐标系中特殊部位点的坐标特征,根据学生的接受能力,我把本内容分为2课时,这是第一课时,主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系,了解点与坐标的对应系;②在给定的直角坐标系中,能由点的位置写出点坐标。
数学思考:①通过寻找确定位置,发展初步的空间观念;②通过学习用坐标的位置,渗透数形结合思想解决问题:通过运用确定点坐标,发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标,培养学生合作交流与探索精神;②通过介绍数学家的故事,渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误,确定本节重难点为:重点:认识平面坐标系难点:根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征,以及他们现有知识水平,通过科学家发现点的坐标形成的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。
《平面直角坐标系》教案
《平面直角坐标系》教案精选平面直角坐标系教案。
教案课件在老师少不了一项工作事项,这就要老师好好去自己教案课件了。
教案是落实教学目标的有效手段,写一篇教案课件要具备哪些步骤?下面是我为大家整理的关于“《平面直角坐标系》教案”的资料,请保藏好,以便下次再读!《平面直角坐标系》教案篇1教学目标:1、理解平面直角坐标系的意义;把握在平面直角坐标系中刻画点的位置的方法。
2、把握坐标法解决几何问题的步骤;体会坐标系的作用。
教学难点:能够建立适当的直角坐标系,解决数学问题。
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按方案完成科学考察任务后,平安、精确的返回地球,从火箭升空的时刻开头,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上经常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。
要消失正确的背景图案,需要缺点不同的画布所在的位置。
在平面上,当取定两条相互垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P 都可以由惟一的实数对(x,y)确定。
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满意:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置例2已知B村位于A村的正西方1公里处,原方案经过B村沿着北偏东60的方向设一条地下管线m、但在A村的西北方向400米出,发觉一古代文物遗址W、依据初步勘探的结果,文物管理部门将遗址W四周100米范围划为禁区、试问:埋设地下管线m的方案需要修改吗?1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程通过平面变换可以把曲线变为中心在原点的单位圆,恳求出该复合变换?2、利用平面直角坐标系解决相应的数学问题。
八年级数学上册《认识平面直角坐标系》教案、教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
a.坐标系在生活中的应用有哪些?
b.坐标变换的规律是什么?
c.如何用坐标系解决实际问题?
2.小组汇报:各小组选派代表进行汇报,分享本组的讨论成果。
6.总结反思,提高自主学习能力:
在每个知识点学习结束后,引导学生进行总结反思,归纳所学知识。同时,鼓励学生提出疑问,培养学生的自主学习能力。
7.拓展延伸,激发创新意识:
结合坐标系知识,设计具有挑战性的拓展题目,引导学生进行探究。通过拓展学习,激发学生的创新意识,提高学生的数学素养。
四、教学内容与过程
难点:激发学生对坐标系学习的兴趣,提高学生解决实际问题的能力。
(二)教学设想
1.创设情境,引入坐标系概念:
教学伊始,通过生活实例(如地图上的定位、电影院座位选择等)引出坐标系的实际应用,激发学生的兴趣。在此基础上,引导学生思考如何用数学方法描述这些位置,自然地引出坐标系的概念。
2.循序渐进,讲解坐标系知识:
难点:将坐标系与实际问题相结合,进行坐标变换和坐标平移,以及理解函数图像在坐标系中的表示。
2.重点:通过坐标系的引入,培养学生的空间想象能力和逻辑思维能力。
难点:引导学生从实际问题中抽象出坐标系模型,运用坐标系的数学语言描述问题,并解决问题。
3.重点:使学生体会数学与生活的密切联系,增强数学应用的意识。
4.理解函数图像在坐标系中的表示,初步认识函数与坐标系的密切关系,为后续学习函数知识打下基础。
(二)过程与方法
在本章节的教学过程中,教师应采用以下过程与方法:
人教版平面直角坐标系教案
人教版平面直角坐标系教案平面直角坐标系是初中数学教学中的一个重要板块,这部分教学内容和学生接触过的数轴问题有一定的相似性,也是数轴的一种延伸与深化.下面店铺给你分享人教版平面直角坐标系教案,欢迎阅读。
人教版平面直角坐标系教案1、教材分析:⑴知识结构:日常生活及其它学科需要一种确定平面内点的位置的方法.在数学上,可以类比数轴,引出平面直角坐标系的概念.完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来.⑵重点、难点分析:本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标.直角坐标系的基本知识是学习全章的基础,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识.通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想.本节的难点是平面直角坐标系中的点与有序实数对间的一一对应.限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,或不能很好地理解一一对应,有的只限于机械地记忆,这样会影响对数形结合思想的形成.教材上只给出了比较简单的描述.教师可以通过课堂练习,让学生从一点一滴处理解横、纵坐标的值不同,即实数对不同,则在直角平面上的点的位置也不同,反之,亦然.2、教学建议:数学是世界的一部分,同时又隐藏在世界中.这样,数学教学的目的之一就是使学生通过数学的学习,认识数学与现实世界的联系,数学与人类生活的密切联系,以及数学对人类历史发展的影响与作用.因此,数学概念的产生有其必然性与合理性.(1)概念的引入组织学生看本章引言中的气温图,说明确定平面内点的位置是实际需要的.可以让学生进行讨论,他们的生活中还有什么类似的例子.如电影院中的座位,到图书馆找书,学生的课程表等.从丰富的背景材料中,体会数学的广泛应用性.(2)讲授概念:现实生活和其它学科向数学提出了问题,如何建立数学模型以解决这个问题呢?以前,我们学习过数轴.数轴上每一个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,数轴上的点与实数是一一对应的.这样利用数轴可以研究一些数量关系的问题.确定平面内点的位置的方法也可以与此类似,类比出平面直角坐标系的概念,并结合图形讲述平面直角坐标系的有关概念.(3)练习,深入地理解概念:平面直角这节课的概念较多,又都是新的,开始的时候不适合太快,给学生一个适应的过程,一个思维的空间.如:x轴、y轴不在任何象限内,原点是x轴、y轴的交点等.然后,就可以多练习一些简单题,如给出坐标,在平面直角坐标系中标点,或反之,给出平面直角坐标系中点的位置,找出其坐标.通过小题的练习,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系.总之,形成初步的数学概念后,学生可以通过变式,逐步加深对概念的理解.在解题过程中,教师的任务是创设环境,激励学生凭借自己的原有认知水平,完成对数学知识的建构.在相互讨论评价的过程中,培养学生的责任心.这节课可以分两课时完成,第一节课由实际引入,类比数轴定义,给出平面直角坐标系的概念,并通过练习达到熟练的程度.第二节课,可视第一节课的掌握情况,适当增加一些有探索性的题目.如求一已知点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等.教学目标:1、使学生进一步熟悉由坐标确定点和由点求坐标的方法.理解平面内的点与有序实数对之间的一一对应关系.2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号.3、掌握确定已知点关于坐标轴(或原点)的对称点的方法.培养学生观察,归纳总结的能力.4、培养学生发现问题,主动探索的能力.在与同伴的合作交流中,培养学生的责任心.5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.教学重点:1、掌握象限或坐标轴上的点的坐标的特点.2、会求已知点关于坐标轴或原点的对称点的坐标.教学难点:理解平面内的点与有序实数对之间的一一对应关系.教学用具:直尺、计算机教学方法:合作学习,讨论,探究教学过程:1、提出问题,主动探索上节课我们学习了平面直角坐标系的概念,并介绍了象限与坐标轴.初步体会到平面内的点与有序实数对是一一对应的.今天我们需要开始新的探索,发现数学知识.下面看例1例1、指出下列各点所在象限或坐标轴;你能发现什么规律吗?解:描点画图后,可以从图中观察出,A点在第二象限;B点在第三象限;C点在第四象限;D点在第一象限;E点在x轴上;F点在y轴上.做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?通过学生的分组讨论后,可总结如下:象限与坐标轴的定义都是以图形的形式直观给出的.通过本例题,又总结出了相应的代数规律.渗透了数与形的结合.并培养了学生由特殊到一般的抽象思维能力.练习: 习题13.1的第三题例2、在直角坐标系中,标出下列各对点的位置,并发现其中的规律.(1)(3,5),(2,5)(2)(1,2),(1,-3)(3)(4,4),(6,6)(4)通过观察可以总结出:平行于x轴的直线上的点,其纵坐标相同,横坐标为任意实数;平行于y轴的直线上的点,其横坐标相同,纵坐标为任意实数.另外一、三象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标相同;二、四象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标互为相反数.建议:如果学生在观察时有困难,可以适当增加题量,丰富观察的对象,逐步得出最后的结论.这些规律也是有其必然的,如两点的纵坐标相同,则这两点在x轴的同侧,且到x轴的距离相等,由平面几何的知识,可推出这两点的连线平行于x轴.其它的性质也有其存在的道理.通过对规律的总结,渗透数形结合思想,并让学生体会数学知识的形成过程.而点的坐标不同,它在平面上的位置也不相同.即平面上的点与有序实数对是一一对应的.从图中可以看出.例3、在直角坐标系中,描出下列各点⑴(2,1), (-2,1)⑵(-3,4), (-3,-4)⑶(5,-4), (-5,-4)你能发现上述各对点的位置有何特点吗?它们的坐标有何异同?你能总结出一般的规律吗?并说明其中的道理吗?解:(从图中观察出的点的位置)特点两点坐标间关系(1)两点关于y轴对称横坐标为相反数,纵坐标相同(2)两点关于x轴对称横坐标相同,纵坐标为相反数(3)两点关于原点对称横坐标互为相反数,纵坐标互为相反数这道题能引发我们得出什么样的结论呢?(答案不固定,本教案只给出参考答案).我们可以这样说:对于直角坐标平面上的任意两点,如果它们的横坐标相反,纵坐标相同,则它们关于y轴对称;如果它们横坐标相同,纵坐标相反,则它们关于x轴对称;如果题目的横、纵坐标都相反,则它们关于原点对称,反之亦然.以上的规律可以解决很多问题,比如,已知点(-10,3).求这个点关于x轴、y轴,及原点的对称点的坐标.答:(-10,-3);(10,3);(10,-3).你想过这其中的道理吗?如两点关于y轴对称.根据轴对称的定义,这两点的连线垂直于y 轴,且到y轴的距离相等.所以这两点的连线就平行于x轴,它们的纵坐标相同,对称点在y轴的两点.到y轴的距离相等.即这两点的横坐标相反.类似地,可以组织学生进行其它两种情况的讨论.这个规律只要求学生能理解,并不要求严格地证明.通过学生的主动探索,复习了对称的概念,体验了数形的结合.亲身经历了数学知识的形成过程.也增强了学生的自信心,激发了他们互动探索的精神.小结:本节我们讨论了三道例题,这三道题都是大家共同讨论,通过观察归纳总结探索出的规律,这也是数学知识产生的一种过程.而且每道题的解决都离不开数形结合的思想.而且也能逐步体会出平面内的点与有序实数对之间的一一对应关系.这一部分知识为今后的学习打下了基础,希望大家能真正地理解并能熟练应用.作业:习题13.1B组的1-3.下载本文Doc格式文档查看更多与本文相关内容 >>微信QQ空间微博腾讯微博人人网【下载本文】觉得不错,别忘记分享哦推荐内容唐诗三百首宋词三百首三字经弟子规百家姓千字文增广贤文歇后语大全成语大全周公解梦经典语录繁体字转换器2015年工作总结2016年工作计划年终工作总结述职报告数学教案-平面直角坐标系相关文章:数学教案-由一个二元一次方程和一个二元二次方程组成的方程组数学教案-二次函数y=ax2+bx+c 的图象数学教案-方差众数与中位数方差用计算器求平均数、标准差与方差频率分布正弦和余弦人教版平面直角坐标系教学反思平面直角坐标系是学生从数过渡到形的基础,属于数学建模中的几何建模,因此为了让学生更好的理解这个抽象的概念,教学从寻宝游戏开始,学生们从所设置的练习入手,在平面中描述出寻宝路线,以题带出知识,如果宝藏在地图以外的位置怎么办,由图的多变换来设置问题串,进入本节的学习。
《平面直角坐标系 》教案 (公开课)2022年人教版数学
7.1.2 平面直角坐标系[教学目标]1、认识平面直角坐标系的意义;2、理解点的坐标的意义,在给定的直角坐标系中,会根据坐标描出点的位置;3、会用坐标表示点,能建立适当的直角坐标系,描述物体的位置.[教学重点与难点]1、重点:平面直角坐标系和点的坐标;描出点的位置和建立坐标系.2、难点:根据点的位置写出点的坐标;适当地建立坐标系.[教学过程]一、复习导入1、数轴上的点可以用什么来表示?可以用一个数来表示,我们把这个数叫做这个点的坐标.[投影1]如图,点A的坐标是2,点B的坐标是-3.C坐标为-4的点在数轴上的什么位置?在点C处.这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了.类似于利用数轴确定直线上点的位置,能不能找到一种方法来确定平面内的点的位置呢?2、写出图中点A、B、C、D、E的坐标..由点的位置可以写出它的坐标,反之,点的坐标怎样确定点的位置呢?二、平面直角坐标系我们知道,平面内的点的位置可以用有序数对来表示,为此,我们可以在平面内画出两条互相垂直、原点重合的数轴组成直角坐标系来表示.如图,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点.有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.探究:如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y轴是哪条线?y轴是AD所在直线.(2)写出正方形的顶点A、B、C、D的坐标.A(0,0),B(0,6),C(6,6),D(6,0).(3)请你另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下.二、点的坐标如图,由点A 分别向x 轴和y 轴作垂线,垂足M 在x 轴上的坐标是3,垂足N 在y 轴上的坐标是4,我们说A 点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A 的坐标,记作A(3,4).类似地,请你根据课本41面图6.1-4,写出点B 、C 、D 的坐标.B(-3,4)、C(0,2)、D(-3,0).注意:写点的坐标时,横坐标在前,纵坐标在后.三、四个象限建立了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、 Ⅳ四个局部,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限.[投影2]做一做:课本43面练习1题.思考:1、原点O 的坐标是什么?x 轴和y 轴上的点的坐标有什么特点?原点O 的坐标是(0,0),x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0.2、各象限内的点的坐标有什么特点?第一象限上的点,横坐标为正数,纵坐标为正数;第二象限上的点,横坐标为负数,纵坐标为正数;第三象限上的点,横坐标为负数,纵坐标为负数;第四象限上的点,横坐标为正数,纵坐标为负数.四、课堂练习1、点A(-2,-1)与x 轴的距离是________,与y 轴的距离是________.注意:纵坐标的绝对值是该点到x 轴的距离,横坐标的绝对值是该点到y 轴的距离.2、点A(3,a)在x 轴上,点B(b,4)在y 轴上,那么a=______,b=______.3、点M(-2,3)在第 象限,那么点N(-2,-3)在____象限.,点P(2, -3) 在____象限,点Q(2, 3) 在____象限.五、课堂小结1、平面直角坐标糸及有关概念;2、、一个点,如何确定这个点的坐标.3、坐标轴上的点和象限点的特点.六、布置作业〔4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
人教版七年级数学下册教案 7-1-2 平面直角坐标系
7.1.2 平面直角坐标系一、教学目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系.2.理解各象限内及坐标轴上点的坐标特征.3.用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐标的符号确定点的位置.【过程与方法】1.经历建立直角坐标系的过程,进而理解平面直角坐标系的意义.2.通过分析具体特例得到特殊位置点的坐标特征以及有特殊位置关系的点的坐标的特征.3.通过小组学习等活动经历建立坐标系的过程,进一步提高学生应用已有知识与技能的基础上形成新的知识,获得新的技能,以提高解决数学问题的能力.【情感态度与价值观】1.让学生体会到x轴、y轴的关系,进而明白事物之间是相互联系的这一辩证思想,培养耐心细致的良好学习作风.2通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.二、课型新授课三、课时1课时四、教学重难点【教学重点】平面直角坐标系的意义,由坐标找点,由点找坐标.【教学难点】平面直角坐标系内的点与有序数对一一对应的关系.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)神舟九号、七号、六号和五号等卫星发射成功,圆了几代中国人的梦想,让全中国人为之骄傲和自豪!但是你们知道我们的科学家是怎样迅速地找到返回舱着陆的位置的吗?这就要依赖于GPS——卫星全球定位系统”.大家一定觉得很神奇吧!学习了今天的内容,你就会明白其中的奥妙.(二)探索新知1.出示课件4-9,探究平面直角坐标系的有关概念教师问:如何确定直线上点的位置?学生答:在直线上规定了原点、正方向、单位长度就构成了数轴.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2.教师问:知道数轴上一点的坐标,能确定这个点的位置吗?学生答:知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如在数轴上,坐标为2的点是B.教师问:如何确定平面上点的位置?如下图:小强、小红、小明家的位置?师生一起解答:利用两个数轴,使这两条数轴互相垂直,可以确定位置,如下图所示:教师问:周末小明和小丽约好一起去图书馆学习.小明告诉小丽,图书馆在中山北路西边50米,人民西路北边30米的位置.小丽能根据小明的提示从左图中找出图书馆的位置吗?学生答:小丽能根据小明的提示从左图中找出图书馆的位置.教师问:小明是怎样描述图书馆的位置的?学生答:利用方向和距离具体确定图书馆的位置.教师问:小明可以省去“西边”和“北边”这几个字吗?学生答:不能,省去“西边”和“北边”这几个字就不能准确找到图书馆了.教师问:如果小明说图书馆在“中山北路西边、人民西路北边”,你能找到吗?学生答:不能找到.教师问:如果小明只说在“中山北路西边50米”,或只说在“人民西路北边30米”,你能找到吗?学生答:不能.学生问:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,能得到什么呢?教师答:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,这样就形成了一个平面直角坐标系.总结点拨:(出示课件10)教师问:在平面直角坐标系中,能用有序数对来表示图中点A的位置吗?学生答:由点A分别向 x轴,y轴作垂线,垂足M在 x轴上的坐标是3,垂足N在 y 轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.学生问:写有序数对要注意什么呢?在平面内画两条互相垂直的数轴,构成平面直角坐标系.竖直的叫y轴或纵轴;y轴取向上为正方向教师答:注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.教师问:如图所示,在平面直角坐标系中,点B,C,D的坐标分别是什么?教师依次展示学生答案:学生1答:B(-2,3).学生2答:C(4,-3).学生3答:D(-1,-4).教师总结如下:B(-2,3),C(4,-3),D(-1,-4).教师问:如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?教师依次展示学生答案:学生1答:A(4,0).学生2答:B(-2,0).学生3答:C(0,5).学生4答:D(0,-3).教师总结如下:A(4,0),B(-2,0),C(0,5),D(0,-3).教师问:观察上面点的坐标,你发现x轴和y轴上的点的坐标有什么特点?一般如何记录呢?教师依次展示学生答案:学生1答:x轴上的点的纵坐标为0,一般记为(x,0).学生2答:y轴上的点的横坐标为0,一般记为(0,y).教师总结如下:① x轴上的点的纵坐标为0,一般记为(x,0);② y轴上的点的横坐标为0,一般记为(0,y);教师问:观察上面点的平面直角坐标系,你发现原点的坐标有什么特点?一般如何记录呢?学生答:原点O的坐标是(0,0).一般记为(0,0).考点1:确定平面直角坐标系内点的坐标写出下图中的多边形ABCDEF各个顶点的坐标.(出示课件15)师生共同讨论后学生解答:教师依次展示学生答案:学生1答:A(-2,0).学生2答:B(0,-3).学生3答:C(3,-3).学生4答:D(4,0).学生5答:E(3,3).学生6答:F(0,3).教师总结如下:解:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3)出示课件16,学生自主练习后口答,教师订正.3.出示课件17-20,探究平面直角坐标系内点的坐标性质教师问:平面直角坐标系把平面分为了四部分,我们该如何正确识记每一部分呢?学生思考后,师生一同作答:在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域.分别称为第一,二,三,四象限.如下图所示.(出示课件17)学生问:那么x轴和y轴上的点属于哪个象限呢?教师答:坐标轴上的点不属于任何一个象限.教师问:观察坐标系,填写各象限内的点的坐标的特征:教师依次展示学生答案:学生1答:如下图所示:学生2答:如下图所示:学生3答:如下图所示:学生4答:如下图所示:教师总结如下:如下图所示:教师问:不看平面直角坐标系,你能迅速说出A(4,5),B(-2,3),C(-4,-1)D(2.5,-2),E(0,-4)所在的象限吗?教师依次展示学生答案:学生1答:A(4,5)所在的象限是第一象限.学生2答:B(-2,3)所在的象限是第二象限.学生3答:C(-4,-1)所在的象限是第三象限.学生4答:D(2.5,-2)所在的象限是第四象限.学生5答:E(0,-4)在y轴上.教师总结如下:A(4,5)所在的象限是第一象限;B(-2,3)所在的象限是第二象限;C(-4,-1)所在的象限是第三象限; D(2.5,-2)所在的象限是第四象限;E(0,-4)在y轴上.教师问:你的方法又是什么?学生答:根据点的坐标的符号确定点所在的象限.教师问:观察坐标系,填写坐标轴上的点的坐标的特征:学生答:如下表所示:教师问:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3), C(-4,0),E(0,-4),O(0,0)所在的位置吗?教师依次展示学生答案:学生1答:A(4,0)在x轴的正半轴.学生2答:B(0,3)在y轴的正半轴.学生3答:C(-4,0)在x轴的负半轴.学生4答:E(0,-4)在y轴的负半轴.学生5答:O(0,0)在原点.教师总结如下:A(4,0)在x轴的正半轴; B(0,3)在y轴的正半轴;C(-4,0)在x轴的负半轴;E(0,-4)在y轴的负半轴;O(0,0)在原点.教师问:你的确定点的方法又是什么?学生答:根据点的坐标值和符号,在x轴上y的值为0,在y轴上x的值为0,在原点x、y的值都为0.教师问:想一想:坐标平面内的点与有序数对(坐标)是什么关系?教师依次展示学生答案:学生1答:对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应.学生2答:对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.教师总结如下:类似数轴上的点与实数是一一对应的.我们可以得出:①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.考点2:在平面直角坐标系内确定已知点在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).(出示课件21)学生独立思考后,师生共同解答.解:如图,先在x 轴上找到表示5的点,再在y 轴上找出表示4 的点,过这两个点分别作x 轴,y 轴的垂线,垂线的交点就是点A. 类似地,其他各点的位置如图所示.点A 在第一象限,点B 在第二象限,点C在第三象限,点D在第四象限.总结点拨:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.出示课件22,学生自主练习后口答,教师订正.考点3:利用平面直角坐标系内点的坐标确定字母的值已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.(出示课件23)师生共同分析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0.解得m>2.答案:m>2.师生共同归纳:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.出示课件24,学生自主练习,教师给出答案。
初中数学_平面直角坐标系1教学设计学情分析教材分析课后反思
《平面直角坐标系1》教学设计【学习目标】1、掌握平面直角坐标系的有关概念,了解点的坐标的意义。
2、认识并能正确画出平面直角坐标系;会根据坐标描出点的位置,由点的位置写出它的坐标。
【教学重点与难点】教学重点:平面直角坐标系和点的坐标.教学难点:在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点。
【教学方法】通过创设问题情境,引出要研究的问题,以自学的方式让学生掌握本节课的基础知识.又通过简单应用,让学生掌握了平面直角坐标系的两个基本问题:①已知点求坐标②已知坐标描点.【教学过程】小热身:从前往后依次为第1行、第2行、第3行…第6行,从门口向里依次为第1列、第2列、第3列…第6列。
请第4行同学起立。
请第4列同学起立。
由一个数据不能准确确定一位同学的位置。
请2位同学起立,说出自己的位置。
引出需要两个数据,也就是行数与列数。
一位同学就是行与列的交点。
把同学们看做平面内的点,这些点的坐标如何表示,导入课题《平面直角坐标系》。
一、回顾数轴:(一)画数轴(二)数轴三要素(三)数轴上的点与实数是一一对应的。
找到数轴上的A、B两点说出它表示哪些数。
在数轴上方找一个点C问题1、这个点C 还能仅仅用这一条数轴上的数来表示吗?生:不能问题2、要想表示出点C的位置还需要添加什么?生:另外一条数轴。
(设计说明:由学生熟悉的数轴出发,给出数轴上点的坐标的定义,建立点与坐标的对应关系,从而得到确定直线上点的位置的方法.而平面内点的坐标是根据数轴上的点的坐标定义的,因此本节从数轴引入,使学生顺利地实现由一维到二维的过渡。
)二、定义:在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
三个要点:1、两条数轴;2、互相垂直;3、公共原点。
师展示:平面直角坐标系的画法并解释坐标轴,原点,坐标平面等相关概念。
学生画平面直角坐标系。
师巡视指错。
三、由点写有序实数对:建立平面直角坐标系以后,平面内的点M如何表示?师展示画法并总结口诀。
北师大版八年级数学上册:3.2《平面直角坐标系》教案
北师大版八年级数学上册:3.2《平面直角坐标系》教案一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节课主要让学生了解平面直角坐标系的定义、特点及应用,掌握坐标轴、坐标点、坐标值等基本概念,并能够利用坐标系解决一些实际问题。
教材通过引入实际情境,激发学生的学习兴趣,引导学生主动探究,培养学生的空间观念和数学思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数等基础知识,具备了一定的逻辑思维能力和探究能力。
但部分学生对坐标系的概念和应用可能还比较陌生,因此在教学过程中,需要关注这部分学生的学习需求,通过具体实例和操作活动,帮助他们理解和掌握平面直角坐标系的相关知识。
三. 教学目标1.了解平面直角坐标系的定义、特点及应用。
2.掌握坐标轴、坐标点、坐标值等基本概念。
3.能够利用坐标系解决一些实际问题。
4.培养学生的空间观念和数学思维能力。
四. 教学重难点1.重点:平面直角坐标系的定义、特点及应用。
2.难点:坐标轴、坐标点、坐标值等基本概念的理解和运用。
五. 教学方法1.情境导入:通过实际情境引发学生对坐标系的兴趣,激发学生的学习热情。
2.自主探究:引导学生通过观察、操作、思考,自主发现和总结坐标系的基本概念和性质。
3.合作交流:学生进行小组讨论,分享学习心得,互相启发,共同进步。
4.实例分析:通过具体实例,让学生体会坐标系在解决实际问题中的应用价值。
5.练习巩固:设计适量练习题,让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作精美、清晰的课件,辅助教学。
2.教学素材:准备一些实际问题和相关图片,用于实例分析。
3.练习题:设计一些具有针对性的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实际情境,如商场购物时的优惠券坐标系,引导学生关注坐标系在生活中的应用,激发学生的学习兴趣。
提问:你们知道坐标系是什么吗?坐标系有什么作用?2.呈现(10分钟)呈现平面直角坐标系的定义、特点及应用,引导学生初步认识坐标系。
《平面直角坐标系》 教学设计
《平面直角坐标系》教学设计一、教学目标1、知识与技能目标理解平面直角坐标系的有关概念,能画出平面直角坐标系。
在给定的平面直角坐标系中,能由点的位置写出坐标,由坐标描出点的位置。
2、过程与方法目标经历平面直角坐标系的建立过程,体会数学中的数形结合思想。
通过观察、操作、交流等活动,提高学生的数学思维能力和合作交流能力。
3、情感态度与价值观目标让学生感受数学与生活的密切联系,激发学生学习数学的兴趣。
培养学生勇于探索、敢于创新的精神。
二、教学重难点1、教学重点平面直角坐标系的概念。
点的坐标的确定与表示。
2、教学难点理解坐标平面内的点与有序实数对的一一对应关系。
三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、情境导入展示一张电影院的座位图,提问学生如何准确地找到自己的座位。
引导学生思考需要通过行数和列数来确定位置。
接着,展示一张地图,提问如何确定一个地点的位置。
从而引出本节课的主题——平面直角坐标系。
2、讲授新课(1)平面直角坐标系的概念教师在黑板上画出两条互相垂直的数轴,水平的数轴称为 x 轴(或横轴),取向右为正方向;竖直的数轴称为 y 轴(或纵轴),取向上为正方向。
两轴的交点 O 称为原点。
这样就建立了一个平面直角坐标系。
(2)点的坐标教师在平面直角坐标系中任意选取一个点 P,过点 P 分别向 x 轴和y 轴作垂线,垂足分别为 M 和 N。
点 M 在 x 轴上对应的数为 a,点 N在 y 轴上对应的数为 b,则有序实数对(a,b)叫做点 P 的坐标。
(3)象限两坐标轴把平面分成四个部分,每个部分称为象限。
坐标轴上的点不属于任何象限。
第一象限:x > 0,y > 0;第二象限:x < 0,y > 0;第三象限:x < 0,y < 0;第四象限:x > 0,y < 0。
3、巩固练习(1)教师在平面直角坐标系中给出一些点,让学生写出它们的坐标。
(2)给出一些坐标,让学生在平面直角坐标系中描出相应的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、在给定的直角坐标系中,由点的位置写出它的坐标。
3、能适当建立直角坐标系,写出直角坐标系中有关点的坐标。
4、横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。
5、坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。
6、各个象限内的点的坐标特征是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)。
作业61页第1题
师生共同总结本课主要内容
加深巩固
本Байду номын сангаас内容
七、板书设计
3.2平面直角坐标系
1、平面直角坐标系概念
2、平面内点的坐标:横坐标在前,纵坐标在后
教学过程
1、教学流程
创设情境,引入主题——探索新知,尝试发现——例题分析,探索归纳—尝试应用
当堂训练——课堂小结,布置作业
2、教学过程设计
教学环节
教师活动
学生活动
设计意图
一、
创设情境、
引入主题
1、现在把分成两组,男生、女生各一组,来做个游戏。规则:将教师进门的第一行第一列位置记为(1,1),那么老实随意说出(5,3)等数,同学们举手抢答该位置所坐学生的名字,哪个组回答对的次数多哪组胜出。
学生思考并回答问题
学生讨论交流,达成共识,然后每组由一名学生代表发言,其他学生补充
通过游戏引入,以激发学习兴趣,为顺利进入新课作基础
让学生自学后分小组进行讨论交流,培养学生的自学能力
二、探索新知、尝试发现
1、教师给出自学提纲,让学生展开自学:
(1)什么是数轴和平面直角坐标?
(2)两条坐标轴如何称呼?方向如何确定?
(3)坐标轴分平面四个部分,分别叫什么?
(4)什么是点的坐标?平面的点的坐标有几部分?
(5)坐标轴上的点属于什么象限?
2、通过学习明确平面坐标系、横轴、纵轴、原点、象限等概念
3、通过两个特殊点的位置给出点的坐标的概念。
4、思考讨论各个象限内的坐标有何特点?
1、了解平面直角坐标系的有关概念。
2、了解点的坐标的概念3、学生思考总结P(a,b)在第一象限a>0,b>0,在第二象a<0,b>0,在第三象限a<0,b<0,在第四象限a>0,b<0
这部分以老师讲授为主,使学生了解有关概念
三、
例题分析
探索归纳
教师给出例1,留给学生尝试完成,适时作以指导
例1、写出图中的多边形ABCDEF各各顶点的坐标。
解后反思:上图中各定点的坐标是否永远不变?你能举个例子吗?
结合例1想一想:
1、找出A、B、D、F的坐标并总结坐标轴上点的坐标有什么特点?
学生思考,讨论得出坐标轴上的点的坐标中至少又一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0。
通过讨论交流,发现规律,获得新知
四、
尝试应用
当堂训练
1、写出图中的平行四边形ABCD各个顶点的坐标。
在上图中,线段AD的位置有什么特征?点A与点D的纵坐标相同吗?线段BC位置有什么特征?点C与点B的纵坐标相同吗?
学生自己完成,并由一名学生讲述解答过程
深化目标,及时巩固
五、
课堂小结、布置作业
教师总结学生本课应掌握的内容:
2、看图回答问题
如图是某市旅游景点的示意图
(1)你是怎样确定各个景点位置的?
(2)“大成殿”在“中心广场”西、南各多少个格?
(3)“碑林”在“中心广场”东、北各多少个格?
(4)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右和向上为正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?