用UNIFAC基团贡献法预测VLE 6 修正与拓展2003
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Figure 2. Experimental and UNIFAC-predicted (s) P-x and T-x data for the systems (A) diethyl ether (1) + nitrobenzene (2) at (b) 289.15 K16 and (B) anisole (1) + nitrobenzene (2) at (b) 26.66, (2) 66.66, and (9) 94.93 kPa.17
Table 1. New UNIFAC Group Interaction Parameters Not Previously Available n 3 ACH 4 ACCH2 4 ACCH2 6 CH3OH 6 CH3OH 6 CH3OH 7 H2O 7 H2O 8 ACOH 8 ACOH 8 ACOH 8 ACOH 9 CH2CO 10 CHO 10 CHO 11 CCOO 11 CCOO 12 HCOO 12 HCOO 13 CH2O 13 CH2O 13 CH2O 13 CH2O 14 CNH2 15 CNH 15 CNH 15 CNH 15 CNH 16 (C)3N 16 (C)3N 16 (C)3N 18 pyridine 19 CCN 21 CCl 21 CCl 21 CCl 22 CCl2 22 CCl2 23 CCl3 25 ACCl 25 ACCl 25 ACCl 32 I 33 Br 33 Br 38 ACF m 34 CtC 34 CtC 40 CF2 27 ACNO2 30 furfural 34 CtC 12 HCOO 33 Br 12 HCOO 14 CNH2 22 CCl2 27 ACNO2 36 ACRY 19 CCN 34 CtC 18 pyridine 34 CtC 22 CCl2 33 Br 17 ACNH2 27 ACNO2 34 CtC 40 CF2 35 DMSO 17 ACNH2 18 pyridine 31 DOH 39 DMF 17 ACNH2 19 CCN 21 CCl 25 ACCl 20 COOH 30 furfural 32 I 39 DMF 30 furfural 39 DMF 33 Br 35 DMSO 39 DMF 40 CF2 33 Br 37 ClCC 39 DMF 39 DMF anm/K 154.26 -152.55 -245.39 457.88 -61.76 -119.10 233.87 777.10 -32.52 -832.97 517.27 -413.48 -63.50 -106.40 2.21 -0.13 71.48 31.00 298.13 -46.39 155.11 -156.57 -172.51 874.19 138.54 431.49 939.07 -255.22 287.43 1255.10 -182.91 -2.17 205.27 65.56 2.22 6.57 149.56 -160.28 168.80 1337.37 5143.14 309.58 6.37 -48.33 336.25 -110.65 amn/K -101.12 614.52 839.83 511.29 287.00 967.71 124.63 79.18 -234.25 -870.80 1633.50 815.12 114.55 224.66 -55.87 8.87 -111.45 80.99 -92.26 285.36 220.66 173.77 278.15 -366.51 64.30 -207.66 -213.74 10.03 -24.46 -446.86 151.38 20.18 92.07 -39.46 179.25 -55.21 -116.21 397.24 -46.80 -334.12 -374.16 33.95 37.10 322.42 -176.26 50.06
The combinatorial part considers the form and the size of the molecules
ln γC i ) 1 - Vi + ln Vi - 5qi 1 -
(
Vi Vi + ln Fi Fi
)
(2)
where the parameters Vi and Fi are given as
Ind. Eng. Chem. Res. 2003, 42, 183-188
1wk.baidu.com3
GENERAL RESEARCH Vapor-Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension
Roland Wittig, Ju 1 rgen Lohmann,† and Ju 1 rgen Gmehling*
Introduction For the synthesis, design, and optimization of distillation processes, a reliable knowledge of the vaporliquid equilibrium behavior is necessary. Because experimental data are often not available, at least for process synthesis, group contribution methods can be used for the prediction of the required vapor-liquid equilibria. In the past several decades, the group contribution method UNIFAC1,2 has become very popular. As a result, UNIFAC has been integrated into most commercial process simulators. Because of ongoing research work, the range of applicability of UNIFAC is continuously extended, and at the same time, the reliability of the results is improved. The applicability depends on the availability of group volumes (Rk), group surface areas (Qk), and group interaction parameters (anm and amn). For that reason, the existing parameter matrix for the UNIFAC method is continually being extended with the help of VLE data stored in the Dortmund Data Bank (DDB) and systematic VLE measurements. Extensive tables with group interaction parameters for 50 main groups have been presented before.3-6 Recently, the parameters for four new main groups were published by Balslev and Abildskov.7 In this paper, new group interaction parameters for 46 group combinations are provided to fill gaps in the existing parameter table. Additionally, group interaction parameters for the newly introduced main group sulfones are presented. The Group Contribution Method UNIFAC In the UNIFAC model, the activity coefficient is calculated in terms of a combinatorial part and a residual part
Lehrstuhl fu ¨ r Technische Chemie (FB9), Carl von Ossietzky Universita ¨ t Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
The group contribution method UNIFAC has become very popular because of its large range of applicability and its reliable predictions of vapor-liquid equilibria. With the help of new data stored in the Dortmund Data Bank (DDB), many gaps in the existing UNIFAC parameter matrix have been filled, and many new main groups have been added to the parameter table. In this paper, the parameters for 46 group combinations are provided. Additionally, a new main group for sulfones is introduced, for which the group interaction parameters for eight main groups are fitted.
10.1021/ie020506l CCC: $25.00 © 2003 American Chemical Society Published on Web 11/21/2002
184
Ind. Eng. Chem. Res., Vol. 42, No. 1, 2003
Figure 1. Experimental and UNIFAC-predicted (s) T-x data for the systems (A) 1-octyne (1) + dibutyl ether (2) at (b) 26.66, (2) 53.33, and (9) 79.99 kPa15 and (B) 2-octyne (1) + dibutyl ether (2) at (b) 26.66, (2) 53.33, and (9) 79.99 kPa.15
* Correspondence concerning this article should be addressed to Prof. Dr. J. Gmehling. E-mail: gmehling@ tech.chem.uni-oldenburg.de. Tel.: +49 441 798 3831. Fax: +49 441 798 3330. Internet: http://www.uni-oldenburg.de/tchemie. † Present address: BASF Coatings AG, Werk Mu ¨ nster, Postfach 6123, D-48163 Mu ¨ nster, Germany.