等温变化练习题
气体的等温变化练习
1.(2012·上海)如图,长L=100cm,粗细均匀的玻璃管一端封闭。
水平放置时,长L0=50cm的空气柱被水银柱封住,水银柱长h=30cm。
将玻璃管缓慢地转到开口向下和竖直位置,然后竖直插入水银槽,插入后有△h=15cm的水银柱进入玻璃管。
设整个过程中温度始终保持不变,大气压强p0=75cmHg。
求:(1)插入水银槽后管内气体的压强p;(2)管口距水银槽液面的距离H。
答案:(1)设当转到竖直位置时,水银恰好未流出,由玻意耳定律p=p0L/l=53.6cmHg由于p+ρgh=83.6cmHg,大于p0,水银必有流出设管内此时水银柱长为x,由玻意耳定律p0SL0=(p0-ρgh )S (L -x ),解得x=25cm 设插入槽内后管内柱长为L',L'=L-(x+△h )=60cm插入后压强p=p0L0/L'=62.5cmHg(2)设管内外水银面高度差为h'h'=75-62.5=12.5cm管口距槽内水银面距离距离H=L-L'-h'=27.5cm2.(2012·海南)如图,一气缸水平固定在静止的小车上,一质量为m、面积为S的活塞将一定量的气体封闭在气缸内,平衡时活塞与气缸底相距L。
现让小车以一较小的水平恒定加速度向右运动,稳定时发现活塞相对于气缸移动了距离d。
已知大气压强为p0,不计气缸和活塞间的摩擦,且小车运动时,大气对活塞的压强仍可视为p0,整个过程中温度保持不变。
求小车的加速度的大小。
答案:【解析】设小车加速度大小为a,稳定时气缸内气体的压强为,活塞受到气缸内外气体的压力分别为,由牛顿第二定律得:,小车静止时,在平衡情况下,气缸内气体的压强应为,由波伊尔定律得:式中,联立解得:3.(2008·宁夏)一定质量的理想气体被活塞封闭在可导热的气缸内,活塞相对于底部的高度为h,可沿气缸无摩擦地滑动。
取一小盒沙子缓慢地倒在活塞的上表面上。
(完整word版)等温变化练习题
第一节气体的等温变化练习题(一)1、如图所示,注有水银的U型管,A管上端封闭,A、B两管用橡皮管相通.开始时两管液面相平,现将B管缓慢降低,在这一过程中,A管内气体体积____,B管比A管液面____.2.在一端封闭、粗细均匀的玻璃管内,用水银封闭了一部分空气,当玻璃管开口向上而处于静止时,管内空气柱长为L,当玻璃管自由下落时,空气柱长度将__________。
3、如图1所示,圆柱形气缸活塞的横截面积为S,下表面与水平面的夹角为α,重量为G。
当大气压为p0,为了使活塞下方密闭气体的体积减速为原来的1/2,必须在活塞上放置重量为多少的一个重物(气缸壁与活塞间的摩擦不计)4.一个贮气筒内装有30L一个大气压的空气,现在要使筒内压强增为5个大气压,则应向筒内再打入一个大气压的空气的体积。
(设此过程中温度保持不变)5、某个容器的容积是10L,所装气体的压强是20×105Pa。
如果温度保持不变,把容器的开关打开以后,容器里剩下的气体是原来的百分之几?设大气压是1.0×105Pa。
6.容积为20L的钢瓶,充满氧气后,压强为150atm,打开钢瓶的阀门,把氧气分装到每个容积为5L的小瓶中去,原来小瓶是真空的,装至压强为10atm时为止。
假设在分装过程中不漏气,并且温度不变,那么最多能分装多少瓶氧气?7、容器A的容积是10L,用一根带阀门的细管,与容器B相连。
开始时阀门关闭, A内充有10atm的空气,B是真空。
后打开阀门把A中空气放一些到B中去,当A内压强降到4atm 时,把阀门关闭,这时B内压强是3atm。
求容器B的容积。
假设整个过程中温度不变。
8、将一端封闭的均匀直玻璃管开口向下,竖直插入水银中,当管顶距槽中水银面8cm时,管内水银面比管外水银面低2cm.要使管内水银面比管外水银面高2cm,应将玻璃管竖直向上提起多少厘米?已知大气压强p0支持76cmHg,设温度不变.9、均匀U形玻璃管竖直放置,用水银将一些空气封在A管内,当A、B两管水银面相平时,大气压强支持72cmHg.A管内空气柱长度为10cm,现往B管中注入水银,当两管水银面高度差为18 cm时,A管中空气柱长度是多少?注入水银柱长度是多少?10、如图所示,长为1m,开口竖直向上的玻璃管内,封闭着长为15cm的水银柱,封闭气体的长度为20cm,已知大气压强为75cmHg,求:(1)玻璃管水平放置时,管内气体的长度。
高中物理选修3气体的等温变化计算题专项训练
高中物理选修3气体的等温变化计算题专项训练姓名:__________ 班级:__________考号:__________一、计算题(共15题)1、如图所示,1、2、3为p-V图中一定量理想气体的三个状态,该理想气体由状态1经过程1-3-2到达状态2。
试利用气体实验定律证明:2、用打气筒给自行车打气,设每打一次可打入压强为一个大气压的空气125cm3。
自行车内胎的容积为2.0L,假设胎内原来没有空气,那么打了40次后胎内空气压强为多少?(设打气过程中气体的温度不变)3、某地区空气污染严重,一位同学受筒装纯净水的启发,提出用桶装的净化压缩空气供气。
设某人每分钏呼吸16次,每次吸入1 atm的净化空气500mL,而每个桶能装10 atm的净化空气20L,假定这些空气可以全部被吸收,设温度不变,估算每人每天需吸多少桶净化空气。
4、一水银气压计中混进了空气,因而在27℃,外界大气压为758毫米汞柱时,这个水银气压计的读数为738毫米汞柱,此时管中水银面距管顶80毫米,当温度降至-3℃时,这个气压计的读数为743毫米汞柱,求此时的实际大气压值为多少毫米汞柱?5、如图所示,装有水银的细U形管与巨大的密封气罐A相连,导热性能均良好,左端封闭有一段空气柱,气温为-23℃时,空气柱长为62cm,右端水银面比左端低40cm.当气温升到27℃时,U形管两边高度差增加了4cm,则气罐内气体在-23℃时的压强为是多少cmHg?6、如图所示,一定质量的理想气体从状态A变化到状态B,再由状态B变化到状态C.已知状态A的温度为300 K.①求气体在状态B的温度;②由状态B变化到状态C的过程中,气体是吸热还是放热?简要说明理由.7、如图a所示,水平放置的均匀玻璃管内,一段长为h=25cm的水银柱封闭了长为L=20cm 、温度为t0=27℃的理想气体,大气压强P=75cmHg。
将玻璃管缓慢地转过90o角,使它开口向上,并将封闭端浸入热水中(如图b),待稳定后,测得玻璃管内封闭气柱的长度L1=17.5cm,(1)此时管内封闭气体的温度t1是多少?(2)若用薄塞将管口封闭,此时水银上部封闭气柱的长度为。
气体的等温变化(习题)
气体的等温变化一、选择题1.关于温度有如下说法:①物体的温度不可能达到绝对零度;②随着低温技术的发展,绝对零度是可能达到的;③人的正常体温约310 K;④一个物体的温度由10℃升高到20℃,与它从288 K升高到298 K所升高的温度是相同的.其中正确的是().A.①④B.②④C.①③④D.②③④2.封闭在容器中的气体的压强().A.是由气体重力产生的B.是由气体分子间相互作用(引力和斥力)产生的C.是由大量分子频繁碰撞器壁产生的D.当充满气体的容器自由下落时,由于失重,气体压强将减小为零3.著名的马德堡半球实验可简化成如图所示的示意图.设两个半球壳拼成的球形容器的半径为R,大气压强为p,则要使这两个半球壳分离,施加的拉力,至少为().A.4πR2p B.2πR2p C.πR2p D.12πR2p4.一定质量的气体发生等温变化时,若体积增大为原来的2倍,则压强变为原来的()倍.A.2 B.1 C.12D.145.一定质量的气体在温度保持不变时,压强增大到原来的4倍,则气体的体积变为原来的()倍.A.4 B.2 C.12D.146.如图所示,D→A→B→C表示一定质量的某种气体状态变化的一个过程,则下列说法正确的是().A.D→A是一个等温过程B.A→B是一个等温过程C.A与B的状态参量相同D.B→C体积减小,压强减小,温度不变7.如图所示是一定质量的某种气体状态变化的p-V图象,气体由状态A变化至状态B 的过程中,气体分子平均速率的变化情况是().A.一直保持不变B.一直增大C.一直减小D.先增大后减小8.如图所示,一根一端封闭的玻璃管开口向下插入水银槽中,内封一定质量的气体,管内水银面低于管外,在温度不变时,将玻璃管稍向下插入一些,下列说法正确的是().A.玻璃管内气体体积减小B.玻璃管内气体体积增大C.管内外水银面高度差减小D.管内外水银面高度差增大9.如图所示,上端封闭的连通器A、B、C三管中水银面相平,三管横截面积的关系是S A>S B>S C.管内水银上方的空气柱长度为L A<L B<L C.若从下方通过阀门K流出少量水银(保持三管中均有水银),则三管中水银面的高度关系是().A.A管中水银面最高B.C管中水银面最高C.一样高D.条件不足,无法确定10.如图所示,有一段12 cm长的汞柱,在均匀玻璃管中封住一定质量的气体,若开口向上将玻璃管放置在倾角为30°的光滑斜面上,在下滑过程中被封气体的压强为(大气压强p 0=76 cmHg )( ).A .76 cmHgB .82 cmHgC .88 cmHgD .70 cmHg11.一定质量的气体在等温变化的过程中,它的下列哪些物理量将发生变化?( )A .气体的平均速率B .单位体积内的分子数C .气体的压强D .分子总数12.如图所示,某种自动洗衣机进水时,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量,设温度不变,洗衣缸内水位升高,则细管中被封闭的空气( ).A .体积不变,压强变小B .体积变小,压强变大C .体积不变,压强变大D .体积变小,压强变小二、填空题13.如图所示,在左端封闭的U 形管中,用水银封住了A 、B 两段空气柱,外界大气压强为76 cmHg ,则p A =________,p B =________。
新教材人教版物理气体的等温变化习题含答案
气体的等温变化一、单选题1.一定质量的理想气体状态发生变化,满足玻意耳定律,若气体压强增大,下列说法正确的是( ) A .分子的平均动能增大B .分子的平均动能减小C .气体的内能增大D .分子之间的平均距离变小2.如图所示,活塞质量为m ,气缸质量为M ,通过弹簧吊在空中,气缸内封住一定质量的空气,气缸内壁与活塞无摩擦,活塞截面积为S ,大气压强为0p ,则( )A .气缸内空气的压强等于0p +mg SB .气缸内空气的压强等于0Mg p SC .内外空气对气缸的作用力大小为(M +m )gD .内外空气对活塞的作用力大小为mg3.如图所示,把装有气体的上端封闭的玻璃管竖直插入水银槽内,管内水银面与槽内水银面的高度差为h ,当玻璃管缓慢竖直向下插入一些,问h 怎样变化?气体体积怎样变化?( )A .变小,变小B .变大,变小C .不变,不变D .变小,变大4.如图,在水平放置的刚性气缸内用活塞封闭两部分气体A 和B ,质量一定的两活塞用杆连接。
气缸内两活塞之间保持真空,活塞与气缸壁之间无摩擦,左侧活塞面积较大,A 、B 的初始温度相同。
略抬高气缸左端使之倾斜,再使A 、B 升高相同温度,气体最终达到稳定状态。
若始末状态A 、B 的压强变化量△P A 、△P B均大于零,对活塞压力的变化量△F A、△F B,则()A.B体积增大B.A体积减小C.△F A>△F B D.△P A<△P B5.一个篮球的容积是3L,用打气筒给这个篮球打气,每打一次都把体积为300mL、压强与大气压相同的气体打进球内。
如果打气前篮球已经是球形,并且里面的压强与大气压相等,则打了10次后,篮球内部空气的压强是大气压的几倍(整个打气过程篮球内温度不变)()A.1B.1.5C.2D.2.56.如图所示,一定质量的理想气体由状态A变化到状态B,该过程中气体的密度()A.先变大后变小B.先变小后变大C.一直变大D.一直变小7.容积V=20L的钢瓶充满氧气后,压强为p=30atm,打开钢瓶阀门,把氧气分装到容积为V'=5L的小瓶子中去。
2.2气体的等温变化 同步练习(word版含答案)
2.2气体的等温变化同步练习2021—2022学年高中物理人教版(2019)选择性必修第三册一、选择题(共15题)1.物理学是一门建立在实验基础上的学科,很多定律是可以通过实验进行验证的。
下列定律中不可以通过实验直接验证的是()A.牛顿第一定律B.牛顿第二定律C.万有引力定律D.玻意耳定律2.如图所示,一端封闭,一端开口截面积相同的U形管AB,管内灌有水银,两管内水银面高度相等,管A内封有一定质量的理想气体,气体压强为72 cmHg。
今将开口端B接到抽气机上,抽尽B管上面的空气,结果两水银柱产生18 cm的高度差,则A管内原来空气柱长度为()A.18 cm B.12 cm C.6 cm D.3 cm3.如图所示,在柱形容器中装有部分水,容器上方有一可自由移动的活塞.容器水面浮有一个木块和一个一端封闭、开口向下的玻璃管,玻璃管中有部分空气,系统稳定时,玻璃管内空气柱在管外水面上方的长度为a,空气柱在管外水面下方的长度为b,水面上方木块的高度为c,水面下方木块的高度为d.现在活塞上方施加竖直向下、且缓缓增大的力F,使活塞下降一小段距离(未碰及玻璃管和木块),下列说法中正确的是()A .d 和b 都减小B .只有b 减小C .只有a 减小D .a 和c 都减小4.如图所示,开口向下的竖直玻璃管的末端有一段水银柱,当玻璃管从竖直位置转过o 30时,开口端的水银柱将( )A .沿着管向上移动一段距离B .从管的开口端流出一部分C .不移动D .无法确定其变化情况5.用打气筒将压强为1atm 的空气打进自行车胎内,如果打气筒容积3300cm V ∆=,轮胎容积V =3L ,原来压强 1.5atm p =。
现要使轮胎内压强变为 3.5atm p '= ,问用这个打气筒要打气几次(设打气过程中空气的温度不变)( )A .25次B .20次C .15次D .10次6.如图所示,下端用橡皮管连接的两根粗细相同的玻璃管竖直放置,右管开口,左管内被封闭一段气体,水银面比右管低,现保持左管不动,为了使两管内水银面一样高,下面采取的措施可行的是( )A .减小外界气压B .从U 形管的右管向内加水银C .把U 形管的右管向上移动D .把U 形管的右管向下移动7.如图所示,密封的U 形管中装有水银,左、右两端都封有空气,两水银面的高度差为h 把U 形管竖直浸没在热水中,高度差将( )A.增大B.减小C.不变D.两侧空气柱的长度未知,不能确定8.如图所示,一定质量的理想气体由状态A变化到状态B,该过程中气体的密度()A.先变大后变小B.先变小后变大C.一直变大D.一直变小9.一端开口,另一端封闭的玻璃管内用水银封住一定质量的气体,保持温度不变,将管子以封闭端为圆心,从水平位置逆时针转到开口向上的竖直位置过程中,如图所示,正确描述气体状态变化的图象是()。
气体等温测试题及答案
气体等温测试题及答案一、选择题1. 气体等温过程中,下列哪项物理量保持不变?A. 体积B. 温度C. 压强D. 内能2. 根据理想气体状态方程 PV=nRT,当气体等温变化时,下列哪个关系成立?A. P1V1 = P2V2B. P1T1 = P2T2C. V1/V2 = P2/P1D. P1/V1 = P2/V2二、填空题3. 在等温过程中,气体的_______保持不变。
4. 如果一个气体在等温过程中体积增大了,那么其压强将会_______。
三、简答题5. 解释什么是气体的等温过程,并给出一个日常生活中的实例。
四、计算题6. 一个气体样本在等温过程中,初始压强为2 atm,体积为2 L。
如果压强增加到3 atm,求最终体积。
五、论述题7. 讨论在气体等温过程中,为什么气体的内能保持不变,并解释这与理想气体状态方程的关系。
答案:一、选择题1. B2. A二、填空题3. 温度4. 减小三、简答题5. 气体的等温过程是指在气体体积和压强发生变化时,其温度保持不变的物理过程。
例如,当一个充气气球在室温下被缓慢放气时,气球内气体的温度与周围环境温度保持一致,这就是一个等温过程。
四、计算题6. 根据等温过程的公式 PV = 常数,我们可以计算最终体积 V2:V2 = (P1 * V1) / P2 = (2 atm * 2 L) / 3 atm = 4/3 L ≈1.33 L五、论述题7. 在气体等温过程中,气体的内能保持不变,因为内能主要由气体分子的动能决定,而温度是分子平均动能的标志。
由于温度不变,分子的平均动能也不变,因此内能保持不变。
理想气体状态方程 PV=nRT描述了气体的压强、体积、温度和摩尔数之间的关系。
在等温过程中,温度 T 保持不变,如果摩尔数 n 也不变,那么压强 P 和体积 V 成反比,这正是等温过程中气体内能不变的原因。
高中物理3-3专项训练:等温变化
等温变化一、单选题(本大题共6小题,共24.0分)1.如图,玻璃管内封闭了一段气体,气柱长度为l,管内外水银面高度差为h。
若温度保持不变,把玻璃管稍向上提起一段距离,则A. h、l均变大B. h、l均变小C. h变大l变小D. h变小l变大【答案】A【解析】【分析】在本实验中,玻璃管内水银柱的高度h受外界大气压和玻璃管内封闭了一段气体压强的影响玻璃管封闭了一段气体,这一部分空气也会产生一定的压强,而且压强的大小会随着体积的变化而改变,据此来分析其变化的情况即可.在本题的分析中,一定要抓住关键,就是大气压的大小和玻璃管内封闭了一段气体决定了水银柱高度h的大小.【解答】在实验中,水银柱产生的压强加上封闭空气柱产生的压强等于外界大气压如果将玻璃管向上提,则管内水银柱上方空气的体积增大,因为温度保持不变,所以压强减小,而此时外界的大气压不变,根据上述等量关系,管内水银柱的压强须增大才能重新平衡,故管内水银柱的高度增大.故选A.2.如图所示,a、b、c三根完全相同的玻璃管,一端封闭,管内各用相同长度的一段水银柱封闭了质量相等的空气,a管竖直向下做自由落体运动,b管竖直向上做加速度为g的匀加速运动,c管沿倾角为的光滑斜面下滑,若空气温度始终不变,当水银柱相对管壁静止时,a、b、c三管内的空气柱长度、、间的关系为A. B. C. D.【答案】D【解析】【分析】根据牛顿第二定律分别求出管内封闭气体的压强与大气压的关系,再由玻意耳定律列式分析.解决本题的关键是根据牛顿第二定律研究封闭气体的压强,常常以与气体接触的水银或活塞为研究对象,由力学规律求解封闭气体的压强.【解答】设大气压为.对a管:a管竖直向下做自由落体运动,处于完全失重状态,封闭气体的压强等于大气压,即;对b管:以水银为研究对象,根据牛顿第二定律得:,则得:;对c管:以水银为研究对象,根据牛顿第二定律得:,又对管子和水银整体,有:,得,可解得:;所以可得:;根据玻意耳定律得:.故选:D。
等温变化--专题资料
等温变化--专题等温变化---习题专练一、单选题1.用注射器做“探究气体等温变化规律”的实验中,取几组p、V值后,用p作纵坐标,1 V 作横坐标,画出1pV-图象是一条直线,把这条直线延长后未通过坐标原点,而与横轴相交,如图所示,可能的原因是( )A.各组的取值范围太小B.堵塞注射器小孔的橡胶套漏气C.在实验中用手握住注射器而没能保持温度不变D.压强的测量值偏小2.如图所示是一定质量的理想气体分别在温度T1和T2情形下等温变化的p—V图象,则下列关于T1和T2大小的说法正确的是( )A.T1小于T2B.T1大于T2C.T1等于T2D.无法比较二、多选题3.如图,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上端与大气相通,下端开口处开关K关闭;A侧空气柱的长度为l=9cm,B侧水银面比A侧的高h=5cm。
现将开关K打开,从U形管中放出部分水银,当A侧水银面比B侧水银面高h1=3cm时将开关K关闭。
已知大气压强p0=75cmHg。
则下列法正确的是( )A.此时A内气体压强为72cmHgB.此时A内空气柱长度为10cmC.此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,则注入的水银在管内的长度为3.8cmD.此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,则注入的水银在管内的长度为3.4cm4.如图所示为一定质量的气体在不同温度下的两条图线1pV-.由图可知( )A.一定质量的气体在发生等温变化时,其压强与体积成正比B.一定质量的气体在发生等温变化时,其1p V -图线的延长线是经过坐标原点的C. 12T T >D. 12T T <5.一根一端封闭的玻璃管开口向下插入水银槽中,内封一定质量的气体,管内水银面低于管外,在温度不变时,将玻璃管稍向下插入一些,下列说法正确的是,如图所示( )A.玻璃管内气体体积减小B.玻璃管内气体体积增大C.管内外水银面高度差减小D.管内外水银面高度差增大6.如图所示,图线1和2分别表示一定质量的气体在不同温度下的等温线.下列说法正确的是( )A.图线1对应的温度高于图线2B.图线1对应的温度低于图线2C.气体由状态A 沿图线1变化到状态B 的过程中,分子间平均距离增大D.气体由状态A 沿图线1变化到状态B 的过程中,分子间平均距离减小E.气体由状态A 沿图线1变化到状态B 的过程中,气体分子的平均速率不变7.如图所示是一定质量的某气体状态变化的p-V 图象,则下列说法正确的是( )A.气体做的是等温变化B.气体的压强从A 到B 一直减小C.气体的体积从A 到B 一直增大D.气体的三个状态参量一直都在变E.从A 到B 温度先降低后升高 三、计算题8.竖直平面内有一直角形内径处处相同的细玻璃管,A 端封闭,C 端开口,最初AB 段处于水平状态,中间有一段水银将气体封闭在A 端,各部分尺寸如图所示,外界大气压强p 0=75cmHg 。
气体的等温变化(基础练)(解析版)
气体的等温变化一、计算题1.如图所示,U形管内盛有水银,一端开口,另一端封闭一定质量的理想气体,被封闭气柱的长度为10 cm,左右两管液面高度差为1.7 cm,大气压强p0=75.0 cmHg.现逐渐从U形管中取走一部分水银,使得左右两管液面高度差变为10 cm.求:(1)两管液面高度差变为10 cm后,被封闭气柱的长度是多少;(2)需要向U形管内注入多少厘米的水银,才能让高度差从10 cm变为两管液面齐平.【答案】(1)11.8 cm(2)13.2 cm【解析】(1)设空气柱长度l=10 cm,高度差h=1.7 cm时压强为p;当高度差为h1=10 cm时,空气柱的长度为l1,压强为p1则有:p=p0+p h由玻意耳定律得:pl=p1l1逐渐从U形管中取走一部分水银,右侧水银面低于左侧水银面h1则有:p1=p0-p h1联立解得:l1=11.8 cm.(2)当两侧的水银面达到同一高度时,设空气柱的长度为l2,压强为p2,则有:p2=p0由玻意耳定律得:pl=p2l2联立解得:l2≈10.2 cm设注入的水银在管内的长度为Δl,依题意得:Δl=2(l1-l2)+h1联立解得:Δl=13.2 cm.2.(2018·全国卷Ⅲ·33(2))如图3所示,在两端封闭、粗细均匀的U形细玻璃管内有一段水银柱,水银柱的两端各封闭有一段空气.当U形管两端竖直朝上时,左、右两边空气柱的长度分别为l1=18.0 cm和l2=12.0 cm,左边气体的压强为12.0 cmHg.现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U形管平放时两边空气柱的长度.(在整个过程中,气体温度不变)【答案】22.5 cm7.5 cm【解析】设U形管两端竖直朝上时,左、右两边气体的压强分别为p1和p2.U形管水平放置时,两边气体压强相等,设为p.此时原左、右两边气柱长度分别变为l1′和l2′.由力的平衡条件有p1=p2+ρg(l1-l2)①式中ρ为水银密度,g为重力加速度大小.由玻意耳定律有p1l1=pl1′②p2l2=pl2′③两边气柱长度的变化量大小相等l1′-l1=l2-l2′④由①②③④式和题给条件得l1′=22.5 cml2′=7.5 cm.3.横截面积处处相同的U形玻璃管竖直放置,左端封闭,右端开口.初始时,右端管内用h1=4 cm的水银柱封闭一段长为L1=9 cm的空气柱A,左端管内用水银封闭有长为L2=14 cm的空气柱B,这段水银柱左右两液面高度差为h2=8 cm,如图甲所示.已知大气压强p0=76.0 cmHg,环境温度不变.(1)求初始时空气柱B的压强(以cmHg为单位);(2)若将玻璃管缓慢旋转180°,使U形管竖直倒置(水银未混合未溢出),如图乙所示.当管中水银静止时,求左右两水银柱液面高度差h3.【答案】(1)72 cmHg(2)12 cm【解析】(1)初始时,空气柱A的压强为p A=p0+ρgh1而p B+ρgh2=p A联立解得空气柱B的压强为p B=72 cmHg;(2)U形管倒置后,空气柱A的压强为p A′=p0-ρgh1空气柱B的压强为p B′=p A′+ρgh3空气柱B的长度L2′=L2-h3-h2 2由玻意耳定律可得p B L2=p B′L2′联立解得h3=12 cm.4.(2019·全国卷Ⅱ·33(2))如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在水平地面上,汽缸内壁光滑.整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气.平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p.现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:(1)抽气前氢气的压强;(2)抽气后氢气的压强和体积.【答案】(1)12(p 0+p ) (2)12p 0+14p 4(p 0+p )V 02p 0+p【解析】 (1)设抽气前氢气的压强为p 10,根据力的平衡条件得(p 10-p )·2S =(p 0-p )·S ①得p 10=12(p 0+p );② (2)设抽气后氢气的压强和体积分别为p 1和V 1,氮气的压强和体积分别为p 2和V 2,根据力的平衡条件有 p 2·S =p 1·2S ③抽气过程中氢气和氮气的温度保持不变,则由玻意耳定律得p 1V 1=p 10·2V 0④p 2V 2=p 0V 0⑤由于两活塞用刚性杆连接,故V 1-2V 0=2(V 0-V 2)⑥联立②③④⑤⑥式解得p 1=12p 0+14p V 1=4(p 0+p )V 02p 0+p. 5.(2018·全国卷Ⅰ·33(2))如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K.开始时,K 关闭,汽缸内上下两部分气体的压强均为p 0.现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为V 8时,将K 关闭,活塞平衡时其下方气体的体积减小了V 6.不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g .求流入汽缸内液体的质量.【答案】15p 0S 26g【解析】设活塞再次平衡后,活塞上方气体的体积为V 1,压强为p 1,下方气体的体积为V 2,压强为p 2.在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得p 0·V 2=p 1V 1p 0·V 2=p 2V 2 由已知条件得V 1=V 2+V 6-V 8=1324V V 2=V 2-V 6=V 3设流入汽缸内液体的质量为m ,由力的平衡条件得p 2S =p 1S +mg联立以上各式得m =15p 0S 26g.6.如图8所示,在固定的汽缸A 和B 中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A ∶S B =1∶2,两活塞与穿过B 汽缸底部的刚性细杆相连,活塞与汽缸、细杆与汽缸间摩擦不计且不漏气.初始时,A 、B 中气体的体积皆为V 0,A 中气体压强p A =1.5p 0,p 0是汽缸外的大气压强(保持不变).现对A 中气体缓慢加热,并保持B 中气体的温度不变,当A 中气体的压强增大到p A ′=2p 0时,求B 中气体的体积V B .【答案】1.5V 0【解析】对活塞受力分析,由平衡条件得p A S A +p B S B =p 0(S A +S B )p A ′S A +p B ′S B =p 0(S A +S B )已知S B =2S A ,p A =1.5p 0可得p B =34p 0,p B ′=12p 0 对B 中的气体,由玻意耳定律得:p B V 0=p B ′V B解得:V B =1.5V 0.。
气体的等温变化习题
气体的等温变化练习A 组1.如图所示,两端开口的均匀玻璃管竖直插入水银槽中,管中有一段用水银柱h 1封闭的一定质量的气体,这时管下端开口处内、外水银面高度差为h 2,若保持环境温度不变,当外界压强增大时,下列分析正确的是( )A .h 2变长B .h 2变短C .h 1上升D .h 1下降答案:D解析:被封闭气体的压强p =p 0+p h 1=p 0+p h 2,故h 1=h 2.随着大气压强的增大,被封闭气体压强也增大,由玻意耳定律知气体的体积减小,则气柱长度变短,但h 1、h 2长度不变,故h 1下降,D 项正确.2. 如图所示,一圆筒形汽缸静置于水平地面上,汽缸缸体的质量为M ,活塞(连同手柄)的质量为m ,汽缸内部的横截面积为S ,大气压强为p 0.现用手握住活塞手柄缓慢向上提,不计汽缸内气体的质量及活塞与汽缸壁间的摩擦,若汽缸刚提离地面时汽缸内气体的压强为p ,则( )A .p =p 0+mg SB .p =p 0-mg SC .p =p 0+Mg SD .p =p 0-Mg S 答案:D 解析:对汽缸缸体受力分析得Mg +pS =p 0S ,p =p 0-Mg S ,选D.3.(多选)如图所示为一定质量的气体在不同温度下的两条p -1V 图线.由图可知( )A .一定质量的气体在发生等温变化时,其压强与体积成正比B .一定质量的气体在发生等温变化时,其压强与体积成反比C .T 1>T 2D .T 1<T 2答案:BD解析:一定质量的气体温度不变时,pV =常量,所以其p -1V 图线是过原点的直线,A错误,B正确;对同一部分气体来说,体积相同时,温度越高,压强越大,所以T1<T2,D正确.B组4. (多选)如图所示是一定质量的某气体状态变化的p-V图象,则下列说法正确的是()A.气体做的是等温变化B.气体的压强从A到B一直减小C.气体的体积从A到B一直增大D.气体的三个状态参量一直都在变答案:BCD解析:一定质量的气体的等温过程的p-V图象即等温线是双曲线中的一支,显然题图所示AB图线不是等温线,AB过程不是等温变化过程,选项A错误;从AB图线可知气体从A状态变为B状态的过程中,压强p在逐渐减小,体积V 在不断增大,选项B、C正确;又因为该过程不是等温变化过程,所以气体的三个状态参量一直都在变化,选项D正确.5.(多选)如图所示,一定质量的气体由状态A变到状态B再变到状态C的过程,A、C两点在同一条双曲线上,则此变化过程中()A.从A到B的过程温度升高B.从B到C的过程温度升高C.从A到C的过程温度先降低再升高D.A、C两点的温度相等答案:AD6.各种卡通形状的氢气球,受到孩子们的喜欢,特别是年幼的小孩,若小孩一不小心松手,氢气球会飞向天空,上升到一定高度会胀破,是因为() A.球内氢气温度升高B.球内氢气压强增大C.球外空气压强减小D.以上说法均不正确答案:C解析:氢气球上升时,由于高空处空气稀薄,球外空气的压强减小,球内气体要膨胀,到一定程度时,气球就会胀破.7.如图所示,某种自动洗衣机进水时,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量.设温度不变,洗衣缸内水位升高,则细管中被封闭的空气()A.体积不变,压强变小B.体积变小,压强变大C.体积不变,压强变大D.体积变小,压强变小答案:B解析:由题图可知空气被封闭在细管内,缸内水位升高时,气体体积减小;根据玻意耳定律,气体压强增大,B选项正确.8. 如图所示,用弹簧将封闭有一定质量气体的汽缸通过活塞悬挂起来,不计活塞与缸壁间的摩擦,保持温度不变,当外界大气压强变化时,不发生改变的是()A.封闭气体的压强B.封闭气体的体积C.弹簧的弹力D.汽缸底部离地面的高度答案:C解析:以汽缸为研究对象,设大气压强为p0,则有p0S=pS+Mg,p0变化,则p变化,因为温度不变,根据玻意耳定律,则V变化,A、B错误;对整体有kx=(M+m)g,弹簧的弹力不变,故活塞高度不变,又由于气体体积变化,则汽缸底部离地面的高度发生变化,C正确,D错误.9.大气压强p0=1.0×105 Pa.某容器的容积为20 L,装有压强为20×105 Pa的气体,如果保持气体温度不变,把容器的开关打开,待气体达到新的平衡时,容器内剩下气体的质量与原来气体的质量之比为()A.1∶19 B.1∶20 C.2∶39 D.1∶18答案:B解析:由p1V1=p2V2,得p1V0=p0V0+p0V,因V0=20 L,则V=380 L,即容器中剩余20 L压强为p0的气体,而同样大气压下气体的总体积为400 L,所以剩下气体的质量与原来气体的质量之比等于同压下气体的体积之比,即20 400=120,B项正确.C组10.如图所示,有同学在做“研究温度不变时气体的压强跟体积的关系”实验时,用连接计算机的压强传感器直接测得注射器内气体的压强值,缓慢推动活塞,使注射器内空气柱从初始体积20.0 mL变为12.0 mL.实验共测了5次,每次体积值直接从注射器的刻度上读出并输入计算机,同时由压强传感器测得对应体积的压强值.实验完成后,计算机屏幕上立刻显示出如下表所示的实验结果.序号V(mL)p(×105 Pa)pV(×105 Pa·mL)120.0 1.001 020.020218.0 1.095 219.714316.0 1.231 319.701414.0 1.403 019.642512.0 1.635 119.621(1)仔细观察不难发现,pV (×105 Pa·mL)一栏中的数值越来越小,造成这一现象的可能原因是________.A .实验时注射器活塞与筒壁间的摩擦力不断增大B .实验时环境温度增大了C .实验时外界大气压强发生了变化D .实验时注射器内的空气向外发生了泄漏(2)根据你在(1)中的选择,说明为了减小误差,应采取的措施是________. 答案:(1)D (2)在注射器活塞上涂上润滑油增加密封性解析:(1)若实验时注射器活塞与筒壁间的摩擦力不断增大,由于缓慢推动活塞,所以不影响研究温度不变时气体的压强跟体积的关系,故A 错误;若实验时环境温度增大,根据气体方程,pV 乘积应该变大,而实验数据pV 的乘积在变小,故B 错误;实验时外界大气压强发生变化,对本实验没有影响,故C 错误;若实验时注射器内的空气向外发生泄漏,则实验只能测得部分气体的pV 乘积,故D 正确.(2)为了减少误差,应采取的措施是:在注射器活塞上涂上润滑油增加密封性.11.一个气泡从水底升到水面上时,体积增大为原来的2倍,设水的密度为ρ=1.0×103 kg/m 3,大气压强p 0=1.0×105 Pa ,水底与水面温差不计,求水的深度.(g 取10 m/s 2)答案:10 m解析:初状态:p 1=p 0+ρgh ,V 1=V 0末状态:p 2=p 0,V 2=2V 0由玻意耳定律得p 1V 1=p 2V 2代入数据解得h =10 m.12.如图所示,高为H 的导热汽缸竖直固定在水平地面上,汽缸的横截面积为S ,重力为G 的“⊥”形活塞封闭着一定质量的理想气体,活塞离缸底高为h ,现手持“⊥”形活塞上端,缓慢竖直上提活塞,当活塞上升到汽缸上端口时,求竖直上提的力F 的大小.已知大气压强为p 0,不考虑活塞与汽缸之间的摩擦及温度的变化,不计活塞及汽缸壁的厚度.答案:(H -h )(p 0S +G )H 解析:以密闭气体为研究对象,初状态:压强p 1=p 0+G S ,体积V 1=hS ,末状态:压强p 2=p 0+G -F S ,体积V 2=HS .由玻意耳定律得p 1V 1=p 2V 2,⎝ ⎛⎭⎪⎫p 0+G S hS =⎝⎛⎭⎪⎫p 0+G -F S HS ,解得F =(H -h )(p 0S +G )H .。
整理--每日练---简单题目练习--气体的等温变化22--含答案
气体的等温变化—玻马定律(含答案)1、热气球的下方有一个小孔,使球内外的空气相通,保持球内外空气压强相等。
气球内部有一个温度调节器,以调节球内空气的温度,从而控制气球的升降。
已知气球的容积V=500米3,气球连同吊篮的总质量m 0=180千克,地面大气T 0=280K ,压强p 0=1.0×105帕,密度ρ=1.2千克/米3。
①将气球内的温度由T 0升高到T 1=350K ,气球内的空气质量减少多少?②气球内的温度调到多高时,气球才能开始升空?1、设球内气体温度为T 1时,气体密度为ρ1,则有110000T p T p ρρ=。
球内空气质量减少△m=ρ0V -ρ1V=120千克。
设气球开始升空时,球内气体密度为ρ2,温度为T 2,则220000T p T p ρρ=;又ρ0Vg=m 0g +ρ2Vg,联立得T 2=400(开)2、用活塞将一定质量的空气封闭在汽缸内,开始时汽缸的开口朝下放置在水平地面上,活塞位于汽缸的正中央,活塞的下表面仍与大气相通。
设活塞的质量为m ,汽缸的质量为M=2m 。
设大气压强为p 0,温度保持不变,活塞的横截面积为S ,活塞的厚度不计,今用竖直向上的力F 将汽缸非常缓慢地提起,如图所示。
当活塞位于汽缸的开口时,两者相对静止并以共同的加速度向上运动,求此时力F 的大小(用m 、g 、p 0、S 表示)。
2、设缸内气体初态(未加力时)压强为p 1,末态(活塞与汽缸共同加速运动时)压强为p 2.未加力时,活塞受力满足p 1S +mg -p 0S=0对封闭气体,根据玻-马定律p 1V 1=p 2V 2可得p 2=p 1/2=21(p 0-Smg )加外力F 后,设活塞与汽缸共同加速时的加速度为a ,此时活塞受力满足:p 0S -p 2S -mg=ma汽缸和活塞整体受力满足:F -3mg=3ma可解得:F=3(p 0S +mg)/23.64、如图所示,一个质量M=2.0千克,横截面积S=1.0×10-4米2的气缸置于倾角θ=30°的斜面上。
高二物理气体的等温变化试题
高二物理气体的等温变化试题1.一个气泡由湖面下20m深处上升到湖面下10m深处,它的体积约变为原来的体积的(温度不变,水的密度为1.0×103kg/m3,g取10m/s2)()A.3倍B.2倍C.1.5倍D.0.7 倍【答案】C【解析】以气泡里面的气体为研究对象,一标准大气压相当于10m水柱的压强,则由玻马定律可知答案为C。
思路分析:气泡里面的气体为一定质量的可视为理想气体,要注意考虑外界大气压的影响。
试题点评:本题学生容易忽略外界大气压。
2.如图8.1—5,两个半球壳拼成的球形容器内部已抽成真空,球形容器的半径为R,大气压强为P。
为使两个半球壳沿图箭头方向互相分离,应施加的力F至少为:()A.4πR2p B.2π R2p C.πR2p D.πR2p/2【答案】C【解析】所施加的力F只需克服大气压力即可,大气压作用的有效面积为球的大圆面积,则大气压力为:,故C选项正确。
思路分析:关键找出大气压作用的有效面积。
试题点评:本题是考察大气压力实际计算的问题,注意大气压力作用的有效面积。
3.一定质量的气体,在做等温变化的过程中,下列物理量发生变化的有:()A.气体的体积B.单位体积内的分子数C.气体的压强D.分子总数【答案】ABC【解析】对于一定质量的气体,其分子总数在气体状态变化过程中不会改变,故D选项错误;p、V发生相应变化,单位体积内的分子数也随之发生相应变化,故ABC选项正确。
思路分析:气体的分子总数与气体的质量有关。
试题点评:此题考查气体状态的基本理解。
4.如图8.1—6所示,开口向下插入水银槽的玻璃管内封闭着长为H的空气柱,管内外水银高度差为h,若缓慢向上提起玻璃管(管口未离开槽内水银面),H和h的变化情况是()A.h和H都增大B.h和H都减小C.h增大,H减小D.h减小,H增大【答案】A【解析】假设玻璃管上提时水银柱不动,则封闭气体压强减小,在大气压的作用下水银柱上升,h增大;而封闭气体由于压强减小,体积增大,则H增大,故A选项正确。
气体的等温变化(重点练)(解析版)
气体的等温变化一、计算题1.如图所示,一汽缸水平固定在静止的小车上,一质量为m,面积为S的活塞将一定量的气体封闭在汽缸内,平衡时活塞与汽缸底相距为L.现让小车以一较小的水平恒定加速度向右加速运动,稳定时发现活塞相对于汽缸移动了距离d.已知大气压强为p0,不计汽缸和活塞间的摩擦;且小车运动时,大气对活塞的压强仍可视为p0;整个过程温度保持不变.求小车加速度的大小.【答案】p0Sdm(L-d)【解析】设小车加速度大小为a,稳定时汽缸内气体的压强为p1,则活塞受到汽缸内外气体的压力分别为F1=p1S,F0=p0S由牛顿第二定律得F1-F0=ma小车静止时,在平衡状态下,汽缸内气体的压强应为p0.由玻意耳定律得p1V1=p0V0式中V0=SL,V1=S(L-d).联立以上各式得a=p0Sdm(L-d)2.如图所示,粗细相同的导热玻璃A、B由橡皮软管连接,一定质量的空气被水银柱封闭在A管内,气柱长L1=39 cm.B管上方与大气相通,大气压强p0=76 cmHg,环境温度T0=300 K.初始时两管水银面相平,若A管不动,将B 管竖直向上缓慢移动一定高度后固定,A管内水银面上升了h1=1 cm.大气压强不变.求:(1)B管与A管的水银面高度差;(2)要使两管内水银面再次相平,环境温度变为多少?(结果取整数)【答案】(1)2 cm(2)285 K【解析】(1)理想气体第1状态p1=p0,V1=L1S,T1=T0,第2状态p2,V2=(L1-h1)S,T2=T0,由理想气体状态方程p1V1=p2V2,解得p2=78 cmHg;B管与A管的高度差为Δh=p2-p0,解得Δh=2 cm.(2)第3状态p3=p0,V3=(L1-ℎ1-12Δℎ)S,T3由理想气体状态方程V1T1=V3 T3解得T3=285 K.3.如图所示,玻璃管的横截面S=1 cm2,在玻璃管内有一段质量为m=0.1 kg的水银柱和一定量的理想气体,当玻璃管平放时气体柱的长度为l0=10 cm,现把玻璃管正立,过较长时间后再将玻璃管倒立,经过较长时间后,求玻璃管由正立至倒立状态,水银柱相对于管底移动的距离是多少?(假设环境温度保持不变,大气压强取p0=1×105 Pa,重力加速度g取10 m/s2)【答案】2 cm【解析】气体做等温变化,当玻璃管平放时有p1=p0V1=l0S玻璃管正立时,对水银柱受力分析,p2S=p0S+mg,V2=l2S故p2=p0+mgS玻璃管倒立时,对水银柱受力分析,p0S=p3S+mg,V3=l3S有p3=p0-mgS根据玻意耳定律,得p1V1=p2V2,p2V2=p3V3由以上各式联立解得Δl=l3-l2≈2 cm.4.如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm.若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同.已知大气压强为76 cmHg,环境温度为296 K.(1)求细管的长度;(2)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度.【答案】(1)41 cm(2)312 K【解析】(1)设细管的长度为L,横截面的面积为S,水银柱高度为h;初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,被密封气体的体积为V1,压强为p1.由玻意耳定律有pV=p1V1①由力的平衡条件有p=p0+ρgh②p1=p0-ρgh③式中,ρ、g分别为水银的密度和重力加速度的大小,p0为大气压强.由题意有V =S (L -h 1-h )④V 1=S (L -h )⑤由①②③④⑤式和题给条件得L =41 cm ⑥(2)设气体被加热前后的温度分别为T 0和T ,由盖-吕萨克定律有V T 0=V 1T⑦ 由④⑤⑥⑦式和题给数据得T =312 K.5.以下说法正确的是( )A .太空中水滴呈现完美球形是由于液体表面张力的作用B .晶体的各向异性是指沿不同方向其物理性质不同C .空气中PM 2.5的运动属于分子热运动D .气体的压强是由于气体分子间的相互排斥而产生的E .恒温水池中,小气泡由底部缓慢上升过程中,气泡中的理想气体内能不变,对外做功,吸收热量【答案】 ABE【解析】 太空中水滴呈现完美球形是由于液体表面张力的作用,故A 正确;晶体的各向异性是指沿不同方向其物理性质不同,故B 正确;PM 2.5的运动属于固体颗粒的运动,不是分子的热运动,故C 错误;气体的压强是由大量气体分子对容器壁的频繁碰撞引起的,不是由于气体分子间的相互排斥而产生的,故D 错误;小气泡缓慢上升的过程中,外部的压强逐渐减小,气泡膨胀对外做功,由于外部恒温,可以认为上升过程中气泡内空气的温度始终等于外界温度,则内能不变,由热力学第一定律ΔU =W +Q 知,气泡内能不变,同时对外做功,所以必须从外界吸收热量,故E 正确.故选ABE 。
选修3-3气体的等温变化习题
1、一定质量的气体,下列过程可能发生的是( )A 、气体的温度变化,但压强、体积保持不变B 、气体的温度、压强保持不变,而体积发生变化C 、气体的温度保持不变,而压强体积发生变化D 、气体的温度、压强、体积都发生变化2、一定质量理想气体被活塞封闭在可导热的气缸内,活塞相对于下底部高度为h ,可沿气缸无摩擦滑动.现将一小盒沙子缓慢地倒在活塞上表面上.沙子倒完时,活塞下降了h/4.若再取两盒相同的沙子缓慢倒在活塞上表面,外界大气的压强和温度始终保持不变,求此次沙子倒完时,活塞又将下降多高?3、如图所示,为一定质量的气体在不同温度下的两条等温线,则下列说法正确的是( )A.从等温线可以看出,一定质量的气体在发生等温变化时,其压强与体积成反比B.一定质量的气体,在不同温度下的等温线是不同的C.由图可知T1>T2D.由图可知T1<T24、如图所示,一个上下都与大气相通的直圆筒,中间用两个活塞A 与B 封住一定质量的理想气体,A ,B 都可沿圆筒无摩擦地上、下滑动,但不漏气.A 的质量可不计,B 的质量为M ,并与一劲度系数k=5×310N/m 的较长的弹簧相连,已知大气压强0P =1×510Pa ,活塞的横截面积s=0.012m .平衡时,两活塞问的距离0L =0.6m ,现用力压A ,使之缓慢向下移动一定距离后,保持平衡,此时,用于压A 的力F=5×210N ,求活塞A 向下移动的距离.(假定气体温度保持不变)5、如图所示,两端开口的均匀玻璃管竖直插入水银槽中,管中有一段水银柱1h 封闭着一定质量的气体,这时管下端开口处内、外水银面高度差为2h ,若保持环境温度不变,当外界压强增大时,下列分析正确的是( )6、图所示,长50cm 的玻璃管开口向上竖直放置,用15cm 长的水银柱封闭了一段20cm 长的空气柱,外界大气压强为75cm 汞柱.现让玻璃管自由下落,不计空气阻力.求稳定时气柱的长。
气体的等温变化练习(与“气体”有关文档共12张)
压强变为1.0×105 Pa,这个容器的容积
是多大?
200L
第4页,共12页。
利用玻意耳定律解题的基本思路
(1)明确研究对象;
(2)分析过程特点,判断为等温过程;
(3)列出初、末状态的p、V值;
(4)根据p1V1=p2V2列式求解; (5)讨论结果。
今将玻璃管倾斜,下列叙述正确的是( ) A.封闭端内的气体压强增大 B.封闭端内的气体压强减小
C.封闭端内的气体体积增大 D.封闭端内的气体体积减小
第12页,共12页。
1.32105
第8页,共12页。
6、一根一端封闭的玻璃管开口向下插入水银槽中,内封一定 质量的气体,管内水银面低于管外,在温度不变时,将玻璃管稍 向下插入一些,下列说法正确的是,如图所示.
A.玻璃管内A气D 体体积减小; 增大;
B.玻璃管内气体体积
C.管内外水银面高度差减小; 差增大.
D.管内外水银面高度
正确的是,如图所示.
B.封闭端内的气体压强减小
某个容器的容积是10L,所装气体的压强是20×105Pa。
气体与外界隔绝,管口朝下竖直放置,
在温度不变时,如果再向管里装入
初态 p1=20×105Pa V1=10L T1=T
有多高?已知大气压p0 = 1.
第6页,共12页。
5、如图所示,竖直玻璃管里有一段4cm长的水银柱 ,水银柱的下面封闭着长60cm的空气柱,玻璃管的横 截面积是0.1cm2. 在温度不变时,如果再向管里装入 27.2g的水银,持平衡时,封闭在水银柱下面的空气柱 有多高?已知大气压p0 = 1.0×105Pa,水银的密度 ρ =13.6×103 kg/m3.
等温变化练习题
1、气体的压强:气体作用在器壁面积上的压力,气体压强的特点:封闭气体压强单位:国际单位是帕(p a)1标准大气压(atm)= p a = cmHg= mmHg2如下图所示,气缸的质量M=10kg,活塞的质量m=2kg,活塞横截面积s=100cm2,弹簧的劲度系数k=200N/m,外界大气压强Po=1.0×105Pa,求在下列条件下气缸内气体的压强.(a)活塞上加重力为G=200N物体时,P a= ;(b)活塞上加重力为G=200N物体且弹簧伸长10cm,P b= ;(c)拉力F拉活塞,气缸离开地面,P c= ;(d)活塞上加重力为G=200N物体且弹簧被压缩2cm,则P d= .3粗细均匀的玻璃管,一端封闭,长为12cm,一个潜水员手持玻璃管开口向下潜入水中,当潜到水下某深度时看到水进入玻璃管中2cm,求潜水员潜入水中的深度(水面外po=1.0x105pa,g=10m/s2)4一贮气筒内装有25L、1.0×105 Pa 的空气,要使筒内气体压强增至4.0×105Pa,且保持温度不变,那么应向筒内再打入L、1.0×105 Pa 的相同温度的气体。
5.一贮气筒内装有25L、1.0×105 Pa 的空气,要使筒内气体压强增至4.0×105Pa,且保持温度不变,那么应向筒内再打入L、0.5×105 Pa 的相同温度的气体。
6.用活塞式抽气机,在温度不变的情况下,从容积为4L的玻璃瓶中抽气,每抽一次,瓶内气体的压强减小到原来的5/6,那么这台抽气机的气室容积为多少升?7.某个容器的容积是10L,所装气体的压强是20×105Pa。
如果温度保持不变,把容器的开关打开以后,容器里剩下的气体是原来的百分之几?设大气压是1.0×105Pa。
8.容器内装有10×105Pa的气体5kg, 当放出一部分气体后, 容器内的气体压强减小到2×105Pa, 求容器中剩余气体的质量. (设温度不变)将一个长度L=100cm的长玻璃管竖直摆放,管的A端开口,B端封闭。
气体等温变化练习题
1.列图中,p表示压强,V表示体积,T为热力学温度,各图中正确描述一定质量的气体不是等温变化的是()2.如图,粗细均匀的弯曲玻璃管A、B两端开口,管内有一段水银柱,右管内气体柱长为39 cm,中管内水银面与管口A之间气体柱长为40 cm.先将B端封闭,再将左管竖直插入水银槽中,设整个过程温度不变,稳定后右管内水银面比中管内水银面高2 cm,求:(1)稳定后右管内的气体压强p;(2)左管气柱的长度l′.(大气压强p0=76 cmHg)3.一端封闭的玻璃管开口向下插入水银槽内,如图所示,管内水银柱比槽内水银面高h=5 cm,空气柱长l=45 cm,要使管内、外水银面相平.求:(1)应如何移动玻璃管?(2)此刻管内空气柱长度为多少?(设此时大气压相当于75 cmHg 产生的压强)4.如图所示,为一定质量的气体在不同温度下的两条等温线,则下列说法正确的是() A.从等温线可以看出,一定质量的气体在发生等温变化时,其压强与体积成反比B.一定质量的气体,在不同温度下的等温线是不同的C.由图可知T1>T2D.由图可知T1<T25.如图所示是某气体状态变化的p-V图象,则下列说法中正确的是()A.气体作的是等温变化B.从A至B气体的压强一直减小C.从A至B气体的体积一直增大D.气体的三个状态参量一直都在变6.如图所示,D→A→B→C表示一定质量的某种气体状态变化的一个过程,则下列说法正确的是()A.D→A是一个等温过程B.A→B是一个等温过程C.A与B的状态参量相同D.B→C体积减小,压强减小,温度不变7.(2010·广东卷)如图所示,某种自动洗衣机进水时,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量.设温度不变,洗衣缸内水位升高,则细管中被封闭的空气()A.体积不变,压强变小 B.体积变小,压强变大C.体积不变,压强变大 D.体积变小,压强变小8.一定质量的理想气体经历一等温膨胀过程,这一过程可以用p-V图上的曲线来表示,如图所示.由此可知,当气体的体积V1=5 L时,气体的压强p1=________Pa;当气体的体积V2=10 L时,气体的压强p2=________Pa;当气体的体积V3=15 L时,气体的压强p3=________Pa.9.粗细均匀的玻璃棒,封闭一端长为12 cm.一个人手持玻璃管开口向下潜入水中,当潜到水下某深度时看到水进入玻璃管口2 cm,求人潜入水中的深度.(取水面上大气压强为p0=1.0×105 Pa,g=10 m/s2)1.D2.(1)插入水银槽后右管内气体:由玻意耳定律得:p 0l 0S =p ()l 0-Δh 2S ,得p =78 cmHg.(2)插入水银槽后左管压强:p ′=p +ρg Δh =80 cmHg ,左管内外水银面高度差h 1=p ′-p 0ρg=4 cm , 中、左管内气体由玻意耳定律得p 0l =p ′l ′,代入数据解得l ′=38 cm , 3.(1)要增大压强可采取的办法是:向下移动玻璃管时,内部气体体积V 减小、压强p 增大,h 减小.所以应向下移动玻璃管.(2)设此刻管内空气柱长度l ′,由p 1V 1=p 2V 2,得(p 0-h )lS =p 0l ′S , l ′=(p 0-h )l p 0=(75-5)×4575cm =42 cm. 4.ABD5.BCD6.A D →A 是一个等温过程,A 对;A 、B 两状态温度不同,A →B 是一个等容过程(体积不变),B 、C 错;B →C ,V 增大,p 减小,T 不变,D 错.7.当洗衣缸水位升高时,封闭空气的压强增大.因温度不变,由玻意耳定律可知体积一定减小,故选B.8.p1、p3可直接从p -V 图中读出,分别为p1=3×105 Pa 、p3=1.0×105 Pa.由于A →B 过程为等温变化,由玻意耳定律可得p1V1=p2V2,p1=3×105 Pa ,V1=5 L ,V2=10 L ,即3×105×5=p2×10,p2=1.5×105 Pa.答案: 3×105 1.5×105 1×1059.解析: 确定研究对象为被封闭的一部分气体,玻璃管下潜的过程中气体的状态变化可视为等温过程. 设潜入水下的深度为h ,玻璃管的横截面积为S ,气体的初末状态参量分别为初状态:p 1=p 0,V 1=12S .末状态:p 2=p 0+ρgh ,V 2=10S .由玻意耳定律:p 1V 1=p 2V 2,得:p 0p 0+ρgh =10S 12S. 解得h =2 m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节气体的等温变化练习题(一)
1、如图所示,注有水银的U型管,A管上端封闭,A、B两管用橡皮
管相通.开始时两管液面相平,现将B管缓慢降低,在这一过程中,
A管内气体体积____,B管比A管液面____.
2.在一端封闭、粗细均匀的玻璃管内,用水银封闭了一部分空气,当
玻璃管开口向上而处于静止时,管内空气柱长为L,当玻璃管自由
下落时,空气柱长度将__________。
3、如图1所示,圆柱形气缸活塞的横截面积为S,下表面与水平面的夹角为α,重量为G。
当大气压为p0,为了使活塞下方密闭气体的体积减速为原来的1/2,必须在活塞上放置重量为多少的一个重物(气缸壁与活塞间的摩擦不计)
4.一个贮气筒内装有30L一个大气压的空气,现在要使筒内压强增为5个大气压,则应向筒内再打入一个大气压的空气的体积。
(设此过程中温度保持不变)
5、某个容器的容积是10L,所装气体的压强是20×105Pa。
如果温度保持不变,把容器的开关打开以后,容器里剩下的气体是原来的百分之几?设大气压是1.0×105Pa。
6.容积为20L的钢瓶,充满氧气后,压强为150atm,打开钢瓶的阀门,把氧气分装到每个容积为5L的小瓶中去,原来小瓶是真空的,装至压强为10atm时为止。
假设在分装过程中不漏气,并且温度不变,那么最多能分装多少瓶氧气?
7、容器A的容积是10L,用一根带阀门的细管,与容器B相连。
开始时阀门关闭, A内充有
10atm的空气,B是真空。
后打开阀门把A中空气放一些到B中去,当A内压强降到4atm 时,把阀门关闭,这时B内压强是3atm。
求容器B的容积。
假设整个过程中温度不变。
8、将一端封闭的均匀直玻璃管开口向下,竖直插入水银中,当管顶距槽中水银面8cm时,
管内水银面比管外水银面低2cm.要使管内水银面比管外水银面高2cm,应将玻璃管竖直向上提起多少厘米?已知大气压强p0支持76cmHg,设温度不变.
9、均匀U形玻璃管竖直放置,用水银将一些空气封在A管内,当A、B两管水银面相平时,
大气压强支持72cmHg.A管内空气柱长度为10cm,现往B管中注入水银,当两管水银面高度差为18 cm时,A管中空气柱长度是多少?注入水银柱长度是多少?
10、如图所示,长为1m,开口竖直向上的玻璃管内,封闭着长为15cm的水银柱,封闭气体
的长度为20cm,已知大气压强为75cmHg,求:
(1)玻璃管水平放置时,管内气体的长度。
(2)玻璃管开口竖直向下时,管内气体的长度。
11、如图所示,汽缸内封闭着一定温度的气体,气体长度为12cm。
活塞质量为20kg,横截面
积为100cm²。
已知大气压强为1×105Pa。
求:汽缸开口向上时,气体的长度为多少?
12、密闭圆筒内有一质量为0.1kg的活塞,活塞与圆筒顶端之间有一根劲度系数k=20N/m的
轻弹簧;圆筒放在水平地面上,活塞将圆筒分成两部分,A室为真空,B室充有空气,平衡时,l0=0.10m,弹簧刚好没有形变如图所示.现将圆筒倒置,问这时B室的高度是多少?
气体等温变化练习题(2)
1、.如图,把玻璃管口向下插入水银槽中,管内水银面低于管外水银槽中的
水银面。
将玻璃管稍向上提起一些时,玻璃管中的气体压强将减小,则: A 玻璃管内气体的长度增加
B.玻璃管内气体的长度减小
C.玻璃管内外水银面高度差减小
D.玻璃管内外水银面高度差增大
2.如图所示,粗细均匀两端开口的U 形玻璃管,管内注入一定量的水银。
但在其中封闭了一段空气柱,其长度为l 。
在空气柱上面的一段水银柱长为h 1,空气柱下面的水银面与左管水银面相差为h 2。
若往管内加入适量水银,则:
A .水银加入右管,l 变短,h 2变大;
B .水银加入左管,l 不变,h 2变大;
C .水银无论加在左管还是右管,h 1始终与h 2相等;
D .水银加在右管,l 变短,水银加在左管,l 变长。
3、如图所示,两端开口的均匀玻璃管竖直插入水银槽中,管
中有一段水银柱h 1封闭一定质量的气体,这时管下端开口处
内外水银面高度差为h 2,若保持环境温度不变,当外界压强增大时,下列分析正确的是( ) A 、h 2变长 B 、h 2变短
C 、h 1上升
D 、h 1下降
4.在“探究气体等温变化的规律”实验中,封闭的空气如图所示,U 型管粗细均匀,右端开口,已知外界大气压为76cm 汞柱高,图中给出了气体的两个不同的状态。
(1)实验时甲图气体的压强为________cmHg ;乙图气体压强为________cmHg 。
(2)实验时某同学认为管子的横截面积S 可不用测量,这一观点正确吗?
答:________(选填“正确”或“错误”)。
图8—9 h 1
5.今有一质量为M的气缸,用质量为m的活塞封有一定质量的理想气体,当气缸水平横放时,空气柱长为L0(如图甲所示),若气缸按如图乙悬挂保持静止时,求气柱长度为多少。
已知大气压强为P0,活塞的横截面积为S,它与气缸之间无摩擦且不漏气,且气体温度保持不变。
6如图所示,内径均匀的U型玻璃管竖直放置,截面积为5cm2,管右侧上端封闭,左侧上端开口,内有用细线栓住的活塞。
两管中分别封入L=11cm的空气柱A和B,活塞上、下气体压强相等为76cm水银柱产生的压强,这时两管内的水银面的高度差h=6cm,现将活塞用细线缓慢地向上拉,使两管内水银面相平。
求
(1)活塞向上移动的距离是多少?
(2)需用多大拉力才能使活塞静止在这个位置上?
7 如图所示,一端封闭、粗细均匀的薄壁玻璃管开口向下竖直插在装有水银的水银槽内,管内封闭有一定质量的空气,水银槽的截面积上下相同。
开始时管内空气柱长度为6cm,管内外水银面高度差为50cm。
将玻璃管沿竖直方向缓慢上移(管口未离开槽中水银),使
管内空气柱长度为10cm,此时水银槽内水银面下降了2cm,(大气压强相当于
75cmHg)则:
(1)此时管内外水银面高度差为多大?
(2)水银槽的截面积是玻璃管截面积的多少倍
8 .如图所示,一定质量的气体温度保持不变,最初,U形管两臂中的水银相齐,烧瓶中气体体积为800ml;现用注射器向烧瓶中注入200ml水,稳定后两臂中水银面的高度差为25. 3cm;已知76cm高的水银柱产生的压强约为l.0×105Pa,不计U形管中气体的体积。
求:
(1)大气压强
(2)当U形管两边液面的高度差为45.6cm(左高右低)时,烧瓶内气体的体积
以下选做
9一横截面积为S的气缸水平放置,固定不动,气缸壁是导热的,两个活塞A和B将气缸分隔为1、2两气室,达到平衡时1、2两气室体积之比为3∶2,如图所示,在室温不变的条件下,缓慢推动活塞A,使之向右移动一段距离d,求活塞B向右移动的距离,不计活塞与气缸壁之间的摩擦。
10、如图所示,容器A的容积为VA=100L,抽气机B的最大容积为VB=25L。
当活塞向上提时,阀门a打开,阀门b关闭;当活塞向下压时,阀门a关闭,阀门b打开。
若抽气机每分钟完成4次抽气动作,求抽气机工作多长时间,才能使容器A中气体的压强
由70cmhg下降到7.5cmHg(设抽气过程中容器内气体的温度不变)?
11 如图所示,两端开口的U形玻璃管两边粗细不同,粗管横截面积是细管的2倍。
管中装
p=75 cmHg。
现将粗管管口入水银,两管中水银面与管口距离均为12 cm,大气压强为
封闭,然后将细管管口用一活塞封闭并使活塞缓慢推入管中,直至两
管中水银面高度差达6 cm为止。
求活塞下移的距离。
(环境温度不变)。